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Abstract: We are interested in recovering information on a stochastic
block model from the subgraph discovered by an exploring random walk.
Stochastic block models correspond to populations structured into a finite
number of types, where two individuals are connected by an edge inde-
pendently from the other pairs and with a probability depending on their
types. We consider here the dense case where the random network can be
approximated by a graphon. This problem is motivated from the study
of chain-referral surveys where each interviewee provides information on
her/his contacts in the social network. First, we write the likelihood of the
subgraph discovered by the random walk: biases are appearing since hubs
and majority types are more likely to be sampled. Even for the case where
the types are observed, the maximum likelihood estimator is not explicit
any more. When the types of the vertices is unobserved, we use an SAEM
algorithm to maximize the likelihood. Second, we propose a different es-
timation strategy using new results by Athreya and Röllin. It consists in
de-biasing the maximum likelihood estimator proposed in Daudin et al. and
that ignores the biases.
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Environnement-Ecole Polytechnique-Museum National d’Histoire Naturelle-Fondation X.

5855

https://imstat.org/journals-and-publications/electronic-journal-of-statistics/
https://doi.org/10.1214/21-EJS1899
mailto:chi.tran@univ-eiffel.fr
mailto:phuongthuywz@gmail.com
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


5856 V. C. Tran and T. P. T. Vo

3.2 Incomplete observations: SAEM Algorithm . . . . . . . . . . . 5867
3.2.1 The SAEM algorithm . . . . . . . . . . . . . . . . . . . 5867
3.2.2 Variational approach . . . . . . . . . . . . . . . . . . . . 5868
3.2.3 Proposal distribution for the Step 1 of SAEM . . . . . . 5871

4 Estimation via biased graphon and ‘classical likelihood’ . . . . . . . 5872
4.1 Complete observations . . . . . . . . . . . . . . . . . . . . . . . 5873

4.1.1 Proof of Proposition 4.2 . . . . . . . . . . . . . . . . . . 5874
4.1.2 Proof of Proposition 4.3: limit of χ̂n . . . . . . . . . . . 5878

4.2 Incomplete observations and graphon de-biasing . . . . . . . . . 5880
4.2.1 Case where Zi is unobserved but Xi is . . . . . . . . . . 5880
4.2.2 Case where both Xi and Zi are unobserved . . . . . . . 5881

5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5882
6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5883
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5885
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5885

1. Introduction

A way to infer a random structure such as the graph of a social network and
discover its properties is to explore it with random walks (e.g. [28]). This math-
ematical idea can be put into practice to reveal hidden populations such as drug
users by using referral chain sampling where each new person provides infor-
mation on her/his contacts: see for example the snowball sampling [15] or the
‘respondent-driven sampling’ (RDS) introduced by Heckathorn [16] (see also the
PhD thesis of the second author [34]). These methods were first used to esti-
mate the size of the hidden population or to infer population means, under the
assumption that subjects’ network degree determines their probability of being
sampled, see Volz and Heckathorn [35] (see also [22]). Because the inclusion
probability of a subject is complicated to compute, due to the dependencies
associated with the graph and the fact that the sampling should be in prac-
tice without replacement, an important numerical literature on the subject has
followed (see e.g. [13, 14, 27]). Gile [12] proposed an improved estimator for
population means taking into account the without replacement sampling, and
Rohe established critical threshold for the design effects [29]. Because of privacy
restrictions, the social-network information is usually only a tree, as each inter-
viewee has been ‘invited’ into the survey by a previously interviewed subject.
Crawford, Wu and Heimer [10] use a Bayesian approach to integrate over the
missing edge between recruited individuals.

It appears that the information gathered in chain-referral surveys can also
be used in estimating the social network itself or at least properties associated
with its topology. Recent surveys allow to gather connectivity information for
recruited members: see for example the Rolls et al. [30] and Jauffret-Roustide
et al. [32]. Interviewees are asked for a description of their contacts, and for
a first name or a nickname. This information allows to reconstruct partially
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the social network and obtain a subgraph that is not a tree. It is then natural
to wonder how much information on the total graph can be recovered from
the observation of the subgraph obtained by the chain-referral sampling. Of
course, biases have been emphasized as individuals of high degrees (hubs) are
sampled with higher probability and ‘common profiles’ are much more likely to
be discovered (e.g. [20]). This motivates the present paper. To fix the framework
of study, we consider a particular class of random graphs, namely the Stochastic
Block Models (SBM) that are popular models for social networks (see [17] and
the review [1]). For this parametric model, inferring the distribution of the
random graph boils down to a finite dimensional parameter estimation. Also,
for simplification, we consider here a model of random walk on the continuous
version of the SBM graph, namely the SBM graphon that is introduced in the
next paragraph. Two estimations strategies are considered in this paper. First,
we establish the likelihood of a random walk exploring this structure, and which
accounts for the sampling biases. Two cases are classically considered, depending
on whether the types of the visited nodes are observed or not. Even in the case
of a complete observation, the maximum likelihood estimator has no explicit
form. When the types of the vertices are unobserved, we adapt the Stochastic
Approximation Expectation-Maximization algorithm (SAEM) as introduced in
[7, 21]. Second, we propose a new estimation using new theoretical probabilistic
results by Athreya and Roellin [3] who compute an exact formula for the bias.
We provide a consistent estimator in the case of complete observations and two
de-biasing strategies for the usual maximum likelihood estimator of Daudin et
al. [11] in the case where the types of the explored nodes are unknown.

We consider as a toy model a Stochastic Block Model graphon with Q classes.
Graphons, considered here as symmetric integrable functions from [0, 1]2 to R,
can be seen as limits of dense graphs (see e.g. [23]). Recall that SBM graphs
are a generalization of Erdös-Rényi graphs, where each node i is characterized
by a type, Zi ∈ {1, . . . , Q}, with Q the number of different possible values. The
random variable (r.v.) Zi are assumed independent and identically distributed
(i.i.d.) with P(Zi = q) = αq > 0. Each pair of nodes {i, j} is connected indepen-
dently with a probability πZi,Zj ∈ (0, 1) that depends only on the types. Because
the graph is non oriented, the matrix with entries πqr is symmetric (πqr = πrq).
Thus, for a given Q, the distributions of SBM graphs are parameterized by the
vector

θ = (αq, πqr, ; q, r ∈ {1, · · ·Q}).
When the number of vertices of the graph tends to infinity, it is known that the
dense graph converges to a limiting continuous object called graphon, see e.g.
[5, 6, 23]. Let us recall the definition of the SBM graphon.

For the sequel, we introduce the partition of [0, 1] defined by

Iq =
[
Aq−1, Aq), q ∈ {1, . . . Q} (1.1)

where for q ∈ {1, . . . Q}, Aq =
∑q

k=1 αk, with A0 = 0 by convention. The SBM
graphon κθ, associated with the parameter θ = (αq, πqr, ; q, r ∈ {1, · · ·Q}), is
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the function from [0, 1]2 to [0, 1] defined as follows:

κθ(x, y) =

Q∑
q=1

Q∑
r=1

πqr 1Iq (x)1Ir (y). (1.2)

Heuristically, we can see [0, 1] as a continuum of vertices, and the graphon is
the limit of the expectation of the adjacency matrix of the graph in the sense
that κθ(x, y) measures the probability of connection between x and y.

We consider a random walk on the graphon κθ, i.e. the process X = (Xm)m≥1

with values in [0, 1] and transition kernel:

Kθ(x, dy) =
κθ(x, y)dy∫ 1

0
κθ(x, v)dv

=

∑Q
q=1

(∑Q
r=1 πqr 1Ir (y)

)
1Iq (x) dy∑Q

q=1

(∑Q
r=1 πqrαr

)
1Iq (x)

. (1.3)

This random walk is the analogous of the classical random walk on a graph
that jumps from a vertex to one of its neighboring vertices chosen uniformly
at random. One simplification brought by studying the random walk on the
graphon lies in the facts that (i) nodes can be visited only once and the random
walk does not return to previously explored nodes, (ii) the Markov chain can
not get stuck as would an avoiding random walk on a discrete graph.

From the exploration of this random walk, we can construct a subgraph of
the ‘nodes’ visited. Assume that we observe n steps of the random walk, i.e.
X(n) = (X1, . . . , Xn). The associated path (up to its nth step) is a sub-
graph (chain) Hn = (Vn, En) with vertices Vn = {X1, . . . Xn} and edges
En = ∪n−1

m=1{Xm, Xm+1}. This chain is completed by sampling independently
edges between vertices that are not already connected with probability accord-
ing to their types. We denote by (Yij ; i, j ∈ {1, . . . n}) the adjacency matrix
of the resulting graph, i.e. Yij = 1 if and only if i ∼Gn j. Because the graph
is non-oriented, we have Yij = Yji. Moreover, notice that by construction, we
always have Yi,i+1 = 1 for i ∈ {1, . . . n− 1}. Following the notation of Athreya
and Röllin [3], we denote by Gn := G(X(n), κθ, Hn) the random graph, which
is completed from Hn w.r.t. the graphon κθ:

Definition 1.1. The vertices of Gn = G(X(n), κθ, Hn) are the nodes X(n), and
the edges are as follows. Let i and j be two vertices.

• If there is an edge between i and j in Hn, i ∼Hn j then there is also an
edge between these nodes in Gn: i ∼Gn j.

• If there is no edge between i and j in Hn, we connect i and j in Gn with
probability κθ(Xi, Xj).

This subgraph Gn is the RDS graph. Notice that the random walk and the
subgraph Gn can be defined for general graphons and not only SBM graphons
(see [3]).
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In the rest of the paper, we assume that this is the model generating our data
and that the observation corresponds to a realization of Gn. The complete data
consists in:

• the chain X(n) = (Xi)i∈{1,···n} in [0, 1],
• the types of the successive vertices visited Z = (Zi)i∈{1,···n}
• the adjacency matrix of Gn: Y = (Yij)i,j∈{1,···n} where Yij = 1i∼Gn j .

We will consider the cases where (i) all these elements are observed, and the
case where only a partial information is available: (ii) the adjacency matrix
(Yij)i,j∈{1,···n} and the positions Xi’s of the vertices are observed, but not the
Zi’s. Notice that in the latter case, some information on the types Zi’s can still
be recovered since the latter depend on the Xi’s. (iii) only the adjacency matrix
(Yij)i,j∈{1,···n} is observed.

Our purpose is to estimate θ = (αq, πqr; q, r ∈ {1, · · ·Q}) using the subgraph
Gn. In the literature, the estimation of SBM graphs has been extensively stud-
ied, but often in a framework where the number of nodes is known. In par-
ticular, variational EM approaches have been used in many cases where types
are unknown, see [11, 31, 25]. The estimation of SBM graphs, when the total
population size is unknown and when we only have a subgraph obtained by a
chain-referral method, is not studied to our knowledge. We develop in this paper
two approaches that we compare in a final numerical section (Section 5).

The first approach relies on the likelihood of Gn. Here, because graph is
explored through an RDS random walk, our likelihood differs from the likeli-
hoods in the papers mentioned above: it accounts both on the transitions of the
random walk and on the connectivity of vertices given their types. We study
in Section 3 the maximum likelihood estimator (MLE) in our setting for both
cases, when the nodes types are observed (Section 3.1) or not (Section 3.2). Even
when the observation is complete, the maximum likelihood estimator does not
have an explicit form. When the types are unknown, we adapt to our likelihood
the variational EM approach of [11].

The second approach developed in Section 4 is inspired by the recent work of
Athreya and Röllin [3]. These authors showed that when we observe the random
walk sufficiently long (n → +∞), the sequence of graphs (G(Hn, κθ))n≥1 con-
verges to a biased graphon of κθ. Based on their probabilistic result, a natural
estimator of the biased graphon turns out to be the MLE in the ‘classical’ case
studied by [11]. Based on this estimator that is not consistent in our case, we
propose a new consistent estimator of θ. We first detail the estimation for the
case of complete observations (Section 4.1). Then, we extend the variation EM of
Section 3.2 to the setting of this second approach (Section 4.2.1), which still re-
quires knowledge of the Xi’s. Another possibility without using the information
on the Xi’s is developed in Section 4.2.2.
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2. Probabilistic setting

In this section, we give some important properties of the RDS Markov chain
X(n), in particular on its long term behaviour. Then we explain the biases that
appear when estimating the graphon κθ from the RDS subgraph Gn.

2.1. Exploration by a random walk

Assumption 1. In all the paper, we consider the graphon κθ of an SBM graph
(see (1.2)) and we assume that κθ is connected, i.e. that for all measurable subset
A ⊂ [0, 1] such that its Lebesgue measure |A| ∈ (0, 1),

0 <

∫
A

∫
Ac

κθ(x, y)dx dy =

Q∑
q=1

Q∑
r=1

πqr|Iq ∩A| |Ir ∩Ac|, (2.1)

using (1.2).

Let us now introduce some notations:

π̄q =

Q∑
r=1

πqrαr, π̄ =

Q∑
q=1

π̄qαq =

Q∑
q=1

Q∑
r=1

πqrαqαr. (2.2)

The quantity π̄q corresponds to the mean connectivity of a node of class q and
π̄ corresponds to the mean connectivity of a node chosen uniformly in [0, 1].

Proposition 2.1. Under Assumptions 1, the random walk X = (Xn)n≥1 admits
a unique invariant probability measure

m(dx) =

∫ 1

0
κθ(x, v)dv∫ 1

0

∫ 1

0
κθ(u, v)du dv

dx =

∑Q
q=1 π̄q1Iq (x) dx

π̄
. (2.3)

The general proof is given in [3, Prop. 4.1] but for the case of SBM graphons,
the result is easy to prove.

From expression (2.3), we see that for q ∈ {1, · · ·Q}, the measure of the class
q with respect to m(dx) is:

α̃q := m(Iq) = αq
π̄q

π̄
. (2.4)

So, if π̄q > π̄, then α̃q > αq and the stationary measure m(dx) puts more weight
on the interval Iq which has a larger than average connectivity, compared with
the Lebesgue measure. If π̄1 = · · · π̄Q = π̄ are all equal, we have α̃q = αq for all
q ∈ {1, · · ·Q} and m(dx) is the uniform measure on [0, 1] by (2.3). Otherwise,
we expect biases in how the graphon κθ is discovered by Gn.



Estimation of dense SBM with RW 5861

2.2. Convergence of dense graphs

We are interested in the case where n → +∞. Then, the (dense) RDS graph
Gn might converge to a graphon, and it is natural to compare the possible limit
to the graphon κθ on which the random walk moves. Let us recall briefly some
topological facts. We refer the interested reader to [23].

Let us give first some notations. For integers n and k ≤ n, �1, n� = {1, 2 · · ·n}
and (n)k = n(n − 1) · · · (n − k + 1). For a graph G, E(G) denotes the edges of
G and i ∼G j means that {i, j} ∈ E(G). We can define the subgraph F density
in G by:

t(F,G) =
#{injections from F to G}

(n)k
=

1

(n)k

∑
(i1,···ik)∈�1,n�

∏
{�,�′}∈E(F )

1i�∼Gi�′

(2.5)
where

∑
(i1,···ik)∈�1,n� is a sum ranging over all vectors (i1, · · · ik) with mutually

different coordinates in �1, n�. This notion of subgraph density can be general-
ized to a graphon κ by:

t(F, κ) =

∫
[0,1]k

∏
{�,�′}∈E(F )

κ(x�, x�′)dx1 · · · dxk. (2.6)

Let F denote the class of isomorphism classes on finite graphs and let (Fi)i≥1

be a particular enumeration of F . Then, the distance of two graphs G and G′

is:

dsub(G,G′) =
∑
i≥1

1

2i
∣∣t(Fi, G)− t(Fi, G

′)
∣∣. (2.7)

The convergence of the large graphs to graphons can be expressed with this
distance [23, Chapter 11].

2.3. Biases in the discovery of κθ

Let us denote by Γ the cumulative distribution function of m(dx):

Γ(x) =

∑Q
q=1 π̄q

[
min

(
αq, x−Aq−1

)]
+

π̄

=

{
π̄1x if x ∈ I1,

Ãq−1 + π̄q(x− Ãq−1) if x ∈ Iq,
(2.8)

where Ãq =
∑q

k=1 α̃k. Notice that Γ is a continuous piecewise affine function

that maps [Aq−1, Aq) to [Ãq−1, Ãq).
Athreya and Röllin [3] have proved that the graphon discovered by the RDS

is biased:
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Proposition 2.2 (Corollary 2.2 [3]). We have under Assumptions 1 that:

lim
n→+∞

dsub
(
Gn, κΓ−1

)
= 0,

where the generalised inverse of Γ is

Γ−1(v) = inf{u ∈ [0, 1] : Γ(u) ≥ v},

and where for all x, y ∈ [0, 1],

κΓ−1(x, y) = κ
(
Γ−1(x),Γ−1(y)

)
. (2.9)

This proposition, that is true not only for SBM graphons but also in more
general cases, as developed in [3], says that the topology of the subgraph dis-
covered by the RDS is biased compared with the true underlying structure (κ)
because the random walk visits more likely the nodes with high degrees (hubs)
and the frequent types.

In the case of an SBM graphon parameterized by θ = (αq, πqr; q, r ∈
{1, · · ·Q}), and under Assumption 1, Γ is a one-to-one map and Γ−1 is its usual
inverse function: it is here the piecewise affine function that maps the interval
[Ãq−1, Ãq) to [Aq−1, Aq). We have here:

κΓ−1(x, y) = κθ̃(x, y), (2.10)

with the notation (1.2) and where

θ̃ = (α̃q, πqr; q, r ∈ {1, · · ·Q}). (2.11)

For SBM graphons, there will be no bias when κθ̃ = κθ, i.e. when for all q ∈
{1, · · ·Q}, α̃q = αq.

Example 2.3. When Q = 2, the graphon is given:

κθ(x, y) =

⎧⎨⎩ π11, 0 ≤ x, y ≤ α;
π12, α < x ≤ 1 or α < y ≤ 1;
π22, otherwise.

(2.12)

This function is represented in Fig. 1
The invariant probability measure is:

m(dx) =
(π11α+ π12(1− α))1x∈[0,α](x) + (π12α+ π22(1− α))1x∈(α,1](x)

π11α2 + 2π12α(1− α) + π22(1− α)2
dx.

As a result (see Fig. 1), the bias graphon κθ̃ corresponds to the SBM graphon
(2.12) where the weight of the class 1 is changed from α to

Γ(α) =
(π11α+ π12(1− α))α

π11α2 + 2π12α(1− α) + π22(1− α)2
. (2.13)

In this particular case, it can be seen that Γ(α) = α when (1− α)(π12 − π22) =
α(π12 − π11). This is satisfied for example when π11 = π12 = π22 (Erdös-Rényi)
or when α = 1/2 and π11 = π22 (both types are symmetric).
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Fig 1. Left: Function κθ(x, y) for an SBM graphon with Q = 2 classes. Right: Distorted
graphon κ

θ̃
as discovered by the random walk. Notice that the parameters πqr are unchanged,

but the weights of the classes are modified from (α, 1− α) to (Γ(α), 1− Γ(α)).

2.4. Empirical cumulative distribution

As seen in the previous paragraph, the bias linked with the discovery of the
graphon κθ by the RDS subgraph Gn is expressed in term of the cumulative
distribution Γ of the stationary distribution m of X(n). In the sequel, the em-
pirical cumulative distribution of m will be useful and we recall here some facts:

Γn(x) =
1

n

n∑
i=1

1Xi≤x and Γ−1
n (y) = inf

{
x ∈ [0, 1] : Γn(x) ≥ y

}
.

(2.14)

Lemma 2.4. Γn and Γ−1
n converge a.s. uniformly to Γ and Γ−1 respectively.

Proof. The almost sure pointwise convergence of Γn to Γ is a consequence of the
ergodic theorem. Then, the a.s. uniform convergence is obtain by the Glivenko-
Cantelli theorem.
Let us prove the uniform convergence of Γ−1

n to Γ−1. Because all the αq’s are
positive, Γ is a nondecreasing and piecewise affine bijection and the inverse
bijection Γ−1 is also nondecreasing and piecewise affine. Let ε > 0 and n0 ∈ N

sufficiently large so that for all n ≥ n0, ‖Γn−Γ‖∞ ≤ ε. There exists C > 0 such
that for y ∈ [0, 1] and n ≥ n0,∣∣Γ−1

n (y)− Γ−1(y)
∣∣ ≤C

∣∣Γ(Γ−1
n (y))− y

∣∣.
Because the jumps of Γn are a.s. of size 1/n, we necessarily have that y − ε ≤
Γ(Γ−1

n (y)) ≤ y + ε+ 1
n . Thus,∣∣Γ−1

n (y)− Γ−1(y)
∣∣ ≤C

( 1
n
+ ε

)
,

which proves the uniform convergence of Γ−1
n to Γ−1.

3. Likelihood estimation

In this section, we write the likelihood of Gn and compute the MLE of the
parameters θ in Section 3.1, when we have complete observations: (Zi, Yij ; i, j ∈
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{1, · · ·n}) are available. Here our likelihood is specific to the RDS exploration.
The MLE does not have an explicit formula and we explain how to compute
it numerically. Then in Section 3.2, we study the case where the types Z =
(Z1, · · · , Zn) of the nodes are unobserved.
Notice that the estimation in this Section 3 makes only use of the connectivity
information carried by the random variables Yij . The estimators here do not
depend on the positions Xi. The types Z may be known or unobserved.

Let us introduce some notations. We define by Nq
n, q ∈ {1, ..., Q} the number

of vertices of type q sampled by the Markov chain. For q, r ∈ {1, ..., Q} we also
define by:

Nq↔r
n = Card

{
(i, j) | Zi = q, Zj = r, Yi,j = 1

}
;

Nq�r
n = Card

{
(i, j) | Zi = q, Zj = r, Yi,j = 0

}
the number of couples of types (q, r) that are connected (resp. not connected).

3.1. Complete observations

Assume that we observe a subset of explored nodes discovered by the RDS, with
their classes and connections: (Zi, Yij ; i < j) ∈ {1, · · ·Q}n × {0, 1}n(n−1)/2.

Proposition 3.1. Recall that θ = (αq, πqr; 1 ≤ q ≤ r ≤ Q). The complete
likelihood of the observations is

L(Z, Y, θ) =
∏

1≤q≤r≤Q

πNq↔r

qr (1− πqr)
Nq�r ×

Q∏
q=1

α
Nq

n
q

(
∑Q

q′=1 πqq′αq′)N
q
n−1Zn=q

.

(3.1)

Notice that in the above formula, the notation πqq′ is a shortcut for
πmin(q,q′),max(q,q′).

Proof. We have that

L(Z, Y ; θ) = αZ1

n−1∏
m=1

πZmZm+1αZm+1∑Q
q=1 πZmqαq

×
∏

1≤i<j≤n,
|i−j|
=1

π
Yi,j

ZiZj
(1− πZiZj )

(1−Yi,j),

where the first product corresponds to the likelihood of the types sampled along
the Markov chain, and the second product corresponds to the likelihood of edges
between vertices that are not visited successively by the Markov chain. Because
the graph is non-oriented, it is sufficient to consider i < j. Thus:

L(Z, Y ; θ) =

∏n
i=1 αZi∏n−1

i=1

∑Q
q=1 πZiqαq

×
∏

1≤i<j≤n

b(Yij , πZiZj ), (3.2)
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where b(Yij , πZiZj ) = π
Yij

ZiZj
(1− πZiZj )

1−Yij (recall that Yi,i+1 = 1 by construc-

tion). Finally, rewriting the above likelihood using Nq
n, N

q↔r
n and Nq�r

n , we
obtain:

L(Z, Y, θ) =
Q∏

q=1

(
πqq

1− πqq

)Nq↔q
n

(1− πqq)
Nq

n(N
q
n−1)/2

×
∏
q<r

(
πqr

1− πqr

)Nq↔r
n

(1− πqr)
Nq

nN
r
n ×

Q∏
q=1

α
Nq

n
q

(
∑Q

q′=1 πqq′αq′)N
q
n−1Zn=q

,

(3.3)

which provides the announced result.

Proposition 3.2. The MLE θ̂ = (α̂q, π̂qr; 1 ≤ q ≤ r ≤ Q) is the solution of the
following system of equations:

Nq
n

α̂q
−

Q∑
p=1

(Np
n − 1Zn=p)π̂pq∑Q
q′=1 π̂pq′ α̂q′

=
Nr

n

α̂r
−

Q∑
p=1

(Np
n − 1Zn=p)π̂pr∑Q
q′=1 π̂pq′ α̂q′

; (3.4)

Nq↔q
n

π̂qq
− Nq�q

n

1− π̂qq
− (Nq

n − 1Zn=q)α̂q∑Q
q′=1 π̂qq′ α̂q′

= 0; (3.5)

Nq↔r
n

π̂qr
− Nq�r

n

1− π̂qr
− (Nq

n − 1Zn=q)α̂r∑Q
q′=1 π̂qq′ α̂q′

− (Nr
n − 1Zn=r)α̂q∑Q
q′=1 π̂rq′ α̂q′

= 0 if q = r. (3.6)

Proof. The log likelihood of the observations is:

logL =
∑

1≤q≤r≤Q

Nq↔r log(πqr) +Nq�r log(1− πqr)

+

Q∑
q=1

(
Nq

n logαq − (Nq
n − 1Zn=q) log

( Q∑
q′=1

πqq′αq′
))

.

When we optimize the function logL with respect to the parameters and under
the constraint that

∑Q
q=1 αq = 1, we obtain after computation of the Lagrangian

the following system. First, the estimator θ̂ = (α̂q, π̂qr; 1 ≤ q ≤ r ≤ Q) satisfies
the constraint

Q∑
q=1

α̂q = 1.

Second, the other equations of the system are:

∂ logL
∂αq

=
∂ logL
∂αr

;
∂ logL
∂πqr

= 0.

These equations give (3.4) for all 1 ≤ q ≤ r ≤ Q. In the sequel, the example
with Q = 2 will be developed.
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The identifiability of the model where the sampling of nodes is i.i.d. is a
result by Allman et al. [2, Theorem 7]. In our case, the consistence of π̂qr is
obtained by Van der Vaart [33, Th. 5.7]. Indeed, the sequence of log-likelihoods
renormalized by 1/n2 converges to a limit when n → +∞ and this limit admits
a local maximum around the true parameters (πqr). For the parameters αq, it is
more tricky. Techniques developed by Célisse et al. [9] and which are based on
explicit expressions of the estimators can not be followed here. We can rewrite
the likelihood of the Yi,j ’s as a mixture, given the probability of the Zi’s, but
the latter are not independent, which complicates the computation. This is left
for further research.

Remark 3.3. When the graph is completely observed and not only through the
sampling from a Markov chain, the classical likelihood, as obtained in Daudin
et al. [11] is:

Lclass(Z, Y ; θ) =

n∏
i=1

αZi ×
∏

1≤i<j≤n

b(Yij , πZiZj )

=

Q∏
q=1

α
Nq

n
q ×

∏
1≤q≤r≤Q

π
Nq↔r

n
qr (1− πqr)

Nq�r
n . (3.7)

The difference between (3.7) and (3.2) is the first product which corresponds
of the likelihood of the node types. In the classical case, these types are chosen
independently whereas here they are discovered by the successive states of the
Markov chain. In this classical case, the MLE has an explicit formula:

α̂class
q =

Nq
n

n
, π̂class

qr =
Nq↔r

n

Nq
nNr

n

, π̂class
qq =

2Nq↔q
n

Nq
n(N

q
n − 1)

. (3.8)

Here, for the likelihood (3.1), the MLE which solves (3.4) is not explicit any
more. Let us discuss briefly the case of two classes (Q = 2). The parameter is

then θ = (α, π11, π12, π22). Define θ̂ = (α̂, π̂11, π̂12, π̂22) the estimator of θ. The
log likelihood is now:

logL =N1↔1 log(π11) +N1�1 log(1− π11)

+N1↔2 log(π12) +N1�2 log(1− π12)

+N2↔2 log(π22) +N2�2 log(1− π22)

+N1
n logα− (N1

n − 1Zn=1) log
(
π11α+ π12(1− α)

)
+N2

n log(1− α)− (N2
n − 1Zn=2) log

(
π12α+ π22(1− α)

)
.

Beware that the parameter π12 appears in the two last lines. Then the estimators
θ̂ is the solution of

N1
n

α̂
− N2

n

1− α̂
− (N1

n − 1Zn=1)(π̂11 − π̂12)

π̂11α̂+ π̂12(1− α̂)
− (N2

n − 1Zn=2)(π̂12 − π̂22)

π̂12α̂+ π̂22(1− α̂)
= 0;

(3.9)
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N1↔1
n

π̂11
− N1�1

n

1− π̂11
− (N1

n − 1Zn=1)α̂

π̂11α̂+ π̂12(1− α̂)
= 0; (3.10)

N1↔2
n

π̂12
− N1�2

n

1− π̂12
− (N1

n − 1Zn=1)(1− α̂)

π̂11α̂+ π̂12(1− α̂)
− (N2

n − 1Zn=2)α̂

π̂12α̂+ π̂22(1− α̂)
= 0; (3.11)

N2↔2
n

π̂22
− N2�2

n

1− π̂22
− (N2

n − 1Zn=2)(1− α̂)

π̂12α̂+ π̂22(1− α̂)
= 0. (3.12)

Notice that the system of equations (3.9)-(3.12) is non-linear and can not be
simplified further. Also, there does not exist an explicit solution for it. An algo-
rithm for computing a particular solution for the case Q = 2 is given in section
3.3.1 of Vo’s PhD thesis [34]. Here, we use the nlm function of R to solve the
system (3.9)-(3.12) numerically and to get the approximated values for the MLE

θ̂. For the numerical simulations, we refer the reader to Section 5.

3.2. Incomplete observations: SAEM Algorithm

Here, we assume that the types Z = (Zi)i=1,...,n are unobserved. In this case, the
likelihood of the observed data Y = (Yij ; i, j ∈ �1, n�) is obtained by summing
the complete-data likelihood (3.2) over all the possible values of the unobserved
variables Z:

L(Y ; θ) =

Q∑
q1,···qn=1

[ ∏n
i=1 αqi∏n−1

i=1

∑Q
q=1 πqiqαq

×
∏

1≤i<j≤n
|i−j|
=1

b(Yij , πqiqj )
]
, (3.13)

Unfortunately, this sum is not tractable and it is classical to use the Expectation-
Maximization (EM) algorithm to compute the maximum likelihood. Here we
use an SAEM algorithm (see [7, 21]) with the variational approximation of
the conditional distribution of Z given Y introduced in [11], and adapt their
methods to our setting with the likelihood (3.1).

Let us sum up the EM algorithm (see e.g. [7, 8, 21]). Given the observed data:
the Markov chain X(n), the connections (Yij , i, j ∈ X(n)) and the number of
blocks Q and the current estimator θ, and given the value θ(k−1) at the (k−1)th

iteration of the EM, on the kth step, we compute the conditional expectation of
the log-likelihood L(Z|X,Y, θ(k)) given X,Y for the current fit θ(k). Here there
is no explicit expression for the latter likelihood because the exact distribution
of Z given X,Y is unknown and this we need to approximate it numerically by
using an SAEM algorithm [7, 21], proceeding as follows.

3.2.1. The SAEM algorithm

Given the information of the k − 1 iteration θ(k−1) = (α(k−1), π(k−1)), at the
kth iteration of SAEM:
Step 1: Choosing the appropriate Z(k)
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- Simulate a candidate Zc following the proposal distribution
qθ(k−1)(.|Z(k−1)). The choice of proposal distribution is discussed in Sec-
tion 3.2.2, where we use a variational approach.

- Calculate the acceptance probability

ω(Z(k−1), Zc) := min

{
1,

L(Zc, Y, θ(k−1)) · qθ(k−1)(Z(k−1)|Zc)

L(Z(k−1), Y, θ(k−1)) · qθ(k−1)(Zc|Z(k−1))

}
; (3.14)

- Accept the candidate Zc with probability ω: P(Z(k) = Zc) = ω and
P(Z(k) = Z(k−1)) = 1− ω.
Step 2: Stochastic approximation Update the quantity

Q(k)(θ) = Q(k−1)(θ) + sk

(
logL(Z(k), Y, θ)−Q(k−1)(θ)

)
, (3.15)

with the initialization Q(0)(θ) := E[logL(Z, Y, θ(0))] and (sk)k∈N is a positive
decreasing step sizes sequence satisfying

∑∞
k=1 sk = ∞ and

∑∞
k=1 s

2
k < ∞.

Step 3: Maximization Choose θ(k) to be the value of θ that maximizes Q(k)

θ(k) := argmax
θ

Q(k)(θ). (3.16)

Kuhn and Lavielle studied the convergence of the sequence θ(k) in [21]. In
the particular case of SBM, and for the incomplete likelihood based on (3.7),
the consistency of EM and variational methods has been studied by Célisse et
al. [9] and asymptotic normality has been established by Bickel et al. [4]. The
likelihood that is considered here differs and these results can not be directly
applied, but a study along these lines could be investigated.

3.2.2. Variational approach

For the proposal distribution qθ(k−1)(. | Z(k−1)) of Z(k), we follow Daudin et al.
[11], who use a variational approach. Let us recall the main idea of this approach.
The general strategy has been described in Jordan et al. [19] or Jaakkola [18].

Recall the likelihood L(Y, θ) of the incomplete data (3.13). The idea of the
variational approach is to replace the likelihood by a lower bound:

J (RY,θ) = logL(Y, θ)−KL(RY,θ(Z),L(Z|Y, θ)), (3.17)

where KL(μ, ν) :=

∫
dμ log

(
dμ

dν

)
is the Kullback-Leibler divergence of distri-

butions μ and ν, and where RY,θ(Z) is an approximation of the conditional dis-
tribution L(Z|Y, θ). When RY,θ is a good-approximation of L(Z|Y, θ), J (RY,θ)
is very closed to L(Y, θ).
Here, Z takes discrete values in {1, ..., Q}. Then,

J (RY,θ) = logL(Y, θ)−
∑

(Z1,...,Zn)∈{1,...,Q}n

RY,θ(Z) log
RY,θ(Z)

L(Z|Y, θ)
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= logL(Y, θ)−
∑

Z∈{1,...,Q}n

RY,θ(Z) logRY,θ(Z)

+
∑

Z∈{1,...,Q}n

RY,θ(Z) logL(Z|Y, θ)

= logL(Y, θ)−
∑

Z∈{1,...,Q}n

RY,θ(Z) logRY,θ(Z)

+
∑

Z∈{1,...,Q}n

RY,θ(Z) logL(Z, Y, θ)−
∑

Z∈{1,...,Q}n

RY,θ(Z) logL(Y, θ)

=
∑

Z∈{1,...,Q}n

RY,θ(Z) logL(Z, Y, θ)−
∑

Z∈{1,...,Q}n

RY,θ(Z) logRY,θ(Z)

= ERY,θ

(
logL(Z, Y, θ)

)
− ERY,θ

(
logRY,θ(Z)

)
. (3.18)

Following [11], we restrict to distributions RY,θ that belong to the family
of multinomial probability distributions parameterized by τ = (τ1, · · · τQ), as
approximated conditional distribution of Z given Y and θ. These multinomial
distributions assume independence of the Zi’s conditionally to the Y , which
makes computations tractable. If we look for the parameter τ that maximizes
(3.17), we will hence obtain the best approximation of L(Z|Y, θ) among these
multinomial distributions. We will chose the latter to be the proposal distribu-
tion for Z in the Step 1 of the SAEM algorithm.

If 1Zi follows the multinomial distribution M(1; (τi1, ..., τiq)), with τiq =
P(Zi = q|Y, θ), for i ∈ {1, ..., n}, q ∈ {1, ..., Q}, and if the Zi’s are independent
with respect to Y , then,

RY,θ(Z) =

n∏
i=1

τi,Zi . (3.19)

We aim at calculating the parameter τ̂ that maximizes the lower bound of
L(Y, θ). Then the proposal distribution qθ(k−1)(. | Z(k−1)) for updating the types
will be given by (3.19) with the parameters τ̂ given in the next proposition:

Proposition 3.4. Given α, π, the optimal parameter

τ̂ := argmax
τ

J (RY,θ), (3.20)

with constraint
∑Q

q=1 τiq = 1, ∀i ∈ {1, ..., n}, satisfies the fixed point relation

τiq ∝ αq∑Q
�=1 πq�α�

∏
i<j

Q∏
�=1

b(Yij , πq�)
τj� . (3.21)

Proof. Using (3.2), (3.18) and (3.19), we have:

J (RY,θ) =

n∑
i=1

Q∑
q=1

τiq logαq −
n−1∑
i=1

Q∑
q=1

log

(
Q∑

r=1

πqrαr

)
τiq
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+
∑
i<j

Q∑
q,r=1

τiqτjr log b(Yij , πqr)−
n∑

i=1

Q∑
q=1

τiq log τiq. (3.22)

To solve the optimization problem argmaxτ J (RY,θ) with constraint
∑Q

q=1 τiq =
1, we use the method of Lagrange multipliers, that is finding the optimal pa-
rameters τ, λ that maximize the Lagrangian function Lag(τ, λ) := J (RY,θ) +∑n

i=1 λi(
∑Q

q=1 τiq − 1), where λi is the Lagrange multiplier. Take the derivative
of Lag w.r.t. λi and τ , we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Lag
∂λi

=

Q∑
q=1

τiq − 1

∂Lag
∂τiq

= logαq − log τiq + λi − 1− log

Q∑
r=1

πqrαr

+
∑
j>i

Q∑
r=1

τjr log b(Yij , πqr) +
∑
j<i

Q∑
r=1

τjr log b(Yji, πrq)

.

The optimal solution must satisfy
∂Lag
∂λi

=
∂Lag
∂τiq

= 0, which implies

log τiq = logαq + λi − 1− log

Q∑
r=1

πqrαr +
∑
j 
=i

Q∑
r=1

τjr log b(Yij , πqr).

In other word,

τiq = eλi−1 αq∑Q
r=1 πqrαr

∏
i 
=j

Q∏
r=1

b(Yij , πqr)
τjr . (3.23)

In the case Q = 2, it turns out the problem is more simple since for each
i ∈ {1, ..., n}, τi1 + τi2 = 1. For sake of simplification, we denote by τi instead of
τi1. Hence, τi2 = 1− τi1 = 1− τi.

Proposition 3.5. When Q = 2, the variational parameter τi has formula:

τi =
φi(τ)

1 + φi(τ)
=: Φi(τ), (3.24)

where

φi(τ) :=
α

1− α

απ21 + (1− α)π22

απ11 + (1− α)π12

∏
j 
=i

(
b(Yij , π12)

b(Yij , π22)

)1/2

×
∏
j 
=i

(
b(Yij , π11)b(Yij , π22)

b(Yij , π12)2

)τj/2

. (3.25)
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Proof. We solve directly the optimization problem maxτ J (RY,θ) without using
the Lagrangian multiplier λ. The quantity J (RY,θ) is written explicitly as:

J (RY,θ)=

n∑
i=1

(τi logα+ (1− τi) log(1− α))−
n∑

i=1

(τi log τi + (1− τi) log(1− τi))

+
1

2

∑
i 
=j

[τiτj log b(Yij , π11) + τi(1− τj) log b(Yij , π12) + (1− τi)τj log b(Yij , π21)

+ (1− τi)(1− τj) log b(Yij , π22)]−
n−1∑
i=1

[τi log(απ11 + (1− α)π12)

+(1− τi) log(απ21 + (1− α)π22)].

Take the derivative of J (RY,θ) w.r.t. τi,

∂J
∂τi

= log
α

1− α
+ log

1− τi
τi

+
1

2

∑
j 
=i

{
τj log

b(Yij , π11)

b(Yij , π21)

+ (1− τj) log
b(Yij , π12)

b(Yij , π22)

}
− log

απ11 + (1− α)π12

απ21 + (1− α)π22

= log
α

1− α
− log

τi
1− τi

− log
απ11 + (1− α)π12

απ21 + (1− α)π22

+
1

2

∑
j 
=i

τj log
b(Yij , π11)b(Yij , π22)

b(Yij , π12)2
+

1

2

∑
j 
=i

log
b(Yij , π12)

b(Yij , π22)
.

Then the variational parameter τi is the solution of equation ∂J
∂τi

= 0, which
gives

τi
1− τi

=
α

1− α
× απ11 + (1− α)π12

απ21 + (1− α)π22
×
∏
j 
=i

(
b(Yij , π12)

b(Yij , π22)

)1/2

×
∏
j 
=i

(
b(Yij , π11)b(Yij , π22)

b(Yij , π12)2

)τj/2

= φi(τ).

It implies that τi =
φi(τ)

1+φi(τ)
= Φi(τ).

3.2.3. Proposal distribution for the Step 1 of SAEM

For the sake of simplicity, we treat here the case Q = 2, but generalization is
straightforward. Using the previous results, we can now detail the Step 1 of the
SAEM algorithm. Given the parameters θ(k−1), the types Z(k−1) and the data
(Yij ; i, j ∈ �1, n�), we proceed as follows.

Step 1: We compute the parameters τ
(k)
i as in Proposition 3.5. The parameters

in (3.25) are given by θ(k−1) and the terms b(Yij , π
(k−1)
11 ), b(Yij , π

(k−1)
12 ) and

b(Yij , π
(k−1)
22 ) are computed with the types Z(k−1).
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Step 2: We simulate a candidate Zc ∈ {1, 2}n for Z such that Zc
i − 1 follows

the law Ber(τi). Recall that the acceptance probability is

μ(Z(k−1), Zc) := min

{
1,

Lcom(Z
c, Y, θ(k−1))qθ(k−1)(Z(k−1)|Zc)

Lcom(Z(k−1), Y, θ(k−1))qθ(k−1)(Zc|Z(k−1))

}
, (3.26)

where the complete likelihood with respect to α, π, Z, Y is

Lcom(Z, Y, θ) =

Q∏
q=1

(
πqq

1− πqq

)Nq↔q
n

(1− πqq)
Nq

n(N
q
n−1)/2

×
∏
q 
=r

(
πqr

1− πqr

)Nq↔r
n

(1− πqr)
Nq

nN
r
n

Q∏
q=1

α
Nq

n
q

(
∑Q

q′=1 πqq′αq′)N
q
n−1Zn=q

.

and

qθ(k−1)(Zc|Z(k−1)) =
∏
i=1

τ
2−Zc

i
i (1− τi)

Zc
i −1;

qθ(k−1)(Z(k−1)|Zc) =
∏
i=1

τ
2−Z

(k−1)
i

i (1− τi)
Z

(k−1)
i −1.

4. Estimation via biased graphon and ‘classical likelihood’

In Section 3, the MLE are computed but they do not have explicit formula in
the case of RDS exploration. We thus investigate other estimators. The most
natural one is the graphon estimator corresponding to (3.8). It turns out that we
can study the asymptotic bias of this estimator thanks to the result of Athreya
and Röllin [3]. First, in Section 4.1 we provide a two-step estimator in the case
where everything is observed: (Xi, Zi, Yij ; i, j ∈ {1, · · ·n}) are available. This
new estimator is explicit: we compute the estimator (3.8) of Daudin et al. [11]
and then correct the weights of classes according to the formula of Athreya and
Röllin (see (4.2)).

Then in Section 4.2.1, when the Zi’s are unobserved, we propose an SAEM esti-
mator based on the one introduced above. Here, we need to have the knowledge
on the positions Xi’s of the Markov chain X(n) when the Zi’s are missing. No-
tice however that (i) the knowledge of the Xi’s gives partial knowledge on the
types Zi’s since the latter are determined from the Xi’s once the intervals Iq are
given and (ii) the likelihood function (3.1) depends on the Xi’s only through
the Zi’s.

Finally, in Section 4.2.2, we give an estimator for the case where both the Zi’s
and the Xi’s are unobserved. This estimator is based on the result of Athreya
and Röllin and relies on solving a polynomial equation.
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4.1. Complete observations

Assume in this section that we observe X(n) = (X1, . . . Xn), the types
(Zi)i∈{1,...n} and the adjacency matrix (Yij)i,j∈{1,...n} of the subgraph Gn =

G(X(n), κ,Hn).

From the result of Athreya and Röllin [3], Gn converges to the SBM graphon

κθ̃ of parameter θ̃ = (α̃q, πqr; q, r ∈ {1, · · ·Q}). This leads to a natural two-stages
estimation of the parameter θ that we now define.

Definition 4.1. The estimator of θ, is defined in two steps.

First step: we estimate θ̃ = (α̃, π). A natural estimator is the classical MLE
when assuming that there is no biases. Let us therefore define:

λ̂n
q :=

Nq
n

n
; π̂n

qr :=
Nq↔r

n

Nq
nNr

n

for q = r and π̂n
qq :=

2Nq↔q
n

Nq
n(N

q
n − 1)

. (4.1)

Second step: we correct the estimator θ̃ to obtain θ. Especially, we specify an
estimator of αq obtained by correcting the estimator λ̂q of α̃q. For this, we set

for q ∈ {1, . . . Q}, Λ̂n
q =

∑q
k=1 λ̂

n
k and define

α̂n
q = Γ−1

n

(
Λ̂n
q

)
− Γ−1

n

(
Λ̂n
q−1

)
, (4.2)

where Γn is the cumulative empirical distribution function of the Xi’s, see (2.14).

Let us define by θ̂ = (α̂n
q , π̂

n
qr; q, r ∈ {1, . . . Q}) the estimator of θ.

To understand (4.2), recall that from (1.1) and (2.8):

αq = Aq −Aq−1 = Γ−1
(
Ãq

)
− Γ−1

(
Ãq−1

)
, (4.3)

where Ãq are defined under Equation (2.8).

Proposition 4.2. Under Assumptions 1,
(i) For all q, r ∈ {1, · · ·Q} λ̂n

q is a consistent estimator of α̃q and π̂n
qr is a

consistent estimator of πqr:

lim
n→+∞

π̂n
qr = πqr, and lim

n→+∞
λ̂n
q = Γ(Aq)− Γ(Aq−1) = α̃q, (4.4)

where we recall the notations of (1.1) and (2.4).
(ii) It follows that α̂n

q is a consistent estimator of αq for all q ∈ {1, · · ·Q}:
almost surely,

lim
n→+∞

α̂n
q = αq.

In the special case of Q = 2, an estimator of α1 is α̂n
1 = Γ−1

n (λ̂n
1 ).
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The proof of Proposition 4.2 is done in the next section (Section 4.1.1).

We can go a little further: we indeed have two empirical approximations of
the limiting graphon κθ̃: the graph Gn (which converge to κθ̃ by the result of

Athreya and Röllin) and the graphon χ̂n associated with θ̂ and defined below
(whose convergence remains to be proved). The following result concludes that
these two approximations are asymptotically equal, providing as a result the
convergence of χ̂n. It is proved in Section 4.1.2.

Proposition 4.3. The graphon associated to the estimator (λ̂n
q , π̂

n
qr; q, r ∈

{1, . . . Q}) is defined as:

χ̂n(x, y) :=

Q∑
q=1

Q∑
r=1

π̂n
qr1Jn

q
(x)1Jn

r
(y), (4.5)

with Jn
q = [Λ̂n

q−1, Λ̂
n
q ) and Λ̂n

q are defined above (4.2). We have under Assump-
tion 1 that:
(i) when n → +∞,

lim
n→+∞

dsub(Gn, χ̂n) = 0. (4.6)

(ii) The limit of the empirical graphon χ̂n is thus the biased graphon κθ̃.

lim
n→+∞

dsub(χ̂n, κθ̃) = 0. (4.7)

4.1.1. Proof of Proposition 4.2

Let us consider point (i) of Proposition 4.2. The limit for λ̂n
q follows from the

ergodic theorem. Indeed, we can write that

λ̂n
q =

Nq
n

n
=

1

n

n∑
i=1

1
X

(n)
i ∈Iq

.

The ergodic theorem for the Markov chain (Xn)n says that

lim
n→+∞

1

n

n∑
i=1

1
X

(n)
i ∈Iq

= Em[1X1∈Iq ] = Γ(Aq)− Γ(Aq−1) = α̃q.

It remains to prove that π̂n
qr is a consistent estimator of πqr. Rewrite π̂n

qr as

π̂n
qr =

Nq↔r
n /n2

Nq
n

n
Nr

n

n

=
1

λ̂n
q λ̂

n
r

1

n2
Nq↔r

n .

Recall that the subgraphGn is constructed from the Markov chainX(n) and that
each pair of non-consecutive vertices Xi and Xj are connected with probability
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κθ(Zi, Zj) depending on theirs types and independently of the others edges. Let
us focus on the number of edges Nq↔r

n : two cases have to be distinguished.

Case 1, q = r: The number of edges of types (q, r) is

Nq↔r
n =

n−1∑
i=1

(
1Xi∈Iq,Xi+1∈Ir + 1Xi∈Ir,Xi+1∈Iq

)
+

∑
1≤i,j≤n
‖i−j‖
=1

1i∼Gn j1Xi∈Iq,Xj∈Ir .

Then,

π̂n
qr =

1

λ̂n
q λ̂

n
rn

(
1

n

n−1∑
i=1

1Xi∈Iq,Xi+1∈Ir

)
+

1

λ̂n
q λ̂

n
rn

(
1

n

n−1∑
i=1

1Xi∈Ir,Xi+1∈Iq

)

+
1

n2

∑
1≤i,j≤n
‖i−j‖
=1

1i∼Gn j1Xi∈Iq,Xj∈Ir

λ̂n
q λ̂

n
r

. (4.8)

By the ergodic theorem for Markov chain X(n), we have

lim
n→+∞

1

n

n−1∑
i=1

1Xi∈Iq,Xi+1∈Ir = Em[1X0∈Iq,X1∈Ir ] = α̃qπqr < +∞.

Since limn→+∞ λ̂n
q = α̃q > 0 in probability, there exists a constant c > 0 such

that c ≤ infq∈{1,...Q} α̃q and

lim
n→+∞

P

(
1

λ̂n
q λ̂

n
rn

(
1

n

n−1∑
i=1

1Xi∈Iq,Xi+1∈Ir

)
≤ 1

c2n

(
1

n

n−1∑
i=1

1Xi∈Iq,Xi+1∈Ir

))
=1,

and hence the first term in the right hand side of (4.8) converges to 0 in prob-
ability. Similarly, the second term also converges to 0 in probability.

Consider now the third term in the r.h.s. of (4.8). Let us define the function

f(Gn) =
1

n2

∑
1≤i,j≤n
‖i−j‖
=1

1i∼Gn j1Xi∈Iq,Xj∈Ir ,

then f is a function of the n(n−1)/2− (n−1) = (n−1)(n−2)/2 random edges
on n vertices. We see that

E[f(Gn)] = E

[
1

n2

∑
1≤i,j≤n
‖i−j‖
=1

1i∼Gn j1Xi∈Iq,Xj∈Ir

]
=

(n− 1)(n− 2)

n2
πqrα̃qα̃r.

We have
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P

⎛⎜⎜⎝
∣∣∣∣∣∣∣∣
1

n2

∑
1≤i,j≤n
‖i−j‖
=1

1i∼Gn j1Xi∈Iq,Xj∈Ir

λ̂n
q λ̂

n
r

− πqr

∣∣∣∣∣∣∣∣ > ε

⎞⎟⎟⎠
≤P

(
1

λ̂n
q λ̂

n
r

∣∣f(Gn)− E[f(Gn)]
∣∣ > ε−

∣∣∣∣∣ 1

λ̂n
q λ̂

n
r

E[f(Gn)]− πqr

∣∣∣∣∣
)

=P

(∣∣f(Gn)− E[f(Gn)]
∣∣ > ελ̂n

q λ̂
n
r − |E[f(Gn)]− λ̂n

q λ̂
n
r πqr|

)
=P

(∣∣f(Gn)− E[f(Gn)]
∣∣ > ελ̂n

q λ̂
n
r − πqr

∣∣∣∣ (n− 1)(n− 2)

n2
α̃qα̃r − λ̂n

q λ̂
n
r

∣∣∣∣) .

For c < infq∈{1,...Q} α̃q,

P

(∣∣f(Gn)− E[f(Gn)]
∣∣ > ελ̂n

q λ̂
n
r − πqr

∣∣∣∣ (n− 1)(n− 2)

n2
α̃qα̃r − λ̂n

q λ̂
n
r

∣∣∣∣)
≤ P

(∣∣f(Gn)− E[f(Gn)]
∣∣ > c2ε− c3

2
ε

)
+ P

(∣∣∣∣ (n− 1)(n− 2)

n2
α̃qα̃r − λ̂n

q λ̂
n
r

∣∣∣∣ > c3ε

2πqr

)
+ P(λ̂n

q λ̂
n
r < c2). (4.9)

Since limn→+∞ λ̂n
q = α̃q > 0 in probability, for fixed ε > 0,

lim
n→∞

P

(∣∣∣∣ (n− 1)(n− 2)

n2
α̃qα̃r − λ̂n

q λ̂
n
r

∣∣∣∣ < c3ε

2πqr
and λ̂n

q λ̂
n
r > c2

)
= 1.

Thus the second and the third terms on the right hand side of (4.9) tend to
zero as n tends to infinity. It remains the first term to be treated. When one
edge is changed, the value of f is changed by most 1/n2. Applying McDiarmid’s
concentration [26] for function f , we obtain:

P

(∣∣f(Gn)− E[f(Gn)]
∣∣ > c2ε− c3

2
ε

)
≤ 2 exp

(
−

2(c2 − c3

2 )ε
(n−1)(n−2)

2
1
n4

)
≤ 2e−4n2c2(1−c/2)ε.

Note that 0 < c < 1 then c2(1− c/2) > 0. We use Borel-Cantelli’s Theorem to

conclude that limn→+∞ P

(∣∣f(Gn)− E[f(Gn)]
∣∣ > c2ε− c3

2 ε
)
= 0 and hence,∣∣∣∣∣∣∣∣

1

n2

∑
1≤i,j≤n
‖i−j‖
=1

1i∼Gn j1Xi∈Iq,Xj∈Ir

λ̂n
q λ̂

n
r

− πqr

∣∣∣∣∣∣∣∣ −→ 0

in probability as n → ∞. This finishes the proof for Case 1.
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Case 2, q = r: The proof follows by similar arguments, with notice that there
are a few modifications because the expression of Nq↔q

n is slightly different:

Nq↔q
n =

n−1∑
i=1

1Xi∈Iq,Xi+1∈Iq +
1

2

∑
1≤i,j≤n
‖i−j‖
=1

1i∼Gn j1Xi∈Iq,Xj∈Iq .

Then,

π̂n
qq =

1

λ̂n
q

(
nλ̂n

q − 1
) ( 1

n

n−1∑
i=1

1Xi∈Iq,Xi+1∈Iq

)
+

1

n2

∑
1≤i,j≤n
‖i−j‖
=1

1i∼Gn j1Xi∈Iq,Xj∈Iq

λ̂n
q

(
λ̂n
q − 1/n

) .

(4.10)
We have that the first term on r.h.s. of (4.10) converges in probability to 0 as
in Case 1. For the second term on r.h.s. of (4.10), we define the function f as
in Case 1 by

f(Gn) =
1

2n2

∑
1≤i,j≤n
‖i−j‖
=1

1i∼Gn j1Xi∈Iq,Xj∈Iq ,

For a fixed ε > 0,

P

⎛⎜⎜⎝∣∣ 1
n2

∑
1≤i,j≤n
‖i−j‖
=1

1i∼Gn j1Xi∈Iq,Xj∈Iq

λ̂n
q

(
λ̂n
q − 1/n

) − πqq

∣∣ > ε

⎞⎟⎟⎠
≤ P

(∣∣f(Gn)− E[f(Gn)]
∣∣ > ελ̂n

q

(
λ̂n
q − 1/n

)
−πqq

∣∣∣∣ (n− 1)(n− 2)

n2
(α̃q)

2 − λ̂n
q

(
λ̂n
q − 1/n

)∣∣∣∣)
≤ P

(∣∣f(Gn)− E[f(Gn)]
∣∣ > c

(
c− 1

n

)
ε− c3

2
ε

)
+ P(λ̂n

q < c)

+ P

(∣∣∣∣ (n− 1)(n− 2)

n2
(α̃q)

2 − λ̂n
q

(
λ̂n
q − 1

n

)∣∣∣∣ > c3ε

2πqq

)
.

As in Case 1, the second and the third term on r.h.s. of above inequality are
negligible. Applying McDiarmid’s concentration for f with notice that when
changing 1 edge in Gn, the value of f changes at most 1/n2,

P

(∣∣f(Gn)− E[f(Gn)]
∣∣ > c(c− 1/n)ε− c3

2
ε

)
≤ 2 exp

(
−
2(c2 − c/n− c3

2 )ε
(n−1)(n−2)

2
1
n4

)
≤ 2e−2(n2c2(1−c/2)−nc)ε.

Finally, using Borel-Cantelli’s Theorem, |f(Gn)− E[f(Gn)]| → 0 almost surely
as n tends to infinity. Thus, the point (i) is proved.
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4.1.2. Proof of Proposition 4.3: limit of χ̂n

For the point (ii), we have:

dsub(χ̂n, κθ̃) ≤dsub(χ̂n, Gn) + dsub(Gn, κθ̃).

The first term in the right hand side is treated by point (i). The second term is
the Proposition 2.2 shown in [3, Corollary 2.2].

Let us now consider the point (i). For the sake of simplicity, we assume for the
proof that there are two classes of vertices in the graph, i.e. Q = 2. The proof
can be generalized to general Q by following the same steps. Our parameters’
notations are simplified as λn

1 =: λn and limn→+∞ λn
1 =: α̃ = Γ(α).

Our purpose is to prove a convergence of graphons for the distance dsub
introduced in (2.7) using the densities (2.5). If F is an edge (meaning that
F = K2, the complete graph of 2 vertices), then the density of F in Gn :=
G(Xn, Hn, κ) is the proportion of edges,

t(F,Gn) =
1

n(n− 1)

∑
�,�′∈�1,n�

1�∼Gn �′

and t(F, χn) =

∫
[0,1]2

χ̂n(x1, x2)dx1dx2 =

Q∑
q,r=1

λ̂n
q λ̂

n
r π̂

n
qr.

In general case, if F is a graph of k vertices,

t(F,Gn) =
1

(n)k

∑
(i1,···ik)∈�1,n�

∏
{�,�′}∈E(F )

1i�∼Gi�′ ; (4.11)

t(F, χn) =

∫
[0,1]k

∏
{�,�′}∈E(F )

(
Q∑

q,r=1

π̂n
qr1Jn

q ×Jn
r
(x�, x�′)

)
dx1 · · · dxk. (4.12)

Let us first consider the case where F is an edge.

|t(F,Gn)− t(F, χn)| =

∣∣∣∣∣∣ 1

(n)2

∑
(i,j)∈�1,n�

1i∼Gn j −
∫
[0,1]2

χ̂n(x1, x2) dx1dx2

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1

(n)2

∑
(i,j)∈�1,n�

(
1i∼Gn j − π̂Zi,Zj

)∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1

(n)2

∑
(i,j)∈�1,n�

π̂n
Zi,Zj

− (λ̂n
1 )

2π̂n
11 − 2λ̂n

1 (1− λ̂n
1 )π̂

n
12 − (1− λ̂n

1 )
2π̂n

22

∣∣∣∣∣∣
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≤

∣∣∣∣∣∣ 1

(n)2

∑
(i,j)∈�1,n�

(
1i∼Gn j − π̂n

Zi,Zj

)∣∣∣∣∣∣+
∣∣∣∣∣∣π̂n

11

⎛⎝ ∑
(i,j) | (Zi,Zj)=(1,1)

1

(n)2
− (λ̂n

1 )
2

⎞⎠∣∣∣∣∣∣
+

∣∣∣∣∣∣π̂n
22

⎛⎝ ∑
(i,j) | (Zi,Zj)=(2,2)

1

(n)2
− (1− λ̂n

1 )
2

⎞⎠∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣π̂
n
12

⎛⎜⎜⎝ ∑
(i,j) | (Zi,Zj)=(1,2)

or(Zi,Zj)=(2,1)

1

(n)2
− 2λ̂n

1 (1− λ̂n
1 )

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣ .

By the law of large numbers and using (4.4) whose proof does not depend on
the Proposition 4.3, the four terms converge to zero.

In the general case, when F is an arbitrary finite graph of k vertices, pro-
ceeding in a similar way leads to:

|t(F,Gn)− t(F, χn)|

≤

∣∣∣∣∣∣ 1

(n)k

∑
(i1,···ik)∈�1,n�

∏
{�,�′}∈E(F )

1i�∼Gi�′

− 1

(n)k

∑
(i1,··· ,ik)

∏
{�,�′}∈E(F )

(
Q∑

q,r=1

π̂n
qr1Zi�

=q,Zi
�′=r

)∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1

(n)k

∑
(i1,··· ,ik)

∏
{�,�′}∈E(F )

(
Q∑

q,r=1

π̂n
qr1Zi�

=q,Zi
�′ =r

)

− 1

nk

∑
1≤i1,··· ,ik≤n

∏
{�,�′}∈E(F )

(
Q∑

q,r=1

π̂n
qr1Zi�

=q,Zi
�′=r

)∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1nk

∑
1≤i1,··· ,ik≤n

∏
{�,�′}∈E(F )

(
Q∑

q,r=1

π̂n
qr1Zi�

=q,Zi
�′=r

)

−
∫
[0,1]k

∏
{�,�′}∈E(F )

(
Q∑

q,r=1

π̂n
qr1Jn

q ×Jn
r
(x�, x�′)

)
dx1 · · · dxk

∣∣∣∣∣∣ .
As

∏
{�,�′}∈E(F ) 1i�∼Gi�′ and

∏
{�,�′}∈E(F )

(∑Q
q,r=1 π̂

n
qr1Zi�

=q,Zi
�′ =r

)
are

bounded by 1, there exist c(k) such that the first term and the second term
in the right hand side are bounded by c(k)/n. For the third term, it is equal to∣∣∣∣∣∣

∑
1≤q1,...,qk≤Q

∏
{�,�′}∈E(F )

π̂n
q�,q�′

⎛⎝ 1

nk

∑
1≤i1,··· ,ik≤n

1Zi1=q1,··· ,Zik
=qk
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−
∫
[0,1]k

k∏
h=1

1Jn
qh
(xh)dx1 · · · dxk

)∣∣∣∣∣ .
Since 0 ≤

∏
{�,�′}∈E(F ) π̂

n
q�,q�′

≤ 1 and {Zi1 = q1, · · · , Zik = qk} = {Γ(Xi1) ∈
Jq1 , · · · ,Γ(Xik) ∈ Jqk}, the third term is thus bounded by

∑
1≤q1,...,qk≤Q

∣∣∣∣∣∣ 1nk

∑
1≤i1,··· ,ik≤n

1Γ(Xi1 )∈Jq1 ,··· ,Γ(Xik
)∈Jqk

−
∫
[0,1]k

k∏
h=1

1Jn
qh
(xh)dx1 · · · dxk

∣∣∣∣∣

=
∑

1≤q1,...,qk≤Q

∣∣∣∣∣∣ 1nk

∑
1≤i1,··· ,ik≤n

k∏
�=1

1Γ(Xi�
)∈Jq�

−
k∏

�=1

∫
[0,1]

1Jn
q�
(x�)dx�

∣∣∣∣∣∣
=

∑
1≤q1,...,qk≤Q

∣∣∣∣∣
∏k

�=1

∑n
i�=1 1Γ(Xi�

)∈Jq�

nk
−

k∏
�=1

∫
Jn
q�

dx�

∣∣∣∣∣
=

∑
1≤q1,...,qk≤Q

∣∣∣∣∣
k∏

�=1

Nq�
n

n
−

k∏
�=1

λ̂n
q�

∣∣∣∣∣ = 0.

Hence limn→+∞ |t(F,Gn) − t(F, χn)| = 0. Because t(F,Gn) and t(F, χn) are
bounded independently from n, this provides the announced result.

4.2. Incomplete observations and graphon de-biasing

4.2.1. Case where Zi is unobserved but Xi is

In Proposition 4.2, it is shown that the ‘classical’ SBM estimator (3.8) obtained
by neglecting the bias coming from the sampling scheme can be corrected by
using the inverse of the cumulative distribution function Γ of m. When the types
are unobserved, we proceed in the same way. We assume here that the types
Zi are unobserved, but we need the observation of the marks Xi, otherwise no
de-biasing is permitted since the cumulative distribution function Γ can not be
estimated. We detail this estimation procedure in the case Q = 2 for the sake
of simplicity, but generalization is straightforward.

Step 1: First, we perform an estimation of the SBM neglecting the sampling
biases.

• We follow the algorithm described in Section 3.2.1, but with the likelihood
Lclass(Z, Y ; θ) given in (3.7). We denote the parameter here by θ = (λ1, 1−
λ1, π11, π12, π21, π22).
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• For the proposal distribution of the types Zc, it is simpler since we assume
that the Xi’s are known. Assume that we are at step k and that we dispose
of the parameters θ(k−1). We initialize the types by attributing the types
1 to the Xi ≤ λ(0) and 2 to the others. At each step, the threshold is

modified from λ
(k−1)
1 to λ

(k)
1 by following a random walk: a Gaussian

increment (mean 0 and variance s2) is added. All the Xi smaller than this
increment are given the type Zi = 1 and the others the type Zi = 2.

This Step 1 corresponds to a variational EM for the classical likelihood (3.7),
for which the consistency and asymptotic normality have been established by
Célisse et al. [9] and Bickel et al. [4].

Step 2: We estimate the cumulative distribution function Γn (see (2.14)) and
deduce the graphon estimator α̂n

1 of α1 using (4.2). This provides the estimator
of κθ:

κ̂n(x, y) :=

Q∑
q=1

Q∑
r=1

π̂n
qr1[

∑ q−1
k=1 α̂n

k ,
∑ q

k=1 α̂n
k )
(x)1[

∑ r−1
k=1 α̂n

k ,
∑ r

k=1 α̂n
k )
(y). (4.13)

4.2.2. Case where both Xi and Zi are unobserved

When bothXi and Zi are unobserved, it is not possible to compute the empirical
cumulative distribution function Γn any more. Thus, Equation (4.2) can not be
used any more to obtain an estimator of αq from an estimator of α̃q.

As pointed out by Mahendra Mariadassou [24], from (2.2) and (2.4), we can
write that

α̃q =
αqπ̄q

π̄
, for all q ∈ {1, . . . Q} ⇔ α̃ =

α� (πα)

αTπα
, (4.14)

in vectorial form, where � is the Kronecker product of two vectors. Then an
estimator α̂ for the vector α = (α1, . . . αQ) can be obtained from solving the
equation: (

α̂T π̂α̂
)
λ̂ = α̂� (π̂α̂). (4.15)

For Q = 2: In this case, under the constraint α̂1 + α̂2 = 1, Equation (4.15) is
written simply as:

λ̂1 =
α̂1

(
π̂11α̂1 + π̂12(1− α̂1)

)
π̂11α̂2

1 + 2π̂12α̂1(1− α̂1) + π̂22(1− α̂1)2
.

It leads to a quadratic equation of α̂1 as follow:[(
π̂11 + π̂22 − 2π̂12

)
λ̂− (π̂11 − π̂12)

]
α̂2
1 +

[
2(π̂12 − π̂22)λ̂− π̂12

]
α̂1 + π̂22λ̂ = 0.



5882 V. C. Tran and T. P. T. Vo

We solve this second order equation by defining

Δ = π̂2
12(2λ̂− 1)2 + 4π̂11π̂22λ̂(1− λ̂) ≥ 0. (4.16)

Hence, there are two solutions:

α̂1 = −

[
2(π̂12 − π̂22)λ̂− π̂12

]
±
√
π̂2
12(2λ̂− 1)2 + 4π̂11π̂22λ̂(1− λ̂)

2
(
π̂11 + π̂22 − 2π̂12

)
λ̂− (π̂11 − π̂12)

. (4.17)

These solutions can be computed numerically.

For Q ≥ 3: Equation (4.15) is written as:
(
α̂T π̂α̂

)
λ̂− α̂� (π̂α̂) = 0. Consider

the function g defined on S = {x = (x1, · · · , xQ) ∈ [0; 1]Q : x1 + ...+ xQ = 1},

g(x) =
(
xT π̂x

)
λ̂− x� (π̂x).

It leads to solve the optimization problem

min
x∈S

‖g(x)‖.

5. Numerical results

For the simulation, we consider RDS graphs obtained from the exploration of
SBM graphons with Q = 2 classes, of respective proportions α1 = 2/3 and
α2 = 1/3. The connection probabilities are:

π =

(
0.7 0.4
0.4 0.8

)
.

The RDS graphs consist of n = 50 vertices.

We proceed to the five estimations presented in this paper:

• Maximum likehood on complete data: the algorithm of Section 3.1 for
complete observations by assuming that the types Zi ∈ {1, 2} are observed.

• SAEM: the algorithm of Section 3.2.1 when the types Zi are unobserved.
The SAEM is based on an iteration on k and we perform K = 200 itera-
tions.

• De-biased graphon: the computation of the estimators given in Proposition
4.2 assuming complete observations,

• De-biased graphon with SAEM: again, we use an SAEM algorithm for the
likelihood (3.7), and then use the same de-biaising technique as in item 3
above (see Section 4.2). Again, we use K = 200 iterations for the SAEM
iterations.

• De-biaised graphon by solving the algebraic equation for αq (2.4).
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We proceed to a Monte-Carlo study of the estimators’ distributions. We simulate
200 RDS graphs, and for each of them, apply the five estimation strategies. The
empirical distribution of the estimators are represented in Fig. 2, and this allows
us to estimate the associated mean squares errors (MSE) for each method, see
Table 1.

Without surprise, for the maximum likelihood estimation, the estimation is
better when we have complete observations (compare columns 1 and 2). Note
that the use of the SAEM algorithm could be accelerated, which is discussed
in the conclusion. For the graphon de-biasing, the methods with incomplete
observations perform well, sometimes equally to the methods with complete
observations.

Table 1

Mean square errors.

Complete SAEM De-biased De-biased De-biased
Parameters likelihood graphon graphon SAEM graphon alg. eq.

π11 3.52 10−4 5.25 10−3 3.52 10−4 3.54 10−4 3.54 10−4

π12 4.99 10−4 5.14 10−3 4.99 10−4 6.65 10−4 4.99 10−4

π22 1.41 10−3 1.45 10−2 1.41 10−3 1.42 10−3 1.41 10−3

α 7.01 10−3 3.80 10−2 6.80 10−4 5.31 10−4 4.51 10−3

When the types Zi are not observed, we achieve better MSEs with the debiasing
of the classical SAEM method of Daudin et al. (column 4 of Table 1). Notice
first that the columns 2 and 4 of Table 1 are not completely equivalent, since the
debiasing methods of Section 4 necessitate the knowledge of the positions Xi of
the Markov chain, when the likelihood (3.1) necessitates only the connections
Yij and the types Zi’s. Second, the updating of the types in the SAEM algorithm
is easier in Section 4.2 when the Xi’s are known since it amounts to choosing the
threshold that separates the types 1 and 2. Finally, the SAEM algorithm on the
classical likelihood (3.7) seems to converge more easily than for the likelihood
(3.1).

6. Conclusion

Five statistical methods are studied in this paper, for estimating SBM parame-
ters using a subgraph obtained from the exploration of the graphon by a Markov
chain:

• Two methods built on the maximum likelihood.

– The first one is the classical maximum likelihood estimator on the
complete data, and necessitates the observation of the types Zi’s and
the edges of Gn, Yij ’s. See Section 3.1.

– The second method is an SAEM estimation procedure that can be
used when only the connectivities Yij ’s are observed.

• Three methods built on the de-biasing formula of Athreya and Röllin [3].
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Fig 2. Estimation on complete data for a graph of n = 60 vertices with Q = 2 classes and
parameters α1 = 2/3, π11 = 0.7, π12 = π21 = 0.4 and π22 = 0.8. 500 such graphs are
simulated and the empirical distributions of the estimators are represented here with the true
parameters in red line. On each graph: the MLE with complete observation (Section 3.1)
is in continuous black line, the SAEM estimator (Section 3.2) is in blue dashed line, the
graphon estimator with complete observation (Section 4.1) is in dash-dotted pink line, the
graphon estimator with incomplete observation and SAEM algorithm (Section 4.2.1) is in
yellow dotted line, the graphon estimator with incomplete observation and algebraic equations
(Section 4.2.2) is in brown long-dashed line. The Graphon (a): estimator of α, (b): estimator
of π11, (c): estimator of π12, (d) estimator of π22.
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– The first one is on the complete data, and necessitates the observation
of the positions Xi’s, the types Zi’s and the edges of Gn, Yij ’s. See
Section 4.1.

– The second method is a variation started from the SAEM estima-
tion procedure of Daudin et al. when there is no sampling bias. The
latter estimation can be used when only the connectivities Yij ’s are
observed, but the de-biasing using the cumulative distribution func-
tion Γ needs information on the positions Xi’s (but not the complete
knowledge of the types Zi’s).

– The last one solves an algebraic equation satisfied by the αq’s and
obtained from (2.4). This method does not require the knowledge of
the Xi’s but only of the Yij ’s.

This is a toy model for estimating random networks from chain-referral sampling
techniques when there exist sampling biases. The two first methods compute
the maximum likelihood estimator when the types of the nodes are known or
unknown. On simulations, it appears that the SAEM algorithm used when the
types are unobserved is not very robust and provides relatively large MSEs. How-
ever, the relatively rough SAEM algorithm that we use here might be improved
by using Metropolis-Hastings and Gibbs algorithms with refined exploration of
the state space of the Zi’s.
An alternative approach is proposed by taking advantage of recent results by
Athreya and Röllin [3]: this allows to correct the classical SBM estimators that
would be proposed if one ignores the sampling biases. These methods provide
good estimators that can possibly rely on knowledge brought by the Markov
chain exploring the SBM graphon (in particular the positions Xi’s), when this
information is available.
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