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Abstract: Suppose X is a multivariate diffusion process that is observed
discretely in time. At each observation time, a transformation of the state
of the process is observed with noise. The smoothing problem consists of
recovering the path of the process, consistent with the observations. We
derive a novel Markov Chain Monte Carlo algorithm to sample from the ex-
act smoothing distribution. The resulting algorithm is called the Backward
Filtering Forward Guiding (BFFG) algorithm. We extend the algorithm
to include parameter estimation. The proposed method relies on guided
proposals introduced in [53]. We illustrate its efficiency in a number of
challenging problems.
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1. Introduction

Suppose X is a diffusion process with dynamics governed by the stochastic
differential equation (SDE)

dXt = b(t,Xt) dt+ σ(t,Xt) dWt (1.1)

with prescribed initial density Xt0 ∼ π. Here b : R+ × Rd → Rd and σ : R+ ×
Rd → Rd×d′

are the drift and dispersion coefficient respectively. The process W
is a vector valued process in Rd′

consisting of independent Brownian motions.
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It is assumed that the required conditions for existence of a strong solution are
satisfied (cf. [36]). We assume observation times 0 = t0 < t1 < · · · < tn and
observations

Vi | Xti ∼ ki(Xti ; ·), i = 0, . . . , n, (1.2)

with conditional density ki. This includes as special case

Vi | Xti ∼ ϕ(·;LiXti ,Σi), (1.3)

where Li is ami×d-matrix, Σi anmi×mi positive definite matrix and ϕ(x;μ,Σ)
denotes the density of the N(μ,Σ)-distribution, evaluated at x. For t ≥ 0, denote
the set of non-past observations by Vt, i.e. Vt = {Vi : ti ≥ t}. With slight abuse
of notation, set Vi = Vti .

In this article we address two related problems: smoothing and inference.
For the first one we assume that b, σ and {ki, i = 0, . . . , n} are known and
aim to reconstruct the path {Xt, t ∈ [0, tn]} based on V0, which here is given
precise meaning as sampling from the conditional distribution of X on [0, tn]
conditional on V0. Because we are dealing with “continuous dynamics-discrete
observations”, this setup is also referred to as continuous-discrete smoothing or
hybrid smoothing. This is an interesting problem in its own right that arises
naturally for instance in statistical analysis of tracking systems (cf. [49]).

Additionally, smoothing constitutes a central component of Bayesian infer-
ence algorithms for discretely observed diffusions. If in (1.1) the coefficients of
the diffusion X or the observation scheme {ki, i = 0, . . . , n} depend on some
unknown parameters, inference can be performed by employing a data aug-
mentation algorithm, where one iterates between (i) updating the parameter
conditional on the smoothed path and (ii) continuous-discrete smoothing con-
ditional on the value of the parameter (cf. [48]). The relevance of smoothing and
parameter estimation for diffusions is illustrated from the problem reappearing
in a wide variety of application fields, see for instance [60], [3], [1], [17] and
[63]. There is extensive research about this topic, in Section A we put this work
further into context of related research. The setup (1.2) includes the practically
relevant case that a highly non-linear process X is only observed at start time
0 and at a final time, say 1, see for instance [4] for an application in shape
analysis.

1.1. Data augmentation for continuous-discrete smoothing

In this section we give intuition on the method that we will give for sampling
from the smoothing distribution. Assume for the moment that x0 is known and
denote xti by xi. Using Bayesian notation (writing π for a density), we have the
following recursive relation

π(x1, . . . , xi | V1) = π(xi | xi−1,V1)π(x1, . . . , xi−1 | V1).

Here the first term on the right hand side captures the dynamics of the condi-
tional process, which satisfies

π(xi | xi−1,V1) = π(xi | xi−1,Vi) = π(xi | xi−1)wi,
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where we write suggestively

wi =
π(Vi | xi)

π(Vi | xi−1)
= exp (log π(Vi | xi)− log π(Vi | xi−1)) .

In the (non-Bayesian) notation used in the next subsection, π(Vi | xi), the
likelihood of xi given the present and future observations Vi, is denoted as
ρ(ti, xi). Up to a scaling factor, ρ can be related to a backward filtered marginal
density of X. In a simplified view of our approach, firstly we compute the scaled
filtering density backward in time.

One can now show using the arguments laid out in Appendix C that the
weight equals the exponential process of a change of measure:

wi = exp

(∫ ti

ti−1

σ(s,Xs)
′∇ log ρ(s,Xs) dWs

−1

2

∫ ti

ti−1

‖σ(s,Xs)
′∇ log ρ(s,Xs)‖2 ds

)
,

which reveals the changed drift b + σσ′∇ log ρ of the conditional (smoothed)
process by Girsanov’s theorem. Thus we may substitute sampling Xi | Xi−1,Vi

by simulating a process X with drift b+σσ′∇ log ρ, understood as data augmen-
tation in the sense of [54], and obtain a sample of the smoothing distribution of
Xi (and in fact the entire smoothed segment {Xt, ti−1 ≤ t ≤ ti}) in this way.

Finally, if ρ cannot be computed efficiently, we find a substitute ρ̃ and correct
for the difference through Monte Carlo methods: this is the technique of guided
proposals as introduced in the following section.

1.2. Approach

Conceptually, we follow closely the literature on guided proposals. We explain
the main idea here, more technical details can be found in Appendix B.

Assume X admits smooth transition densities p, i.e. for s < τ , P(s,x)(Xτ ∈
dy) = p(s, x; τ, y) dy. For i ∈ {1, . . . n}, t ∈ (ti−1, ti], the process X, conditioned
on Vi, . . . , Vn and Xti−1 = xti−1 satisfies the SDE

dX�
t = b(t,X�

t ) dt+ a(t,X�
t )r(t,X

�
t ) dt+ σ(t,X�

t ) dWt, X�
ti = xti , (1.4)

with a(t, x) = σ(t, x)σ(t, x)′, r(t, x) = ∇x log ρ(t, x) (considered as a column
vector) and the likelihood term ρ defined by integrating out the latent future
states,

ρ(t, x) =

∫
p(t, x; ti, ξi)kn(ξn; vn)

n−1∏
j=i

p(tj , ξj ; tj+1, ξj+1)kj(ξj ; vj) dξi · · · dξn.

(1.5)
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Define ρ(0, x) = k0(x; v0)ρ(0+, x). If Xt0 ∼ π�, with

π�(x0) =
π(x0)ρ(0, x0)∫
π(x0)ρ(0, x0) dx0

(1.6)

being the smoothed (conditional) density of x0, then a trajectory X� constitutes
a sample from the smoothing distribution. This expression was derived in [41]
(Theorem 2.3.4) in a special case of (1.3) with Σj ≡ 0 for all j). In Appendix C
we derive it using Doob’s h-transform for the more general setting considered
in this paper. As p is tractable only in very specific instances, so are ρ and π�.
Hence, sampling X� directly from (1.4) is generally not possible. The key idea
in [53] (which addressed a simpler problem of diffusion bridge simulation) is to
introduce the so-called guided proposal process, defined as the (strong) solution
to the SDE

dX◦
t = b(t,X◦

t ) dt+ a(t,X◦
t )r̃(t,X

◦
t ) dt+ σ(t,X◦

t ) dWt, X◦
ti = xti , (1.7)

where r̃(t, x) = ∇x log ρ̃(t, x) and ρ̃(t, x) is defined in a similar manner as ρ(t, x),
but with p and {ki} replaced by tractable approximations p̃ and {k̃i} respec-
tively. Here p̃ can be taken to be the transition density of some auxiliary diffusion
X̃ and {k̃i} can be based on (1.3). The choice of X̃ and {k̃i} impacts the quality
with which the law of X◦ approximates the law of the target process X�. Intu-
itively, the drift and dispersion of X̃ should be chosen such that X̃ is similar to
X in areas visited by the true conditional process. At the same time, the two
functions need to be simple enough, so as to make it possible to compute ρ̃(t, x)
and r̃(t, x). [53] showed that the linear processes, defined by the SDE

dX̃t =
(
β(t) +B(t)X̃t

)
dt+ σ̃(t) dWt, (1.8)

give rise to a family of auxiliary diffusions that grant a generous degree of
flexibility (as detailed in Section 3.2) for crafting suitable proposals X◦. For
instance, in [53, Section 1.3] the authors showed how in a setting of a highly
non-linear target diffusion X�, a simple shift by a constant in β(t) may lead
to a dramatic improvement of simulated proposal bridges X◦, leading e.g. to
lowering of rejection rates in Metropolis–Hastings algorithms.

Assume for now that x0 is known and ki = k̃i with k̃i derived from observation
scheme (1.3) and transition density p̃ derived from (1.8). We defer the general
case to Section 4. Let P� and P◦ denote the laws of X� and X◦ on [0, tn] (started
at x0) respectively. Under regularity conditions on the auxiliary process X̃ listed
in Appendix B, it follows from Theorem 1 in [53] and Theorem 2.14 in [12] that

dP�

dP◦ (X
◦) =

ρ̃(0+, x0)

ρ(0+, x0)
Ψ(X◦), (1.9)

where

Ψ(X◦) = exp

(∫ tn

0

G(s,X◦
s ) ds

)
, (1.10)
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and

G(s, x) =(b(s, x)− b̃(s, x))′r̃(s, x)

− 1

2
tr ([a(s, x)− ã(s)] [H(s)− r̃(s, x)r̃(s, x)′]) .

(1.11)

The factor in front of Ψ is written to indicate that in this expression ρ and
ρ̃ are to be evaluated at time 0+, which is of importance when considering
the case where x0 is not known. Here, b̃ and σ̃ are the coefficients of the SDE
defining X̃, ã(s) = σ̃(s)σ̃(s)′ and H(s) is the negative of the Hessian matrix of
x �→ ∇x log ρ̃(s, x) (which turns out not to depend on x).

Since all terms in (1.7) and (1.9) are in principle tractable, one may define
an importance sampler that targets the law P�: proposals are drawn from X◦

(by forward simulating paths via some discretisation scheme for SDEs, say,
the Euler–Maruyama scheme) and importance weights are computed based on
(1.9). As the SDE for X◦ is obtained from the SDE for X� by superimposing
a guiding term, the paths distributed according to the former law are called
guided proposals. The process X◦ is typically used as a proposal (the origin
of the terminology “guided proposal”) in a “latent” path-space Metropolis–
Hastings step such as the non-centred path-space Crank-Nicolson scheme (cf.
[16] and [9]).

However, our results can also be used in other Monte Carlo procedures, for
example in an auxiliary particle filter. Essentially our backward filtering step is
an approximation to the backwards information filter. Various related “optimal
policy finding” strategies for finding a good approximation have been proposed
in the particle filtering literature, such as the iterated auxiliary particle filter
(cf. [30]) and controlled SMC (cf. [34]). Guided proposals can also be used to
create flexible variational classes for latent diffusion paths (cf. recent work [7]).
In fact guided proposals are agnostic to the choice of inferential algorithm, a
point highlighted in the preprint [58].

Whereas the computations of r̃, H and ρ̃(0, x0) for (1.8) are in principle
tractable, it is not trivial to derive an efficient numerical scheme. The numerical
methods presented in [53] are restricted to simpler cases and to diffusion bridge
simulation on a single time segment. In this paper we derive an efficient scalable
scheme (both in the number of observations as dimension of the state space of
the diffusion) using guided proposals for sampling high-dimensional, non-linear
latent diffusion processes under the general observation scheme (1.2), and to
estimate unknown parameters. This is illustrated in a number of challenging
numerical examples.

1.3. Innovation

We derive simple systems of ordinary differential equations that can be used
to compute all terms needed for implementation of guided proposals, i.e. terms
r̃, H and ρ̃(0, x0). These results imply that in order to sample paths of the
proposal diffusion X◦ and embed them in the Metropolis–Hastings algorithm
only the following steps need to be performed
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• a system of ordinary differential equations, akin to the updating equations
in hybrid Kalman filtering, has to be solved backwards in time (suitable
systems are given in theorems 2.4, 2.5 and 2.6);

• paths of X◦ need to be simulated forward in time, using standard simu-
lation techniques based on stochastic Taylor expansions (cf. [38]);

• the Radon–Nikodym derivative between the laws of X� and X◦ has to be
evaluated and then used in the acceptance probability of the Metropolis–
Hastings algorithm.

In particular, in this scheme, forward simulating the guided proposal X◦ is com-
parable in computational effort to simulating X itself. This resolves objections
about (perceived) computational effort required to simulate guided proposals
using a closed form expression for ρ. The systems of ODEs make use only of the
matrix addition, multiplication and inversion operations and scale much better
to high dimensional problems compared to for example [55]. For the smoothing
problem, the first step needs to be executed only once.

We call the resulting algorithm the Backward Filtering Forward Guiding
(BFFG) algorithm, because (as we will show) it combines backward filtering
under the auxiliary process X̃ and forward simulation of the guiding process
X◦. It may also be characterised as a variant of the forward filtering-backward
sampling algorithm for linear state space models with (possibly) non-linear con-
tinuous time processes. Reversing the time-direction and sampling the process
forward in time is not strictly necessary, but turns out to be more convenient.

We believe the method derived in this paper has a number of attractive
properties:

1. It is a computationally simple algorithm that provides a unified approach
to smoothing of both hypo-elliptic and uniformly elliptic diffusions.

2. It allows for taking into account nonlinearities in the drift efficiently (by
choice of the auxiliary process X̃).

3. It can deal with a large class of diffusions with state-dependent diffusion
coefficient.

4. The algorithm targets the exact smoothing distribution and does not rely
on Gaussian approximations.

5. It can deal with nonlinear observation schemes or non-Gaussian error den-
sities while still sampling from the exact smoothing distribution.

Regarding being exact, we derive our algorithm in continuous time, but ulti-
mately, in any implementation the SDE for X◦ needs to be discretised. However,
the mesh-width for the discretisation can be controlled by the user.

1.4. Outline

In Section 2 we derive ODE-systems for backward filtering which result in effi-
cient ways for computing r̃, H and ρ̃(0, x0). In Section 3 we discuss strategies for
choosing the auxiliary process X̃ and auxiliary observation scheme to be used in
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backward filtering. The backward filtering forward guiding algorithm for diffu-
sions is subsequently given in Section 4. In Section 5 we address applications of
the proposed algorithms to problems in which the dimension of the state-space
of the diffusion is high. In such a setting, the backward filtering can for example
be carried out using an ensemble Kalman filter. We illustrate our results on 3
challenging examples in Section 6. The appendix contains sections on related
literature, a derivation of the guiding term for guided proposals together with
deferred proofs and remarks.

2. Backward filtering

To sample the guided proposal, we need to define ρ̃ as a proxy to ρ defined
in (1.5). For that, we choose X̃ as in (1.8). For i = 0, . . . , n, we assume k̃i to
correspond to the observation scheme (1.3) which is parametrised by Li and Σi.

Definition 2.1. For a specified (strictly positive definite) covariance matrix
Pn+, define k̃n+(x) = ϕ(x; 0, Pn+). We define ρ̃ by

ρ̃(t, x) =

∫
k̃n+(ξn)p̃(t, x; ti, ξi)k̃n(ξn; vn)

×
n−1∏
j=i

p̃(tj , ξj ; tj+1, ξj+1)k̃j(ξj ; vj) dξi · · · dξn.
(2.1)

Note the inclusion of kn+ which does not appear in (1.5). It ensures regulari-
sation, where we may intuitively think of Pn+ = ε−1I with ε small, though any
choice of Pn+ will give rise to a valid algorithm targeting the exact smoothing
distribution.

Naturally BFFG will work best if {k̃i} and X̃ approximate {ki} and X
well, most importantly in those areas where the smoothing distribution puts
its weight. We comment on good choices in Section 3. Theorems 2.4, 2.5 and
2.6 in this section give backward recursions for evaluating r̃, H and ρ̃ which are
needed for application of guided proposals. All proofs are in Section D of the
appendix.

We impose

Assumption 2.2. For each i ∈ {0, . . . , n}, the matrix Σi is strictly positive
definite.

Assumption 2.3. The maps t �→ β(t), t �→ B(t) and t �→ σ̃(t) are bounded on
[0, T ].

By Theorem 1.184 in [14], Assumption 2.3 ensures existence and uniqueness
of the ODEs for t �→ L(t), t �→ P (t) and t �→ ν(t) appearing in Theorem 2.4 and
Theorem 2.6 below. Uniqueness and existence of ν and P then translates to the
ODEs for t �→ F (t) and t �→ H(t) appearing in Theorem 2.5 below.

For i ∈ {1, . . . , n}, let v(t) be defined by the concatenated vector of all non-
past observations:

v(t) = [v′i, . . . , v
′
n]

′ t ∈ (ti−1, ti],
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where i ∈ {1, . . . , n}. Define v(0) = [v′0, . . . , v
′
n]

′, let m(t) = dim(v(t)) and re-
call mi = dim(vi). In the following, we give three results characterising ρ̃, first
directly as marginal likelihood, and then in a form more suitable for implementa-
tion: as (scaled) backward ODE for the filtering density in two parametrisations.

Theorem 2.4. Let the triplet (L(t),M†(t), μ(t)) be defined on each interval
(ti−1, ti] (i = 1, . . . , n) as solutions to the backward ODE systems

dL(t) = −L(t)B(t) dt (2.2)

dM†(t) = −L(t)ã(t)L(t)′ dt (2.3)

dμ(t) = −L(t)β(t) dt. (2.4)

Define
L(tn+) = I M†(tn+) = Pn+ μ(tn+) = 0

and for i = 0, . . . , n,

L(ti) =

[
Li

L(ti+)

]
, M†(ti) =

[
Σi 0mi×m(ti+)

0m(ti+)×mi
M†(ti+)

]
, μ(ti) =

[
0mi×1

μ(ti+)

]
.

(2.5)
If M(t) = M†(t)−1, then for all t ∈ [0, tn], we have

r̃(t, x) = F (t)−H(t)x,

ρ̃(t, x) = ϕ(v;μ(t) + L(t)x,M†(t))

where

H(t) = L(t)′M(t)L(t), (2.6)

F (t) = L(t)′M(t)(v(t)− μ(t)). (2.7)

Note that the equations for M† and μ directly give the time derivative and
that the values of M†(t) and μ(t) can be found by using a numerical quadrature
rule such as for example the trapezoid rule. This theorem shows that H and r̃
can be computed by solving the systems (2.2), (2.3) and (2.4). Additionally, by
computing the term |M(t)|, we may evaluate ρ̃ as well. In Theorem 2.5 below we
will see that computation of this determinant can be avoided by solving another
(scalar-valued) backward ODE.

The dimensions of the equations in Theorem 2.4 are larger on (ti−1, ti] than
on (tj−1, tj ] for all j > i. The dimension on the segment closest to zero (i.e. the
leftmost segment) grows rapidly with a large number of observations. It turns
out that other sets of backward differential equations can be derived, which are
constant in dimensions determined by the the dimension of the state space of
the diffusion, no matter the number of observations.

Theorem 2.5 (Information filter). For (t, x) ∈ [0, T ]×Rd, ρ̃ admits the follow-
ing decomposition

log ρ̃(t, x) = −c(t)− 1

2
x′H(t)x+ F (t)′x,
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where on each interval (ti−1, ti] (i = 1, . . . , n), H, F and c solve the backward
ODEs

dH(t) = (−B(t)′H(t)−H(t)B(t) +H(t)ã(t)H(t)) dt,

dF (t) = (−B(t)′F (t) +H(t)ã(t)F (t) +H(t)β(t)) dt,

dc(t) =

(
β(t)′F (t) +

1

2
F (t)′ã(t)F (t)− 1

2
tr (H(t)ã(t))

)
dt.

(2.8)

At observations times, we have for i = 0, . . . , n

H(ti) = H(ti+) + L′
iΣ

−1
i Li,

F (ti) = F (ti+) + L′
iΣ

−1
i vi,

c(ti) = c(ti+)− logϕ(vi; 0,Σi).

, (2.9)

to be initialised from

H(tn+) = P−1
n+ , F (tn+) = 0, c(tn+) = ϕ(0; 0, Pn+) (2.10)

Note that H(t) ∈ Rd×d, F (t) ∈ Rd and that c(t) is scalar-valued throughout
[0, tn].

Theorem 2.6 (Covariance filter). Let ν(t) = P (t)F (t) with P (t) = H(t)−1.
The mapping r̃ satisfies

P (t)r̃(t, x) = ν(t)− x, (2.11)

On each interval (ti−1, ti] (i = 1, . . . , n), P and ν satisfy the backward ODEs

dP (t) = (B(t)P (t) + P (t)B(t)′ − ã(t)) dt, (2.12)

dν(t) = (B(t)ν(t) + β(t)) dt.

Furthermore, if we define P (tn+) = Pn+ and ν(tn+) = 0 then for i = 0, . . . , n

P (ti) = P (ti+)− P (ti+)L′
i (Σi + LiP (ti+)L′

i)
−1

LiP (ti+) (2.13)

ν(ti) = P (ti)
(
L′
iΣ

−1
i vi +H(ti+)ν(ti+)

)
. (2.14)

From (2.13) it is seen that Assumption 2.3 can be weakened to invertibility
of Σi + LiP (ti+)L′

i.
In case σ̃ and B are constant, P (t) can be computed directly.

Proposition 2.7. Assume B and ã are constant and Σ solves the continuous
time Lyapunov equation

BΣ+ ΣB′ + ã = 0.

Then the solution to

dP (t) = (BP (t) + P (t)B′ − ã) dt, P (T ) = PT

is given by
P (t) = Φ(t, T )(Σ + PT )Φ(t, T )

′ − Σ, (2.15)

where Φ(t, T ) = exp(−(T − t)B).
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Remark 2.8. It is natural to ask which of the 3 recursions to use. In case of
only one future observation at time t1, the ODEs in Theorem 2.4 are advanta-
geous when m1 < d. Moreover, these are also applicable in case of a noiseless
observation at time t1 by taking M†(t1) to be equal to a zero matrix. With
multiple observations, usually, the recursions from Theorem 2.5 or Theorem 2.6
are preferable and can lead to large computational gains.

Remark 2.9. Let Vt = {Vi, . . . , Vn} if t ∈ (ti−1, ti]. The interpretation of ν
and P (appearing in Theorem 2.6) follows from X̃t | Vt ∼ N(ν(t), P (t)), i.e.
these are the mean and covariance of the backward filtered process. The update
formula at observations times can now be seen from the following argument.
Denote X̃i ≡ X̃ti . Suppose (ν(t), P (t)) has been computed for t ∈ (ti, tn] for
i ∈ {0, . . . , n− 1}. At time ti the observation X̃i can be incorporated using the
following relation:

p(X̃i | Vi) ∝ p(Vi | X̃i,Vi+1)p(X̃i | Vi+1) = p(Vi | X̃i)p(X̃i | Vi+1). (2.16)

Since X̃i | Vi+1 ∼ N(ν(ti+), P (ti+)) and Vi | X̃i ∼ N(LiX̃i,Σi), the joint
distribution of (X̃i, Vi) | Vi+1 is Normal. Hence there is a closed form expression
for the distribution of X̃i | (Vi,Vi+1) which gives ν(ti) and P (ti).

3. Choice in auxiliary process and auxiliary observation scheme

Application of the tractable backward filtering updates requires choosing ({Li},
{Σi}) for the observation scheme and t �→ (β(t), B(t), σ̃(t)) for the auxiliary
process X̃.

3.1. Choice of the auxiliary observation scheme

The backward filtering formulas in Section 2 are used with the auxiliary obser-
vation scheme of the form implied by (1.3), leaving open the choice of (Li,Σi)
in case the actual observation scheme is of the more general form (1.2).

The simplest thing to do is choose Li and Σi such that ϕ(vi;LiXti ,Σi) ≈
ki(Xti ; vi). Ultimately, the best choice of (Li,Σi) is that the discrepancy between
P◦ and P� is minimal (for example measured by (reverse) Kullback-Leibler di-
vergence).

Example 3.1. Assume that instead of Vi ∼ N(LiXti ,Σi) one observes Vi ∼
N(gi(Xti),Σi) with gi a nonlinear map. Consider the linearisation (with ν as in
the covariance filter)

gi(x) ≈ gi(ν(ti+)) +Gi(x− ν(ti+)) = ζi +Gix.

where Gi = (Dgi)(ν(ti+)) and ζi = gi(ν(ti+)) − Giν(ti+). Under this lineari-
sation, backward filtering can be carried out exactly as in our original setting
by assuming to observe Vi − ζi instead of Vi and setting Li to be equal to Gi.
This choice of auxiliary scheme is alike the extended Kalman filter (Algorithm
5.4 in [49]).
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We refer to Chapters 5 and 6 in [49] for other approximations proposed in
the literature that can be used as auxiliary observation scheme.

3.2. Choice of the auxiliary process X̃

The auxiliary process X̃ needs to be chosen by a user, i.e. the parameters β(t),
B(t) and σ̃(t) need to satisfy matching and regularity conditions, but are oth-
erwise free. A number of practical ways for choosing them are discussed in [56]
(Section 4.4); below, we list a number of reasonable options. Determining an
optimal auxiliary law in an automated fashion deserves its own study and is the
subject of an ongoing research (but cf. also considerations in [53]).

A Waive the freedom and simply take σ̃ constant, B(t) ≡ 0 and β = 0. If
X is either elliptic or hypo-elliptic with nonzero noise on each coordinate,
this yields a valid algorithm. It still takes local nonlinearity into account
through the presence of b in (1.7) and, in case of partial observations, is
informed by multiple future observations.

B On each t ∈ (ti−1, ti] compute a first order Taylor expansion of the drift
evaluated at a specified x̃(ti). That is, compute b̃(t, x) = b(t, x̃(ti)) +
Jb(t, x̃(ti))(x− x̃(ti)), where Jb denotes the Jacobian matrix of b. In case
the diffusion is fully observed, x̃(ti) is taken equal to Xti , else it is specified
by a user-chosen guess for it. The guess can be adaptively refined by
using empirical averages of the imputed path. Otherwise put, the auxiliary
process comes from linearisations of the target diffusion at the times of
subsequent observations.

C The aim is to employ a first order Taylor expansion b̃(t, x) = b(t, x̄(t)) +
Jb(t, x̄(t))(x − x̄(t)) evaluated at x̄(t) = E [Xt | D]. Of course, x̄(t) is un-
known, but information becomes available during MCMC-iterations, and
thus, just as inB, empirical averages of the imputed path can be used as its
proxy. More specifically, we propose to first use the auxiliary process con-
structed by one of the preceding methods to get B(0)(t, x) = β(t)+B(t)x,
and then, run the algorithm for k iterations and compute the average of
these k paths. Denote this average by {X̄(0)(t), t ∈ [0, tn]}. Next, starting
at i = 1, repeat the following steps until the prescribed total number of
iterations for adaptation has been reached.

(a) Set

B(i)(t, x) = b(t, X̄(i−1)(t)) + Jb(t, X̄
(i−1)(t))

(
x− X̄(i−1)(t)

)
.

(b) Recompute H(t), F (t) and c(t) on [0, tn] based on B(i)(t, x).

(c) Perform k MCMC-iterations based on H(t), F (t) and c(t). Compute
the average of all simulated paths to obtain {X̄(i)(t), t ∈ [0, tn]}

To avoid common problems with adaptive schemes we stop the adaptation
after a fixed number of steps.
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D Choose σ̃ = σ, B(t) ≡ 0 and take β nonzero to make the pulling term
itself take into account the nonlinearity of the system. To determine β,
first obtain F (tn+) and H(tn+) as in (2.10). Next, for i = n to 1:

(a) For t ∈ (ti−1, ti], backwards solve

dx(t) = b(t, x(t)) dt, x(ti) = H(ti)F (ti).

Set β(t) = b(t, x(t)).

(b) Using β, compute (F (t), H(t)) for all t ∈ (ti−1, ti]. Compute (F (ti−1),
H(ti−1)) using (F (ti−1+), H(ti−1+)) using the formulas of the infor-
mation filter (Theorem 2.5).

E Use a linear combination of the schemes above. This is a risk-averse, robust
strategy, which aims to guard against unexpected artifacts that some of the
adaptive strategies above might exhibit (say, for strategyC such behaviour
could appear as a result of multimodality on a path space). In Section 6 we
use: B = wb(B)+(1−w)b(C), where b(B) and b(C) are defined by strategies
B andC respectively and w ∈ [0, 1] are some user-chosen weights. Another
option (not considered here) consists of sampling w in each iteration from
the Bernoulli distribution with fixed success probability.

F Finally, the auxiliary process may take values in a higher dimensional
space, with only its first d coordinates used in defining the proposal diffu-
sion. Say, we want to target a process X conditioned on the observations
Vi = LXti + ηi. Consider an auxiliary process [X̃, Y ] with X̃ solving
dX̃t = (BX̃t + β(t) + CYt) dt + σ̃ dWt and Y a second, independent lin-
ear process dYt = DYt dt + dWY

t driven by an independent Brownian
motion WY . Here B,C and D are matrices of suitable dimension. Then,
we may use an augmented sampler that targets the joint process [Xt, Yt]
conditional on the observations Vi. The augmented observation operator
is given by Laug = [L 0], the augmented drift for the target process is
baug(t, [x, y]) = [b(t, x), Dy] and the block diagonal dispersion coefficient
is [ σ 0

0 I ]; the sampler uses the augmented guided proposal with the auxiliary

linear process [X̃, Y ] that has a drift b̃aug(t, [x, y]) = [Bx+Cy,Dy] and the
block diagonal dispersion coefficient [ σ 0

0 I ]. Samples of the conditional pro-

cess X are obtained by marginalisation. To give a simple example, X̃ can
be taken to be a sum of a Brownian motion and an integrated Brownian
motion.

4. Backward filtering forward guiding for diffusions

In this section we present a novel Gibbs sampling algorithm for joint continuous-
discrete smoothing of diffusions and parameter estimation. We will first precisely
derive the posterior distribution that we target in Section 4.1. Next, in Section
4.5 we present details on initialisation of the algorithms, whereas steps for up-
dating the path, initial state and parameters and given in sections 4.2, 4.3 and
4.4 respectively.
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4.1. Likelihood calculations

The law P◦ of the guided proposal approximates P� with tractable likelihood
ratio. In the simple setting of known starting point x0 and ki = k̃i with k̃i derived
from observation scheme (1.3) we have specified this ratio in (1.9). Dropping the
requirement that ki = k̃i, we have for bounded measurable test-functions g

E [g(X�) | X�
0 = x0] =

ρ̃(0+, x0)

ρ(0+, x0)
E

[
g(X◦)Ψ(X◦)

(
n∏

i=1

Ci(X
◦
ti)

)∣∣X◦
0 = x0

]
,

(4.1)
where

Ci(x) =

{
ki(x; vi)/k̃i(x; vi) if 1 ≤ i ≤ n− 1

ki(x; vi)/(k̃i(x; vi)k̃i+(x)) if i = n
.

This follows from (1.9) upon correcting for the discrepancy between k̃i and ki.
Now we assume b, σ, p̃, {k̃i}, {ki}, π(x0) depend on an unknown parameter θ
with prior κ(θ). We add a subscript θ if we wish to highlight this dependency.

A naive approach for sampling jointly the latent path X� and parameter θ
would consist of data-augmentation where one iteratively updates the latent
path X� proposing from X◦ conditionally on the parameter θ and θ condition-
ally on X�. It is well known that this yields a reducible algorithm if unknown
parameters appear in the diffusivity σ (cf. [48]). The key idea put forward in
[27] (see also [56] and [46]) is to use a noncentred parametrisation where the law
of X◦ is casted as a pushforward of Wiener measure. It is this approach that
we adopt here as well: as we assume existence of a strong solution to the SDE
(1.7), there exists of a measurable map GPθ such that

X = GPθ(X0, Z),

where Z is a Wiener process in Rd′
. The process Z is referred to as the innovation

process.
Below, we define algorithms 4.1, 4.3 and 4.4. These are to be combined in a

Gibbs sampler to target the joint posterior distribution of (θ, x0, Z) specified by
the proper density

κ(θ)πθ(x0)ρ̃θ(0, x0)∫
κ(θ)πθ(x0)ρθ(0, x0) d(x0, θ)

Ψθ(GPθ(x0, Z))

n∏
i=0

Ci(GPθ(x0, Z)ti), (4.2)

with respect to the product measure of Lebesgue measure on (θ, x0) and d′-
dimensional Wiener measure on Z. In particular, samples of the latent path are
obtained from samples (θ, x0, Z) through X = GPθ(x0, Z).

To see why (4.2) is true, if g is a bounded measurable function, then, with W

denoting Wiener measure and X0, Θ random variables drawn from the prior,

E[g(Θ, X0, Z) | V0] = E[E[g(Θ, X0, Z) | V0,Θ, X0] | V0]

=

∫
E[g(Θ, X0, Z) | V0, X0 = x0,Θ = θ]ξ(x0, θ;V0) d(θ, x0)
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=

∫
g(θ, x0, z)ξ(x0, θ;V0)

ρ̃θ(0+, x0)

ρθ(0+, x0)
Ψθ(GPθ(x0, z))

×
n∏

i=1

Ci(GPθ(x0, z)ti) dW(z) dθ dx0

where

ξ(x0, θ;V0) =
κ(θ)πθ(x0)k0(x0, v0)ρθ(0+, x0)∫

κ(θ)πθ(x0)k0(x0, v0)ρθ(0+, x0) d(θ, x0)

is the density of (x0, θ) conditional on V0. Finally, use ρθ(0, x0) = k0(x0, v0)
ρθ(0+, x0) and likewise for k̃0, ρ̃θ and multiply both the numerator and de-
nominator by k̃0(x0; v0) and “absorb” the ratio k0(x0; v0)/k̃0(x0; v0) into the
product by starting at i = 0 rather than i = 1.

4.2. Smoothing from known initial state and parameter

In this conditional update step we assume that the initial state and parameter
are either known or conditioned upon. This means sampling from the smoothing
distribution which requires the likelihood ratio of P� with respect to P◦ as
specified in (4.1). Recall the definition of Ψ in (1.10).

For this step, we choose a tuning parameter λ ∈ [0, 1).

Algorithm 4.1. Smoothing step for fixed θ and fixed initial state x0. Suppose
the current iterate is (θ, x0, Z) and X = GPθ(x0, Z).

1. Compute the guiding term. Initialise H(tn+), F (tn+), c(tn+) via
(2.10).
For i = n to 0

(a) For t ∈ (ti, ti+1], backwards solve the ordinary differential equations
(2.8)

(b) Compute H(ti), F (ti), c(ti) from (2.9)

2. Crank-Nicolson step.

(a) Sample independently a Wiener process W and set

Z◦ = λZ +
√
1− λ2W.

Compute

X◦ = GPθ(x0, Z
◦).

(b) Compute

A =
Ψ(X◦)

Ψ(X)

n∏
i=1

Ci(X
◦
ti)

Ci(Xti)
.

Draw U ∼ U(0, 1). If U < A replace X = X◦ and Z = Z◦.
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Repeating step 2 multiple times constitutes a procedure to sample from the
smoothing distribution, in which case step 1 only needs to be done once. We
have used the information filter from Theorem 2.5. Clearly, with straightforward
modifications it can be adjusted to other filtering equations from Section 2.

ODEs for H(t) and F (t) are calculated on t ∈ [t0, tn] using time discreti-
sation. Once these have been calculated and stored (on a grid of timepoints),
the remainder of the algorithm consists of preconditioned Crank–Nicolson steps
on the Wiener increments. After “burn in”, the sample paths generated by this
algorithm are from the smoothing distribution. Note that since we assume the
initial state x0 to be known and the parameter θ to be fixed, c(t), in fact, does
not need to be computed. As we will shortly extend the presented algorithm
to include uncertatinty over the initial state and parameter estimation we have
already included the ODE and the update formula for c(t).

While Algorithm 4.1 is theoretically valid for any fixed value of λ, its effi-
ciency strongly depends on the particular choice of this parameter. Instead of a
fixed value of λ, we can choose it randomly at each iteration of step (3a): the
acceptance probability in step (3b) is not affected by its value (cf. the discussion
after Algorithm 1 in [56]).

Remark 4.2. If the measurement error is close to zero, then the (Euler) dis-
cretisation of the guided proposal is a delicate matter due to the behaviour of
the guiding term just prior to observation times. As discussed in Section 5 of
[56] a time change and scaling of the process can alleviate discretisation errors.
For completeness, we present this approach in Appendix E.

4.3. Initial state updating

We choose to update the initial state conditional on (Z, θ).
The expression for A follows from the target density in (4.2). We choose a

Markov kernel q (which may depend on θ) for proposing a new state x◦
0.

Algorithm 4.3. Initial state updating step. Suppose the current iterate is
(θ, x0, Z) and X = GPθ(x0, Z).

1. Propose x◦
0 ∼ qθ(· | x0).

2. Compute the corresponding guided proposal X◦ = GPθ(x
◦
0, Z).

3. Compute

A =
qθ(x0 | x◦

0)

qθ(x◦
0 | x0)

π(x◦
0)ρ̃(0, x

◦
0)

π(x0)ρ̃(0, x0)

Ψ(X◦)

Ψ(X)

n∏
i=0

Ci(X
◦
ti)

Ci(Xti)
.

Draw U ∼ U(0, 1). If U < A replace X = X◦ and x0 = x◦
0.

An independence sampler can be obtained by taking qθ(· | x0) = π◦(·) defined
by

π◦(x0) =
π̃(x0)ρ̃(0, x0)∫
π̃(x0)ρ̃(0, x0) dx0

(4.3)
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for specified nonnegative π̃. Naturally, in case π is itself Gaussian an obvious
choice is to take π̃ = π.

4.4. Parameter updating

Choose a Markov kernel q for proposing new value for θ.

Algorithm 4.4. Parameter updating step. Suppose the current iterate is
(θ, x0, Z) and X = GPθ(x0, Z).

1. Propose θ◦ from the proposal kernel q.
2. If (H,F, c) (defining the guiding term) depend on the parameter, then

recompute the guiding term with parameter θ◦ using step 1 of Algorithm
4.1.

3. Compute the corresponding guided proposal X◦ = GPθ◦(x0, Z).
4. Compute

A =
q(θ | θ◦)
q(θ◦ | θ)

κ(θ◦)ρ̃θ◦(0, x0)

κ(θ)ρ̃θ(0, x0)

Ψθ◦(X◦)

Ψθ(X)

n∏
i=0

Ci,θ◦(X◦
ti)

Ci,θ(Xti)
.

Draw U ∼ U(0, 1). If U < A replace X = X◦ and θ = θ◦.

The following Gaussian conjugacy result is sometimes useful; its proof is an
elementary consequence of Girsanov’s theorem.

Proposition 4.5. Assume a diffusion X with drift of the form

b(t, x) = ϕ0(t, x) +

K∑
k=1

θkϕk(t, x),

where both the diffusion coefficient and the initial distribution of X0 are in-
dependent of θ. If the full path (Xt, t ∈ [0, tn]) is observed and a priori θ ∼
N(0,Γ−1

0 ), then θ | X ∼ N(Γ−1μ,Γ−1) with

μ =

∫ tn

0

Φ(t,Xt)
′( dXt − ϕ0(t,Xt) dt)

Γ =

∫ tn

0

Φ(t,Xt)
′a−1(t,Xt)Φ(t,Xt) dt+ Γ0,

where Φ(t, x) = (ϕk(t, x))1≤k≤K .

4.5. Initialisation

While any value of (θ, x0) within the support of their prior is possible, we propose
to choose an initial value θ and subsequently sample x0 ∼ π◦ for specified
nonnegative π̃. Next, we sample a Wiener process Z on [0, tn]. The corresponding
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guided proposal is obtained from X◦ = GPθ(x0, Z), which can be computed
using

dX◦
t = b(t,X◦

t ) dt+ a(t,X◦
t ) (F (t)−H(t)X◦

t ) dt+ σ(t,X◦
t ) dZt.

Next, we initialise X by defining X = (X◦
t , t ∈ [0, tn]).

4.6. Blocking strategy

In this article, for comparisons of the effects of blocking we always adopt a
“chequerboard” updating strategy. More precisely, we say that we use “blocks
of length k” (for an even k) to mean that the following strategy is adopted for
updating the path:

1. Initialise X(0:n).
2. For i = 1, . . . , �n/k�, sample bridges X(ki−k:ki), conditional on Xki−k, Xki

and {Vki−j ; j = 1, . . . , k − 1}.
3. Sample the last segment X(�n/k�k:n) conditional on X�n/k�k and {Vj ; j =

�n/k�k, . . . , n}.
4. For i = 1, . . . , �n/k� − 1, sample bridges X(ki−k/2:ki+k/2), conditional on

Xki−k/2, Xki+ki/2 and {Vki+j ; j = −k/2 + 1, . . . , k/2− 1}.
5. Sample the first segment X(0:k/2) conditional on X0, Xk/2 and {Vj ; j =

1, . . . , k/2}.
6. Sample the last segment X(�n/k�k−k/2:n) conditional on X�n/k�k−k/2 and

{Vj ; j = �n/k�k − k/2 + 1, . . . , n}.

Naturally, the algorithm above describes only smoothing. In order to trans-
form the above into an inference algorithm a parameter update step described
in Algorithm 4.4 may be introduced in between steps 3 and 4 or after step 6 or
both.

5. Continuous-discrete smoothing for high dimensional diffusion
processes

For high dimensional SDEs with d � 1, the computation of the d× d backward
filtered covariance P (t) in (2.11) becomes prohibitive in an implementation in
dense matrix algebra (and likewise the equations for its inverse). Another numer-
ical difficulty is the computation of the likelihood accounting for the difference
in a and ã in case these are unequal. In this section we do not consider the latter
problem, and therefore, restrict our attention to the high dimensional situation
where a = ã. In this case the linear filtering step is the numerical bottleneck
and not the sampling step. Specifically, if the process X and the observations
are of the form

dXt = (B(t)Xt + F (t,Xt)) dt+ σt dWt, X0 ∼ p(x0),

Yi = LXti + ηi, ηi ∼ N(0,Σi),
(5.1)
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then a natural choice is to take B̃(t) = B(t) and σ̃(t) = σ(t).
Even if B̃ and σ̃ are sparse, P (t) typically is not. But if those operators that

describe the drift and dispersion of X̃ are local, then one may be able to approx-
imate P by a sparse matrix. Instead of stating a formal definition we provide an
illustrative example, which can be seen as a variant of the stochastic heat equa-
tion on a graph with drift. Consider the d-dimensional diffusion (Xt) for which
a state x is understood as a discrete approximation to a function f : [0, 1] → R,
so that in particular, a coordinate X(i) corresponds to an evaluation of f in
i−1
d−1 ∈ [0, 1]. More concretely, let X be defined as a solution to

dXt = −σ2

2 (Λ + cI)Xt dt+ σ dWt, (5.2)

with σ, c > 0 and

Λ =

⎡
⎢⎢⎢⎢⎣

1 −1
−1 2 −1

. . .
. . .

. . .
−1 2 −1

−1 1

⎤
⎥⎥⎥⎥⎦, (5.3)

the graph Laplacian of the linear graph with d vertices corresponding to the
coordinates. Λ acts as a discrete approximation to the second derivative. Λ is
a local operator in the sense of having a representation by a banded matrix
(this corresponds to all interactions in the linear graph being limited to only
those between the neighbours). As a result, matrix-vector operations (matvecs)
Λx can be computed efficiently in O(d) time. X is a Gauss–Markov process
with stationary distribution N(0, (Λ + cI)−1) (as Σ = (Λ + cI)−1 is a solution
to the continuous time Lyapunov equation BΣ + ΣB′ + C = 0, where B =
−σ2/2(Λ+ cI)). Thus, in the stationary regime, X(t) at a fixed time t is a draw
from a high-dimensional Gaussian law approximating a spatial Gaussian process
on [0, 1] with continuous realisations of Hölder regularity just below 1

2 . While
(Λ+ cI)−1 is not a sparse matrix, the entries decay exponentially moving away
from the diagonal. By Proposition 2.7, the same holds for P (t). Good, sparse
approximations are obtained by setting (Λ + cI)−1 or P (t) to zero outside of a
fixed band.

In contrast, the forward simulation and the likelihood evaluation happen in
Rd and are fast, as long as fast matvec operations with the operator H are
available. This implies that the actual bottleneck of our approach is in solving a
continuous-discrete linear filtering problem and we can rely on a long sequence
of work in this direction.

From the various possibilities we consider but two: a sampling approach re-
lated to the ensemble Kalman filter and a sparsity enforcing solver for (2.12).

5.1. Ensemble backward filter

Instead of solving (2.12) one can exploit that for the linear backward process
with a reversed time axis

dX̄s = (B̄(s)X̄s + β̄(s)) ds+ σ̄(s) dW̄s, X̄0 ∼ N(νti+1 , Pti+1)
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for T − s ∈ (ti, ti+1) with B̄(s) = −B̃(T − s), β̄(s) = −β̃(T − s) and σ̄(s) =
σ̃(T − s), it holds

E
[
X̄s

]
= ν(T − s) and Var(X̄s) = P (T − s).

Here, dW̄s can be taken to be an Itô integral; as σ̃ does not depend on space,
there is no need for an Itô correction.

This can be used to obtain estimates of ν(s) and a low rank approximation of
P (s) by sampling X̄(k) a number of K times with K � d and approximating by

the empirical covariance Σ = 1
K−1

∑
X̄

(k)
T−sX

(k)′
T−s. To obtain a positive definite

(and invertible) estimate of P , one employs localization and sets P̂ = Σ ◦ Λ
where ◦ is the Hadamard (elementwise) product with a positive definite sparse
localisation matrix Λ chosen to ignore long range dependencies, see [35]. The
observations are taken into account by way of the usual ensemble Kalman filter

X̄
(k)
T−ti

= X
(k)
T−ti+

+ P̂ (t+)L′
i

(
LiP̂ (t+)L′

i +Σ
)−1

(vi − LiX
(k)
T−ti+

),

see [23].

5.2. Forced sparsity

Secondly, we consider sparsity enforcing backward integrators, where we set

P (t− h) = dropε

(
P (t) + (−B̃(t)P (t)− P (t)B̃(t)′ + ã(t))h

)
.

Here

(dropε A)ij =

{
Aij |Aij | > ε

0 otherwise
.

If P is well-approximated by a sparse matrix – as illustrated for the case (5.2)
– then dropε Ph will be sparse. We explore this approach in section 6.3.

Remark 5.1. A particularly relevant case of (5.1) is a process X that is ob-
tained from a spatial discretisation of the stochastic partial differential equation

dXt = (−AXt + F(t,Xt)) dt+ σt dWt, X0 = x0, (5.4)

taking solutions in a Hilbert space H, where A is a densely defined, positive
definite operator and W is a Q-Wiener process with a covariance operator Q
given by a positive definite trace class operator, see [18].

6. Examples

In all examples, the differential equations for H(t), F (t) and c(t) have been
solved using the 7th order Runge–Kutta solver (cf. [61]). The guided proposal
is obtained by solving its SDE using Euler discretisation. The code is available
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in the folders scripts/papers of the package BridgeSDEInference.jl1 [42]
and scripts of the package BridgeSPDE.jl2. Both packages build upon [52],
for the programming language Julia [11].

6.1. Lorenz system

The Lorenz system is notable for having chaotic solutions for certain parameter
values and initial conditions. It is described by the SDE with the drift and
dispersion coefficient given by

b(x) =

⎡
⎣ θ1(x2 − x1)
θ2x1 − x2 − x1x3

x1x2 − θ3x3

⎤
⎦ and σ = σ0I3×3.

Data: We initialised the process at x0 =
[
1.5 −1.5 25

]′
and simulated

it on [0, 2] with mesh-width 2e-4 and parameters θ =
[
10 28 8/3

]′
, σ0 = 3.

Only the 2nd and 3rd coordinate were observed so that Li is a 2×3 matrix with
the first row [0, 1, 0] and the second row [0, 0, 1]. We then defined two datasets.
Dataset 1: 200 observations were retained at times 0.01, 0.02, . . . , 2, where we
took Σi = 5 · I as the covariance matrix for the noise.
Dataset 2: 10 observations were retained at times 0.2, 0.4, . . . , 2, where we took
Σi = 0.05 · I. The observed data are shown in figures 1 and 2. Note that the
first coordinate process {X1,t; t ∈ [0, T ]} remains latent in both cases.

Fig 1: Dataset 1 Fig 2: Dataset 2

Algorithm details: Overall, six inference algorithms have been run, three
on each dataset. The procedures were inferring parameter θ, whereas parameter
σ0 was assumed to be known. All four parameters could have been inferred
simultaneously; however, by fixing σ0 it was possible to illustrate the differences
in performances of various algorithms more clearly. Indeed, a varying σ0 locally
influences the speed at which chains on a path space, as well as parameter chains
mix and this makes it more difficult to disentangle the contribution due to
efficiency of the algorithm from that of a locally elevated or decreased volatility.

1https://github.com/mmider/BridgeSDEInference.jl/tree/master/scripts/papers/

cts_discr_smooth
2https://github.com/mschauer/BridgeSPDE.jl/blob/master/scripts/smoothing.jl

https://github.com/mmider/BridgeSDEInference.jl/tree/master/scripts/papers/cts_discr_smooth
https://github.com/mmider/BridgeSDEInference.jl/tree/master/scripts/papers/cts_discr_smooth
https://github.com/mschauer/BridgeSPDE.jl/blob/master/scripts/smoothing.jl
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We illustrate the problem of inference for the volatility coefficient on a more
challenging example in the following section.

We ran the following algorithms:

• Dataset 1

– The algorithm of [55]. It is a special case of the algorithm proposed
in this article, in which a path—instead of being imputed in full—is
updated in blocks of length 2, as described in Section 4.6.

– Inference algorithm with blocking, with blocks of length 8.

– Inference algorithm with no blocking (where each proposal path is
imputed in full).

• Dataset 2

– Inference algorithm with no blocking.

– Inference algorithm with blocks of length 2.

– Inference algorithm with blocks of length 2 and adaptation of pro-
posals laws.

We set the following Gaussian priors over the parameter θ and the value of the
starting point:

θ ∼ N(0, diag(103, 103, 103)), X0 ∼ N(x0, diag(400, 20, 20)).

Setting a Gaussian prior over θ made it possible to implement conjugate updates
for θ (cf. Proposition 4.5 or [59]). Each block had its own persistence parameter
λi of the preconditioned Crank–Nicolson scheme (in case of no-blocking a single
parameter λ was used). For each block, λi was tuned adaptively so as to target
the acceptance probability of the imputation step for a given block to be 0.234
(cf. Section 3 of [47]). The updates of the initial position were always done
jointly with the updates of the path in the first block (or jointly with the entire
path updates in case of no blocking).

We chose the auxiliary process according to the strategy B, where the initial
guess for x̃(ti) was taken to be

[
Ξi vi,1 vi,2

]′
, Ξi = 25, (i = 1, . . . , n), and

where the values of Ξi were updated over the course of running an MCMC
sampler: during the first 2500 iterations, once in every 500 steps we used an
empirical average of X1,ti to re-define Ξi. Note that this was done in all six
experiments.

Additionally, in the experiment with the “adaptation”, we used strategy E,
where the adaptation time was set to 2500 iterations and adaptation updates
were done once in every 500 steps. The weights were changed from, initially,
(1, 0) (the first value representing the weight for strategy B, the second one for
strategy C), through (0.7, 0.3) and (0.4, 0.6) up to (0.2, 0.8) at iteration 1500
(from then on the weights remained unchanged).

We set the density of the imputation grid to 2 · 10−4. The simulations took
respectively: 784s, 570s, 198s, 137s, 260s and 777s to complete on an i5-5250U
CPU, 1.60GHz.



4316 M. Mider et al.

Fig 3: Lorenz system: results on dataset 1. Left column: results of a single
MCMC run with blocks set to comprise of two inter-observation intervals (as
in [55]); middle column: blocks comprising of eight inter-observation intervals;
right column: no blocking. Top plots: paths sampled by the MCMC samplers (1
in every 100 sampled paths); Rows 2–4: marginal distribution of the coordinates
of X at time t = 1.5. Rows 5–7: traceplots for the updated parameters θ.

Results: The results of the experiments associated with the first dataset are
shown in Figure 3 and they illustrate the outcome of only the first 104 iterations.
The summary concerning time-adjusted effective sample size that is based on
the entire chain is given in Table 1.
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The green dashed lines in the top-most three traceplots indicate the values
taken by the diffusion trajectory that was used to produce the data. As we only
have one realisation of the path and finitely many observations, the conditional
distribution (given the data) is not centred at this line; however, we can expect
the samples to be close to them. The green dashed lines in the bottom three
traceplots indicate the values of the parameters that were set to simulate the
data.

Under the first observational setting the discrepancy between an approximate
and a true guiding term is small and thus blocking becomes a hindrance that
decelerates mixing of the parameter chains and the path chain. This is clearly
illustrated in the left-most column of Figure 3, which corresponds to the algo-
rithm of [55], where the block-length is set to 2. By increasing the block-length
to 8 (centre column) the mixing is improved and by removing it altogether and
updating the entire path at once even better mixing can be achieved (right col-
umn). The same conclusions are strongly supported by the results summarised
in Table 1, where the difference in the time-adjusted effective sample size is
in excess of 2 orders of magnitude (we used a standard definition of the ef-
fective sample size, recommended by R. Neal in the panel discussion of [37]:
ESS(θ) := nps/(1 + 2

∑∞
k=1 ρk(θ)), with nps denoting the number of posterior

samples and ρk the autocorrelation at lag k; it is implemented as a function ESS

in R programming language).
In the top row of Figure 3 we plotted a thinned chain of the imputed tra-

jectories (1 in every 100 sampled paths is given; note that unlike figures 1 and
2, the temporal component is represented only by the changing colour of the
trajectories, whereas each of the three axes have purely spatial meaning and
correspond to the coordinates of the process X). Notice how short blocks cause
a slowdown in mixing on a path space, effectively disallowing the sampler to per-
form large moves. This is expected to be of a particular hindrance to sampling
of multimodal diffusions.

The results from the first dataset clearly illustrate that removing the restric-
tion on the block length can have a positive effect on the efficiency of sampling
on a path space. Nonetheless, some caution must be executed in extrapolating
those conclusions. To see this, consider the second dataset. It is qualitatively dif-
ferent from the first one, in that the inter-observation distance is large enough
for the non-linear dynamics of the target process to become pronounced be-
tween any two observations, whereas the decreased observational noise elevates
the impact of the guiding term (for this reason it is also considered to be a
substantially more difficult problem, for which a smaller number of numerical
schemes can be applied to).

The inference results obtained on the second dataset are gathered in Figure
4. In this setting, using blocking yields similar results as imputing the path
in full. In fact, as summarised by Table 2, the values of taESS corresponding
to parameter chains are approximately twice as large when blocking is used
(as compared to a no-blocking scheme). However, it is possible to improve the
mixing of the chains even further—as depicted in the centre column of Figure
4—by designing better proposal laws. We used a scheme from E simply to
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Fig 4: Lorenz system: results on dataset 2. Left column: results of a single
MCMC run with no blocking; middle column: blocks comprising of two inter-
observation intervals; right column: blocks of length 2 and adaptive tuning of
the auxiliary law according to b(aux) = wb(7.1) + (1 − w)b(C) (see Section 4.6
for details). Top plots: paths sampled by the MCMC samplers (1 in every 100
sampled paths); Rows 2–4: marginal distribution of the coordinates of X at time
t = 1. Rows 5–7: traceplots for the updated parameters θ.

motivate the usefulness of making the coefficients of the auxiliary diffusion time-
dependent. The topic of optimal choice of the auxiliary law is beyond the scope
of this paper.
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Table 1

Time-adjusted effective sample size (taESS) and effective sample size (ESS) for the
experiments with the first dataset of the Lorenz example. Based on chains of length 105.

Best results are written in bold.

taESS (ESS)
short blocks long blocks no blocking

X1,1.5 0.164 (128.6) 1.991 (1134.9) 52.932 (10480.3)
X2,1.5 0.447 (350.1) 5.164 (2943.4) 115.610 (22890.5)
X3,1.5 0.545 (427.0) 1.468 (836.6) 121.568 (24070.2)

θ1 0.039 (30.6) 1.643 (936.6) 23.194 (4592.4)
θ2 0.081 (63.7) 0.366 (208.6) 77.675 (15379.5)
θ3 0.057 (44.5) 3.108 (1771.7) 55.141 (10917.7)

Table 2

Time-adjusted effective sample size (taESS) and effective sample size (ESS) for the
experiments with the second dataset of the Lorenz example. Additional comparison for the
experiments with the auxiliary law chosen according to the strategy A. Based on chains of

length 105. Best results are written in bold.

taESS (ESS)
short blocks short blocks & adpt no blocking strategy A

X1,1 1.328 (332.1) 4.140 (3216.6) 1.271 (175.3) 1.17 (56.2)
X2,1 1.566 (391.4) 5.162 (4011.0) 1.618 (223.3) 0.600 (28.8)
X3,1 1.366 (341.2) 4.608 (3580.4) 1.469 (202.7) 0.346 (16.5)

θ1 0.416 (103.9) 0.602 (467.5) 0.280 (38.6) 0.330 (15.8)
θ2 1.307 (326.8) 0.963 (748.5) 0.589 (81.2) 0.901 (43.3)
θ3 0.76 (190.6) 0.563 (437.2) 0.488 (67.3) 0.196 (9.39)

Problems encountered in practice might fall anywhere on the spectrum
spanned by the two datasets above or exhibit peculiarities of its own. We there-
fore believe that removing restriction on the block length—as it is done in this
article—is a particularly practical improvement.

For reference we also ran the algorithm on the second dataset with the choice
of the simplest strategy A and reported the result in Table 2.

6.2. Prokaryotic auto-regulatory gene network

We consider a simplified model of the auto-regulated protein transcription stud-
ied in [26, 28]. It is based on the stochastic model describing λ repressor protein
cI of phage λ in Escherichia coli introduced in [2]. The simplified model is charac-
terised by eight biomolecular reactions: the reversible repression of transcription
in which a protein dimer P2 attaches to certain sites on the DNA:

R1 : DNA+ P2 → DNA · P2, R2 : DNA · P2 → DNA+ P2;

the transcription of DNA into mRNA and the subsequent translation and pro-
tein folding:

R3 : DNA → DNA+ RNA, R4 : RNA → RNA+ P;
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the reversible protein dimerisation:

R5 : 2P → P2, R6 : P2 → 2P;

and the mRNA and protein degradation:

R7 : RNA → ∅, R8 : P → ∅.

The total number of DNA strands is assumed to be fixed: DNA+ DNA · P2 = K.
It is well known that such system admits a diffusion approximation (called the
chemical Langevin equation) and for the given system above, an associated SDE
is given by:

dXt = S(θ ◦ h(Xt)) dt+ S � γ(θ ◦ h(Xt)) dWt, t ∈ [0, T ], X0 = x0,

where ◦ : Rd × Rd → Rd is a component-wise multiplication:

(μ ◦ ν)i = μiνi, i = 1, . . . , d,

the operation � : Rd×d′ × Rd′ → Rd×d′
is defined via:

(M � μ)i,j = Mi,jμj , i = 1, . . . , d; j = 1, . . . , d′,

the function γ : Rd → Rd is a component-wise square root:

(γ(μ))i =
√
μi, i = 1, . . . , d,

S is the stoichiometry matrix:

S =

⎡
⎢⎢⎣

0 0 1 0 0 0 −1 0
0 0 0 1 −2 2 0 −1
−1 1 0 0 1 −1 0 0
−1 1 0 0 0 0 0 0

⎤
⎥⎥⎦ ,

and the function h is given by:

h(x) = (x3x4,K − x4, x4, x1, x2(x2 − 1)/2, x3, x1, x2)
′.

For this SDE Xt = (RNAt, Pt, (P2)t, DNAt) and W is an 8-dimensional Brownian
motion. For more details about the model and how to derive chemical Langevin
equations see [26].

We simulated three datasets using the Gillespie algorithm. In all three cases
the process was started from x0 = (8, 8, 8, 5) and we set K = 10.
Dataset 1: First, we reproduced the observational scheme of [28], where noisy
estimates of the total number of proteins that are not attached to any DNA
strands are recorded at integer times:

Vi =
[
0 1 2 0

]
Xi + ηi, ηi ∼ N(0, 22), i = 1, . . . , 100. (6.1)
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Dataset 2: Next, in addition to observations from (6.1), we assumed that for
each 8 observations of protein counts it is possible to obtain one noisy count of
RNA, i.e. that:

Vi =

[
1 0 0 0
0 1 2 0

]
Xi + ηi, ηi ∼ N

(
0,

[
12 0
0 22

])
, i = 8, 16, . . . , 96, (6.2)

and that for i ∈ {1, 2, . . . , 100}\{8, 16, . . . , 96}, Vi is given by (6.1).
Dataset 3: Finally, we took the second dataset and permuted the noisy RNA

counts randomly. More precisely, if V
(j)
i denotes the ith observations from the

jth dataset (i = 1, . . . , 100; j = 2, 3) then:

V
(3)
i =

{
V

(2)
i , i ∈ {1, 2, . . . , 100}\{8, 16, . . . , 96},[
V

(2)
1,ζ(i) V

(2)
2,i

]
, i ∈ {8, 16, . . . , 96},

with ζ(i) denoting the i-th element of a random permutation ζ of (8, 16, . . . , 96).
Algorithm details: We ran the inference algorithm using guided proposals

without blocking. Note that due to a rectangular shape of the volatility coeffi-
cient it is impossible to employ guided proposals with blocking and a non-zero
persistence parameter λ of the preconditioned Crank–Nicolson scheme. Conse-
quently, one can employ the algorithm of [55] only in a special case when the
observations are made on a sufficiently dense time-grid, for which it is possible
to set λ = 0.

We set the prior distribution over the starting position to beX0 ∼ N(x0, I4×4)
and, following [28], a prior distribution over the logarithm of each inferred pa-
rameter to be Unif([−7, 2]). We remark that the priors chosen by [28] that
truncate the natural support of the parameters might be problematic, espe-
cially for the first dataset, as the data are not informative enough to narrow
down the support of some of the posteriors, causing the parameter chains to hit
against the boundaries of the priors. Instead, using an exponential prior over
each θi—this being the maximum entropy distribution of all continuous distri-
butions supported on [0,∞)—might be a more suitable choice. For the sake of
fair comparison we stick with the choice made by [28].

The MCMC sampler started off with updating each log-transformed parame-
ter separately using Metropolis–Hastings algorithm with random walk proposals
and adaptation as described in Section 3 of [47]. After the first 12 · 103 steps
of parameter updates we computed the empirical covariance of the parameter
chains and switched to joint proposals of [31] (we used a modified version from
Section 2 of [47]). We kept updating the empirical covariance matrix once in
every 100 steps of the algorithm. We chose the auxiliary law according to the
strategy B, where during the first 104 iterations of the Markov chain we updated
our guesses for the latent positions of the path at the observation times once in
every 200 iterations.

Results: Figure 5 summarises the results from running inference on each of
the three datasets. For each log-transformed parameter we give traceplots of
the Markov chain and the resulting marginal density plots (with burn-in set to
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Fig 5: Inference results for the prokaryotic example. Each iteration refers to a
single step of parameter update. Left column gives the results of inference run
on dataset 1; middle column: results from dataset 2; right column: results from
dataset 3

2 · 104 iterations). The true parameter values are marked with orange, dashed,
horizontal lines, whereas grey, dotted, vertical lines mark the change in the type
of the transition kernel used (from adaptive, single-site updates to joint updates
of [31]).

For the dataset 1 we fixed θ5, θ6 and K to their true values and we aimed
at inferring the remaining parameters. This is the same setup as in [28]. The
results are given in the left column of Figure 5.
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Note that the marginal posteriors over log(c3) and log(c8) presented in Figure
3 in [28] (corresponding to log(θ3) and log(θ8)) concentrate decisively around
incorrect values of the parameters, possibly pointing to some undiagnosed prob-
lems with the methodology. In our case, the true values of the parameters that
were used to generate the data lie within the support of the posterior. In par-
ticular, the posteriors over log(θ3) and log(θ7) do not depart much from the
priors, indicating that the data are not informative enough to identify those
two parameters. Indeed, an examination of the reaction equations reveals that
θ3 and θ7 regulate the production and the degradation of the RNA respectively
and the observation scheme that provides only noisy counts of P might not
provide sufficient information.

We generated the second dataset to examine the degree of improvement in
identifying the true parameters that could be brought about by adding sparse
observations of the RNA. We assumed that only K is known and we fixed θ6
to an incorrect but reasonable value of θ�6 = 0.5. This was done to reproduce
a real setting in which none of the θ parameters are known, so fixing any θi
parameter to its true value is impossible. By fixing θ6 to an incorrect value
and running the inference algorithm we hope to estimate θ5/θ6. Ideally, one
would want to estimate all 8 parameters simultaneously, but the dataset is not
informative enough to conduct such inference. The results are summarised in
the middle column of Figure 5. Parameters θi, i ∈ {1, 2, 3, 4, 7, 8} have been
successfully identified and the posterior over θ5 concentrates around the value
θ�5 for which θ�5/θ

�
6 is equal to the true ratio θ5/θ6 of the parameters that were

used to generate the data.
Naturally, the problem with the observational setting of dataset 2 is that noisy

counts of RNAt need not be easily available in practice. However, it is conceivable
that it is possible to collect information about the marginal distribution of RNA.
To make use of such information, at each time t ∈ {8, 16, . . . , 96} instead of
observing a true, noisy count of RNAt we could instead observe a realisation
from the marginal density of RNA. We reproduce such observational setting by
randomly permuting the time-labels of the generated RNAt, t ∈ {8, 16, . . . , 96},
resulting in the dataset 3. The inference results in this setting (assuming K
known and θ6 fixed to an incorrect value of θ�6 = 0.5) are summarised in the
right column of Figure 5. Some of the marginal posteriors appear flatter than
the ones in the middle column, but the loss of information is not substantial
and the posteriors still identify the true parameter values.

6.3. Tracking the translation of a dynamic Gaussian random field

We consider the problem of inferring a latent spatial process from noisy low
frequency observations. As an example we take a few pictures from a sequence
of satellite images depicting the evolution of a convective cloud system taken 15
minutes apart. These are shown in Figure 6. The sequence was analysed by [5]
from the perspective of curve tracking.3 A visual inspection indicates that the

3The images were processed to remove annotated curves.
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Fig 6: Sequence of infrared Meteosat-MSG2 satellite images depicting the evolu-
tion of a convective cloud system. The time in between each image is 15 minutes.
Images from [5]. Top: black/white image. Bottom: surface plot.

system moves south–east and we are interested in estimating the speed of the
system, as well as its location and extent at intermediate times.

No attempt is made to physically model a convective system. This example
is merely meant to serve as a starting point for applications in high dimensional
settings. The statistical analysis is made on the minimalistic assumptions that
we observe a large scale phenomenon moving at constant speed through space,
but the images show additional temporal and spatial high frequency phenomena
we consider as random and it is the latent, large scale evolution that we are
interested in. In this way we develop a generic model to track deformations and
translations in time not bound to this particular meteorological example. Both
Wiener and formal observation noise then capture all dynamics, observation
errors and local physical phenomena which cannot be explained by our simple
model.

We set this numerical experiment up in the way of a 2-d generalisation of
(5.2). It is convenient to describe the model as a discretely observed, matrix-
valued Langevin process (stochastic heat equation) on the graph with a sta-
tionary distribution that shows large scale variation in the distribution of its
samples. This is similar in spirit to [33], but we take a more dynamical view
with discrete time observations and continuous latent dynamics and a drift term.
Furthermore, via forward guiding our approach has a natural non-Gaussian ex-
tension. To avoid working with covariance tensors describing the uncertainty
of a matrix valued process we move to the equivalent, vector-valued process,
obtained through the application of the vec (vectorisation) operation.

The images have a single channel with values in [0, 1], so each pixel corre-
sponds to one entry of a real m×n matrix, but we do not take the boundedness
into account and model them as real-valued matrices. The matrix-valued ob-



Smoothing for diffusions 4325

servations are denoted by Y0, . . . , Y3 corresponding to pictures with indices
33, 35, 40, 45. The chosen images are not equally spaced in time, but this poses
no difficulty to our method. The last three pictures are taken 75 minutes apart,
the first two pictures are 30 minutes apart. We consider 75min as 1 time unit.
The original image size was 196× 166 and it was downsampled to 65× 55.

We assume that
Yi = Xti + ηi, ηi ∼ N(0,Σ),

where η is matrix-valued Gaussian noise with covariance tensor Σ of the appro-
priate dimension (corresponding to the covariance matrix of vec(η)). We took
Σ = σ2

ε I
The latent process is a stochastic process X = (Xt) as well taking values in

the set of m×n-real matrices, so nominally a 3575 dimensional diffusion process
solving

dXt = −σ2

2 (ρΛ + cI)Xt dt+ Fθ(Xt) dt+ σ dWt, (6.3)

with Wt an uncorrelated, matrix-valued Brownian motion, σ, ρ, c > 0 and Λ the
graph Laplacian tensor defined in (6.4) below.

The pixel indices i, j are identified with the vertices V = {(i, j), i ∈ {1, . . . ,m},
j ∈ {1, . . . , n}} of the m × n-lattice (V,E) with edges E = {{v, v′} : v =
(i, j), v′ = (i′, j′) ∈ V, |i − i′| + |j − j′| = 1} (using the set notation for edges).
Thus, edges connect a pixel to its vertical and horizontal neighbours. Then

Λv,v′ =

⎧⎪⎨
⎪⎩
degree(v) v = v′

−1 {v, v′} ∈ E

0 otherwise,

(6.4)

which generalises (5.3), and Fθ, θ = (θ1, θ2) is a lateral translation of θ1 pixels
south and θ2 pixels east per unit of time, i.e.

Fθ(x) = θ1ρ∇↓x+ θ2ρ∇←x,

where ∇↓ = ∇(0,−1) and ∇← = ∇(−1,0) are given by the mass transport opera-
tors

∇(Δi,Δj)
v,v′ =

⎧⎪⎨
⎪⎩
−1 v = v′

1 v = (i, j), v′ = (i+Δi, j +Δj)

0 otherwise

with (Δi,Δj) ∈ {(−1, 0), (1, 0), (0, 1), (0,−1)}. Thus bθ(t, x) = −σ2

2 (ρΛ+cI)x+
Fθ(x) with θ considered as unknown parameter is of the form prescribed by
Proposition 4.5. Choosing ρ and σ proportional to image scale makes the model
roughly scale invariant, which informally can be seen from considering the sta-
tionary distribution given by the Lyapunov equation under transformation of
the SDE by a linear downsampling operator R : Rm×n → Rm/2×n/2, assuming
n, m are even. We then chose parameters which worked well at 20 × 24 pixel
resolution and scaled them to other resolutions 41×49 and 55×65 that we use.
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Fig 7: The center panel shows the posterior mean after approximately 20 min-
utes. The left and right frames show the first and last observation respectively
of the four observations in the same resolution. The supplement [43] contains
an animation showing that the latent convective system bridge moves smoothly
from the initial to the final state. Top: black/white image. Bottom: surface plot.

While the model works for finite dimensional problem at hand, the spatial white
observation noise has no infinite dimensional scaling limit and for larger appli-
cations one would consider smoother observation noise with spatial correlation
given by a non-diagonal covariance structure.

Parameter choices: We set a scale ρ = 8m/195 (which amounts to 8/3 for
the highest resolution level) and take c = 0.1ρ, We set σ = 0.08ρ. The noise
level is set to σε = 0.05

√
ρ. We took the time step as δt = 1/(35ρ). We assume

that XT is a priori Gaussian with mean 0.5 (a grey value) and variance 2.5I
and equip θ with an improper uniform prior.

Algorithm details: The SDE in our model is linear, so with X̃ = X, the
proposal is a sample from the conditional distribution and no change of measure
is needed. We solve the backward filtering equations from Theorem 2.6 for ν and
P using the Euler scheme in combination with the enforced sparsity method from
Section 5.2 using Julia’s native sparse matrix type (CSC). We took ε = 10−8.

We employed Rao-Blackwellisation to obtain an estimate of the mean of the
joint posterior of parameters and latent path, where in one step, the mean of
X� given observations and θ is given by

dx�
t = bθ(t, x

�
t ) dt+ σ2P (t)−1(x�

t − ν(t)) dt, x�
0 = ν(0)

and in the second step the mean of θ given X� is obtained using Proposition
4.5.

For the correction formulas (2.13) we opted for an implementation based on
the sparse Cholesky factorisation provided in Julia.
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Fig 8: Iterates of θ1, θ2 starting in θ1 = θ2 = 0 from Rao-Blackwellisation with
increasing dimension. First 15 iterates (blue): running with resolution 20× 24.
Next 15 iterates (green): continuing with resolution 41 × 49. Last 15 iterates
(yellow): full resolution 55× 65.

Results: The first 15 steps of the algorithm were run on a model downscaled
to lower resolution, for the subsequent 15 steps the resolution was increased and
the final 15 steps were run on a model with the chosen, target resolution. Figure 8
shows the trace of θ1, and θ2 for 45 iterates of the Rao-Blackwellised chain. After
the last 15 steps the final estimates of the posterior means of the parameters
are obtained as θ̂1 = 1.55 and θ̂2 = 6.12. These are in good agreement with
visual assessment of the movement. The estimates of θ appear mostly stable at
different model scales. (See the small changes in the estimates after each change
of resolution at steps 15 and 30 in Figure 8.) The animation in supplement [43]
shows the estimated posterior mean trajectory. The incorporation of discrete
time observations with continuous latent dynamics and a drift term allows the
algorithm to recognise the convective system as one object even if it has moved
a substantial amount of pixels.

We only report rough timings: backward filtering step took half a minute for
the correction steps and about two minutes for propagating the uncertainty at
full resolution. Forward guiding took about half a minute and the parameter
update about 1 second. (Timings are variable and depend on the current value
of θ, as θ influences the sparsity.) The Kalman gain had 3% non-zero entries
with ε = 10−8.

Appendix A: Related work

If the full state of the diffusion process is observed at all times {ti, 0 ≤ i ≤ n}
without noise, i.e. if Li = I and Σi ≡ 0 for all i in (1.3), then the smoothing prob-
lem reduces to the sampling of n independent diffusion bridges. This problem
has attracted considerable attention over the past two decades, see for instance
[22], [21], [20], [15], [13], [9], [32], [6], [39]), [8], [19], [40], [53], [62] and [12]. In the
general case however, the connecting bridges cannot be sampled independently
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between adjacent observation times. In fact, at time t ∈ (ti−1, ti) the process
X, conditioned on V0, depends on all future conditionings Vi, . . . , Vn. To resolve
this problem, subsequent simulation of bridges on overlapping intervals has been
proposed by [27], [25] and [55].

[51] considered filtering (instead of smoothing) of diffusions under the as-
sumption that the dispersion coefficient is only allowed to depend on time. If
the diffusion can be transformed to unit diffusion coefficient, then filtering can
also be accomplished using the exact algorithm for simulation of diffusions, as
introduced by [10]. This algorithm forms the basis for the methods presented in
[24] and [45]. Various solutions to the filtering and smoothing problem are fur-
ther discussed in [50]. Key to the proposed algorithms therein is the assumption
that the distribution of Xt, conditional on the data V0 can be approximated by
the normal distribution.

Recently, [29] considered the same problem as considered here using a sampler
based on constrained Hamiltonian dynamics. The basic idea is to consider the
solution to the SDE as a forward map of Wiener-innovations that are constrained
to a manifold implied by the observations. Our approach is rather different
and based on forward simulating paths that directly take all observations into
account.

Appendix B: Technical background on guided proposals

Previous work on guided proposals includes:

(A) In [53] the basic idea was introduced in the setting of uniformly elliptic
diffusions (i.e. the case where for each y ∈ Rd there exists an ε > 0 such
that ‖σ(t, x)′y‖ ≥ ε‖y‖2), with one segment and a “full” observation at
the time of conditioning. More precisely, the aim is to simulate a diffusion,
conditioned on X0 = x0 and XT = xT , with 0 < T .

(B) In [55] this was extended to the setting of two future conditionings. More
precisely, in this paper it was shown how to define guided proposals to
sample from a diffusion starting in X0 = x0 and conditioned on vS ∼
N(LXS ,ΣS) and XT = xT , where 0 < S < T .

(C) In [12] the work on [53] was generalised in a different direction by incorpo-
rating hypo-elliptic diffusions, observed partially and without noise. More
precisely, here it is assumed that X0 = x0 and the conditioning is given
by LXT = vT .

In all cases, the SDE for the conditioned process is of the form (1.4). The
function ρ is specific to the type of conditioning and depends on the unknown
transition densities p of the diffusion X.

The results of Theorem 1 in [53] and Theorem 2.14 in [12] (and thus, the abso-
lute continuity of the laws P� and P◦ and the expression (1.9)) are proven under
the following conditions: (i) boundedness and smoothness of the drift coeffi-
cient b and dispersion coefficient σ; (ii) “matching conditions on the diffusivity
(and possibly drift)”. In setting (A), the matching condition is given by ã(T ) =
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a(T, xT ) which can always be ensured. In setting (C) the matching conditions
are more subtle and more complicated. The results in [12] strongly suggest that
for the diffusivity of the auxiliary process the condition La(T, xT )L

′ = Lã(T )L′

suffices. In case of hypo-ellipticity, additionally the drift of the auxiliary pro-
cess, b̃(t, x) = B(t)x+β(t), needs to satisfy the equation Lb(T, xT ) = Lb̃(T, xT ).
These conditions are particularly important in the noiseless limit of the discrete
time (partial) observations.

Appendix C: Derivation of the guiding term in X�

Here we explain the type of conditioning induced by the guiding term in X�. In
particular, the specific form of ρ in (1.5).

Let p denote the transition density of a diffusion process Y solving an SDE
with drift b and diffusivity σ on the (canonical) filtered probability space (Ω,F ,
{Ft},P) with Ω = C([0, tn],R

d). Assume the hierarchical model

vi | ξi ind∼ ki(ξi; vi) 1 ≤ i ≤ n

ξ1, . . . , ξn ∼
n∏

i=1

p(ti−1, ξi−1; ti, ξi)
(C.1)

with ξ0 assumed fixed (known). Without loss of generality we assume t ∈ [0, t1).
We will assume ξj ∈ Rd, Lj ∈ Rmj×d so that vj ∈ Rmj . Define ξ = (ξ1, . . . , ξn)
and v = (v1, . . . , vn). Let

πt,y(ξ) = p(t, y; t1, ξ1)
n∏

j=1

p(tj , ξj ; tj+1, ξj+1)

and denote the density of (ξ,v), conditional on Yt = y, by

ζt,y(ξ,v) = πt,y(ξ)

n∏
j=1

kj(ξj , vj).

We apply Doob’s h-transform with

h(t, y) =

∫
ζt,y(ξ,v) dξ∫
ζ0,ξ0(ξ,v) dξ

.

Set Zt = h(t, Yt). It is easily verified that for any t ∈ [0, t1), Zt is a martingale
with mean 1. Define a new probability measure Q on Ω by the change of measure
dQ|Ft = Zt dP|Ft , ∀t ∈ [0, t1). By Girsanov’s theorem it follows that under Q

dYt = b(t, Yt) dt+ σ(t, Yt) dW̃t + a(t, Yt)
′∇ log h(t, Yt) dt,

where W̃ is Brownian motion under Q. We have

EQf(Yt) = EP[Ztf(Yt)] = EP[h(t, Yt)f(Yt)] =

∫
f(y)p(0, ξ0; t, y)h(t, y) dy
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=

∫
f(y)p(0, ξ0; t, y)

∫
ζt,y(ξ,v) dξ∫
ζ0,ξ0(ξ,v) dξ

dy

=

∫ (∫
f(y)

p(0, ξ0; t, y)ζ(t,y)(ξ,v)

ζ(0,ξ0)(ξ,v)
dy

)
ψ(ξ | v) dξ

where we multiplied by 1 = ζ(0,ξ0)(ξ,v)/ζ(0,ξ0)(ξ,v), used Fubini to arrive at
the final equality and ψ is defined by

ψ(ξ | v) = ζ0,ξ0(ξ,v)∫
ζ0,ξ0(ξ,v) dξ

.

Therefore, we have

EQf(Yt) =

∫
EP[f(Yt) | Yt1 = ξ1, . . . , Ytn = ξn]ψ(ξ | v) dξ.

This shows that under Q, first ξ is sampled from the density ψ, and subse-
quently the process Y is conditioned on the event {Yt1 = ξ1, . . . , Ytn = ξn}.
Note that sampling from ψ corresponds to sampling from the posterior of ξ in
the statistical model specified by (C.1), with data v. In this model, π0,ξ0 can be
viewed as the prior density of ξ.

To connect to the main text, simply note that Y under the measure P is X,
whereas Y under the measure Q is X� and that the h transform is in our case
ρ.

Appendix D: Proofs of theorems in Section 2 and additional
remarks

In the proofs we will assume observation times 0 < S < T and observations
VS ∼ N(LSXS ,ΣS) and VT ∼ N(LTXT ,ΣT ) with LS ∈ RmS×d and LT ∈
RmT×d; the extension to multiple future conditionings being trivial.

D.1. Proof of Theorem 2.4

Define Φ to be the solution to dΦ(t) = B(t)Φ(t) dt with Φ(0) = I. Set Φ(t, s) =
Φ(t)Φ(s)−1. Define

Υ(t) =

⎧⎪⎨
⎪⎩
[

ΣS 0mS×mT

0mT×mS
ΣT

]
t ∈ (0, S]

ΣT t ∈ (S, T ]

,

and notice (upon differentiation) that

L(t) =

⎧⎪⎨
⎪⎩
[
LSΦ(S, t)1(0,S](t)

LTΦ(T, t)

]
t ∈ (0, S]

LTΦ(T, t) t ∈ (S, T ]

, (D.1)
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M†(t) =

∫ T

t

L(τ)ã(τ)L(τ)′ dτ +Υ(t), (D.2)

and

μ(t) =

∫ T

t

L(τ)β(τ) dτ, t ∈ [0, T ], (D.3)

are the solutions to ODEs (2.2), (2.3) and (2.4) respectively. Note that μ(t) ∈
Rm(t) and that Υ(t), L(t), M†(t) and v(t) have similar structures when t is
either in (0, S] or (S, T ]. The relations in (2.5) can be verified by evaluating
L(t) for both t = S and t = S+ (and similarly for M†(t) and μ(t)).

As we assume ΣT to be strictly positive definite, matrix M(t) = M†(t)−1

exists for t ∈ [0, T ] (see however Remark D.2 in case of no noise on the obser-
vations).

The expression for r̃ for t ∈ (0, S] follows by extending Lemma 2.5 in [55]
to the case where not necessarily ΣT = 0 and LT = I. The expressions for
t ∈ (S, T ] follow from equation (4.1) in [55].

To derive ρ̃, note by Section 5 in [53] that X̃ is a Gaussian process with con-
ditional mean μt(s, x) = E[X̃t | X̃s = x] and covariance Kt(s) = Cov(X̃s, X̃t),
where:

μt(s, x) = Φ(t, s)x+

∫ t

s

Φ(s, τ)β(τ) dτ, Kt(s) =

∫ t

s

Φ(t, τ)ã(τ)Φ(t, τ)′ dτ.

(D.4)
Then, clearly, (V ′

S , V
′
T )

′ = ((LSX̃S + ηS)
′, (LT X̃T + ηT )

′)′ is Gaussian as well
and its mean (denoted with v̄(t)) and covariance (denoted with Ω̄(t)) are given
by:

v̄(t) =

(
LSμS(t, x)
LTμT (t, x)

)
, Ω̄(t) =

(
LSKSSL

′
S +ΣS LSKSTL

′
T

LTKTSL
′
S LTKTTL

′
T +ΣT

)
,

where Kτν = Kτ∧ν(t), τ, ν ∈ [t, T ]. Careful comparison of v̄(t) and Ω̄(t) with
the definitions (D.1), (D.2) and (D.3) reveals that

v̄(t) = L(t)x+ μ(t), Ω̄(t) = M†(t),

and the expression for ρ̃ follows.

Remark D.1. The value of Theorem 2.4 lies in recognition of the structure
on both H and r̃, something which was not noticed in [55]. The theorem shows
that both quantities can be written in a unified way on both (0, S] and (S, T ].
The key to this is the proper definition of L (including the indicator).

Remark D.2. Suppose LT = I and ΣT ≡ 0. For t ∈ (S, T ], M(t) exists if and

only if
∫ T

t
Φ(T, t)ã(τ)Φ(T, t)′ dτ is invertible. This matrix is the controllability

Grammian. Systems theory provides sufficient conditions for controllability. In
case ã(t) is not invertible, then M(t) exists if and only if the pair of functions
(B, σ̃) is controllable on [t, T ] for any t ∈ [0, T ) (cf. Section 5.6 in [36]).
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Remark D.3. Suppose LS = I and ΣS = 0. This corresponds to the case
where the diffusion is fully observed at time S without noise. By the Markov
property, the pulling term should only depend on vS (which is then in fact xS)
and not on vT . To verify this, first note that we can write

M†(t) =

[
A C
C ′ D

]
,

where for t ∈ [0, S)

A =

∫ S

t

LSΦ(S, τ)ã(τ)Φ(S, τ)
′ dτ,

C =

∫ S

t

LSΦ(S, τ)ã(τ)Φ(T, τ)
′L′

T dτ = AΦ(T, S)′L′
T ,

D =

∫ T

t

LTΦ(T, τ)ã(τ)Φ(T, τ)
′L′

T dτ.

Now assume LS = I and that A is invertible. Then we have

L(t) =

[
LS

LTΦ(T, S)

]
Φ(S, t) =

[
I

C ′A−1

]
Φ(S, t).

Let Z = (D−C ′A−1C)−1. Using the formula for the inverse of a block matrix,
we get

H(t) = Φ(S, t)′
[
I A−1C

] [A−1 +A−1CZC ′A−1 −A−1CZ
−ZC ′A−1 Z

] [
I

C ′A−1

]
Φ(S, t)

= Φ(S, t)′A−1Φ(S, t) =

(∫ S

t

Φ(t, τ)ã(τ)Φ(t, τ)′ dτ

)−1

.

This is exactly as in Lemma 6 of [53].

Remark D.4. Suppose t ∈ (ti−1, ti] and we condition on future incomplete
observations (vi, . . . , vn). In that setting the correct definitions for Υ and L(t)
are

Υ(t) = diag(Σi, . . . ,Σn) and L(t) =

⎡
⎢⎢⎣

LiΦ(ti, t)
Li+1Φ(ti+1, t)

· · ·
LnΦ(tn, t)

⎤
⎥⎥⎦

.

D.2. Proof of Theorem 2.5

The expression for log ρ̃ follows from Theorem 2.4 by simple algebra, with

c(t) =
1

2
C

(1)
t + C

(2)
t , where

C
(1)
t = (v(t)− μ(t))′M(t)(v(t)− μ(t)) and C

(2)
t = log

[
(2π)

m(t)/2 |M†(t)|1/2
]
.

(D.5)
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Backward ordinary differential equations We derive the ordinary differ-
ential equations solved by H(t), F (t) and c(t) in a neighbourgood disjoint from
{S, T}. We start with H(t).

d

dt
H(t) =

(
d

dt
L(t)

)′
M(t)L(t) + L(t)′

(
d

dt
M(t)

)
L(t) + L(t)′M(t)

(
d

dt
L(t)

)

= −B(t)′L(t)′M(t)L(t) + L(t)′
(

d

dt
M(t)

)
L(t)− L(t)′M(t)L(t)B(t)

−B(t)′H(t)−H(t)B(t) + L(t)′
(

d

dt
M(t)

)
L(t).

(D.6)

Since M(t) = (M†(t))−1:

d

dt
M(t) = −M(t)

(
d

dt
M†(t)

)
M(t) = M(t)L(t)ã(t)L(t)′M(t), (D.7)

and thus:

L(t)′
(

d

dt
M(t)

)
L(t) = H(t)ã(t)H(t).

Substituting this back into (D.6) yields:

dH(t) = (−B(t)′H(t)−H(t)B(t) +H(t)ã(t)H(t)) dt.

For F (t) notice:

d

dt
F (t) =

(
d

dt
L(t)

)′
M(t)(v(t)− μ(t)) + L(t)′

(
d

dt
M(t)

)
(v(t)− μ(t))

− L(t)′M(t)

(
d

dt
μ(t)

)
= −B(t)′L(t)′M(t) (v(t)− μ(t))

+ L(t)′M(t)L(t)ã(t)L(t)′M(t)(v(t)− μ(t)) + L(t)′M(t)L(t)β(t)

= −B(t)′F (t) +H(t)ã(t)F (t) +H(t)β(t).

For c(t) we differentiate C
(1)
t and C

(2)
t in turn. By (2.4), (D.7) and the definition

of F (t):

d

dt
C

(1)
t = −2

(
d

dt
μ(t)

)′
M(t)(v(t)− μ(t))

+ (v(t)− μ(t))′
(

d

dt
M(t)

)
(v(t)− μ(t))

= 2β(t)′L(t)′M(t)(v(t)− μ(t))

+ (v(t)− μ(t))′M(t)L(t)ã(t)L(t)′M(t)(v(t)− μ(t))

= 2β(t)′F (t) + F (t)′ã(t)F (t).

(D.8)
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To find d
dtC

(2)
t , first, note by eq. (10) in [44] that for a matrix-valued function

Y :
∂|Y |
∂x

= |Y |tr
(
Y −1 ∂Y

∂x

)
,

which gives

d|M†(t)|
dt

= |M†(t)|tr
(
M(t)

dM†(t)

dt

)
= |M†(t)|tr (−M(t)L(t)ã(t)L(t)′)

= −|M†(t)|tr (L(t)′M(t)L(t)ã(t)) = −|M†(t)|tr (H(t)ã(t)) .

Since at non-observation times t, m(t) is constant, the chain rule implies

d

dt
C

(2)
t = −1

2
tr(H(t)ã(t)). (D.9)

Combining (D.8) and (D.9) yields the ODE for c(t) stated in Theorem 2.5.

Update equations The boundary conditions for H(T ), F (T ), C
(1)
T and C

(2)
T :

H(T ) = L′
TΣ

−1
T LT , F (T ) = L′

TΣ
−1
T vT ,

C
(1)
T = vTΣ

−1
T vT , C

(2)
T =

mT

2
log(2π) +

1

2
log|ΣT |,

follow directly from the definitions: L(T ) = LT , M(T ) = Σ−1
T and μ(T ) = 0; as

well as the expressions for H(t), F (t), C
(1)
t and C

(2)
t given in (2.6), (2.7) and

(D.5) respectively. The boundary condition for c(T ) follows immediately

c(T ) =
1

2
C

(1)
T + C

(2)
T =

1

2
vTΣ

−1
T vT +

mT

2
log(2π) +

1

2
log |ΣT |.

Now, combining the expressions for H(t), F (t) and C
(1)
t , given in (2.6), (2.7)

and (D.5) respectively, with the update equations for L(S), M(S) and μ(S) at
time S, given in Theorem 2.4, yields the update equations for H(S), F (S) and

C
(1)
S :

H(S) = H(S+) + L′
SΣ

−1
S LS

F (S) = F (S+) + L′
SΣ

−1
S vS

C
(1)
S = C

(1)
S+ + vSΣ

−1
S vS .

(D.10)

To derive the update equations for C
(2)
S , notice that at observation time S we

have

ρ̃(S, x) = ϕ(vS ;LSx,ΣS)ρ̃(S+, x)

= (2π)−mS/2|ΣS |−1/2 exp

(
−1

2
(vS−LSx)

′Σ−1
S (vS−LSx)

)
×exp

(
−C

(2)
S+

)
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× exp

(
−1

2
(v(S+)−μ(S+)−L(S+)x)′M(S+)(v(S+)−μ(S+)−L(S+)x)

)
.

This can be written as

exp
(
−C

(2)
S

)
exp

(
−1

2
(v(S)− μ(S)− L(S)x)′M(S)(v(S)− μ(S)− L(S)x)

)
,

upon defining

C
(2)
S = C

(2)
S+ +

mS

2
log(2π) +

1

2
log |ΣS | (D.11)

and because we have

v(S)=

[
vS

v(S+)

]
μ(S)=

[
0

μ(S+)

]
L(S)=

[
LS

L(S+)

]
M(S)=

[
Σ−1

S 0
0 M(S+)

]
.

Cobining (D.10) and (D.11) yields the update equation for c(S)

c(S) =
1

2
C

(1)
S + C

(2)
S = c(S+) +

1

2
vSΣ

−1
S vS +

mS

2
log(2π) +

1

2
log |ΣS |.

D.3. Proof of Theorem 2.6

We first give the derivation for the ODE of P (t). The derivation of the differential
equation is the same whether we consider t ∈ [0, S] or t ∈ (S, T ]. In particular,
the ODE for H from Theorem 2.5 and the definition of P imply that

dP (t)

dt
= −P (t)

(
d

dt
H(t)

)
P (t) = P (t)B(t)′ +B(t)P (t)− ã(t).

The update formula from time S+ to S follows from the corresponding one in
terms of H and applying Woodbury’s formula.

The derivation of the differential equation for ν is the same whether we
consider t ∈ [0, S] or t ∈ (S, T ]. We have, using (D.12), (D.7) and (2.2)

d

dt
(P (t)L(t)′M(t)) = B(t)P (t)L(t)′M(t). (D.12)

Using (2.4) we get
d

dt
(v(t)− μ(t)) = L(t)β(t).

The previous two equations together yield

d

dt
ν(t) = B(t)P (t)L(t)′M(t) (v(t)− μ(t)) + P (t)L(t)′M(t)L(t)β(t)

= B(t)ν(t) + β(t).

The value of ν(T ) follows from P (T ) = (L′
TΣ

−1
T LT )

−1, L(T ) = LT , M(T ) =
Σ−1

T , v(T ) = vT and μ(T ) = 0.
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To obtain the expression for ν(S), note that

ν(S) = P (S)L′
SM(S) (v(S)− μ(S))

= P (S)

[
LS

L(S+)

] [
ΣS 0
0 M(S+)

]−1([
vS

v(S+)

]
−
[

0∫ T

s
LTΦ(T, τ)β(τ) dτ

])
= P (S)

(
L′
SΣ

−1
S vS + L(S+)M(S+) (v(S+)− μ(S+))

)
= P (S)

(
L′
SΣ

−1
S vS +H(S+)ν(S+)

)
.

Proof of Proposition 2.7.

d

dt
P (t) =

d

dt
(Φ(t, T )(Σ + P (T ))Φ(t, T )− Σ)

=

(
d

dt
Φ(t, T )

)
(Σ + P (T ))Φ(t, T ) + Φ(t, T )(Σ + P (T ))

d

dt
Φ(t, T )′

= BΦ(t, T )(Σ + P (T ))Φ(t, T )′ +Φ(t, T )(Σ + P (T ))Φ(t, T )′B′

= B(P (t) + Σ) + (P (t) + Σ)B′ = BP (t) + P (t)B′ − ã,

where we used (2.15) at the third equality and Σ solving the Lyapunow equation
at the final equality.

Remark D.5. We investigate the behaviour of P (S) and ν(S) when the noise
level tends to zero. Assume LSP (S+)L′

S is invertible. Then it follows from (2.13)
that the expression for P (S) is also well defined when ‖Σ‖ → 0. Moreover, when
Σ = 0 we have

LSP (S) = LSP (S+)− LSP (S+)L′
S (LSP (S+)L′

S)
−1

LSP (S+) = 0.

To evaluate the limiting behaviour of ν(S), we write

LSν(S) = LSP (S)L′
SΣ

−1
S vS + LSP (S)H(S+)ν(S+).

The second term on the right-hand-side is easily seen to tend to zero when
‖ΣS‖ → 0. For deriving the limit of the first term on the right-hand-side we
define C = LSP (S+)L′

SΣ
−1
S and rewrite

LSP (S)L′
SΣ

−1
S = LSP (S+)L′

SΣ
−1
S

− LSP (S+)L′
S

(
ΣS + LSP (S+)L′

SΣ
−1
S ΣS

)−1
LSP (S+)L′

SΣ
−1
S

= C − C(I + C)−1C =
(
I + C−1

)−1
,

where we used Woodbury’s formula at the final equality. Now

C−1 = ΣS (LSP (S+)L′
S)

−1 → 0, when ‖ΣS‖ → 0.

This implies that LSP (S)L′
SΣ

−1
S → I. Combining these results we obtain that

LSν(S) → vS , when ‖ΣS‖ → 0.
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In particular, if we have full observations at time S, i.e. LS = I, then P (S) →
0 and ν(S) → vS if ‖ΣS‖ → 0. As a consequence, in case of full observations
and no noise, we recover the full observation without noise case (in this simpler
setting, the differential equations for ν and P were derived in [57]). However, in
the general case where LS is not of full rank, we need that detΣS �= 0 to obtain
the value of ν(S) from ν(S+).

Appendix E: Implementation using a time-change and scaling

If the noise level on the observation is small, care is required in the discretisation
of guided proposals near the conditioning points. For this reason, a time-change
and scaling was introduced in Section 5 of [56]. Here, we explain it for the case
of 2 future conditionings. Define the mapping τ : [0, S + T ] → [0, S + T ] by

τ(s) =

{
s
(
2− s

S

)
if s ∈ [0, S]

S + (s− S)
(
2− s−S

T−S

)
if s ∈ [S, T ]

.

For a mapping f : R → R we write fτ (s) = f(τ(s)). We propose to discretise
the process Us, defined by

Us =
ντ (s)−X◦

τ(s)

τ̇(s)
,

instead on X◦
s . This process satisfies the SDE

dUs =(Bτ (s)vτ (s) + βτ (s)− bτ (s, Us))) ds

−
(
τ̈(s)

τ̇(s)
I + aτ (s, Us)J(s)

)
Us ds

+
1√
τ̇(s)

στ (s, Us) dWs, U0 =
ντ (0)− x0

2

Here, J is defined by
J(s) = τ̇(s)Hτ (s).

Furthermore, we have used the notation bτ (s, y) = b(τ(s), vτ (s) − τ̇(s)y) and
similarly for στ and aτ . For the likelihood ratio (1.9), note that r̃(τ(s), X◦

τ(s)) =

J(s)Us.∫ T

0

G(s,X◦
s ) ds =

∫ T

0

(bτ (s, Us)−Bτ (s, Us)) J(s)Usτ̇(s) ds

− 1

2

∫ T

0

tr ({aτ (s, Us)− ãτ (s)} {J(s)− J(s)UsU
′
sJ(s)τ̇(s)}) ds

Finally, by the chain-rule, Pτ (s) and ντ (s) satisfy the backward differential
equations

d

dt
Pτ (t) = (Bτ (t)Pτ (t) + PτBτ (t)

′ − ãτ (t)) τ̇(s)
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and
d

dt
ντ (t) = (Bτ (t)ντ (t) + βτ (t)) τ̇(s).
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Supplementary Material

Animation for tracking the translation of a dynamic Gaussian random
field
(doi: 10.1214/21-EJS1894SUPP; .zip). The supplement contains an animation
(QuickTime movie) corresponding to Figure 7 showing that the latent convective
system bridge moves smoothly from the initial to the final state.
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