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Abstract: The Gaussian model equips strong properties that facilitate
studying and interpreting graphical models. Specifically it reduces condi-
tional independence and the study of positive association to determining
partial correlations and their signs. When Gaussianity does not hold par-
tial correlation graphs are a useful relaxation of graphical models, but it is
not clear what information they contain (besides the obvious lack of linear
association). We study elliptical and transelliptical distributions as middle-
ground between the Gaussian and other families that are more flexible but
either do not embed strong properties or do not lead to simple interpreta-
tion. We characterize the meaning of zero partial correlations in elliptical
and elliptical copula models and show that they retain much of the depen-
dence structure from the Gaussian case. Regarding positive dependence, we
prove impossibility results to learn certain positive (trans)elliptical graph-
ical models, including that an elliptical distribution that is multivariate
totally positive of order two for all dimensions must be essentially Gaus-
sian. We then show how to interpret positive partial correlations as a re-
laxation, and obtain important properties related to faithfulness and Simp-
son’s paradox. We illustrate the transelliptical model potential to study
tail dependence in S&P500 data, and of positivity to improve regularized
inference.
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1. Introduction

Several papers study graphical models for elliptical and transelliptical distribu-
tions in the standard (Finegold and Drton, 2009; Vogel and Fried, 2011) and
high-dimensional settings (Barber and Kolar, 2018; Bilodeau, 2014; Liu, Han
and Zhang, 2012; Zhao and Liu, 2014). These models found applications in
many fields, such as finance and biology (Behrouzi and Wit, 2019; Stephens,
2013; Vinciotti and Hashem, 2013), and (implicitly) wherever Gaussian graph-
ical models were used but the underlying data-generating distribution is likely
to depart from normality, e.g. be heavy-tailed or skewed. In the elliptical setting
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the usual definition of graphical models mimics the Gaussian case — the model
is given by zeros in the inverse covariance, or equivalently, by vanishing par-
tial correlations. Despite this being a reasonable relaxation, the corresponding
partial correlation graph (PG) cannot be interpreted in terms of conditional
independence, since outside of the normal case no elliptical distributions allow
for conditional independence (c.f. Proposition 2.2). It is therefore interesting
to portray what type of dependence information is embedded by the PG, in
particular the meaning of zero and certain positive partial correlations.

For general distributions partial correlations inform only about linear depen-
dence. Missing edges in the PG must then be interpreted with great care and,
in some cases, they can fail to capture interesting dependence information. For
example, in an aircraft data set from Bowman and Foster (1993), we can model
the dependence between the speed of an airplane and its wingspan. Although
the sample correlation is negligible, more flexible dependence tests reveal that
the variables are strongly related; see e.g. Székely and Rizzo (2009). The reason
is that for very fast (military) airplanes there is a negative dependence between
speed and wingspan, while this dependence is positive for regular aircrafts.

The main theme of this paper is that for (trans)elliptical distributions there is
significantly more information in the partial correlation graph, and in sign con-
straints imposed on the partial correlations, beyond presence/absence of linear
dependence. We introduce definitions and notation to aid the exposition.

Definition 1.1. A random vector X = (X1, . . . , Xd) has an elliptical distri-
bution if there exists μ ∈ R

d and a positive semi-definite matrix Σ such that
the characteristic function of X is of the form t �→ φ(tTΣt) exp(iμT t) for some
φ : [0,∞) → R. We write X ∼ E(μ,Σ) making φ in this notation implicit.

Important examples include the multivariate normal, Laplace and multivari-
ate t-distributions. Elliptical graphical models have been extended to transel-
liptical distributions (also known as elliptical copulas or meta-elliptical distri-
butions, Fang, Fang and Kotz (2002); Liu, Han and Zhang (2012)).

Definition 1.2. A random vector Y has a transelliptical distribution with pa-
rameters (μ,Σ) if f(Y ) := (f1(Y1), . . . , fd(Yd)) ∼ E(μ,Σ)

for some fixed strictly increasing functions f1, . . . , fd. We write Y ∼ TE(μ,Σ),
making f in this notation implicit.

Here the additional challenge is that f is unknown. An elegant approach to
learning partial correlations relies on directly estimating the correlation matrix
of f(Y ) without actually learning f ; see Liu, Han and Zhang (2012); Lindskog,
Mcneil and Schmock (2003), and then proceed as in the elliptical case (Sec-
tion 3.3).

Throughout we assume that Σ is positive definite and denote K = Σ−1, the
set of vertices by V = {1, . . . , d}, by X(i) the d− 1 vector obtained by removing
Xi from X, and by X(ij) the d−2 vector obtained by removing (Xi, Xj) from X.
Given I, J ⊆ V denote by XI and μI the subvectors of X and μ with coordinates
in I and by ΣIJ the corresponding subblock of Σ with rows in I and columns
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in J . The partial correlation between (Xi, Xj) is

ρij·V \{i,j} = − Kij√
KiiKjj

for all i, j ∈ V (1)

and so ρij·V \{i,j} = 0 if and only if Kij = 0. Finally, we denote that (Xi, Xj)
are independent by Xi ⊥⊥Xj .

The usual interpretation of PGs in elliptical distributions is that — since
the conditional expectation E(Xi|X(i)) is linear in X(i) and the conditional
correlation is equal to the partial correlation — the condition ρij·V \{i,j} =
0 implies that (Xi, Xj) are conditionally uncorrelated. That is, zero partial
correlation implies zero conditional correlation. As we show in Theorem 3.3
something much stronger is true. It is possible to fully characterize the PG in
elliptical distributions:

The partial correlation ρij·V \{i,j} = 0 if and only if cov(g(Xi), Xj |X(ij)) = 0 for
every function g for which the covariance exists.

This result extends an analogous finding on marginal correlations stemming
from Stein’s lemma (see Lemma 3.2 in Hamada et al. (2004); Theorem 2 in
Landsman and Nešlehová (2008)) to the context of graphical models. We also
provide a similar characterization for transelliptical distributions. The usual
interpretation of ρij·V \{i,j} = 0 is that fi(Yi), fj(Yj) are conditionally uncor-
related given f(ij)(Y ), which is not very interesting, since f is unknown. We
show in Theorem 3.4 that equivalently cov(fi(Yi), g(Yj)|Y(ij)) = 0 for any g,
provided the covariance exists. In particular, cov(fi(Yi), Yj |Y(ij)) = 0, a more
explicit dependence information in terms of Y . We also show in Proposition 3.7
yet another equivalent interpretation, namely that ρij·V \{i,j} = 0 if and only if
the conditional Kendall’s tau correlation between g(Yi) and h(Yj) is zero for all
strictly increasing g, h.

These findings are practically relevant. Recall that two variables Xi and Xj

with general distribution are independent if and only if for all L2(R) functions
g, h we have cov(g(Xi), h(Xj)) = 0; see e.g. (Feller, 1971, page 136). That is,
Xi ⊥⊥Xj if and only if there is no way to transform Xi and Xj such that the new
variables are correlated. Our characterization of ρij·V \{i,j} = 0 has an analogous
interpretation, in elliptical families there is no way to transform Xi such that the
new variable is conditionally correlated with Xj . This rules out situations like
the aircraft example above where speed is correlated with a non-linear function
of wingspan. Further, in trans-elliptical families there is no way to transform Xi

and Xj such that Kendall’s conditional tau is non-zero.

Interpreting ρij·V \{i,j} = 0 can be important in applications, given that ellip-
tical and transelliptical models are a popular tool to capture second-order or tail
dependencies. Even though ρij·V \{i,j} = 0 such dependencies can be practically
significant. For example, in Section 5 we illustrate how corr(X2

i , X
2
j ) can serve

as a simple measure of marginal tail (or second-order) dependence related to
popular models in time series analysis, and how to define a related conditional
second-order dependence measure related to graphical models.



Dependence in elliptical partial correlation graphs 4239

Our other main contributions relate to PGs in settings where one wishes to
study positive forms of association. Two standard ways to define positive depen-
dence are via the notions of multivariate total positivity of order two (MTP2)
and conditionally increasing (CI, Section 4). Although these concepts are differ-
ent, in the Gaussian case they are equivalent and reduce to constraining partial
correlations to be non-negative. It is less clear how to interpret these concepts
in general elliptical families. A first contribution is showing several impossibility
results: within the elliptical family with at least one partial correlation zero there
exist no conditionally increasing distributions (other than the Normal) implying
the same result for MTP2 distributions. That is, if one wants to remove edges
in the PG with an additional positive dependence structure, one cannot rely on
the standard notions of positive dependence.

A natural relaxation is to learn a PG under the constraint that ρij·V \{i,j} ≥ 0,
as proposed by Agrawal, Roy and Uhler (2019). We refer to this strategy as
positive partial correlation graphs (PPG). We contribute to understanding how
should one interpret missing edges in the PPG, and to characterizing embedded
positivity properties such as the positive correlation of each Xi with any increas-
ing function of the vector X. In Section 5 we illustrate how positivity constraints
induce a type of regularization that can help improve inference relative to other
standard forms of regularization, such as graphical LASSO. The significance of
this example is that one attains a higher log-likelihood with a sparser graph by
restricting attention to positive models. This is meant as a testimony that our
theoretical results on positivity have practical relevance. For further examples
in risk modelling see Abdous, Genest and Rémillard (2005); Rüschendorf and
Witting (2017), and in psychology see Epskamp and Fried (2018); Lauritzen,
Uhler and Zwiernik (2019a), for example.

This paper also contributes to recent research aimed at understanding mul-
tivariate total positivity in a wide variety of contexts; see, for example, Fallat
et al. (2017); Lauritzen, Uhler and Zwiernik (2019b,a); Robeva et al. (2018);
Slawski and Hein (2015). We provide in Theorem 4.9 a complete characteri-
zation of elliptical MTP2 distributions in terms of their density generator. In
Theorem 4.10 this characterisation is used to show that a density generator may
induce a d-variate MTP2 distribution for each d ≥ 2 if and only if the underlying
distribution is essentially Gaussian.

The paper is organized as follows. In Section 2 we review basic results on
elliptical distributions. In Section 3 we characterize partial correlation graphs
for elliptical and transelliptical distributions, giving a refined understanding
of their encoded dependence information, and how one should interpret zero
partial correlations. In Section 4 we study positive elliptical distributions and
their properties. In Section 5 we illustrate our main results with examples.

In the rest of the article we employ the convention where the letter X is re-
served for elliptical random variables, Y is reserved for transelliptical variables,
Z is reserved for Gaussian variables and W for general random variables. The
letter f is reserved for the monotone functions defining transelliptical distri-
butions as in Definition 1.2, g and h denote general functions, and p denotes
probability density functions.
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2. Elliptical distributions

2.1. Stochastic representation

If X ∼ E(μ,Σ) then X admits the representation

X = μ+ ξ · Σ1/2 · U, (2)

where Σ1/2 denotes the square root of the positive-definite Σ, ξ∈ R
+ is an ar-

bitrary random variable, U ∈ R
d is uniformly distributed on the unit (d − 1)-

dimensional sphere, and ξ⊥⊥U . Elementary arguments show that, if Eξ < ∞,

then EX = μ and if Eξ2 < ∞ then cov(X) = E(ξ2)
d ·Σ. Throughout this paper

we assume that 0 < Eξ2 < ∞.
There is a useful representation equivalent to (2) in terms of normal variables.

Let D2 ∼ χ2
d with D2 ⊥⊥U . Then Z =

√
D2 Σ1/2 U is a mean zero Gaussian

variable with covariance Σ. From (2) it follows that

X = μ+
1√
τ
· Z, (3)

where τ = D2/ξ2 and Z ∼ N(0,Σ). The special case where τ and Z are in-
dependent corresponds to the scale mixture of normals sub-family, which in-
cludes most popular elliptical distributions. The normal corresponds to τ ≡ 1.
If τ ∼ χ2

k/k for k > 2 then X has a multivariate t-distribution with parameter
k, and if τ ∼ Exp(1) the multivariate Laplace distribution. Equivalently, scale
mixture of normals can be defined as the marginal distribution of X associ-
ated to (X, τ) when X | τ ∼ N(μ, τ−1/2Σ), and τ ∈ R

+ follows an arbitrary
continuous distribution.

The elliptical family is closed under taking margins and under conditioning.

Proposition 2.1. Let X = (XI , XJ) ∼ E(μ,Σ) be any split of X into subvec-
tors XI and XJ . Then

(i) XI ∼ E(μI ,ΣII),
(ii) XI | XJ = xJ ∼ E(μI|J ,ΣII·J ), where μI|J := μI +ΣIJΣ

−1
JJ (xJ −μJ ) and

ΣII·J := ΣII − ΣIJΣ
−1
JJΣJI = K−1

II .

For the proof see (Fang, 2018, Theorem 2.18). The conditional mean μI|J
has the same form as in the Gaussian case, where Σ above can be replaced
by cov(X). Moreover, the conditional correlations corr(Xi, Xj | X(ij)) are the
normalized entries of K = Σ−1 (the partial correlations ρij·V \{i,j}), and do not
depend on the conditioning variable X(ij).

2.2. Characterization of Gaussianity within the elliptical family

If X is Gaussian then each marginal distribution and each conditional distribu-
tion is Gaussian. Moreover, the conditional covariances do not depend on the
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conditioning variable and independence is equivalent to zero correlations. These
properties characterize the Gaussian distribution in the class of elliptical dis-
tributions. More precisely, suppose that X ∼ E(μ,Σ). By Lemma 4, Lemma 8,
and Theorem 7 in Kelker (1970) we have the following statements:

(i) If XI is Gaussian for some I ⊆ V then X is Gaussian.
(ii) If XI given XJ is Gaussian for some I, J ⊆ V then X is Gaussian.
(iii) If the conditional covariance of XI given XJ is independent of XJ then

X is Gaussian.

The standard definition of graphical models uses density factorizations that
link to conditional independence through the Hammersley-Clifford theorem (Lau-
ritzen, 1996). However, it is not possible to define conditional independence in
the elliptical family outside of the Gaussian case. Again suppose that X ∼
E(μ,Σ). By Lemma 5 in Kelker (1970), if Σ is a diagonal matrix, then the com-
ponents of X are independent if and only if X has a normal distribution. This
can be used to prove the following important result.

Proposition 2.2 (Theorem 3 in Baba, Shibata and Sibuya (2004)). Suppose
that X ∼ E(μ,Σ) and Xi ⊥⊥Xj |XC for some i, j ∈ V and C ⊆ {1, . . . , d}\{i, j}.
Then X is Gaussian.

3. Graphs for (trans)elliptical distributions

3.1. Partial correlation graph and dependence

By Proposition 2.2 it is not possible to do structural learning in (non-normal)
elliptical graphical models, under the conditional independence definition. It is
then natural to look for relaxations that may be useful from the modelling point
of view. A common strategy is to define graphs based on zeroes in the inverse
covariance matrix, mimicking the Gaussian case; see Vogel and Fried (2011).

Definition 3.1. The partial correlation graph (PG) is the graph G = G(K)
over vertex set V = {1, . . . , d} with an edge between i = j if and only if Kij = 0.

Equivalently, Kij = 0 if and only if the partial correlation ρij·V \{i,j} = 0.
In general, ρij·V \{i,j} = 0 does not imply conditional independence but only
linear independence. The aim of this section is to understand what additional
information does the PG carry in elliptical distributions. Proposition 2.1 and
standard matrix algebra give

E(Xi|X(i)) = μi − 1
Kii

Ki,(i)(X(i) − μ(i)), (4)

henceKij = 0 if and only if E(Xi|X(i)) does not depend onXj . This immediately
gives the following standard result.

Proposition 3.2. Let X ∼ E(μ,K−1). Then Kij = 0 if and only if cov(Xi,
Xj |X(ij)) = 0, or equivalently, E(Xi|X(i)) and E(Xj |X(j)) depend on X(ij) only.

As we now show, much more can be said.
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Theorem 3.3. Let X ∼ E(μ,K−1) and I, J ⊆ V . Then KIJ = 0 if and only
if cov(g(XI), XJ |XV \(I∪J)) = 0 for any function g for which this covariance
exists.

Proof.. We first show that ΣIJ = 0 if and only if cov(g(XI), XJ) = 0 for any
function g for which the covariance exists. The proof of this statement can be
extracted from the first part of the proof of Lemma 3.2 in Hamada et al. (2004).
Without loss of generality assume J = {j}. By the law of total expectation

cov(g(XI), Xj) = EXI

[
(g(XI)− Eg(XI))E(Xi − μj |XI)

]
,

where the expectation EXI
is computed with respect to the marginal distribu-

tion of XI . The expression inside the expectation is almost surely zero with
respect to this distribution. Indeed, by Proposition 2.1,

E(Xj − μj |XI) = E(Xj |XI)− μj = ΣjIΣ
−1
II (XI − μI),

which is zero because ΣjI = 0.
To complete the proof, we apply this result to the conditional distribution

of I ∪ J given V \ (I ∪ J). Let A = I ∪ J and B = V \ (I ∪ J). By Proposi-
tion 2.1(ii) the distribution of XA given XB is equal to the elliptical distribution
E(μA|B ,ΣA,A|B), where the matrix ΣAA|B := ΣAA −ΣABΣ

−1
BBΣBA is block di-

agonal (with blocks corresponding to I and J) if and only if KIJ = 0.

Theorem 3.3 is an if and only if statement, that is, it characterizes the pres-
ence of zero partial correlations and how to interpret elliptical PGs: if (Xi, Xj)
are conditionally uncorrelated then so are Xj and any function of Xi. For in-
stance, there is no linear association between Xj and higher-order moments
associated to X2

i , X
3
i , etc.

In applications it is often interesting to consider semi-parametric techniques
related to copula models given by transelliptical distributions. We now extend
our result to such settings.

3.2. Transelliptical distributions

Recall that Y has a transelliptical distribution, denoted Y ∼ TE(μ,Σ), if and
only if f(Y ) = (f1(Y1), . . . , fd(Yd)) ∼ E(μ,Σ) for strictly increasing determinis-
tic functions fi. An interesting result is that, if f(Y ) is Gaussian (nonparanor-
mal sub-family) the PG gives conditional independence on Y . That is, for the
nonparanormal family the PG is highly interpretable (Liu et al., 2012). More
generally, a missing edge in the PG means that cov(fi(Yi), fj(Yj)|f(ij)(Y )) = 0,
but this interpretation is not very interesting given that f is unknown and sim-
ply refers to linear conditional independence between the latent (fi(Yi), fj(Yj)).
The focus should be directly on the dependence structure of Y .

Our second main result shows that a weaker version of Theorem 3.3 holds for
transelliptical distributions.
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Theorem 3.4. Suppose Y ∼ TE(μ,K−1). Then Kij = 0 if and only if the
conditional covariance cov(fi(Yi), g(Yj)|Y(ij)) is zero for every function g for
which the covariance exists.

Proof.. Let X = f(Y ) ∼ E(μ,K−1). Suppose that cov(fi(Yi), g(Yj)|Y(ij)) =
0 for all g, taking g = fj gives cov(fi(Yi), fj(Yj) | Y(ij)) = cov(Xi, Xj | Y(ij)) =
0. Since each fi is a strictly monotone fixed function, it is bijective. It follows
that X(ij) and Y(ij) generate the same σ-field giving that cov(Xi, Xj | Y(ij)) =
cov(Xi, Xj | X(ij)). Vanishing of this conditional covariance is equivalent to
Kij = 0. To prove the reverse implication, note that

cov(fi(Yi), g(Yj)|Y(ij)) = cov(Xi, g(f
−1
j (Xj))|X(ij)) = 0

where the second equality follows from Theorem 3.3.

Theorem 3.4 helps interpret the PG as follows. If Kij = 0 then fi(Yi) is con-
ditionally uncorrelated with any function of Yj . Hence learning a single element
fi within f (rather than the whole f) describes (local) aspects of conditional
dependence of Yi on Y(i) (and functions thereof). Taking g to be the identity
function in Theorem 3.4 we get the following result.

Corollary 3.5. Suppose Y ∼ TE(μ,K−1). If Kij = 0 then cov(g(Yi), Yj |Y(ij)) =
0 for some strictly increasing function g.

The function g in this corollary is precisely the function fi in Theorem 3.4.
Corollary 3.5 gives the following interpretation. If Kij = 0 then Yi is condition-
ally uncorrelated with some strictly increasing transformation of Yj and also Yj

is conditionally uncorrelated with some strictly increasing transformation of Yi.

3.3. Rank correlations

Theorem 3.4 is an if and only if statement, hence it fully characterizes the
meaning of PG in transelliptical distributions using covariances between any
function of Yj and latent fi(Yi). A conditional version of Kendall’s tau gives
an interesting alternative characterization that can be interpreted without any
reference to f . Let W = (W1, . . . ,Wd) be a continuous random vector and
W ′ = (W ′

1, . . . ,W
′
d) be an independent copy. Kendall’s tau for (Wi,Wj) is

τ(Wi,Wj) := corr
(
sign(Wi −W ′

i ), sign(Wj −W ′
j)
)
.

Further, define conditional Kendall’s correlation as

τ(Wi,Wj | W(ij)) := corr(sign(Wi − W̃ ′
i ), sign(Wj − W̃ ′

j) | W(ij)), (5)

where (W̃ ′
i , W̃

′
j) is an independent copy of (Wi,Wj) from the conditional distri-

bution given W(ij). In elliptically-distributed X ∼ E(μ,Σ) the following beauti-

ful result relates Pearson correlations ρ(Xi, Xj) = corr(Xi, Xj) = Σij/
√
ΣiiΣjj

with Kendall’s tau.
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Lemma 3.6 (Lindskog, Mcneil and Schmock (2003)). If X ∼ E(μ,Σ) then

τ(Xi, Xj) =
2

π
arcsin(ρ(Xi, Xj)).

Let Y ∼ TE(μ,Σ), so that X = f(Y ) ∼ E(μ,Σ). Since Kendall’s tau is
invariant under strictly increasing transformations,

τ(Yi, Yj) = τ(Xi, Xj) =
2

π
arcsin(ρ(Xi, Xj)).

Thus, if one can consistently estimate τ(Yi, Yj) from the observations of Y , then
one can also consistently learn ρ(Xi, Xj) = sin(π2 τ(Yi, Yj)), the correlation
matrix of X = f(Y ). An obvious consequence of Lemma 3.6 is that, for Y ∼
TE(0,Σ), sign(Σij) = sign(τ(Yi, Yj)) ∈ {−1, 0, 1}. For partial correlations we
have the following result.

Proposition 3.7. Let Y ∼ TE(0,K−1). Then Kij = 0 if and only if τ(Yi, Yj |
Y(ij)) = 0.

Proof.. Let X = f(Y ) ∼ E(μ,Σ). The condition τ(Yi, Yj | Y(ij)) = 0 is
equivalent to τ(Xi, Xj | Y(ij)) = τ(Xi, Xj | X(ij)) = 0, which by Lemma 3.6
applied to the conditional distribution of (Xi, Xj) given X(ij) is equivalent to
ρij·V \{i,j} = 0, or equivalently, Kij = 0.

4. Positive dependence in elliptical distributions

In this section we study PGs in elliptical distributions when one imposes pos-
itive dependence. Section 4.1 begins by recalling several important notions of
multivariate positive dependence, and in Section 4.2 we show that said notions
are not meaningful to learn structure in elliptical PGs. This leads to a relaxed
notion of positive dependence given by elliptical distributions whose partial cor-
relations are all nonnegative, which we refer to as positive partial correlation
graphs (PPGs). In Section 4.3 we define PPGs and study their embedded posi-
tive dependence properties, which complement the interpretation offered by the
characterizations in Section 3. Finally, Section 4.4 offers an extension of the
impossibility results in Section 4.2, by characterizing the restrictiveness of the
class of MTP2 elliptical distributions.

4.1. Positive dependence

We start by recalling definitions of some classical notions of positive dependence.
A random vector W is associated (A) if and only if

cov(g(W ), h(W )) ≥ 0

for any two coordinate non-decreasing functions g, h : Rd → R for which this
covariance exists. A random vector W with a density function p is multivariate
totally positive of order two (MTP2) if and only if

p(w)p(w′) ≤ p(min(w,w′))p(max(w,w′)) for all w,w′ ∈ R
d, (6)
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where min(w,w′) = (min(w1, w
′
1), . . . ,min(wd, w

′
d)) is the coordinatewise min-

imum and max(w,w′) = (max(w1, w
′
1), . . . ,max(wd, w

′
d)) the coordinatewise

maximum of w and w′. Finally, W is conditionally increasing (CI) if for ev-
ery i ∈ V and C ⊆ V \ {i} the conditional expectation E(h(Wi)|WC) is an
increasing function of WC for every increasing function h : R → R. Good gen-
eral references are Esary, Proschan and Walkup (1967) for association, Karlin
and Rinott (1980) for MTP2, and Müller and Scarsini (2001) for CI.

One of the first results on these model classes is that if W is A/MTP2/CI
then each marginal distribution is A/MTP2/CI. Moreover, if W is MTP2/CI
then each conditional distribution is MTP2/CI. Another well-known result is
that these positivity notions are closed under monotone transforms and that
MTP2 implies CI; see Theorem 3.3 and Proposition 3.5 in Müller and Scarsini
(2001) as well as Proposition 3.1 in Fallat et al. (2017).

In the Gaussian case both condition (6) and CI simplify to an explicit con-
straint on the inverse covariance K. A symmetric positive definite matrix K
is called an M-matrix if Kij ≤ 0 for all i = j. Denote the set of inverses of
M-matrices by IM. Directly from (1), Σ ∈ IM if and only if all partial cor-
relations ρij·V \{i,j} are nonnegative. By Proposition 3.6 in Müller and Scarsini
(2001), for a Gaussian X we have

X is MTP2 ⇐⇒ X is CI ⇐⇒ Σ ∈ IM.

To help the reader, we briefly describe what is coming in the next two sections.
In Sections 4.2 and 4.3 we show that that, if Y ∼ TE(μ,Σ) then

Y is MTP2 =⇒ Y is CI =⇒ Σ ∈ IM,

where the last condition corresponds to positive transelliptical distributions
(Definition 4.4). In the transelliptical case all three positivity notions are closed
under marginalization, conditioning, and monotone transformations. We show
that both implications above can be inverted only in the Gaussian/nonparanor-
mal case, showing that Proposition 3.6 in Müller and Scarsini (2001) character-
izes the nonparanormal within the elliptical family. Moreover, in general there is
no clear relation between association and positive transelliptical distributions.
For modelling with zeros in Σ−1 we will show that neither MTP2 nor CI lead to
interesting models (unless in the Gaussian case), which will be the main moti-
vation for considering positive transelliptical distributions. In this case we will
also show that there is a close relation between vanishing partial correlations
in various marginal distributions, which imply that this model satisfies partial
faithfulness.

4.2. Positive dependence in elliptical distributions

To motivate Section 4.3 we study in this section limitations of elliptical distribu-
tions in the context of the positive dependence notions reviewed in Section 4.1.
We first show in Theorem 4.2 that if K has any zeroes then X cannot be CI
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(hence neither MTP2, from Theorem 3.3 in Müller and Scarsini (2001)) unless
X is Gaussian. The same impossibility result applies to transelliptical families
(outside the nonparanormal sub-family). As a consequence, it is not possible to
learn structure (remove edges) of a non-normal elliptical graphical model under
these positivity constraints.

Even if one were to forsake structural learning and focus on the fully dense
graph with no missing edges, it is not possible to find MTP2/CI transellipti-
cal distributions, except in very restrictive cases. For example, Proposition 4.3
shows that there are no MTP2/CI t-distributions. We defer a deeper analysis
to Section 4.4, where we fully characterize the elliptical MTP2 class and show
that it is highly restrictive, particularly as d grows.

Remark 4.1. Suppose X ∼ E(μ,K−1). From (4) it follows that K is an M-
matrix if and only if for every i ∈ V the conditional expectation E(Xi|X(i))
is increasing in X(i). Note that, if X is CI then E(Xi|X(i)) must be increasing
in X(i) and so, in particular, ρij·V \{i,j} ≥ 0 for all i, j ∈ V . This shows that
nonnegativity of all partial correlations is a necessary condition for X to be CI
and so also for X to be MTP2.

Theorem 4.2. Suppose that X ∼ E(μ,K−1) and X is CI. If K has a zero
entry then X is Gaussian. Further, suppose that Y ∼ TE(μ,K−1) and Y is CI.
Let X = f(Y ) ∼ E(μ,K−1), if K has a zero entry then X is Gaussian.

Proof.. Let X ∼ E(μ,K−1) be CI and suppose Kij = 0. By Proposition 3.2,
the conditional covariance cov(Xi, Xj |X(ij)) is zero. Since X is CI, the con-
ditional distribution of (Xi, Xj) given X(ij) is also CI. It is well known that
CI distributions are also associated; c.f. Colangelo, Scarsini and Shaked (2005).
By Corollary 3 in Newman (1984) applied to this conditional distribution we
get that cov(Xi, Xj |X(ij)) = 0 implies Xi ⊥⊥Xj |X(ij). From Proposition 2.2
we know that the latter is only possible if X is Gaussian. Consider now Y ∼
TE(μ,K−1). Since CI is closed under monotone transformations (see Proposi-
tion 3.5 in Müller and Scarsini (2001)), X = f(Y ) is CI and, since X is elliptical,
by the first part of the proof, X must be Gaussian.

In fact, by Proposition 4.3 below, zeros in the inverse covariance matrix are
not the only obstacle for the CI property. (see Appendix C for the proof).

Proposition 4.3. If X has a multivariate t-distribution then X is not CI.

We remark that Proposition 3.3 in Rüschendorf and Witting (2017) states
that for an elliptical distribution Σ ∈ IM if and only if X is CI. Unfortunately,
this result is not true as illustrated both by Theorem 4.2 and Proposition 4.3.

4.3. Positive elliptical distributions

Our results show that the CI/MTP2 properties are too restrictive in connection
with PGs. As a natural alternative, we study the following relaxation proposed
by Agrawal, Roy and Uhler (2019).
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Definition 4.4. An elliptically distributedX∼E(μ,Σ) is positive if ρij·V \{i,j}≥
0 for all i, j ∈ V (equiv. Σ ∈ IM). A transelliptically distributed Y ∼ TE(μ,Σ)
is positive if the distribution of f(Y ) ∼ E(μ,Σ) is positive elliptical.

An elementary property of inverse M-matrices implies that for positive el-
liptical and transelliptical distributions the covariance matrix has nonnegative
entries. From Remark 4.1 this notion of positivity is weaker than both MTP2

and CI. Similarly, positivity does not imply association: for example if K is an
M-matrix with a zero entry, then it is positive but not associated in general un-
less Gaussian. Thus, positive elliptical distributions satisfy a fairly weak notion
of positive dependence, that is also simple and useful in applied modelling.

We first collect basic properties of this family of distributions.

Proposition 4.5. If X has a positive (trans)elliptical distribution then the same
is true for each marginal and each conditional distribution. Positive transellip-
tical distributions are also closed under strictly increasing transformations.

The proofs of all the results in this section are given in Appendix B.
The next proposition shows that positive elliptical distributions retain some

strong properties of MTP2 Gaussian distributions.

Proposition 4.6. If X has a positive elliptical distribution then for all i ∈ V
and C ⊆ V \ {i} the conditional mean E(Xi|XC) is an increasing function of
XC . Moreover, for any two i, j ∈ V and C ⊆ V \ {i, j} it holds that

corr(Xi, Xj |XC) ≥ 0

and

corr(Xi, Xj |XC) = 0 =⇒ corr(Xi, Xj |XD) = 0 for all D ⊇ C.

These properties are pivotal in the interpretation and application of the clas-
sical positive dependence measures. Briefly, the first part says that for positive
elliptical distributions conditional correlations are non-negative, regardless of
what subset of variables one conditions upon. The second part says that if a
covariance conditional on XC is 0, then it remains 0 when conditioning upon
larger sets. In particular, zero marginal correlation implies zero partial correla-
tion, hence Simpson’s paradox cannot occur.

The following result offers an extension of Theorem 3.3 to the positive case.

Proposition 4.7. If X ∼ E(μ,Σ) then Σ ∈ IM if and only if corr(g(Xi),
Xj |XC) ≥ 0 for every i, j ∈ V , any increasing function g : R → R, and any
conditioning set C ⊆ V \ {i, j}.

Many constraint-based structure learning algorithms, like the PC algorithm
(Spirtes et al., 2000), assume that the dependence structure in the data-gener-
ating distribution reflects faithfully the graph. We say that the distribution of
X is faithful to a graph G if we have that Xi ⊥⊥Xj |XC if and only if C separates
vertices i and j in G, for any C ⊆ V \{i, j}. In words, any independence obtained
by conditioning on subsets C is reflected in the graph. Spirtes et al. (2000)
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extended this definition to partial correlation graphs: the distribution of X is
linearly faithful to an undirected graph G if we have that corr(Xi, Xj |XC) = 0
if and only if C separates i and j in G. Bühlmann, Kalisch and Maathuis (2010)
proposed a related convenient notion unrelated to any particular graph: the
distribution of X is partially faithful if we have that corr(Xi, Xj |XC) = 0 for
any C ⊂ V \{i, j} implies that corr(Xi, Xj |X(ij)) = 0. Using partial faithfulness
Bühlmann, Kalisch and Maathuis (2010) developed a simplified PC algorithm
that is computationally feasible even with thousands of variables. An important
property of positive elliptical distributions is given by the following result.

Proposition 4.8. Every positive elliptical distribution is partially faithful.

Proof.. The proof follows from Proposition 4.6.

4.4. Characterisation of MTP2 elliptical distributions

We finish our discussion of positive dependence for elliptical distributions with
a complete characterization of MTP2 distributions. In this section we assume
that X admits a density with respect to the Lebesgue measure. In this case the
density necessarily takes the form

p(x) = |Σ|−1/2 ϕd

(
(x− μ)TΣ−1(x− μ)

)
, (7)

where ϕd is a nonnegative function (that may depend on d) called the density
generator.

Theorem 3.1 in Sampson (1983) gives a necessary and sufficient condition
for bivariate elliptical distributions to be MTP2. The author admits that the
multivariate case was analytically too complicated to handle. For the bivariate
case a similar characterization has been provided in Proposition 1.2 of Abdous,
Genest and Rémillard (2005). This second approach has been more useful for
us and with a bit of matrix algebra their proof generalizes.

Theorem 4.9. Suppose X has a d-dimensional elliptical distribution with par-
tial correlations ρij·V \{i,j} ≥ 0 and suppose X admits a twice differentiable den-
sity function with the density generator ϕd(t) for t ≥ 0. Let ρ∗ = mini,jρij·V \{i,j}
and let φ(t) = logϕd(t). Then X is MTP2 if and only if φ′(t) ≤ 0 for all t ≥ 0;
φ′(t) = 0 implies φ′′(t) = 0 for all t > 0; and

− ρ∗
1 + ρ∗

≤ tφ′′(t)

φ′(t)
≤ ρ∗

1− ρ∗
. (8)

for all t ∈ T = {t : φ′(t) < 0}. In particular, inft∈T

tφ′′(t)
φ′(t) > −1

2 .

The proof is in Appendix D. To illustrate Theorem 4.9 we consider three
examples. For the d-dimensional t-distribution with k degrees of freedom φ(t) =
−k+d

2 log(1 + t
k ) and so condition (8) requires that

− ρ∗
1 + ρ∗

≤ − t

k + t
≤ ρ∗

1− ρ∗
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must be satisfied for all t ∈ R, which is impossible irrespective of ρ∗ ∈ (−1, 1).

Further, for a zero-mean multivariate Laplace distribution tφ′′(t)
φ′(t) ∈ (−1,−1

2 )

for any d, hence Laplace distributions are never MTP2. As a third example,

consider X ∼ E(μ,K−1) with density f(x) ∝ e−(xTKx)α (the Kotz distribution
sub-family), so that tφ′′(t)/φ′(t) = α − 1. From Theorem 4.9, if α > 1 (X has
thinner-than-Normal tails) then MTP2 holds if and only if ρ∗ > 1 − 1/α, and
similarly if 1/2 < α < 1 (thicker-than-Normal tails) then MTP2 also holds if
and only if ρ∗ ≥ 1/α− 1. If α ≤ 1/2 then X cannot be MTP2.

The constraints on possible ρ∗ in this third example did not take into account
one more important aspect of the problem, namely that K is a d × d positive
definite matrix. To illustrate this, suppose that all off-diagonal entries of K are
equal, that is, ρij·V \{i,j} = ρ∗ = −Kij > 0 for all i = j. Such K is positive
definite if and only if ρ∗ < 1/(d − 1). In the third example this gives an upper
bound on ρ∗ that interplays with the lower bound ρ∗ ≥ |1 − 1/α|. These two
bounds define a non-empty set if and only if |1− 1/α| < 1/(d− 1). If d = 2 this
holds for any α > 1/2. If d ≥ 3 this holds if and only if

1− 1

d
< α < 1 +

1

d− 2
.

Note that unless α = 1 (the Gaussian case), this condition cannot hold for
all d ∈ N. This simple example generalizes and yields the following character-
ization of elliptical families with a fixed density generator that contain MTP2

distributions.

Theorem 4.10. Consider the family of all elliptical distributions with density
generator ϕd(t) and let φ(t) = logϕd(t). Then, there exists a scale matrix pa-
rameter Σ such that the density (7) is MTP2 if and only if φ′(t) ≤ 0; φ′(t) = 0
implies φ′′(t) = 0; and

−1

d
<

tφ′′(t)

φ′(t)
<

1

d− 2

for all t ∈ T = {t : φ′(t) < 0}.
The proof is in Appendix E. To illustrate this result consider the ellipti-

cally symmetric logistic distribution as defined in Fang (2018), Section 3.5. The
density generator satisfies

ϕd(t) =
e−t

(1 + e−t)2
,

tφ′′(t)

φ′(t)
=

2t

et − e−t
∈ (0, 1].

Theorem 4.9 gives that a bivariate logistic distribution is MTP2 if and only if
ρ12 ≥ 1/2. However, if d ≥ 3, Theorem 4.10 implies that there are no MTP2

distributions of this form.
To summarize, our results show that although there are some non-normal

elliptical distributions that are MTP2, the imposed constraints can be quite se-
vere, particularly as the dimension d grows. We additionally showed that popular
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elliptical distributions such as the t, Laplace and most Kotz-type distributions
cannot be MTP2. These findings highlight the need to define alternative mea-
sures of positive association, such as the PPGs in Section 4.2.

5. Examples

We illustrate the application of transelliptical PG and PPG and the inter-
pretation afforded by our characterizations with S&P500 stock market data.
The data and R code to reproduce our analyses are available at https://github.
com/davidrusi/paper_examples/tree/main/2021_Rossell_Zwiernik_elliptical.
Section 5.1 discusses a measure of second-order marginal dependence and ex-
tend it to conditional dependence, Section 5.2 our data analysis results without
sign constraints on K, and finally Section 5.3 shows that said constraints can
improve the model fit.

5.1. Second-order dependence

Elliptical models capture certain forms of tail dependence, which can be nat-
urally illustrated by studying second-order dependence. A typical application
is in time series analysis, where it is common to study how the variance (or
volatility) evolves over time. For example, a centered ARCH model (Engle,
1982) poses Xi = σiεi, where εi = σiZi, Zi ∼ N(0, 1) independently across
i and σ2

i = α0 + α1ε
2
i−1. Under this ARCH model it is easy to show that

corr(Xi, Xi−1) = 0, whereas corr(X2
i , X

2
i−1) is non-zero when α1 = 0. More

generally, in our context let X ∼ E(0,Σ) and consider θij = corr(X2
i , X

2
j ) as

a simple measure of marginal tail (or second-order) dependence. In the special
sub-family of elliptical distributions defined by scale mixtures of normals (c.f.
Section 2), it is possible to show

θij = corr(X2
i , X

2
j ) = λ+ (1− λ)ρ2ij , λ =

var( 1τ )

var( 1τ ) + 2E( 1
τ2 )

∈ [0, 1],

(9)

where τ is the latent scale parameter, hence λ = 0 if and only if X is Gaussian.
This measure is minimized for ρij = 0, then corr(X2

i , X
2
j ) = λ, which can be

non-negligible, e.g. λ = 1/(k − 1) for the t-distribution with k > 4 degrees of
freedom. Figure 1 shows this quantity and, for comparison, also the normalized
mutual information (a standard measure of deviation from independence). Both
measures converge to zero as k → ∞ but this convergence is slow.

Similarly, and of particular relevance to graphical models, one may measure
conditional tail dependence via θij·V \{i,j} =

corr
(
(Xi − E(Xi | X(ij)))

2, (Xj − E(Xj | X(ij)))
2
∣∣∣X(ij)

)
=λ+ (1− λ)ρ2ij·V \{i,j},

(10)

where the right-hand side follows from Proposition 2.1. When ρij·V \{i,j} = 0
the conditional tail dependence is λ.

https://github.com/davidrusi/paper_examples/tree/main/2021_Rossell_Zwiernik_elliptical
https://github.com/davidrusi/paper_examples/tree/main/2021_Rossell_Zwiernik_elliptical
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Fig 1. corr(X2
i , X

2
j ) for a multivariate t-distribution with k degrees of freedom in the ρij = 0

case

5.2. Data analysis results

We downloaded daily log-returns of S&P500 stocks for the 10-year period rang-
ing from 2010-04-29 to 2020-04-14 (n = 2, 514 observations). For illustration we
selected the first d = 100 stocks, hence the graphical model has 4,950 potential
edges. We used the R package huge (Zhao et al., 2012) to apply univariate trans-
formations aimed at improving the marginal normal fit (function huge.npn).
Despite these transformations, we observed departures from multivariate nor-
mality. Let the observed and transformed n × d data matrices be Y and X
(respectively), both with zero column means and unit variances. The empiri-
cal distribution of the Mahalanobis distances (xi1, . . . , xid)

TS−1(xi1, . . . , xid),
where S is the sample covariance, had significantly thicker tails than the χ2

d

expected under multivariate normal data and S = Σ (Figure 2, top left). This
departure from normality motivates considering non-Gaussian elliptical models.

Another argument for using non-Gaussian elliptical models comes from con-
sidering the second-order tail dependence measures from Section 5.1. Figure 2
(bottom left) shows that the marginal tail dependence θ̂ij in (9) is significantly
larger than the ρ̂2ij expected under normality. The magnitude of these departures

is practically significant. For comparison the figure also displays θ̂ij estimated
from simulated Gaussian data, with zero mean and sample covariance matching
that of X. In practical terms, θij measures the predictability of variable i’s vari-
ance (also called volatility) from that of variable j. A natural question is what
predictability remains after conditioning upon other variables, i.e. what is the
conditional tail dependence θij·V \{i,j} in (10). To address this question for each
variable pair (i, j) we computed the non-parametric estimate

θ̂ij·V \{i,j} = corr(e2i , e
2
j | X(ij))
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Fig 2. S&P500 data. Top left: Mahalanobis distances and χ2
100 density. Top right: conditional

tail dependence θ̂ij·V \{i,j} versus normal prediction ρ̂2
ij·V \{i,j}. Bottom: distribution of θ̂ij −

ρ̂2ij and θ̂ij·V \{i,j} − ρ̂2
ij·V \{i,j}

where ei = xi − μ̂i|V \{i,j}, xi is the i-th column in X and μ̂i|V \{i,j} the least-
squares prediction given X(ij) (analogously for ej). These estimates were signif-
icantly larger than the ρ̂2ij·V \{i,j} expected under normality (Figure 2, bottom

right). As a further check, from (10) the elliptical model (more specifically, the
scale mixture of normals sub-family) predicts θij|V \{i,j} to be linear in ρ2ij|V \{i,j}.

Figure 2 (top right) suggests that they are indeed roughly linearly related. Al-
together, although admittedly one never expects a model to describe the data
perfectly, the elliptical model appears reasonable to study volatility in these
data.

We studied the dependence structure in these data using the two-step proce-
dure outlined in Appendix A. Briefly, this (trans)elliptical graph recovery method
obtains a sample correlation matrix S from Kendall’s correlations and Lemma
3.6, and then applies a standard graphical LASSO procedure to S. In practice,
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an alternative is to use a standard Gaussian approach where one estimates S
with the sample correlation matrix (c.f Remark A.1), i.e. to ignore the ellipti-
cal nature of the data and trust that the Gaussian model recovers consistent
estimates of Σ, even if X were truly elliptical. For completeness we considered
both strategies. It turns out that in both cases we obtained similar results: the
Spearman correlation between the estimated K̂ij was 0.911, the selected PGs
agreed in 93.0% of the 4,950 edges, and there were no disagreements in the signs
of K̂ij for any (i, j).

We focus discussion on the (trans)elliptical graph recovery method. The es-
timated partial correlation graph had 1,594 out of the 4,950 edges. Our re-
sults from Section 3 help strengthen the interpretation of the missing edges,
e.g. K̂ij = 0 suggests that conditional on X(ij) one cannot predict the vari-
ance, asymmetry or kurtosis in xj linearly from xi. Further it also implies zero
Kendall’s conditional tau between increasing transforms of xi and xj , e.g. if
daily returns are not conditionally positively/negative correlated (according to
Kendall’s tau) then neither are log-returns.

5.3. Positivity constraints versus graphical LASSO constraints

An interesting point is that among the 1,594 edges the estimated partial cor-
relations were positive for 1, 477 and negative for only 117 edges. That is, the
partial correlation graph was very close to being a PPG; see Agrawal, Roy and
Uhler (2019) for a discussion why this may be frequently encountered in stock
data, and Epskamp and Fried (2018); Lauritzen, Uhler and Zwiernik (2019a)
for examples in Psychology. To compare the PPG fit with our earlier graphi-
cal LASSO fit we estimated the precision matrix under the constraint that K
is an M-matrix, using the R package golazo available at GitHub (Lauritzen
and Zwiernik, 2020)1. Table 1 summarizes the results. The maximized Gaussian
log-likelihood (here interpreted as the negative of a loss function) under the
M -matrix constraint was substantially higher than for the graphical LASSO
fit (−266,579 versus −269,195) and the graph was sparser (1,216 versus 1,594
edges). Hence, the EBIC (and any other L0 model selection criteria) strongly
favored the PPG model over a model with no sign restrictions on K. These find-
ings remained true when we replaced the graphical LASSO estimator with its
refitted version, i.e. we computed the maximizer of the Gaussian log-likelihood
conditional on the model chosen in the first step. In this case the Gaussian log-
likelihood was −265,277, that is, higher than for the M-matrix estimate, but
the BIC and EBIC criterion were worse.

Note that, from its Lagrangian interpretation, the graphical LASSO con-
strains the size |K̂ij |. In contrast the M-matrix constraint allows for arbitrarily

large |K̂ij |, provided K̂ij ≤ 0. That is, the graphical LASSO and the PPG
constraints induce quite different regularization and the latter appears more

1The relevant function is positive.golazo(S,rho=Inf), where S is estimated using the
Kendall’s τ .
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Table 1

Comparison of the results for the graphical LASSO, refitted graphical LASSO, and the
M-matrix estimation. The model with lower value of BIC/EBIC is preferred.

edges log-likelihood BIC EBIC, γ = 0.5
gLASSO 1,594 -269,195 550,872 565,553
refitted gLASSO 1,594 -265,277 543,034 557,715
M-matrix 1,216 -266,579 542,679 553,879

appropriate for these S&P500 data, illustrating the potential value of positivity
constraints in certain applications.

The selected graph being a PPG strengthens its interpretation. By Proposi-
tion 4.6, the finding suggests that all possible partial correlations are positive
regardless of the conditioning set, and that Simpson’s paradox does not occur
in these data, i.e. stocks with zero marginal correlation also have zero partial
correlation. By our earlier discussion, this implies that if ρij = 0 marginally then
xi is uncorrelated with higher moments of xj , both marginally and conditionally
on X(ij). Further, the conditional expectation of xi can only be increasing as a
function of other variables (or increasing transformations thereof), and missing
edges indicate the lack of such association.

6. Discussion

When studying multivariate dependence in applications it is often convenient
to strike a balance between models that equip strong theoretical properties
(e.g. Gaussian, non-paranormal, MTP2 and CI classes) but impose potentially
restrictive conditions, and models that are more flexible but do not provide such
strong characterizations and/or lead to complex interpretations. We studied
a natural strategy based on the transelliptical family and partial correlation
graphs, including many copula models that are popular in applications. We
showed that the interpretation remains simple yet goes far beyond the regular
linear dependence. We also illustrated how simple tail dependence measures, like
the one in (9), characterize the Gaussian distribution within the scale mixture
of normals family and can help assess whether transelliptical class is useful to
capture second-order dependence (variance) dependencies in the data.

A main motivation for our paper was to study the consequences of mild
misspecification in Gaussian graphical models. Namely, when one assumes a
Gaussian model but data are truly generated by a non-Gaussian distribution
F0. Despite misspecification, under suitable conditions one can recover the par-
tial correlations under F0. For general F0 such partial correlations only inform
about linear dependence but, if F0 is trans-elliptical, we showed that much
stronger interpretations are possible. Another question of interest is studying
the consequences of assuming data to be trans-elliptical, when truly F0 is not
trans-elliptical. In that case, it is often still possible to consistently learn the
true partial correlation matrix under F0, for example using the log-determinant
loss function as was done in Section 5; see Ravikumar et al. (2011) for some
theoretical justification. However, for general F0 such partial correlations only
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inform about linear dependence.
An important part of this paper is the study of positive dependence. The

notion of positivity can be quite useful in regularizing inference relative to unre-
stricted penalized likelihood, as we illustrated in the S&P500 example. However,
we also showed that strictly speaking some standard notions of positive depen-
dence are meaningless for structural learning in elliptical partial correlation
graphs. One of our important contributions is a result that characterizes MTP2

elliptical distributions and shows that MTP2 becomes very restrictive in high
dimensions. It is therefore important to study relaxations such as positive el-
liptical distributions that impose all partial correlations to be nonnegative. We
showed that this family retains strong positive dependence properties that are
important from the applied point of view.

In conclusion, we hope that our results help to motivate the study of other
suitable relaxations of Gaussianity and positivity in graphical models, as well
as strengthen the use of transelliptical graphical models in practice.

Appendix A: Graph estimation

We briefly describe a standard approach for high-dimensional elliptical data
suggested by Ravikumar et al. (2011); Zhao and Liu (2014)2. For the elliptical
model the support of the inverse covariance matrix is estimated as follows:

1. Estimate the underlying correlation matrix of X by computing sample
Kendall’s τ coefficients τ(Xi, Xj) and the formula in Lemma 3.6 to obtain
estimated Pearson correlations ρ̂(Xi, Xj). Denote the resulting estimate
of the correlation matrix by S, with entries sij = ρ̂(Xi, Xj).

2. Solve the graphical LASSO problem (Friedman, Hastie and Tibshirani,
2008; Yuan and Lin, 2007) by minimizing

− log detK + tr(SK) + ρ
∑
i �=j

|Kij | (11)

for a given penalty parameter ρ > 0.

The procedure in Step 1 can be performed with option npn.func = ‘‘skeptic’’
in function huge.npn, see Liu, Han and Zhang (2012) for details. Another pop-
ular choice to obtain S in Step 1 is given by computing Tyler’s M-estimator
(Tyler, 1987) and normalizing it to be a correlation matrix. However, Zhao and
Liu (2014) argued that Kendall’s tau has better empirical behavior for heavy-
tailed elliptical distributions and so we stick to this option.

We set the regularization parameter in Step 2 via the EBIC (Chen and Chen
(2008); Foygel and Drton (2010), function huge.select). The problem (11) is
convex in K and so the solution is unique. Its existence follows from (Lauritzen

2The aim of Zhao and Liu (2014) was to estimate the inverse covariance matrix and not
just its support. Thus, estimating the variances was an important intermediate step. In our
case this is not relevant.
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and Zwiernik, 2020, Theorem 8.7). There are several coordinate descent algo-
rithms that are guaranteed to converge and we use interchangeably the one
implemented in the R package huge and the GOLAZO algorithm of Lauritzen
and Zwiernik (2020).

It is important to observe that the same procedure can be used for transel-
liptical data as Kendall’s τ is invariant under monotone transformations (Liu,
Han and Zhang, 2012). This means that, for both the elliptical and the transel-
liptical model, we get exactly the same estimates and only the interpretation
of zeros in the inverse covariance matrix changes. We also note that one may
replace the graphical LASSO estimator in Step 2 with the CLIME estimator of
Cai, Liu and Luo (2011).

Remark A.1. The standard graphical LASSO approach for Gaussian data dif-
fers from the above approach only by the fact that S in Step 1 is the sample
correlation matrix.

Fitting totally positive elliptical distributions can be done in a straightfor-
ward way. We simply replace the penalized loss (11) in Step 2 and minimize
− log det(K) + tr(SK) over the set of all positive definite matrices K satisfy-
ing Kij ≤ 0 for all i ≤ j. Here, by (Slawski and Hein, 2015, Theorem 1), the
optimum exists (and is unique) with probability one as long as the sample size
is at least 2. This optimization can be performed iteratively using any of the
procedures described in Slawski and Hein (2015); Lauritzen, Uhler and Zwiernik
(2019b); Lauritzen and Zwiernik (2020). Here we use the latter because it scales
better to large dimensions.

Appendix B: Proofs of Section 4.3

Proof of Proposition 4.5. IfX ∼ E(μ,Σ) then, by Proposition 2.1, for every I ⊂
V , XI ∼ E(μI ,ΣII). If Σ ∈ IM then ΣII ∈ IM by Johnson and Smith (2011),
Corollary 2.3.2. Similarly, Σ ∈ IM then ΣII − ΣIJΣ

−1
JJΣJI ∈ IM by Johnson

and Smith (2011), Corollary 2.3.1, proving that the conditional distribution
of XI given XJ is a positive elliptical distribution. The same argument after
replacingX with f(Y ) works for transelliptical distributions. The last statement
follows directly from the definition of transelliptical distributions.

Proof of Proposition 4.6. These results are well known for Gaussian MTP2 dis-
tributions; c.f. Fallat et al. (2017). It is convenient to translate them to equiva-
lent statements in terms of Σ; c.f. (Drton, Sturmfels and Sullivant, 2009, Propo-
sition 3.1.13). The statement about the conditional mean and the first state-
ment about conditional correlations follow from the fact that IM-matrices are
closed under taking principal submatrices; c.f. Johnson and Smith (2011), Corol-
lary 2.3.2. In consequence, for all i, j ∈ V and C ⊆ V \ {i, j} it holds that
(ΣC∪{i,j},C∪{i,j})

−1
ij ≤ 0. The last part states that if detΣC∪{i},C∪{j} = 0 for

some C ⊆ V \{i, j} then detΣD∪{i},D∪{j} = 0 for every D ⊇ C. This statement
is given in (Johnson and Smith, 2011, Theorem 3.3).
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Proof of Proposition 4.7. Since the left implication is obvious (take g identity,
C = V \ {i, j}) we focus on the right implication. Let A = C ∪ {i}. By the law
of total expectation

cov(g(Xi), Xj |XC) = EXi|XC

[
E

(
(g(Xi)− Eg(Xi))(Xj − μj) | Xi, XC

)]
= EXi|XC

[
(g(Xi)− Eg(Xi))E

(
Xj − μj | XA

)]
= EXi|XC

[
(g(Xi)− Eg(Xi))h̃(XA)

]
.

where we denote h̃(XA) = E(Xj − μj |XA) = Σj,AΣ
−1
A (XA − μA). Denote K̃ =

(ΣA∪{j})
−1, which is an M-matrix by Johnson and Smith (2011), Corollary

2.3.2. Using that K̃ is an M-matrix, expression (4) gives that all entries in the
vector Σj,AΣ

−1
A are non-negative, hence h̃(XA) is a non-decreasing function of

XA. Further, note that for any fixed XC we can write h̃(XA) as a function of
Xi only. Denote this function by hXC

(Xi). We thus have

cov(g(Xi), Xj |XC) = cov(g(Xi), hXC
(Xi)|XC),

where now both g and h are nondecreasing functions of Xi. By Property 3 in
Esary, Proschan andWalkup (1967) it follows that cov(g(Xi), hXC

(Xi)|XC) ≥ 0.

Appendix C: Proof of Proposition 4.3

Since both the CI property and t-distribution are closed under taking margins,
it is enough to show that no bivariate t-distribution is conditionally increasing.
Suppose (X1, X2) has bivariate t-distribution with k degrees of freedom. With-
out loss of generality assume that the mean is zero and that the scale matrix Σ
satisfies Σ11 = Σ22 = 1, Σ12 = ρ. By Remark 4.1, necessarily ρ ≥ 0. Moreover, if
ρ = 0 the statement follows from Theorem 4.2 so assume ρ > 0. The conditional
distribution of X1 given X2 = x2 is a t-Student distribution with k∗ = k + 1
degrees of freedom, μ∗ = ρx2, and scale parameter

σ∗ =

√
1− ρ2

k + 1
(k + x2

2)

(c.f. Section 5 in Roth (2012)). To show that (X1, X2) is not CI we provide
an increasing function h for which E(h(X1)|X2 = x2) is not increasing in x2.
Let h(x1) = 11[k,+∞)(x1), so that E(h(X1)|X2 = x2) = 1− FX1|X2

(k|x2), where
FX1|X2

is the conditional cumulative distribution function (c.d.f.). Using the
formula (Johnson, Kotz and Balakrishnan, 1994, (28.4a)) for the c.d.f. of the
t-Student distribution, if μ∗ ≤ k (or equiv. x2 ≤ k/ρ), we express E(h(X1)|X2 =
x2) in terms of the incomplete beta function

E(h(X1)|X2 = x2) =
1

2
· Iα(x2)

(
k + 1

2
,
1

2

)
for x2 ≤ k

ρ
,
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where

α(x2) =
k + 1(

k−μ∗

σ∗

)2

+ k + 1
=

1

1 + (k−ρx2)
2

(k+x2
2)(1−ρ2)

∈ (0, 1).

Using the definition of the incomplete beta function in terms of the beta function
we get that for a positive constant C and x2 ≤ k/ρ

E(h(X1)|X2 = x2) = C

∫ α(x2)

0

t(k−1)/2(1− t)−1/2dt.

Since the integral above is strictly increasing in α(x2), to show that E(h(X1)|X2=
x2) is not increasing, it is enough to show that α(x2) is not an increasing function
for x2 ≤ k/ρ. But direct calculations show

α′(−ρ) = 0, α′′(−ρ) =
2k(1− ρ2)

(k + 1)2(k + ρ2)
> 0

showing that α is strictly decreasing for all x2 ≤ −ρ in some neighborhood of
−ρ.

Appendix D: Proof of Theorem 4.9

Without loss of generality assume X has mean zero and K = Σ−1 satisfies
K11 = · · · = Kdd = 1. In this case Kij = −ρij·V \{i,j} for all i = j. If X admits a
strictly positive and twice differentiable density function f(x) then X is MTP2

if and only if for every 1 ≤ i < j ≤ d

∂2

∂xi∂xj
log f(x) ≥ 0 for all x ∈ R

d.

This result, found for example in Bach (2019) can be proved by elementary
means, for example, by applying a second-order mean value theorem (Theo-
rem 9.40 in Rudin (1964)). In our case f(x) = |Σ|−1/2ϕd(x

TKx) so f is MTP2

if and only if for every 1 ≤ i < j ≤ d

∂2

∂xi∂xj
φ(xTKx) ≥ 0 for all x ∈ R

d. (12)

Basic calculus gives ∇φ(xTKx) = 2φ′(xTKx)Kx and

∇2φ(xTKx) = 2φ′(xTKx)K + 4φ′′(xTKx)KxxTK.

If x = 0 we perform a change of coordinates to t and v = 1√
t
Kx constrained by

t > 0 and vTΣv = 1. We extend it to the whole R
d by mapping x = 0 to t = 0

and v = 0. In the new coordinate system, condition (12) holds if and only if for
all 1 ≤ i < j ≤ d

2φ′(t)Kij + 4φ′′(t) t vivj ≥ 0 for all t, v. (13)
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Taking v such that vi = 0 (which includes the x = 0 case), (13) implies that
φ′(t) ≤ 0 for all t ≥ 0, which gives the first condition. If φ′(t) = 0 and t > 0,
(13) cannot hold for all v unless φ′′(t) = 0, which gives the second condition in
the theorem. Now suppose t is such that φ′(t) < 0 then (13) becomes

2vivj
tφ′′(t)

φ′(t)
≤ −Kij . (14)

To study the bounds on 2vivj subject to vTΣv = 1 we define the Lagrangian

L(v, λ) = 2vivj − λ(vTΣv − 1).

Denote A = {i, j} and B = V \A. The Lagrangian condition ∇vL(v, λ) = 0 can
be then reduced to vB = −Σ−1

BBΣBAvA and

[
vj
vi

]
= λ(ΣAA − ΣABΣ

−1
BBΣBA)

[
vi
vj

]
= λK−1

AA

[
vi
vj

]
.

Multiplying both sides by KAA we get[
1 Kij

Kij 1

] [
vj
vi

]
= λ

[
vi
vj

]
.

All stationary points must then satisfy v2i = v2j . The maximal value of 2vivj
subject to vTΣv = 1 is 2α2 obtained at a point where vi = vj = α. The value
of α can be found by noting that

vTΣv = α21T (ΣAA − ΣABΣ
−1
BBΣBA)1 =

2α2

1 +Kij
,

where 1 is the vector of ones. Since vTΣv = 1, 2α2 = 1−ρij·V \{i,j}. In a similar
way we show that the minimal value of 2vivj is −(1 + ρij·V \{i,j}). This gives
that (14) is equivalent to

−
ρij·V \{i,j}

1 + ρij·V \{i,j}
≤ tφ′′(t)

φ′(t)
≤

ρij·V \{i,j}
1− ρij·V \{i,j}

.

This inequality must be satisfied for every i = j. However the functions ρ/(1 +
ρ) and ρ/(1 − ρ) are increasing for ρ ∈ [0, 1) and so minij ρij·V \{i,j}/(1 −
ρij·V \{i,j}) = ρ∗/(1 − ρ∗) and minij ρij·V \{i,j}/(1 + ρij·V \{i,j}) = ρ∗/(1 + ρ∗).
Thus we arrive at (8).

Now suppose that φ is such that φ′(t) ≤ 0; φ′(t) = 0 implies that φ′′(t) = 0;
and (8) holds for all t ∈ T. By reversing the argument above we conclude that
(13) holds for all t ∈ T. For all the remaining t this inequality also holds because
then both sides are equal to zero. However, as we argued before (13) holds for
all t if and only if X is MTP2. This concludes our proof.
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Appendix E: Proof of 4.10

Let β∗ = inft∈T

tφ′′(t)
φ′(t) and β∗ = supt∈T

tφ′′(t)
φ′(t) . First suppose that for some K =

Σ−1 the underlying elliptical distribution is MTP2. By Theorem 4.9 it follows
that φ′(t) ≤ 0 and φ′′(t) = 0 whenever φ′(t) = 0. Assume without loss that K
is normalized to have ones on the diagonal so that Kij = −ρij·V\{i,j} ≤ 0 for
i = j. The fact that partial correlations must be necessarily nonnegative follows
from Remark 4.1. Since K is an M-matrix, by Proposition 6.1 in Lauritzen,
Uhler and Zwiernik (2019b) we can shrink each off-diagonal entry towards zero
preserving positive-definitedness. In particular, the matrix K ′ = (1 + ρ∗)I −
ρ∗11

T obtained from K by replacing each off-diagonal entry with −ρ∗, where
ρ∗ = mini,j ρij·V \{i,j}, must be positive definite. This matrix is positive definite
if and only if ρ∗ < 1/(d − 1), which gives an upper bound on ρ∗ on the top
of the two upper bounds implied by Theorem 4.9, namely, ρ∗ ≥ β∗/(1 + β∗)
and ρ∗ ≥ −β∗/(β∗ + 1) (use the fact that β∗ > −1/2 by the last part of
Theorem 4.9). The intersection of these three constraints is non-empty if and

only if 1
d−1 > max{ β∗

1+β∗ ,− β∗
β∗+1}. In other words, β∗ < 1/(d−2) and β∗ > −1/d,

which finished the proof of one implication.
Now suppose φ′(t) ≤ 0 and φ′′(t) = 0 whenever φ′(t) = 0. If, in addition, the

third condition in the theorem is satisfied then β∗ > −1/d and β∗ < 1/(d− 2).
Let K be a matrix with ones on the diagonal and −ρ∗ on the remaining entries.
If 0 ≤ ρ∗ < 1/(d − 1) then K is positive definite. If ρ∗ ↗ 1/(d − 1) then
ρ∗/(1 − ρ∗) ↗ 1/(d − 2) and −ρ∗/(1 + ρ∗) ↘ −1/d. Since β∗ > −1/d and
β∗ < 1/(d− 2) we can always find ρ∗ close enough to 1/(d− 1) so that

− ρ∗
1 + ρ∗

≤ β∗ ≤ β∗ ≤ ρ∗
1− ρ∗

.

By Theorem 4.9 the corresponding distribution is MTP2.
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Bühlmann, P., Kalisch, M. and Maathuis, M. H. (2010). Variable selection
in high-dimensional linear models: partially faithful distributions and the PC-
simple algorithm. Biometrika 97 261–278. MR2650737

Cai, T., Liu, W. and Luo, X. (2011). A constrained �1-minimization approach
to sparse precision matrix estimation. Journal of the American Statistical
Association 106 594–607.

Chen, J. and Chen, Z. (2008). Extended Bayesian information criteria for
model selection with large model spaces. Biometrika 95 759-771. MR2443189

Colangelo, A., Scarsini, M. and Shaked, M. (2005). Some notions of mul-
tivariate positive dependence. Insurance: Mathematics and Economics 37 13–
26. MR2156593

Drton, M., Sturmfels, B. and Sullivant, S. (2009). Lectures on Algebraic
Statistics 39. Birkhäuser Basel. MR2723140
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