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Abstract: The paper presents new metrics to quantify and test for (i)
the equality of distributions and (ii) the independence between two high-
dimensional random vectors. We show that the energy distance based on
the usual Euclidean distance cannot completely characterize the homogene-
ity of two high-dimensional distributions in the sense that it only detects
the equality of means and the traces of covariance matrices in the high-
dimensional setup. We propose a new class of metrics which inherits the
desirable properties of the energy distance and maximum mean discrep-
ancy/(generalized) distance covariance and the Hilbert-Schmidt Indepen-
dence Criterion in the low-dimensional setting and is capable of detect-
ing the homogeneity of/completely characterizing independence between
the low-dimensional marginal distributions in the high dimensional setup.
We further propose t-tests based on the new metrics to perform high-
dimensional two-sample testing/independence testing and study their
asymptotic behavior under both high dimension low sample size (HDLSS)
and high dimension medium sample size (HDMSS) setups. The computa-
tional complexity of the t-tests only grows linearly with the dimension and
thus is scalable to very high dimensional data. We demonstrate the superior
power behavior of the proposed tests for homogeneity of distributions and
independence via both simulated and real datasets.

Keywords and phrases: Distance covariance, energy distance, high di-
mensionality, Hilbert-Schmidt independence criterion, independence test,
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1. Introduction

Nonparametric two-sample testing of homogeneity of distributions has been a
classical problem in statistics, finding a plethora of applications in goodness-of-
fit testing, clustering, change-point detection and so on. Some of the most tradi-
tional tools in this domain are Kolmogorov-Smirnov test, and Wald-Wolfowitz
runs test, whose multivariate and multidimensional extensions have been stud-
ied by [10, 12, 4] among others. [16] proposed a distribution-free multivari-
ate generalization of the Wald-Wolfowitz runs test applicable for arbitrary but
fixed dimensions. [38] proposed another distribution-free test for multivariate

5455

https://imstat.org/journals-and-publications/electronic-journal-of-statistics/
https://doi.org/10.1214/21-EJS1889
mailto:deep20@uw.edu
mailto:zhangxiany@stat.tamu.edu


5456 S. Chakraborty and X. Zhang

two-sample problem based on k-nearest neighbor (k-NN) graphs. [28] suggested
a technique for reducing the dimensionality by examining the distribution of
interpoint distances. In a recent novel work, [8] proposed graph-based tests
for moderate to high dimensional data and non-Euclidean data. The last two
decades have seen an abundance of literature on distance and kernel-based tests
for equality of distributions. Energy distance (first introduced by [44]) and max-
imum mean discrepancy or MMD (see [19]) have been widely studied in both
the statistics and machine learning communities. [39] provided a unifying frame-
work establishing the equivalence between the (generalized) energy distance and
MMD. Although there have been some very recent works to gain insight on the
decaying power of the distance and kernel-based tests for high dimensional in-
ference (see for example [32, 33, 24, 25]), the behavior of these tests in the high
dimensional setup is still a pretty unexplored area.

Measuring and testing for independence between two random vectors has
been another fundamental problem in statistics, which has found applications
in a wide variety of areas such as independent component analysis, feature se-
lection, graphical modeling, causal inference, etc. There has been an enormous
amount of literature on developing dependence metrics to quantify non-linear
and non-monotone dependence in the low dimensional context. [17, 18] intro-
duced a kernel-based independence measure, namely the Hilbert-Schmidt Inde-
pendence Criterion (HSIC). [2] proposed a consistent test of independence of two
ordinal random variables based on an extension of Kendall’s tau. [23] suggested
tests of independence based on the RV coefficient. [56] proposed a methodol-
ogy to characterize independence using projection correlation. For other recent
works on measuring and testing for independence in low dimensions, we refer
the reader to [51, 36, 37, 3, 7, 53, 27] among others. [47], in their seminal paper,
introduced distance covariance (dCov) to characterize dependence between two
random vectors of arbitrary dimensions. [26] extended the notion of distance
covariance from Euclidean spaces to arbitrary metric spaces. [39] established
the equivalence between HSIC and (generalized) distance covariance via the
correspondence between positive definite kernels and semi-metrics of negative
type. Over the last decade, the idea of distance covariance has been widely ex-
tended and analyzed in various ways; see for example [55, 49, 50, 43, 21, 54, 15]
among many others. There have been some very recent literature which aims at
generalizing distance covariance to quantify the joint dependence among more
than two random vectors; see for example [29, 22, 6, 5, 52]. However, in the
high dimensional setup, the literature is scarce, and the behavior of the widely
used distance and kernel-based dependence metrics is not very well explored till
date. [48] proposed a distance correlation based t-test to test for independence
in high dimensions. In a very recent work, [57] showed that in the high dimen-
sion low sample size (HDLSS) setting, i.e., when the dimensions grow while the
sample size is held fixed, the sample distance covariance can only measure the
component-wise linear dependence between the two vectors. As a consequence,
the distance correlation based t-test proposed by [48] for independence between
two high dimensional random vectors has trivial power when the two random
vectors are nonlinearly dependent but component-wise uncorrelated. As a rem-
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edy, [57] proposed a test by aggregating the pairwise squared sample distance
covariances and studied its asymptotic behavior under the HDLSS setup.

This paper presents a new class of metrics to quantify the homogeneity of
distributions and independence between two high-dimensional random vectors.
The core of our methodology is a new way of defining the distance between
sample points (interpoint distance) in the high-dimensional Euclidean spaces.
In the first part of this work, we show that the energy distance based on the
usual Euclidean distance cannot completely characterize the homogeneity of two
high-dimensional distributions in the sense that it only detects the equality of
means and the traces of covariance matrices in the high-dimensional setup. To
overcome such a limitation, we propose a new class of metrics based on the new
distance which inherits the nice properties of energy distance and MMD in the
low-dimensional setting and is capable of detecting the pairwise homogeneity of
the low-dimensional marginal distributions in the HDLSS setup. We construct
a high-dimensional two sample t-test based on the U-statistic type estimator of
the proposed metric, which can be viewed as a generalization of the classical
two-sample t-test with equal variances. We show under the HDLSS setting that
the new two sample t-test converges to a central t-distribution under the null
and it has nontrivial power for a broader class of alternatives compared to the
energy distance. We further show that the two sample t-test converges to a
standard normal limit under the null when the dimension and sample size both
grow to infinity with the dimension growing more rapidly. It is worth mentioning
that we develop an approach to unify the analysis for the usual energy distance
and the proposed metrics. Compared to existing works, we make the following
contribution.

• We derive the asymptotic variance of the generalized energy distance un-
der the HDLSS setting and propose a computationally efficient variance
estimator (whose computational cost is linear in the dimension). Our anal-
ysis is based on a pivotal t-statistic which does not require permutation or
resampling-based inference and allows an asymptotic exact power analysis.

In the second part, we propose a new framework to construct dependence met-
rics to quantify the dependence between two high-dimensional random vectorsX
and Y of possibly different dimensions. The new metric, denoted by D2(X,Y ),
generalizes both the distance covariance and HSIC. It completely character-
izes independence between X and Y and inherits all other desirable properties
of the distance covariance and HSIC for fixed dimensions. In the HDLSS set-
ting, we show that the proposed population dependence metric behaves as an
aggregation of group-wise (generalized) distance covariances. We construct an
unbiased U-statistic type estimator of D2(X,Y ) and show that with growing
dimensions, the unbiased estimator is asymptotically equivalent to the sum of
group-wise squared sample (generalized) distance covariances. Thus it can quan-
tify group-wise non-linear dependence between two high-dimensional random
vectors, going beyond the scope of the distance covariance based on the usual
Euclidean distance and HSIC which have been recently shown only to capture
the componentwise linear dependence in high dimension, see [57]. We further
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propose a t-test based on the new metrics to perform high-dimensional inde-
pendence testing and study its asymptotic size and power behaviors under both
the HDLSS and high dimension medium sample size (HDMSS) setups. In par-
ticular, under the HDLSS setting, we prove that the proposed t-test converges
to a central t-distribution under the null and a noncentral t-distribution with
a random noncentrality parameter under the alternative. Through extensive
numerical studies, we demonstrate that the newly proposed t-test can capture
group-wise nonlinear dependence which cannot be detected by the usual distance
covariance and HSIC in the high dimensional regime. Compared to the marginal
aggregation approach in [57], our new method enjoys two major advantages.

• Our approach provides a neater way of generalizing the notion of dis-
tance and kernel-based dependence metrics. The newly proposed metrics
completely characterize dependence in the low-dimensional case and cap-
ture group-wise nonlinear dependence in the high-dimensional case. In this
sense, our metric can detect a wider range of dependence compared to the
marginal aggregation approach.

• The computational complexity of the t-tests only grows linearly with the
dimension and thus is scalable to very high dimensional data.

Notation. Let X = (X1, . . . Xp) ∈ R
p and Y = (Y1, . . . , Yq) ∈ R

q be two
random vectors of dimensions p and q respectively. Denote by ‖·‖p the Euclidean
norm of Rp (we shall use it interchangeably with ‖·‖ when there is no confusion).
Let 0p be the origin of Rp. We use X ⊥⊥ Y to denote that X is independent

of Y , and use “X
d
= Y ” to indicate that X and Y are identically distributed.

Let (X ′, Y ′), (X ′′, Y ′′) and (X ′′′, Y ′′′) be independent copies of (X,Y ). We
utilize the order in probability notations such as stochastic boundedness Op

(big O in probability), convergence in probability op (small o in probability)
and equivalent order �, which is defined as follows: for a sequence of random
variables {Zn}∞n=1 and a sequence of real numbers {an}∞n=1, Zn �p an if and only
if Zn/an = Op(1) and an/Zn = Op(1) as n → ∞. For a metric space (X , dX ),
let M(X ) and M1(X ) denote the set of all finite signed Borel measures on
X and the subset of all probability measures on X , respectively. We say that
v ∈ M(X ) has finite first moment if

∫
X dX (x, x0) d|v|(x) < ∞ for some x0 ∈ X .

Define M1
dX

(X ) := {v ∈ M(X ) : ∃x0 ∈ X s.t.
∫
X dX (x, x0) d|v|(x) < ∞}.

For θ > 0, define Mθ
K(X ) := {v ∈ M(X ) :

∫
X Kθ(x, x) d|v|(x) < ∞}, where

K : X ×X → R is a bivariate kernel function. Define M1
dY

(Y) and Mθ
K(Y) in a

similar way. For a matrix A = (akl)
n
k,l=1 ∈ R

n×n, define its U-centered version

Ã = (ãkl) ∈ R
n×n as follows

ãkl =

⎧⎪⎨⎪⎩akl −
1

n− 2

n∑
j=1

akj − 1

n− 2

n∑
i=1

ail +
1

(n− 1)(n− 2)

n∑
i,j=1

aij , k 	= l,

0, k = l,

(1.1)
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for k, l = 1, . . . , n. Define

(Ã · B̃) :=
1

n(n− 3)

∑
k �=l

ãklb̃kl

for Ã = (ãkl) and B̃ = (b̃kl) ∈ R
n×n. Denote by tr(A) the trace of a square

matrix A. A⊗ B denotes the kronecker product of two matrices A and B. Let
Φ(·) be the cumulative distribution function of the standard normal distribu-
tion. Denote by ta,b the noncentral t-distribution with a degrees of freedom and
noncentrality parameter b. Write ta = ta,0. Denote by qα,a and Zα the upper α
quantile of the distribution of ta and the standard normal distribution, respec-
tively, for α ∈ (0, 1). Also denote by χ2

a the chi-square distribution with a degrees
of freedom. Denote U ∼ Rademacher (0.5) if P (U = 1) = P (U = −1) = 0.5.
Let 1A denote the indicator function associated with a set A. Finally, denote
by �a
 the integer part of a ∈ R.

2. An overview: distance and kernel-based metrics

2.1. Energy distance and MMD

Energy distance [45, 46, 1] or the Euclidean energy distance between two random
vectors X,Y ∈ R

p and X ⊥⊥ Y with E‖X‖p < ∞ and E‖Y ‖p < ∞, is defined
as

ED(X,Y ) = 2E‖X − Y ‖p − E‖X −X ′‖p − E‖Y − Y ′‖p , (2.1)

where (X ′, Y ′) is an independent copy of (X,Y ). Theorem 1 in [46] shows that

ED(X,Y ) ≥ 0 and the equality holds if and only if X
d
= Y . In general, for an

arbitrary metric space (X , d), the generalized energy distance between X ∼ PX

and Y ∼ PY where PX , PY ∈ M1(X ) ∩M1
d(X ) is defined as

EDd(X,Y ) = 2E d(X,Y )− E d(X,X ′)− E d(Y, Y ′) . (2.2)

Definition 2.1 (Spaces of negative type). A metric space (X , d) is said to have
negative type if for all n ≥ 1, x1, . . . , xn ∈ X and α1, . . . , αn ∈ R with

∑n
i=1 αi =

0, we have

n∑
i,j=1

αi αj d(xi, xj) ≤ 0 . (2.3)

Suppose P,Q ∈ M1(X ) with finite first moments. When (X , d) has negative
type, ∫

X
d(x1, x2) d(P −Q)2(x1, x2) ≤ 0. (2.4)

We say that (X , d) has strong negative type if it has negative type and the
equality in (2.4) holds only when P = Q.
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If (X , d) has strong negative type, then EDd(X,Y ) completely characterizes
the homogeneity of the distributions of X and Y (see [26] and [39] for detailed
discussions). This quantification of homogeneity of distributions lends itself for
reasonable use in one-sample goodness-of-fit testing and two sample testing for
equality of distributions.

On the machine learning side, [19] proposed a kernel-based metric, namely
maximum mean discrepancy (MMD), to conduct two-sample testing for equality
of distributions. We provide some background before introducing MMD.

Definition 2.2 (RKHS). LetH be a Hilbert space of real valued functions defined
on some space X . A bivariate function K : X × X → R is called a reproducing
kernel of H if:

1. ∀x ∈ X ,K(·, x) ∈ H
2. ∀x ∈ X , ∀f ∈ H, 〈f,K(·, x)〉H = f(x)

where 〈·, ·〉H is the inner product associated with H. If H has a reproducing
kernel, it is said to be a reproducing kernel Hilbert space (RKHS).

By Moore-Aronszajn theorem, for every positive definite function (also called
a kernel) K : X ×X → R, there is an associated RKHS HK with the reproducing
kernel K. The map Π : M1(X ) → HK, defined as Π(P ) =

∫
X K(·, x) dP (x) for

P ∈ M1(X ) is called the mean embedding function associated with K. A kernel
K is said to be characteristic to M1(X ) if the map Π associated with K is
injective. Suppose K is a characteristic kernel on X . Then the MMD between

X ∼ PX and Y ∼ PY , where PX , PY ∈ M1(X ) ∩M1/2
K (X ) is defined as

MMDK(X,Y ) = ‖Π(PX) − Π(PY ) ‖HK . (2.5)

By virtue of K being a characteristic kernel, MMDK(X,Y ) = 0 if and only

if X
d
= Y . Lemma 6 in [19] shows that the squared MMD can be equivalently

expressed as

MMD2
K(X,Y ) = EK(X,X ′) + EK(Y, Y ′) − 2EK(X,Y ) . (2.6)

Theorem 22 in [39] establishes the equivalence between (generalized) energy
distance and MMD. Following is the definition of a kernel induced by a distance
metric (refer to Section 4.1 in [39] for more details).

Definition 2.3 (Distance-induced kernel and kernel-induced distance). Let (X , d)
be a metric space of negative type and x0 ∈ X . Denote K : X × X → R as

K(x, x′) =
1

2
{d(x, x0) + d(x′, x0)− d(x, x′)} . (2.7)

The kernel K is positive definite if and only if (X , d) has negative type, and thus
K is a valid kernel on X whenever d is a metric of negative type. The kernel
K defined in (2.7) is said to be the distance-induced kernel induced by d and
centered at x0. One the other hand, the distance d can be generated by the
kernel K through

d(x, x′) = K(x, x) +K(x′, x′)− 2K(x, x′). (2.8)
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Proposition 29 in [39] establishes that the distance-induced kernel K induced
by d is characteristic toM1(X )∩M1

K(X ) if and only if (X , d) has strong negative
type. Therefore, MMD can be viewed as a special case of the generalized energy
distance in (2.2) with d being the metric induced by a characteristic kernel.

Suppose {Xi}ni=1 and {Yi}mi=1 are i.i.d samples of X and Y respectively. A
U-statistic type estimator of Ed(X,Y ) is defined as

En,m(X,Y ) =
2

nm

n∑
k=1

m∑
l=1

d(Xk, Yl)−
1

n(n− 1)

n∑
k �=l

d(Xk, Xl)

− 1

m(m− 1)

m∑
k �=l

d(Yk, Yl) .

(2.9)

2.2. Distance covariance and HSIC

Distance covariance (dCov) was first introduced in the seminal paper by [47]
to quantify the dependence between two random vectors of arbitrary (fixed)
dimensions. Consider two random vectorsX ∈ R

p and Y ∈ R
q with E‖X‖p < ∞

and E‖Y ‖q < ∞. The Euclidean dCov between X and Y is defined as the
positive square root of

dCov2(X,Y ) =
1

cpcq

∫
Rp+q

|fX,Y (t, s)− fX(t)fY (s)|2

‖t‖1+p
p ‖s‖1+q

q

dtds,

where fX , fY and fX,Y are the individual and joint characteristic functions of
X and Y respectively, and, cp = π(1+p)/2/Γ((1 + p)/2) is a constant with Γ(·)
being the complete gamma function.

The key feature of dCov is that it completely characterizes independence be-
tween two random vectors of arbitrary dimensions, or in other words dCov(X,Y )
= 0 if and only if X ⊥⊥ Y . According to Remark 3 in [47], dCov can be equiva-
lently expressed as

dCov2(X,Y ) = E ‖X −X ′‖p‖Y − Y ′‖q + E ‖X −X ′‖p E ‖Y − Y ′‖q
− 2E ‖X −X ′‖p‖Y − Y ′′‖q.

(2.10)

Lyons (2013) extends the notion of dCov from Euclidean spaces to general metric
spaces. For arbitrary metric spaces (X , dX ) and (Y , dY), the generalized dCov
between X ∼ PX ∈ M1(X ) ∩ M1

dX
(X ) and Y ∼ PY ∈ M1(Y) ∩ M1

dY
(Y) is

defined as

D2
dX ,dY (X,Y ) = E dX (X,X ′)dY(Y, Y

′) + E dX (X,X ′)E dY(Y, Y
′)

− 2E dX (X,X ′)dY(Y, Y
′′).

(2.11)

Theorem 3.11 in [26] shows that if (X , dX ) and (Y , dY) are both metric spaces
of strong negative type, then DdX ,dY (X,Y ) = 0 if and only if X ⊥⊥ Y . In other
words, the complete characterization of independence by dCov holds true for
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any metric spaces of strong negative type. According to Theorem 3.16 in [26],
every separable Hilbert space is of strong negative type. As Euclidean spaces are
separable Hilbert spaces, the characterization of independence by dCov between
two random vectors in (Rp, ‖ · ‖p) and (Rq, ‖ · ‖q) is just a special case.

Hilbert-Schmidt Independence Criterion (HSIC) was introduced as a kernel-
based independence measure by [17, 18]. Suppose X and Y are arbitrary topolog-
ical spaces, KX and KY are characteristic kernels on X and Y with the respective
RKHSs HKX and HKY . Let K = KX ⊗KY be the tensor product of the kernels
KX and KY , and, HK be the tensor product of the RKHSs HKX and HKY . The

HSIC between X ∼ PX ∈ M1(X )∩M1/2
K (X ) and Y ∼ PY ∈ M1(Y)∩M1/2

K (Y)
is defined as

HSICKX ,KY (X,Y ) = ‖Π(PXY ) − Π(PXPY ) ‖HK , (2.12)

where PXY denotes the joint probability distribution of X and Y . The HSIC
between X and Y is essentially the MMD between the joint distribution PXY

and the product of the marginals PX and PY . Clearly, HSICKX ,KY (X,Y ) = 0
if and only if X ⊥⊥ Y . [17] shows that the squared HSIC can be equivalently
expressed as

HSIC2
KX ,KY (X,Y ) = EKX (X,X ′)KY(Y, Y

′) + EKX (X,X ′)EKY(Y, Y
′)

− 2EKX (X,X ′)KY(Y, Y
′′).

(2.13)

Theorem 24 in [39] establishes the equivalence between the generalized dCov
and HSIC.

For an observed random sample (Xi, Yi)
n
i=1 from the joint distribution of X

and Y , a U-statistic type estimator of the generalized dCov in (2.11) can be
defined as

D̃2
n ; dX ,dY

(X,Y ) = (Ã · B̃) =
1

n(n− 3)

∑
k �=l

ãklb̃kl , (2.14)

where Ã, B̃ are the U-centered versions (see (1.1)) of A =
(
dX (Xk, Xl)

)n
k,l=1

and

B =
(
dY(Yk, Yl)

)n
k,l=1

, respectively. We denote D̃2
n ; dX ,dY

(X,Y ) by dCov2n(X,Y )

when dX and dY are Euclidean distances.

3. New distance for Euclidean space

We introduce a family of distances for Euclidean space, which shall play a central
role in the subsequent developments. For x ∈ R

p̃, we partition x into p sub-
vectors or groups, namely x = (x(1), . . . , x(p)), where x(i) ∈ R

di with
∑p

i=1 di =
p̃. Let ρi be a metric or semimetric (see for example Definition 1 in [39]) defined
on R

di for 1 ≤ i ≤ p. We define a family of distances for Rp̃ as

Kd(x, x
′) :=

√
ρ1(x(1), x

′
(1)) + . . . + ρp(x(p), x

′
(p)) , (3.1)
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where x, x′ ∈ R
p̃ with x = (x(1), . . . , x(p)) and x′ = (x′

(1), . . . , x
′
(p)), and d =

(d1, d2, . . . , dp) with di ∈ Z+ and
∑p

i=1 di = p̃.

Proposition 3.1. Suppose each ρi is a metric of strong negative type on R
di .

Then
(
R

p̃,Kd

)
satisfies the following two properties:

1. Kd : Rp̃ × R
p̃ → [0,∞) is a valid metric on R

p̃;
2.
(
R

p̃,Kd

)
has strong negative type.

In a special case, suppose ρi is the Euclidean distance on R
di . By Theorem

3.16 in [26], (Rdi , ρi) is a separable Hilbert space, and hence has strong negative
type. Then the Euclidean space equipped with the metric

Kd(x, x
′) =

√
‖x(1) − x′

(1)‖ + . . . + ‖x(p) − x′
(p)‖ . (3.2)

is of strong negative type. Further, if all the components x(i) are unidimensional,
i.e., di = 1 for 1 ≤ i ≤ p, then the metric boils down to

Kd(x, x
′) = ‖x− x′‖1/21 =

√√√√ p∑
j=1

|xj − x′
j | , (3.3)

where ‖x‖1 =
∑p

j=1 |xj | is the l1 or the absolute norm on R
p. If

ρi(x(i), x
′
(i)) = ‖x(i) − x′

(i)‖2, 1 ≤ i ≤ p, (3.4)

then Kd reduces to the usual Euclidean distance. We shall unify the analysis of
our new metrics with the classical metrics by considering Kd which is defined
in (3.1) with

S1 each ρi being a metric of strong negative type on R
di ;

S2 each ρi being a semimetric defined in (3.4).

The first case corresponds to the newly proposed metrics while the second case
leads to the classical metrics based on the usual Euclidean distance.

Remark 3.1. The square root in the definition of Kd in (3.1) is important
not only to affirm that

(
R

p̃,Kd

)
has strong negative type, but also in deriving

Proposition 4.1 via some suitable Taylor’s expansions. Proposition 4.1 in turn
plays a key role in the subsequent developments of the paper.

Remarks 3.2 and 3.3 provide two different ways of generalizing the class in
(3.1). To be focused, our analysis below shall only concern about the distances
defined in (3.1). In the numerical studies in Section 6, we consider ρi to be
the Euclidean distance and the distances induced by the Laplace and Gaussian
kernels (see Definition 2.3) which are of strong negative type on R

di for 1 ≤ i ≤
p.

Remark 3.2. A more general family of distances can be defined as

Kd,r(x, x
′) =

(
ρ1(x(1), x

′
(1)) + · · ·+ ρp(x(p), x

′
(p))

)r
, 0 < r < 1.
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According to Remark 3.19 of [26], the space (Rp̃,Kd,r) is of strong negative type.
The proposed distance is a special case with r = 1/2.

Remark 3.3. Based on the proposed distance, one can construct the generalized
Gaussian and Laplacian kernels as

f(Kd(x, x
′)/γ)=

{
exp(−K2

d(x, x
′)/γ2), f(x)=exp(−x2) for Gaussian kernel,

exp(−Kd(x, x
′)/γ), f(x)=exp(−x) for Laplacian kernel.

If Kd is translation invariant, then by Theorem 9 in [42] it can be verified that
f(Kd(x, x

′)/γ) is a characteristic kernel on R
p̃. As a consequence, the Euclidean

space equipped with the distance

Kd,f (x, x
′) = f(Kd(x, x)/γ) + f(Kd(x

′, x′)/γ)− 2f(Kd(x, x
′)/γ)

is of strong negative type.

Remark 3.4. In Sections 4 and 5 we develop new classes of homogeneity and
dependence metrics to quantify the pairwise homogeneity of distributions or the
pairwise non-linear dependence of the low-dimensional groups. A natural ques-
tion to arise in this regard is how to partition the random vectors optimally in
practice. We present some real data examples in Section 6.3 of the main paper
where all the group sizes have been considered to be one (as a special case of the
general theory proposed in this paper), and an additional real data example in
Section C of the appendix where the data admits some natural grouping. We be-
lieve this partitioning can be very much problem specific and may require subject
knowledge. It would be intriguing to develop an algorithm to find the optimal
groups using the data and perhaps some auxiliary information. One potential
way to do grouping might be to estimate and exploit the underlying directed
acyclic graph (DAG) structure representing the underlying distributions of the
random vectors. Further research along this line is on the way.

4. Homogeneity metrics

Consider X,Y ∈ R
p̃. Suppose X and Y can be partitioned into p sub-vectors

or groups, viz. X =
(
X(1), X(2), . . . , X(p)

)
and Y =

(
Y(1), Y(2), . . . , Y(p)

)
, where

the groups X(i) and Y(i) are di dimensional, 1 ≤ i ≤ p, and p might be fixed
or growing. We assume that X(i) and Y(i)’s are finite (low) dimensional vectors,
i.e., {di}pi=1 is a bounded sequence. Clearly p̃ =

∑p
i=1 di = O(p). Denote the

mean vectors and the covariance matrices of X and Y by μX and μY , and, ΣX

and ΣY , respectively. We propose the following class of metrics E to quantify
the homogeneity of the distributions of X and Y :

E(X,Y ) = 2EKd(X,Y ) − EKd(X,X ′) − EKd(Y, Y
′) , (4.1)

with d = (d1, . . . , dp). We shall drop the subscript d below for the ease of
notation.
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Assumption 4.1. Assume that sup1≤i≤p E ρ
1/2
i (X(i), 0di) < ∞ and

sup1≤i≤p E ρ
1/2
i (Y(i), 0di) < ∞.

Under Assumption 4.1, E is finite. In Section A.1 of the appendix we illus-
trate that in the low-dimensional setting, E(X,Y ) completely characterizes the
homogeneity of the distributions of X and Y .

Consider i.i.d. samples {Xk}nk=1 and {Yl}ml=1 from the respective distributions
of X and Y ∈ R

p̃, where Xk = (Xk(1), . . . , Xk(p)), Yl = (Yl(1), . . . , Yl(p)) for

1 ≤ k ≤ n, 1 ≤ l ≤ m and Xk(i), Yl(i) ∈ R
di . We propose an unbiased U-statistic

type estimator En,m(X,Y ) of E(X,Y ) as in equation (2.9) with d being the new
metric K. We refer the reader to Section A.1 of the appendix, where we show
that En,m(X,Y ) essentially inherits all the nice properties of the U-statistic type
estimator of generalized energy distance and MMD.

We define the following quantities which will play an important role in our
subsequent analysis:

τ2X = EK(X,X ′)2, τ2Y = EK(Y, Y ′)2, τ2 = EK(X,Y )2. (4.2)

In Case S2 (i.e., when K is the Euclidean distance), we have

τ2X = 2trΣX , τ2Y = 2trΣY , τ2 = trΣX + trΣY + ‖μX − μY ‖2. (4.3)

Under the null hypothesis H0 : X
d
= Y , it is clear that τ2X = τ2Y = τ2.

In the subsequent discussion, we study the asymptotic behavior of E in the
high-dimensional framework, i.e., when p grows to ∞ with fixed n and m (dis-
cussed in Subsection 4.1) and when n and m grow to ∞ as well (discussed
in Subsection B.1 in the appendix). We point out some limitations of the test
for homogeneity of distributions in the high-dimensional setup based on the
usual Euclidean energy distance. Consequently we propose a test based on the
proposed metric and justify its consistency for growing dimension.

4.1. High dimension low sample size (HDLSS)

In this subsection, we study the asymptotic behavior of the Euclidean energy
distance and our proposed metric E when the dimension grows to infinity while
the sample sizes n and m are held fixed. We make the following moment as-
sumption.

Assumption 4.2. There exist constants a, a′, a′′, A,A′, A′′ such that uniformly
over p,

0 < a ≤ inf
1≤i≤p

E ρi(X(i), X
′
(i) ) ≤ sup

1≤i≤p
E ρi(X(i), X

′
(i) ) ≤ A < ∞,

0 < a′ ≤ inf
1≤i≤p

E ρi(Y(i), Y
′
(i) ) ≤ sup

1≤i≤p
E ρi(Y(i), Y

′
(i) ) ≤ A′ < ∞,

0 < a′′ ≤ inf
1≤i≤p

E ρi(X(i), Y(i) ) ≤ sup
1≤i≤p

E ρi(X(i), Y(i) ) ≤ A′′ < ∞.
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Under Assumption 4.2, it is not hard to see that τX , τY , τ � p1/2. The propo-
sition below provides an expansion for K evaluated at random samples.

Proposition 4.1. Under Assumption 4.2, we have

K(X,X ′)

τX
= 1 +

1

2
LX(X,X ′) +RX(X,X ′), (4.4)

K(Y, Y ′)

τY
= 1 +

1

2
LY (Y, Y

′) +RY (Y, Y
′), (4.5)

and
K(X,Y )

τ
= 1 +

1

2
L(X,Y ) +R(X,Y ), (4.6)

where LX(X,X ′) :=
K2(X,X′)−τ2

X

τ2
X

, LY (Y, Y
′) :=

K2(Y,Y ′)−τ2
Y

τ2
Y

, L(X,Y ) :=

K2(X,Y )−τ2

τ2 , and RX(X,X ′), RY (Y, Y
′), R(X,Y ) are the remainder terms. In

addition, if LX(X,X ′), LY (Y, Y
′) and L(X,Y ) are op(1) random variables as

p → ∞, then RX(X,X ′) = Op

(
L2
X(X,X ′)

)
, RY (Y, Y

′) = Op

(
L2
Y (Y, Y

′)
)
and

R(X,Y ) = Op

(
L2(X,Y )

)
.

Henceforth we will drop the subscripts X and Y from LX , LY , RX and RY

for notational convenience. Theorem 4.1 and Lemma 4.1 below provide insights
into the behavior of E(X,Y ) in the high-dimensional framework.

Assumption 4.3. Assume that L(X,Y ) = Op(ap), L(X,X ′) = Op(bp) and
L(Y, Y ′) = Op(cp), where ap, bp, cp are positive real sequences satisfying ap =
o(1), bp = o(1), cp = o(1) and τa2p + τXb2p + τY c

2
p = o(1).

Remark 4.1. To illustrate Assumption 4.3, we observe that under assumption
4.2 we can write

var (L(X,X ′)) = O
( 1

p2

) p∑
i,j=1

cov
(
ρi(X(i), X

′
(i)) , ρj(X(j), X

′
(j))

)
= O

( 1

p2

) p∑
i,j=1

cov (Zi, Zj) ,

where Zi := ρi(X(i), X
′
(i)) for 1 ≤ i ≤ p. Assume that sup1≤i≤p E ρ2i (X(i), 0di) <

∞, which implies sup1≤i≤p EZ2
i < ∞. Under certain strong mixing conditions

or in general certain weak dependence assumptions, it is not hard to see that∑p
i,j=1 cov (Zi, Zj) = O(p) as p → ∞ (see for example Theorem 1.2 in [35]

or Theorem 1 in [13]). Therefore we have var (L(X,X ′)) = O( 1p ) and hence

by Chebyshev’s inequality, we have L(X,X ′) = Op(
1√
p ). We refer the reader

to Remark 2.1.1 in [57] for illustrations when each ρi is the squared Euclidean
distance.
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Theorem 4.1. Suppose Assumptions 4.2 and 4.3 hold. Further assume that the
following three sequences{√

pL2(X,Y )

1 + L(X,Y )

}
,

{√
pL2(X,X ′)

1 + L(X,X ′)

}
,

{√
pL2(Y, Y ′)

1 + L(Y, Y ′)

}
indexed by p are all uniformly integrable. Then we have

E(X,Y ) = 2τ − τX − τY + o(1). (4.7)

Remark 4.2. Remark D.1 in the appendix provides some illustrations on cer-
tain sufficient conditions under which {√pL2(X,Y )/(1+L(X,Y ))}, {√pL2(X,
X ′)/(1+L(X,X ′))} and {√pL2(Y, Y ′)/(1+L(Y, Y ′))} are uniformly integrable.

Remark 4.3. To illustrate that the leading term in equation (4.7) indeed gives
a close approximation of the population E(X,Y ), we consider the special case
when K is the Euclidean distance. Suppose X ∼ Np(0, Ip) and Y = X+W where
W ∼ Np(0, Ip) with W ⊥⊥ X. Clearly from (4.3) we have τ2X = 2p, τ2Y = 4p and
τ2 = 3p. We simulate large samples of sizes m = n = 5000 from the distributions
of X and Y for p = 20, 40, 60, 80 and 100. The large sample sizes are to ensure
that the U-statistic type estimator of E(X,Y ) gives a very close approximation
of the population E(X,Y ). In Table 1 we list the ratio between E(X,Y ) and the
leading term in (4.7) for the different values of p, which turn out to be very close
to 1, demonstrating that the leading term in (4.7) indeed approximates E(X,Y )
reasonably well.

Table 1

Ratio of E(X,Y ) and the leading term in (4.7) for different values of p.

p = 20 p = 40 p = 60 p = 80 p = 100
0.995 0.987 0.992 0.997 0.983

Lemma 4.1. Assume τ, τX , τY < ∞. We have

1. In Case S1, 2τ − τX − τY = 0 if and only if X(i)
d
= Y(i) for i ∈ {1, . . . , p};

2. In Case S2, 2τ − τX − τY = 0 if and only if μX = μY and trΣX = trΣY .

It is to be noted that assuming τ, τX , τY < ∞ does not contradict with
the growth rate τ, τX , τY = O(p1/2). Clearly under H0, 2τ − τX − τY = 0
irrespective of the choice of K. In view of Lemma 4.1 and Theorem 4.1, in
Case S2, the leading term of E(X,Y ) becomes zero if and only if μX = μY

and trΣX = trΣY . In other words, when dimension grows high, the Euclidean
energy distance can only capture the equality of the means and the first spectral
means, whereas our proposed metric captures the pairwise homogeneity of the

low dimensional marginal distributions of X(i) and Y(i). Clearly X(i)
d
= Y(i) for

1 ≤ i ≤ p implies μX = μY and trΣX = trΣY . Thus the proposed metric
can capture a wider range of inhomogeneity of distributions than the Euclidean
energy distance.
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Define

dkl(i) : = ρi(Xk(i), Yl(i)) − E
[
ρi(Xk(i), Yl(i))|Xk(i)

]
− E

[
ρi(Xk(i), Yl(i))|Yl(i)

]
+ E

[
ρi(Xk(i), Yl(i))

]
,

as the double-centered distance between Xk(i) and Yl(i) for 1 ≤ i ≤ p, 1 ≤
k ≤ n and 1 ≤ l ≤ m. Similarly define dXkl(i) and dYkl(i) as the double-centered
distances between Xk(i) and Xl(i) for 1 ≤ k 	= l ≤ n, and, Yk(i) and Yl(i) for

1 ≤ k 	= l ≤ m, respectively. Further define H(Xk, Yl) := 1
τ

∑p
i=1 dkl(i) for

1 ≤ k ≤ n , 1 ≤ l ≤ m, H(Xk, Xl) := 1
τX

∑p
i=1 d

X
kl(i) for 1 ≤ k 	= l ≤ n and

H(Yk, Yl) in a similar way.
We impose the following conditions to study the asymptotic behavior of the

(unbiased) U-statistic type estimator of E(X,Y ) in the HDLSS setup.

Assumption 4.4. For fixed n and m, as p → ∞,⎛⎝H(Xk, Yl)
H(Xs, Xt)
H(Yu, Yv)

⎞⎠
k,l, s<t, u<v

d−→

⎛⎝akl
bst
cuv

⎞⎠
k,l, s<t, u<v

,

where {akl, bst, cuv}k,l, s<t, u<v are jointly Gaussian with zero mean. Further we
assume that

var(akl) := σ2 = lim
p→∞

E
[
H2(Xk, Yl)

]
,

var(bst) := σ2
X = lim

p→∞
E
[
H2(Xs, Xt)

]
,

var(cuv) := σ2
Y = lim

p→∞
E
[
H2(Yu, Yv)

]
.

{akl, bst, cuv}k,l, s<t, u<v are all independent with each other.

Due to the double-centering property and the independence between the two
samples, it is straightforward to verify that {H(Xk, Yl), H(Xs, Xt),
H(Yu, Yv)}k,l,s<t,u<t are uncorrelated with each other. So it is natural to expect
that the limit {akl, bst, cuv}k,l, s<t, u<v are all independent with each other.

Remark 4.4. The above multi-dimensional central limit theorem is classic and
can be derived under suitable moment and weak dependence assumptions on the
components of X and Y , such as mixing or near epoch dependence conditions.
We refer the reader to [14] for a review on central limit theorem results under
weak dependence assumptions.

We describe a new two-sample t-test for testing the null hypothesis H0 :

X
d
= Y . The t statistic can be constructed based on either the Euclidean energy

distance or the new homogeneity metrics. We show that the t-tests based on
different metrics can have strikingly different power behaviors under the HDLSS
setup. The major difficulty here is to introduce a consistent and computationally
efficient variance estimator. Towards this end, we define a quantity called Cross
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Distance Covariance (cdCov) between X and Y , which plays an important role
in the construction of the t-test statistic:

cdCov2n,m(X,Y ) :=
1

(n− 1)(m− 1)

n∑
k=1

m∑
l=1

K̂(Xk, Yl)
2,

where

K̂(Xk, Yl) = K(Xk, Yl)−
1

n

n∑
i=1

K(Xi, Yl)−
1

m

m∑
j=1

K(Xk, Yj)

+
1

nm

n∑
i=1

m∑
j=1

K(Xi, Yj).

Let vs := s(s− 3)/2 for s = m,n. We introduce the following quantities

m0 :=
σ2 (n− 1)(m− 1) + σ2

X vn + σ2
Y vm

(n− 1)(m− 1) + vn + vm
,

σnm :=

√
σ2

nm
+

σ2
X

2n(n− 1)
+

σ2
Y

2m(m− 1)
,

anm :=

√
1

nm
+

1

2n(n− 1)
+

1

2m(m− 1)
,

Δ := lim
p→∞

2τ − τX − τY ,

(4.8)

where σ2, σ2
X and σ2

Y are defined in Assumption 4.4. Under Assumption 4.5,
further define

m∗
0 := lim

m,n→∞
m0 =

2α0 σ
2 + σ2

X + σ2
Y α2

0

2α0 + 1 + α2
0

,

a∗0 := lim
m,n→∞

anm
σnm

=
( 2α0 + α2

0 + 1

2α0 σ2 + α2
0 σ

2
X + σ2

Y

)1/2
.

We are now ready to introduce the two-sample t-test

Tn,m :=
En,m(X,Y )

anm
√

Sn,m

,

where

Sn,m :=
4(n− 1)(m− 1) cdCov2n,m(X,Y ) + 4vn D̃2

n(X,X) + 4vm D̃2
m(Y, Y )

(n− 1)(m− 1) + vn + vm

is the pool variance estimator with D̃2
n(X,X) and D̃2

m(Y, Y ) being the unbiased
estimators of the (squared) distance variances defined in equation (2.14). It is
interesting to note that the variability of the sample generalized energy distance
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depends on the distance variances as well as the cdCov. It is also worth men-
tioning that the computational complexity of the pool variance estimator and
thus the t-statistic is linear in p.

To study the asymptotic behavior of the test, we consider the following class
of distributions on (X,Y ):

P =
{
(PX , PY ) : X ∼ PX , Y ∼ PY , E[τL(X,Y )− τXL(X,X ′)|X] = op(1),

E[τL(X,Y )− τY L(Y, Y
′)|Y ] = op(1)

}
.

If PX = PY (i.e., under the H0), it is clear that (PX , PY ) ∈ P irrespective of
the metrics in the definition of L. Suppose ‖X − μX‖2 − tr(ΣX) = Op(

√
p) and

‖Y −μY ‖2−tr(ΣY ) = Op(
√
p), which hold under weak dependence assumptions

on the components of X and Y . Then in Case S2 (i.e., K is the Euclidean
distance), a set of sufficient conditions for (PX , PY ) ∈ P is given by

(μX − μY )
	(ΣX +ΣY )(μX − μY )=o(p), τ − τX =o(

√
p), τ − τY =o(

√
p),

(4.9)

which suggests that the first two moments of PX and PY are not too far away
from each other. In this sense, P defines a class of local alternative distributions
(with respect to the null H0 : PX = PY ). We now state the main result of this
subsection.

Theorem 4.2. In both Cases S1 and S2, under Assumptions 4.2, 4.3 and 4.4 as
p → ∞ with n and m remaining fixed, and further assuming that (PX , PY ) ∈ P,
we have

En,m(X,Y )− (2τ − τX − τY )

anm
√

Sn,m

d−→ σnm Z

anm
√
M

,

where

M
d
=

σ2 χ2
(n−1)(m−1) + σ2

Xχ2
vn + σ2

Y χ
2
vm

(n− 1)(m− 1) + vn + vm
,

χ2
(n−1)(m−1), χ

2
vn , χ

2
vm are independent chi-squared random variables, and Z ∼

N(0, 1). In other words,

Tn,m
d−→ σnm N(Δ/σnm, 1)

anm
√
M

,

where σnm and anm are defined in equation (4.8). In particular, under H0, we
have

Tn,m
d−→ t(n−1)(m−1)+vn+vm .

Based on the asymptotic behavior of Tn,m for growing dimensions, we propose
a test for H0 as follows: at level α ∈ (0, 1), reject H0 if

Tn,m > qα,(n−1)(m−1)+vn+vm
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and fail to reject H0 otherwise, where

P (t(n−1)(m−1)+vn+vm > qα,(n−1)(m−1)+vn+vm) = α.

For a fixed real number t, define

φn,m(t) := lim
p→∞

P (Tn,m ≤ t) = E

[
P

(
σnm N(Δ/σnm, 1)

anm
√
M

≤ t
∣∣∣ M)]

= E

[
Φ

(
anm

√
M t−Δ

σnm

)]
.

(4.10)

The asymptotic power curve for testingH0 based on Tn,m is given by 1−φm,n(t).
The following proposition gives a large sample approximation of the power curve.

Assumption 4.5. As m,n → ∞, m/n → α0 where α0 > 0.

Proposition 4.2. Suppose Δ = Δ0/
√
nm where Δ0 is a constant with respect to

n,m. Then for any bounded real number t as n,m → ∞ and under Assumption
4.5, we have

lim
m,n→∞

φn,m(t) = Φ
(
a∗0
√
m∗

0 t − Δ∗
0

)
,

where

Δ∗
0 = Δ0 lim

m,n→∞

1

σnm
√
nm

= Δ0

( 2α0

2σ2 α0 + σ2
X α2

0 + σ2
Y

)1/2
.

Under the alternative, if Δ0 → ∞ as n,m → ∞, we have

lim
m,n→∞

{
1− φn,m(qα,(n−1)(m−1)+vn+vm)

}
= 1,

thereby justifying the consistency of the test.

Remark 4.5. We first derive the power function 1 − φn,m(t) under the as-
sumption that n and m are fixed. The main idea behind Proposition 4.2 where
we let n,m → ∞ is to see whether we get a reasonably good approximation of
power when n,m are large. In a sense we are doing sequential asymptotics, first
letting p → ∞ and deriving the power function, and then deriving the leading
term by letting n,m → ∞. This is a quite common practice in Econometrics
(see for example [31]). The aim is to derive a leading term for the power when
n,m are fixed but large. Consider Δ = s/

√
nm (as in Proposition 4.2) and set

σ2 = σ2
X = σ2

Y = 1. In Figure 1 below, we plot the exact power (computed
from (4.10) with 50, 000 Monte Carlo samples from the distribution of M) with
n = m = 5 and 10, t = qα,(n−1)(m−1)+vn+vm and α = 0.05, over different values
of s. We overlay the large sample approximation of the power function (given
in Proposition 4.2) and observe that the approximation works reasonably well
even for small sample sizes. Clearly larger s results in better power and s = 0
corresponds to trivial power.
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Fig 1. Comparison of exact and approximate power.

We now discuss the power behavior of Tn,m based on the Euclidean energy
distance. In Case S2, it can be seen that

σ2
X = lim

p→∞

1

τ2X

p∑
i,i′=1

4 trΣ2
X(i, i′), (4.11)

where Σ2
X(i, i′) is the covariance matrix between X(i) and X(i′), and similar

expressions for σ2
Y . In case S2 (i.e., when K is the Euclidean distance), if we

further assume μX = μY , it can be verified that

σ2 = lim
p→∞

1

τ2

p∑
i,i′=1

4 tr
(
ΣX(i, i′) ΣY (i, i

′)
)
. (4.12)

Hence in Case S2, under the assumptions that μX = μY , tr ΣX = trΣY and
trΣ2

X = trΣ2
Y = trΣXΣY , it can be easily seen from equations (4.3), (4.11) and

(4.12) that

τ2X = τ2Y = τ2, σ2
X = σ2

Y = σ2, (4.13)

which implies that Δ∗
0 = 0 in Proposition 4.2. Consider the following class of

alternative distributions

HA = {(PX , PY ) : PX 	= PY , μX = μY , tr ΣX = trΣY ,

tr Σ2
X = trΣ2

Y = trΣXΣY }.

According to Theorem 4.2, the t-test Tn,m based on Euclidean energy distance
has trivial power against HA. In contrast, the t-test based on the proposed
metrics has non-trivial power against HA as long as Δ∗

0 > 0.

To summarize our contributions:
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• We show that the Euclidean energy distance can only detect the equality
of means and the traces of covariance matrices in the high-dimensional
setup. To the best of our knowledge, such a limitation of the Euclidean
energy distance has not been pointed out in the literature before.

• We propose a new class of homogeneity metrics which completely charac-
terizes homogeneity of two distributions in the low-dimensional setup and
has nontrivial power against a broader range of alternatives, or in other
words, can detect a wider range of inhomogeneity of two distributions in
the high-dimensional setup.

• Grouping allows us to detect homogeneity beyond univariate marginal
distributions, as the difference between two univariate marginal distribu-
tions is automatically captured by the difference between the marginal
distributions of the groups that contain these two univariate components.

• Consequently we construct a high-dimensional two-sample t-test whose
computational cost is linear in p. Owing to the pivotal nature of the lim-
iting distribution of the test statistic, no resampling-based inference is
needed.

Remark 4.6. Although the test based on our proposed statistic is asymptoti-
cally powerful against the alternative HA unlike the Euclidean energy distance, it
can be verified that it has trivial power against the alternative HA′ = {(X,Y ) :

X(i)
d
= Y(i), 1 ≤ i ≤ p}. Thus although it can detect differences between two

high-dimensional distributions beyond the first two moments (as a significant
improvement to the Euclidean energy distance), it cannot capture differences
beyond the equality of the low-dimensional marginal distributions. We conjec-
ture that there might be some intrinsic difficulties for distance and kernel-based
metrics to completely characterize the discrepancy between two high-dimensional
distributions.

5. Dependence metrics

In this section, we focus on dependence testing of two random vectors X ∈ R
p̃

and Y ∈ R
q̃. Suppose X and Y can be partitioned into p and q groups, viz.

X =
(
X(1), X(2), . . . , X(p)

)
and Y =

(
Y(1), Y(2), . . . , Y(q)

)
, where the components

X(i) and Y(j) are di and gj dimensional, respectively, for 1 ≤ i ≤ p, 1 ≤ j ≤ q.
Here p, q might be fixed or growing. We assume that X(i) and Y(j)’s are finite
(low) dimensional vectors, i.e., {di}pi=1 and {gj}qj=1 are bounded sequences.

Clearly, p̃ =
∑p

i=1 di = O(p) and q̃ =
∑q

j=1 gj = O(q). We define a class of
dependence metrics D between X and Y as the positive square root of

D2(X,Y ) := EKd(X,X ′)Kg(Y, Y
′) + EKd(X,X ′)EKg(Y, Y

′)

− 2EKd(X,X ′)Kg(Y, Y
′′) ,

(5.1)

where d = (d1, . . . , dp) and g = (g1, . . . , gq). We drop the subscripts d,g of K
for notational convenience.

To ensure the existence of D, we make the following assumption.
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Assumption 5.1. Assume that sup1≤i≤p Eρ
1/2
i (X(i), 0di) < ∞ and

sup1≤i≤q Eρ
1/2
i (Y(i), 0gi) < ∞.

In Section A.2 of the appendix we demonstrate that in the low-dimensional
setting, D(X,Y ) completely characterizes independence between X and Y . For
an observed random sample (Xk, Yk)

n
k=1 from the joint distribution of X and

Y , define DX := (dXkl) ∈ R
n×n with dXkl := K(Xk, Xl) and k, l ∈ {1, . . . , n}.

Define dYkl and DY in a similar way. With some abuse of notation, we consider

the U-statistic type estimator D̃2
n(X,Y ) of D2 as defined in (2.14) with dX and

dY being Kd and Kg respectively. In Section A.2 of the appendix, we illustrate

that D̃2
n(X,Y ) essentially inherits all the nice properties of the U-statistic type

estimator of generalized dCov and HSIC.

In the subsequent discussion we study the asymptotic behavior of D in the
high-dimensional framework, i.e., when p and q grow to ∞ with fixed n (dis-
cussed in Subsection 5.1) and when n grows to∞ as well (discussed in Subsection
B.2 in the appendix).

5.1. High dimension low sample size (HDLSS)

In this subsection, our goal is to explore the behavior of D2(X,Y ) and its unbi-
ased U-statistic type estimator in the HDLSS setting where p and q grow to ∞
while the sample size n is held fixed. Denote τ2XY =τ2Xτ2Y =EK2(X,X ′)EK2(Y,
Y ′). We impose the following conditions.

Assumption 5.2. E [L2(X,X ′)] = O(a′ 2p ) and E [L2(Y, Y ′)] = O(b′ 2q ), where a′p
and b′q are positive real sequences satisfying a′p = o(1), b′q = o(1), τXY a′ 2p b′q =
o(1) and τXY a′pb

′ 2
q = o(1). Further assume that E [R2(X,X ′)] = O(a′ 4p ) and

E [R2(Y, Y ′)] = O(b′ 4q ).

Remark 5.1. We refer the reader to Remark 4.1 in Section 4 for illustra-
tions about some sufficient conditions under which we have var (L(X,X ′)) =
EL2(X,X ′) = O( 1p ), and similarly for L(Y, Y ′). Remark D.1 in the appendix

illustrates certain sufficient conditions under which E [R2(X,X ′)] = O( 1
p2 ), and

similarly for R(Y, Y ′).

Theorem 5.1. Under Assumptions 4.2 and 5.2, we have

D2(X,Y ) =
1

4τXY

p∑
i=1

q∑
j=1

D2
ρi,ρj

(X(i), Y(j)) + R , (5.2)

where R is the remainder term such that R = O(τXY a′ 2p b′q+τXY a′pb
′ 2
q ) = o(1).

Theorem 5.1 shows that when dimensions grow high, the populationD2(X,Y )
behaves as an aggregation of group-wise generalized dCov and thus essentially
captures group-wise non-linear dependencies between X and Y .
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Remark 5.2. Consider a special case where di = 1 and gj = 1, and ρi and ρj
are Euclidean distances for all 1 ≤ i ≤ p and 1 ≤ j ≤ q. Then Theorem 5.1
essentially boils down to

D2(X,Y ) =
1

4τXY

p∑
i=1

q∑
j=1

dCov2(Xi, Yj) + R , (5.3)

where R = o(1). This shows that in a special case (when we have unit group
sizes), D2(X,Y ) essentially behaves as an aggregation of cross-component dCov
between X and Y . If Kd and Kg are Euclidean distances, or in other words if
each ρi and ρj are squared Euclidean distances, then using equation (2.10) it is
straightforward to verify that D2

ρi,ρj
(Xi, Yj) = 4 cov2(Xi, Yj) for all 1 ≤ i ≤ p

and 1 ≤ j ≤ q. Consequently we have

D2(X,Y ) = dCov2(X,Y ) =
1

τXY

p∑
i=1

q∑
j=1

cov2(Xi, Yj) + R1 , (5.4)

where R1 = o(1), which essentially presents a population version of Theorem
2.1.1 in [57] as a special case of Theorem 5.1. It is to be noted that if each ρi
and ρj are squared Euclidean distances, then the quantities D2

ρi,ρj
(Xi, Yj) are

indeed well-defined in view of the extension of the notion of distance covari-
ance to semimetric spaces of negative type by [39]. Following Proposition 3 in
their paper, it is not hard to argue that Rp equipped with the squared Euclidean
distance is indeed a semimetric space of negative type.

Remark 5.3. To illustrate that the leading term in equation (5.2) indeed gives
a close approximation of the population D2(X,Y ), we consider the special case
when Kd and Kg are Euclidean distances and p = q. Suppose X ∼ Np(0, Ip)
and Y = X +W where W ∼ Np(0, Ip) with W ⊥⊥ X. Clearly we have τ2X = 2p,
τ2Y = 4p, D2

ρi,ρj
(Xi, Yj) = 4 cov2(Xi, Yj) = 4 for all 1 ≤ i = j ≤ p and

D2
ρi,ρj

(Xi, Yj) = 0 for all 1 ≤ i 	= j ≤ p. From Remark 5.2, it is clear that

in this case we essentially have D2(X,Y ) = dCov2(X,Y ). We simulate a large
sample of size n = 5000 from the distribution of (X,Y ) for p = 20, 40, 60, 80
and 100. The large sample size is to ensure that the U-statistic type estimator of
D2(X,Y ) (given in (2.14)) gives a very close approximation of the population
D2(X,Y ). We list the ratio between D2(X,Y ) and the leading term in (5.2) for
the different values of p, which turn out to be very close to 1, demonstrating that
the leading term in (5.2) indeed approximates D2(X,Y ) reasonably well.

Table 2

Ratio of D2(X,Y ) and the leading term in (5.2) for different values of p.

p = 20 p = 40 p = 60 p = 80 p = 100
0.980 0.993 0.994 0.989 0.997

The following theorem explores the behavior of the population D2(X,Y )
when p is fixed and q grows to infinity, while the sample size is held fixed.
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As far as we know, this asymptotic regime has not been previously considered
in the literature. In this case, the Euclidean distance covariance behaves as an
aggregation of martingale difference divergences proposed in [43] which measures
conditional mean dependence. We summarize below the curse of dimensionality
for the Euclidean distance covariance under different asymptotic regimes.

Theorem 5.2. Under Assumption 4.2 and the assumption that E [R2(Y, Y ′)] =
O(b′ 4q ) with τY b′ 2q = o(1), as q → ∞ with p and n remaining fixed, we have

D2(X,Y ) =
1

2τY

q∑
j=1

D2
Kd ,ρj

(X,Y(j)) + R,

where R is the remainder term such that R = O(τY b′ 2q ) = o(1).

Remark 5.4. In particular, when both Kd and Kg are Euclidean distances, we
have

D2(X,Y ) = dCov2(X,Y ) =
1

τY

q̃∑
j=1

MDD2(Yj |X) + R,

where MDD2(Yj |X) = −E[(Yj − EYj)(Y
′
j − EYj)‖X − X ′‖] is the martingale

difference divergence which completely characterizes the conditional mean de-
pendence of Yj given X in the sense that E[Yj |X] = E[Yj ] almost surely if and
only if MDD2(Yj |X) = 0.

To summarize the curse of dimensionality for the Euclidean distance covari-
ance under different asymptotic regimes:

• When p, q → ∞, dCov2(X,Y ) is asymptotically equivalent to
1

τXY

∑p
i=1

∑q
j=1 cov

2(Xi, Yj). In other words, as p, q → ∞, the Euclidean
dCov can merely capture component-wise linear dependencies between X
and Y .

• When q → ∞ with p remaining fixed, dCov2(X,Y ) is asymptotically

equivalent to 1
τY

∑q̃
j=1 MDD2(Yj |X). In other words, the Euclidean dCov

can only detect component-wise conditional mean independence of Y given
X (which is even weaker than independence).

• When p → ∞ with q remaining fixed, dCov2(X,Y ) is asymptotically

equivalent to 1
τX

∑p̃
i=1 MDD2(Xi|Y ). In other words, the Euclidean dCov

can only detect component-wise conditional mean independence ofX given
Y .

Next we study the asymptotic behavior of the sample version D̃2
n(X,Y ).

Assumption 5.3. Assume that L(X,X ′) = Op(ap) and L(Y, Y ′) = Op(bq),
where ap and bq are positive real sequences satisfying ap = o(1), bq = o(1),
τXY a2pbq = o(1) and τXY apb

2
q = o(1).

Remark 5.5. We refer the reader to Remark 4.1 in Section 4 for illustrations
about Assumption 5.3.
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Theorem 5.3. Under Assumptions 4.2 and 5.3, it can be shown that

D̃2
n(X,Y ) =

1

4τXY

p∑
i=1

q∑
j=1

D̃2
n ; ρi,ρj

(X(i), Y(j)) + Rn , (5.5)

where X(i), Y(j) are the ith and jth groups of X and Y , respectively, 1 ≤ i ≤ p,
1 ≤ j ≤ q, and Rn is the remainder term. Moreover Rn = Op(τXY a2pbq +
τXY apb

2
q) = op(1), i.e., Rn is of smaller order compared to the leading term

and hence is asymptotically negligible.

The above theorem generalizes Theorem 2.1.1 in [57] by showing that the

leading term of D̃2
n(X,Y ) is the sum of all the group-wise (unbiased) squared

sample generalized dCov scaled by τXY . In other words, in the HDLSS setting,

D̃2
n(X,Y ) is asymptotically equivalent to the aggregation of group-wise squared

sample generalized dCov. Thus D̃2
n(X,Y ) can quantify group-wise non-linear

dependencies between X and Y , going beyond the scope of the usual Euclidean
dCov.

Remark 5.6. Consider a special case where di = 1 and gj = 1, and ρi and ρj
are Euclidean distances for all 1 ≤ i ≤ p and 1 ≤ j ≤ q. Then Theorem 5.3
essentially states that

D̃2
n(X,Y ) =

1

4τXY

p∑
i=1

q∑
j=1

dCov2n(Xi, Yj) + Rn , (5.6)

where Rn = op(1). This demonstrates that in a special case (when we have unit

group sizes), D̃2
n(X,Y ) is asymptotically equivalent to the marginal aggregation

of cross-component distance covariances proposed by [57] as dimensions grow
high. If Kd and Kg are Euclidean distances, then Theorem 5.3 essentially boils
down to Theorem 2.1.1 in [57] as a special case.

Remark 5.7. To illustrate the approximation of D̃2
n(X,Y ) by the aggregation of

group-wise squared sample generalized dCov given by Theorem 5.3, we simulated
the datasets in Examples 6.4.1, 6.4.2, 6.5.1 and 6.5.2 100 times each with n = 50

and p = q = 50. For each of the datasets, the difference between D̃2
n(X,Y ) and

the leading term in the RHS of equation (5.5) is smaller than 0.01 100% of the
times, which illustrates that the approximation works reasonably well.

The following theorem illustrates the asymptotic behavior of D̃2
n(X,Y ) when

p is fixed and q grows to infinity while the sample size is held fixed. Under
this setup, if both Kd and Kg are Euclidean distances, the leading term of

D̃2
n(X,Y ) is the sum of the group-wise unbiased U-statistic type estimators of

MDD2(Yj |X) for 1 ≤ j ≤ q, scaled by τY . In other words, the sample Euclidean
distance covariance behaves as an aggregation of sample martingale difference
divergences.
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Theorem 5.4. Under Assumption 4.2 and the assumption that L(Y, Y ′) =
Op(bq) with bq = o(1) and τY b2q = o(1), as q → ∞ with p and n remaining
fixed, we have

D̃2
n(X,Y ) =

1

2τY

q∑
j=1

D̃2
n ;Kd ,ρj

(X,Y(j)) + Rn,

where Rn is the remainder term such that Rn = Op(τY b2q) = op(1).

Remark 5.8. In particular, when both Kd and Kg are Euclidean distances, we
have

D̃2
n(X,Y ) = dCov2n(X,Y ) =

1

τY

q̃∑
j=1

MDD2
n(Yj |X) + Rn,

where MDD2
n(Yj |X) is the unbiased U-statistic type estimator of MDD2(Yj |X)

defined as in (2.14) with dX (x, x′) = ‖x − x′‖ for x, x′ ∈ R
p̃ and dY(y, y

′) =
|y − y′|2/2 for y, y′ ∈ R, respectively.

Now denote Xk = (Xk(1), . . . , Xk(p)) and Yk = (Yk(1), . . . , Yk(q)) for 1 ≤ k ≤
n. Define the leading term of D̃2

n(X,Y ) in equation (5.5) as

L :=
1

4τXY

p∑
i=1

q∑
j=1

D̃2
n ; ρi,ρj

(X(i), Y(j)) .

It can be verified that

L =
1

4τXY

p∑
i=1

q∑
j=1

(
D̃X(i) · D̃Y (j)

)
,

where D̃X(i), D̃Y (j) are the U-centered versions of DX(i) =
(
dXkl(i)

)n
k,l=1

and

DY (j) =
(
dYkl(j)

)n
k,l=1

, respectively. As an advantage of using the double-cen-

tered distances, we have for all 1 ≤ i, i′ ≤ p, 1 ≤ j, j′ ≤ q and {k, l} 	= {u, v},

E
[
dXkl(i) d

X
uv(i

′)
]
= E

[
dYkl(j) d

Y
uv(j

′)
]
= E

[
dXkl(i) d

Y
uv(j)

]
= 0. (5.7)

See for example the proof of Proposition 2.2.1 in [57] for a detailed explanation.

Assumption 5.4. For fixed n, as p, q → ∞,⎛⎜⎜⎜⎜⎝
1

2 τX

p∑
i=1

dXkl(i)

1
2 τY

q∑
j=1

dYuv(j)

⎞⎟⎟⎟⎟⎠
k<l, u<v

d−→

⎛⎝d1kl

d2uv

⎞⎠
k<l, u<v

,
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where {d1kl, d2uv}k<l, u<v are jointly Gaussian. Further we assume that

var(d1kl) := σ2
X = lim

p→∞

1

4τ2X

p∑
i,i′=1

D2
ρi,ρi′

(
X(i), X(i′)

)
,

var(d2kl) := σ2
Y = lim

q→∞
1

4τ2Y

q∑
j,j′=1

D2
ρj ,ρj′

(
Y(j), Y(j′)

)
,

cov (d1kl, d
2
kl) := σ2

XY = lim
p,q→∞

1

4τXY

p∑
i=1

q∑
j=1

D2
ρi,ρj

(
X(i), Y(j)

)
.

In view of (5.7), we have cov (d1kl, d
1
uv) = cov (d2kl, d

2
uv) = cov (d1kl, d

2
uv) = 0

for {k, l} 	= {u, v}. Theorem 5.3 states that for growing p and q and fixed n,

D̃2
n(X,Y ) and L are asymptotically equivalent. By studying the leading term,

we obtain the limiting distribution of D̃2
n(X,Y ) as follows.

Theorem 5.5. Under Assumptions 4.2, 5.3 and 5.4, for fixed n and p, q → ∞,

D̃2
n(X,Y )

d−→ 1

ν
d1	Md2 ,

D̃2
n(X,X)

d−→ 1

ν
d1	Md1

d
=

σ2
X

ν
χ2
ν ,

D̃2
n(Y, Y )

d−→ 1

ν
d2	Md2

d
=

σ2
Y

ν
χ2
ν ,

where M is a projection matrix of rank ν = n(n−3)
2 , and

(
d1

d2

)
∼ N

⎛⎜⎝0 ,

⎛⎜⎝σ2
X In(n−1)

2
σ2
XY In(n−1)

2

σ2
XY In(n−1)

2
σ2
Y In(n−1)

2

⎞⎟⎠
⎞⎟⎠ .

To perform independence testing, in the spirit of [49], we define the studen-
tized test statistic

Tn :=
√
ν − 1

D̃C2
n(X,Y )√

1−
(
D̃C2

n(X,Y )
)2 , (5.8)

where

D̃C2
n(X,Y ) =

D̃2
n(X,Y )√

D̃2
n(X,X) D̃2

n(Y, Y )

.

Define ψ = σ2
XY /

√
σ2
Xσ2

Y . The following theorem states the asymptotic dis-

tributions of the test statistic Tn under the null hypothesis H̃0 : X ⊥⊥ Y and
the alternative hypothesis H̃A : X 	⊥⊥ Y .
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Theorem 5.6. Under Assumptions 4.2, 5.3 and 5.4, for fixed n and p, q → ∞,

PH̃0
(Tn ≤ t) −→ P (tν−1 ≤ t) ,

PH̃A
(Tn ≤ t) −→ E [P (tν−1,W ≤ t|W )] ,

where t is any fixed real number and W ∼
√

ψ2

1−ψ2 χ2
ν .

For an explicit form of E [P (tν−1,W ≤ t|W )], we refer the reader to Lemma

3 in the appendix of [57]. Now consider the local alternative hypothesis H̃∗
A:

X 	⊥⊥ Y with ψ = ψ0/
√
ν, where ψ0 is a constant with respect to n. The

following proposition gives an approximation of E [P (tν−1,W ≤ t|W )] under the

local alternative hypothesis H̃∗
A when n is allowed to grow.

Proposition 5.1. Under H̃∗
A, as n → ∞ and t = O(1),

E [P (tν−1,W ≤ t|W )] = P (tν−1, ψ0 ≤ t) + O
( 1
ν

)
.

The following summarizes our key findings in this section.

• Advantages of our proposed metrics over the Euclidean dCov
and HSIC:

i) Our proposed dependence metrics completely characterize indepen-
dence between X and Y in the low-dimensional setup, and can detect
group-wise non-linear dependencies between X and Y in the high-
dimensional setup as opposed to merely detecting component-wise
linear dependencies by the Euclidean dCov and HSIC (in light of
Theorem 2.1.1 in [57]).

ii) We also showed that with p remaining fixed and q growing high, the
Euclidean dCov can only quantify conditional mean independence of
the components of Y given X (which is weaker than independence).
To the best of our knowledge, this has not been pointed out in the
literature before.

• Advantages over the marginal aggregation approach by [57]:

i) In the low-dimensional setup, our proposed dependence metrics can
completely characterize independence between X and Y , whereas
the metric proposed by [57] can only capture pairwise dependencies
between the components of X and Y .

ii) We provide a neater way of generalizing dCov and HSIC between X
and Y which is shown to be asymptotically equivalent to the marginal
aggregation of cross-component distance covariances proposed by [57]
as dimensions grow high. Also grouping or partitioning the two high-
dimensional random vectors (which again may be problem specific)
allows us to detect a wider range of alternatives compared to only de-
tecting component-wise non-linear dependencies, as independence of
two univariate marginals is implied from independence of two higher
dimensional marginals containing the two univariate marginals.
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iii) The computational complexity of the (unbiased) squared sample
D(X,Y ) is O(n2(p + q)). Thus the computational cost of our pro-
posed two-sample t-test only grows linearly with the dimension and
therefore is scalable to very high-dimensional data. Although a naive
aggregation of marginal distance covariances has a computational
complexity of O(n2pq), the approach of [57] essentially corresponds
to the use of an additive kernel and the computational cost of their
proposed estimator can also be made linear in the dimensions if prop-
erly implemented.

Table 3

Summary of the behaviors of the proposed homogeneity/dependence metrics for different
choices of ρi(x, x

′) in high dimension.

Choice of ρi(x, x
′) Asymptotic behavior of

the proposed
homogeneity metric

Asymptotic behavior of
the proposed dependence
metric

the semi-metric ‖x− x′‖2 Behaves as a sum of
squared Euclidean
distances

Behaves as a sum of
squared Pearson
correlations

metric of strong negative
type on R

di

Behaves as a sum of
groupwise energy
distances with the metric
ρi

Behaves as a sum of
groupwise dCov with the
metric ρi

ki(x, x) + ki(x
′, x′)−

2ki(x, x
′), where ki is a

characteristic kernel on
R

di × R
di

Behaves as a sum of
groupwise MMD with
the kernel ki

Behaves as a sum of
groupwise HSIC with the
kernel ki

6. Numerical studies

6.1. Testing for homogeneity of distributions

We investigate the empirical size and power of the tests for homogeneity of two
high dimensional distributions. For comparison, we consider the t-tests based
on the following metrics:

I. E with ρi as the Euclidean distance for 1 ≤ i ≤ p;
II. E with ρi as the distance induced by the Laplace kernel for 1 ≤ i ≤ p;
III. E with ρi as the distance induced by the Gaussian kernel for 1 ≤ i ≤ p;
IV. the usual Euclidean energy distance;
V. MMD with the Laplace kernel;
VI. MMD with the Gaussian kernel.

We set di = 1 in Examples 6.1 and 6.2, and di = 2 in Example 6.3 for
1 ≤ i ≤ p.
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Example 6.1. Consider Xk = (Xk1, . . . , Xkp) and Yl = (Yl1, . . . , Ylp) with
k = 1, . . . , n and l = 1, . . . ,m. We generate i.i.d. samples from the following
models:

1. Xk ∼ N(0, Ip) and Yl ∼ N(0, Ip).
2. Xk ∼ N(0,Σ) and Yl ∼ N(0,Σ), where Σ = (σij)

p
i,j=1 with σii = 1 for

i = 1, . . . , p, σij = 0.25 if 1 ≤ |i− j| ≤ 2 and σij = 0 otherwise.
3. Xk ∼ N(0,Σ) and Yl ∼ N(0,Σ), where Σ = (σij)

p
i,j=1 with σij = 0.7|i−j|.

Example 6.2. Consider Xk = (Xk1, . . . , Xkp) and Yl = (Yl1, . . . , Ylp) with
k = 1, . . . , n and l = 1, . . . ,m. We generate i.i.d. samples from the following
models:

1. Xk ∼ N(μ, Ip) with μ = (1, . . . , 1) ∈ R
p and Yli

ind∼ Poisson (1) for
i = 1, . . . , p, i.e., the components of Yl independently follow Poisson (1)
distribution.

2. Xk ∼ N(μ, Ip) with μ = (1, . . . , 1) ∈ R
p and Yli

ind∼ Exponential (1) for
i = 1, . . . , p,, i.e., the components of Yl independently follow Exponential
(1) distribution.

3. Xk ∼ N(0, Ip) and Yl = (Yl1, . . . , Yl
βp�, Yl(
βp�+1), . . . , Ylp), where Yl1,

. . . , Yl
βp�
i.i.d.∼ Rademacher (0.5) and Yl(
βp�+1), . . . , Ylp

i.i.d.∼ N(0, 1). In
other words, the first �βp
 components of Y independently follow Rade-
macher (0.5) distribution, whereas the last p− �βp
 components are inde-
pendently generated from a standard normal distribution.

4. Xk ∼ N(0, Ip) and Yl = (Yl1, . . . , Yl
βp�, Yl(
βp�+1), . . . , Ylp), where Yl1,

. . . , Yl
βp�
i.i.d.∼ Uniform (−

√
3,
√
3) and Yl(
βp�+1), . . . , Ylp

i.i.d.∼ N(0, 1).
In other words, the first �βp
 components of Y independently follow Uni-
form (−

√
3,
√
3) distribution, whereas the last p − �βp
 components are

independently generated from a standard normal distribution.
5. Xk = R1/2Z1k and Yl = R1/2Z2l, where R = (rij)

p
i,j=1 with rii = 1

for i = 1, . . . , p, rij = 0.25 if 1 ≤ |i − j| ≤ 2 and rij = 0 otherwise,
Z1k ∼ N(0, Ip) and Z2l = (Z2l1, . . . , Z2lp)︸ ︷︷ ︸

i.i.d.∼ Exponential(1)

− 1.

Example 6.3. Consider Xk = (Xk(1), . . . , Xk(p)) and Yl = (Yl(1), . . . , Yl(p))
with k = 1, . . . , n and l = 1, . . . ,m and di = 2 for 1 ≤ i ≤ p. We generate i.i.d.
samples from the following models:

1. Xk(i) ∼ N(μ,Σ1) and Yl(i) ∼ N(μ,Σ2) with Xk(i) ⊥⊥ Xk(j) and Yl(i) ⊥⊥
Yl(j) for 1 ≤ i 	= j ≤ p, where μ = (1, 1)	, Σ1 =

(
1 0.9
0.9 1

)
and Σ2 =(

1 0.1
0.1 1

)
.

2. Xk(i) ∼ N(μ,Σ) with Xk(i) ⊥⊥ Xk(j) for 1 ≤ i 	= j ≤ p, where μ = (1, 1)	,

Σ =

(
1 0.7
0.7 1

)
. The components of Yl are i.i.d. Exponential (1).
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Note that for Examples 6.1 and 6.2, the metric defined in equation (3.1)
essentially boils down to the special case in equation (3.3). We try small sample
sizes n = m = 50, dimensions p = q = 50, 100 and 200, and β = 1/2. Table 4
reports the proportion of rejections out of 1000 simulation runs for the different
tests. For the tests V and VI, we chose the bandwidth parameter heuristically
as the median distance between the aggregated sample observations. For tests
II and III, the bandwidth parameters are chosen using the median heuristic
separately for each group.

In Example 6.1, the data generating scheme suggests that the variablesX and
Y are identically distributed. The results in Table 4 show that the tests based on
both the proposed homogeneity metrics and the usual Euclidean energy distance
and MMD perform more or less equally good, and the rejection probabilities are
quite close to the 10% or 5% nominal level. In Example 6.2, clearly X and Y
have different distributions but μX = μY and ΣX = ΣY . The results in Table
4 indicate that the tests based on the proposed homogeneity metrics are able
to detect the differences between the two high-dimensional distributions beyond
the first two moments unlike the tests based on the usual Euclidean energy
distance and MMD, and thereby outperform the latter in terms of empirical
power. In Example 6.3, clearly μX = μY and trΣX = trΣY and the results
show that the tests based on the proposed homogeneity metrics are able to
detect the in-homogeneity of the low-dimensional marginal distributions unlike
the tests based on the usual Euclidean energy distance and MMD.

Remark 6.1. In Example 6.3.1, marginally the p-many two-dimensional groups
of X and Y are not identically distributed, but each of the 2p unidimensional
components of X and Y have identical distributions. Consequently, choosing
di = 1 for 1 ≤ i ≤ p leads to trivial power of even our proposed tests, as is
evident from Table 5 below. This demonstrates that grouping allows us to detect
a wider range of alternatives.

6.2. Testing for independence

We study the empirical size and power of tests for independence between two
high dimensional random vectors. We consider the t-tests based on the following
metrics:

I. D with di = 1 and ρi be the Euclidean distance for 1 ≤ i ≤ p;
II. D with di = 1 and ρi be the distance induced by the Laplace kernel for

1 ≤ i ≤ p;
III. D with di = 1 and ρi be the distance induced by the Gaussian kernel for

1 ≤ i ≤ p;
IV. the usual Euclidean distance covariance;
V. HSIC with the Laplace kernel;
VI. HSIC with the Gaussian kernel.

We also compare the empirical size and power of the above tests with the

VII. projection correlation based test for independence proposed by [56],
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Table 4

Empirical size and power for the different tests of homogeneity of distributions.

I II III IV V VI

p 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

Ex 6.1

(1) 50 0.109 0.062 0.109 0.058 0.106 0.063 0.109 0.068 0.110 0.069 0.109 0.070
(1) 100 0.124 0.073 0.119 0.053 0.121 0.063 0.116 0.067 0.114 0.068 0.117 0.068
(1) 200 0.086 0.043 0.099 0.048 0.088 0.035 0.090 0.045 0.086 0.043 0.090 0.045
(2) 50 0.114 0.069 0.108 0.054 0.118 0.068 0.116 0.077 0.115 0.073 0.116 0.078
(2) 100 0.130 0.069 0.133 0.073 0.124 0.070 0.126 0.067 0.123 0.068 0.124 0.067
(2) 200 0.099 0.048 0.103 0.041 0.092 0.047 0.097 0.040 0.095 0.039 0.097 0.040
(3) 50 0.100 0.064 0.107 0.057 0.099 0.060 0.112 0.072 0.105 0.067 0.110 0.073
(3) 100 0.103 0.062 0.113 0.061 0.113 0.063 0.097 0.060 0.100 0.057 0.098 0.059
(3) 200 0.108 0.062 0.115 0.062 0.117 0.064 0.091 0.055 0.093 0.056 0.090 0.055

Ex 6.2

(1) 50 1 1 1 1 0.995 0.994 0.102 0.067 0.111 0.069 0.103 0.066
(1) 100 1 1 1 1 1 1 0.120 0.066 0.120 0.071 0.119 0.066
(1) 200 1 1 1 1 1 1 0.111 0.057 0.111 0.057 0.111 0.057
(2) 50 1 1 1 1 1 1 0.126 0.085 0.154 0.105 0.119 0.073
(2) 100 1 1 1 1 1 1 0.098 0.058 0.108 0.066 0.094 0.055
(2) 200 1 1 1 1 1 1 0.111 0.055 0.114 0.056 0.108 0.054
(3) 50 1 1 1 1 1 0.999 0.118 0.069 0.117 0.072 0.120 0.070
(3) 100 1 1 1 1 1 1 0.102 0.067 0.106 0.065 0.103 0.067
(3) 200 1 1 1 1 1 1 0.103 0.046 0.103 0.049 0.102 0.046
(4) 50 0.452 0.328 0.863 0.771 0.552 0.421 0.114 0.061 0.111 0.061 0.114 0.061
(4) 100 0.640 0.491 0.990 0.967 0.761 0.637 0.098 0.063 0.104 0.063 0.098 0.062
(4) 200 0.840 0.733 1 0.999 0.933 0.876 0.105 0.042 0.108 0.042 0.105 0.043
(5) 50 1 1 1 1 1 1 0.128 0.078 0.163 0.098 0.115 0.077
(5) 100 1 1 1 1 1 1 0.098 0.053 0.115 0.063 0.091 0.051
(5) 200 1 1 1 1 1 1 0.100 0.050 0.103 0.054 0.098 0.050

Ex 6.3

(1) 50 1 1 1 1 1 1 0.157 0.098 0.223 0.137 0.156 0.098
(1) 100 1 1 1 1 1 1 0.158 0.089 0.188 0.124 0.157 0.090
(1) 200 1 1 1 1 1 1 0.122 0.074 0.161 0.091 0.121 0.074
(2) 50 1 1 1 1 1 1 0.140 0.078 0.190 0.118 0.137 0.075
(2) 100 1 1 1 1 1 1 0.139 0.080 0.171 0.105 0.136 0.080
(2) 200 1 1 1 1 1 1 0.109 0.053 0.127 0.069 0.108 0.053

Table 5

Empirical power in Example 6.3.1 if we choose di = 1 for 1 ≤ i ≤ p.

I II III IV V VI

p 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

Ex 6.3
(1) 50 0.144 0.087 0.133 0.076 0.143 0.086 0.174 0.107 0.266 0.170 0.175 0.105
(1) 100 0.145 0.085 0.134 0.070 0.142 0.085 0.157 0.098 0.223 0.137 0.156 0.098
(1) 200 0.126 0.063 0.101 0.058 0.111 0.065 0.158 0.089 0.188 0.124 0.157 0.090



Distance and kernel-based metrics in high dimensions 5485

which is shown to have higher empirical power compared to the usual Euclidean
distance covariance when the dimensions are relatively large. The numerical
examples we consider are motivated from [57].

Example 6.4. Consider Xk = (Xk1, . . . , Xkp) and Yk = (Yk1, . . . , Ykp) for
k = 1, . . . , n. We generate i.i.d. samples from the following models:

1. Xk ∼ N(0, Ip) and Yk ∼ N(0, Ip).
2. Xk ∼ AR(1), φ = 0.5, Yk ∼ AR(1), φ = −0.5, where AR(1) denotes the

autoregressive model of order 1 with parameter φ.
3. Xk ∼ N(0,Σ) and Yk ∼ N(0,Σ), where Σ = (σij)

p
i,j=1 with σij = 0.7|i−j|.

Example 6.5. Consider Xk = (Xk1, . . . , Xkp) and Yk = (Yk1, . . . , Ykp), k =
1, . . . , n. We generate i.i.d. samples from the following models:

1. Xk ∼ N(0, Ip) and Ykj = X2
kj for j = 1, . . . , p.

2. Xk ∼ N(0, Ip) and Ykj = log |Xkj | for j = 1, . . . , p.
3. Xk ∼ N(0,Σ) and Ykj = X2

kj for j = 1, . . . , p, where Σ = (σij)
p
i,j=1 with

σij = 0.7|i−j|.

Example 6.6. Consider Xk = (Xk1, . . . , Xkp) and Yk = (Yk1, . . . , Ykp), k =
1, . . . , n. Let ◦ denote the Hadamard product of matrices. We generate i.i.d.
samples from the following models:

1. Xkj ∼ U(−1, 1) for j = 1, . . . , p, and Yk = Xk ◦Xk.
2. Xkj ∼ U(0, 1) for j = 1, . . . , p, and Yk = 4Xk ◦Xk − 4Xk + 2.
3. Xkj = sin(Zkj) and Ykj = cos(Zkj) with Zkj ∼ U(0, 2π) and j = 1, . . . ,

p.

For each example, we draw 1000 simulated datasets and perform tests for in-
dependence between the two variables based on the proposed dependence met-
rics, and the usual Euclidean dCov and HSIC. We try a small sample size n = 50
and dimensions p = 50, 100 and 200. For the tests II, III, V and VI, we chose the
bandwidth parameter heuristically as the median distance between the sample
observations. Table 6 reports the proportion of rejections out of the 1000 simu-
lation runs for the different tests. For VII, we conduct a permutation based test
with 500 replicates.

In Example 6.4, the data generating scheme suggests that the variables X
and Y are independent. The results in Table 6 show that the tests based on the
proposed dependence metrics perform almost equally good as the other com-
petitors, and the rejection probabilities are quite close to the 10% or 5% nominal
level. In Examples 6.5 and 6.6, the variables are clearly (componentwise non-
linearly) dependent by virtue of the data generating scheme. The results indicate
that the tests based on the proposed dependence metrics are able to detect the
componentwise non-linear dependence between the two high-dimensional ran-
dom vectors unlike the tests based on the usual Euclidean dCov and HSIC, and
thereby outperform the latter in terms of empirical power. Also, our proposed
tests clearly perform far better compared to the projection correlation based
test.
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Table 6

Empirical size and power for the different tests of independence.

I II III IV V VI VII

p 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

Ex 6.4

(1) 50 0.115 0.053 0.109 0.055 0.106 0.053 0.112 0.060 0.112 0.053 0.111 0.061 0.119 0.059
(1) 100 0.106 0.057 0.090 0.046 0.095 0.048 0.111 0.060 0.112 0.059 0.113 0.060 0.116 0.062
(1) 200 0.076 0.031 0.084 0.046 0.084 0.042 0.096 0.035 0.090 0.038 0.095 0.035 0.091 0.038
(2) 50 0.101 0.052 0.096 0.061 0.094 0.053 0.096 0.050 0.103 0.054 0.096 0.052 0.094 0.050
(2) 100 0.080 0.036 0.083 0.035 0.086 0.042 0.081 0.041 0.088 0.044 0.083 0.041 0.081 0.037
(2) 200 0.117 0.051 0.098 0.056 0.103 0.052 0.104 0.048 0.103 0.052 0.106 0.048 0.101 0.050
(3) 50 0.093 0.056 0.098 0.052 0.097 0.056 0.091 0.052 0.080 0.050 0.087 0.052 0.094 0.044
(3) 100 0.104 0.052 0.085 0.046 0.091 0.054 0.104 0.048 0.105 0.051 0.102 0.048 0.098 0.045
(3) 200 0.105 0.059 0.110 0.057 0.103 0.051 0.106 0.055 0.099 0.052 0.105 0.056 0.109 0.058

Ex 6.5

(1) 50 1 1 1 1 1 1 0.267 0.172 0.534 0.398 0.277 0.182 0.388 0.280
(1) 100 1 1 1 1 1 1 0.171 0.102 0.284 0.180 0.167 0.102 0.323 0.204
(1) 200 1 1 1 1 1 1 0.130 0.075 0.194 0.108 0.128 0.073 0.302 0.188
(2) 50 1 1 1 1 1 1 0.154 0.092 0.199 0.130 0.154 0.091 0.147 0.077
(2) 100 1 1 1 1 1 1 0.109 0.050 0.128 0.064 0.108 0.049 0.108 0.048
(2) 200 1 1 1 1 1 1 0.099 0.057 0.107 0.060 0.097 0.057 0.101 0.048
(3) 50 1 1 1 1 1 1 0.654 0.546 0.981 0.959 0.708 0.631 0.661 0.545
(3) 100 1 1 1 1 1 1 0.418 0.309 0.790 0.700 0.455 0.343 0.535 0.419
(3) 200 1 1 1 1 1 1 0.277 0.188 0.504 0.391 0.284 0.193 0.454 0.345

Ex 6.6

(1) 50 1 1 1 1 1 1 0.129 0.072 0.193 0.105 0.130 0.071 0.141 0.076
(1) 100 1 1 1 1 1 1 0.145 0.069 0.158 0.091 0.145 0.069 0.155 0.084
(1) 200 1 1 1 1 1 1 0.113 0.065 0.123 0.067 0.113 0.065 0.130 0.068
(2) 50 1 1 1 1 1 1 0.129 0.072 0.193 0.105 0.130 0.071 0.141 0.076
(2) 100 1 1 1 1 1 1 0.145 0.069 0.158 0.091 0.145 0.069 0.155 0.084
(2) 200 1 1 1 1 1 1 0.113 0.065 0.123 0.067 0.113 0.065 0.130 0.068
(3) 50 0.540 0.388 1 1 0.859 0.760 0.110 0.057 0.108 0.063 0.111 0.056 0.092 0.049
(3) 100 0.550 0.416 1 1 0.857 0.761 0.108 0.063 0.112 0.063 0.108 0.062 0.097 0.051
(3) 200 0.542 0.388 1 1 0.872 0.765 0.106 0.049 0.111 0.051 0.106 0.050 0.089 0.044
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Remark 6.2. From the results in Table 6, it is clear that when we have n = 50
observations, we start noticing a dramatic improvement of the empirical power
even for p = q = 50, when we implement tests for independence based on our
proposed dependence metrics. In Section C.1 in the appendix, we compare our
tests with the tests IV-VI for much smaller choices of p and q, for example
p/n = 0.1 (similar for q). The empirical power for all the tests turn out to be
quite comparable, which is quite expected as both the Euclidean dCov and HSIC
can completely characterize independence in the low-dimensional setting.

6.3. Real data analysis

6.3.1. Testing for homogeneity of distributions

We consider the two sample testing problem of homogeneity of two
high-dimensional distributions on Earthquakes data. The dataset has been
downloaded from UCR Time Series Classification Archive (https://www.cs.
ucr.edu/~eamonn/time_series_data_2018/). The data are taken from North-
ern California Earthquake Data Center. There are 368 negative and 93 positive
earthquake events and each data point is of length 512.

Table 7 shows the p-values corresponding to the different tests for the ho-
mogeneity of distributions between the two classes. Here we set di = 1 for tests
I-III. The p-values corresponding to the tests based on our proposed homogene-
ity metrics turn out to be extremely small, so we approximate them by zeroes.
Clearly the tests based on the proposed homogeneity metrics reject the null hy-
pothesis of equality of distributions at 5% level. However the tests based on the
usual Euclidean energy distance and MMD fail to reject the null at 5% level,
thereby indicating no significant difference between the distributions of the two
classes.

Table 7

p-values corresponding to the different tests for homogeneity of distributions for
Earthquakes data.

I II III IV V VI
≈ 0 ≈ 0 ≈ 0 0.070 0.068 0.070

Remark 6.3. In Section C.2 in the appendix, we present histograms correspond-
ing to the first four variables for both the negative and positive earthquake event
groups. Figure 3 graphically illustrates inhomogeneities between their marginal
distributions, which sheds an intuitively explanation that why the tests based
on the proposed homogeneity metrics reject the null hypothesis of equality of
distributions.

6.3.2. Testing for independence

We consider the daily closed stock prices of p = 126 companies under the finance
sector and q = 122 companies under the healthcare sector on the first dates of

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
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each month during the time period between January 1, 2017 and December 31,
2018. The data has been downloaded from Yahoo Finance via the R package
‘quantmod’. At each time t, denote the closed stock prices of these companies
from the two different sectors by Xt = (X1t, . . . , Xpt) and Yt = (Y1t, . . . , Yqt)
for 1 ≤ t ≤ 24. We consider the stock returns SX

t = (SX
1t , . . . , S

X
pt) and SY

t =

(SY
1t, . . . , S

Y
qt) for 1 ≤ t ≤ 23, where SX

it = log
Xi,t+1

Xit
and SY

jt = log
Yj,t+1

Yjt
for

1 ≤ i ≤ p and 1 ≤ j ≤ q. It seems intuitive that the stock returns for the
companies under two different sectors are not totally independent, especially
when a large number of companies are being considered. Table 8 shows the p-
values corresponding to the different tests for independence between {SX

t }23t=1

and {SY
t }23t=1, where we set di = gi = 1 for the proposed tests. The tests based

on the proposed dependence metrics deliver much smaller p-values compared to
the tests based on traditional metrics. We note that the tests based on the usual
dCov and HSIC as well as projection correlation fail to reject the null at 5%
level, thereby indicating cross-sector independence of stock return values. These
results are consistent with the fact that the dependence among financial asset
returns is usually nonlinear and thus cannot be fully characterized by traditional
metrics in the high dimensional setup.

Table 8

p-values corresponding to the different tests for cross-sector independence of stock returns
data.

I II III IV V VI VII
4.91× 10−12 4.29× 10−11 1.12× 10−11 0.093 0.084 0.099 0.154

We present an additional real data example on testing for independence in
high dimensions in Section C of the appendix. There the data admits a natural
grouping, and our results indicate that our proposed tests for independence
exhibit better power when we consider the natural grouping than when we
consider unit group sizes. It is to be noted that considering unit group sizes
makes our proposed statistics essentially equivalent to the marginal aggregation
approach proposed by [57]. This indicates that grouping or clustering might
improve the power of testing as they are capable of detecting a wider range of
dependencies.

7. Discussions

In this paper, we introduce a family of distances for high dimensional Euclidean
spaces. Built on the new distances, we propose a class of distance and kernel-
based metrics for high-dimensional two-sample and independence testing. The
proposed metrics overcome certain limitations of the traditional metrics con-
structed based on the Euclidean distance. The new distance we introduce cor-
responds to a semi-norm given by

B(x) =
√
ρ1(x(1)) + . . . , ρp(x(p)),
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Fig 2. An interpretation of the semi-norm B(·) based on a tree

where ρi(x(i)) = ρi(x(i), 0di) and x = (x(1), . . . , x(p)) ∈ R
p̃ with x(i) = (xi,1, . . . ,

xi,di). Such a semi-norm has an interpretation based on a tree as illustrated by
Figure 2.

The idea can be generalized to a general tree. Suppose the tree has p internal
nodes and each of the variables xi for 1 ≤ i ≤ p̃ corresponds to a leaf node of
the tree. Then for the internal node i, we have a group of leaf nodes (denote the
corresponding index set by Si) that are the off-springs of the internal node. In
other words, each internal node induces a group of variables that can overlap
with the other groups. In this case, we can define the tree-based norm as

B(x) =

√√√√ p∑
i=1

wiρi(xSi),

where xSi = {xj : j ∈ Si}, ρi is a metric on R
|Si| with |Si| being the cardinality

of Si, and wi ≥ 0 is a sequence of non-negative weights. It is not hard to see
that B(x) defined in this way is indeed a semi-norm.

Tree structure provides useful information for doing grouping at different
levels/depths. Theoretically, grouping allows us to detect a wider range of al-
ternatives. For example, in two-sample testing, the difference between two one-
dimensional marginals is always captured by the difference between two higher
dimensional marginals that contain the two one-dimensional marginals. The
same thing is true for dependence testing. Generally, one would like to find
blocks which are nearly independent, but the variables inside a block have sig-
nificant dependence among themselves. It is interesting to develop an algorithm
for finding the optimal groups using the data and perhaps some auxiliary infor-
mation such as DAGs representing the underlying distributions. Another inter-
esting direction is to study the semi-norm and distance constructed based on a
more sophisticated tree structure. For example, in microbiome-wide association
studies, phylogenetic tree or evolutionary tree which is a branching diagram or
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“tree” showing the evolutionary relationships among various biological species.
Distance and kernel-based metrics constructed based on the distance utilizing
the phylogenetic tree information is expected to be more powerful in signal
detection. We leave these topics for future investigation.

Appendix

The appendix is organized as follows. In Appendix A we explore our pro-
posed homogeneity and dependence metrics in the low-dimensional setup. In
Appendix B we study the asymptotic behavior of our proposed homogeneity
and dependence metrics in the high dimension medium sample size (HDMSS)
framework where both the dimension(s) and the sample size(s) grow. Appendix
C contains some additional numerical results. Finally, Appendix D contains ad-
ditional proofs of the main results in the paper and Appendix A and B.

Appendix A: Low-dimensional setup

In this section we illustrate that the new class of homogeneity metrics proposed
in this paper inherits all the nice properties of generalized energy distance and
MMD in the low-dimensional setting. Likewise, the proposed dependence met-
rics inherit all the desirable properties of generalized dCov and HSIC in the
low-dimensional framework.

A.1. Homogeneity metrics

Note that in either Case S1 or S2, the Euclidean space equipped with distance
K is of strong negative type. As a consequence, we have the following result.

Theorem A.1. E(X,Y ) = 0 if and only if X
d
= Y , in other words E(X,Y )

completely characterizes the homogeneity of the distributions of X and Y .

The following proposition shows that En,m(X,Y ) is a two-sample U-statistic
and an unbiased estimator of E(X,Y ).

Proposition A.1. The U-statistic type estimator enjoys the following proper-
ties:

1. En,m is an unbiased estimator of the population E.
2. En,m admits the following form:

En,m(X,Y ) =
1(

n
2

) (
m
2

) ∑
1≤i<j≤n

∑
1≤k<l≤m

h(Xi, Xj ;Yk, Yl) ,

where

h(Xi, Xj ;Yk, Yl) =
1

2

(
K(Xi, Yk) + K(Xi, Yl) + K(Xj , Yk) + K(Xj , Yl)

)
− K(Xi, Xj) − K(Yk, Yl) .
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The following theorem shows the asymptotic behavior of the U-statistic type
estimator of E for fixed p and growing n.

Theorem A.2. Under Assumption 4.5 and the assumption that
sup1≤i≤p Eρi(X(i), 0di) < ∞ and sup1≤i≤p Eρi(Y(i), 0di) < ∞, as m,n → ∞
with p remaining fixed, we have the following:

1. En,m(X,Y )
a.s.−→ E(X,Y ).

2. When X
d
= Y , En,m has degeneracy of order (1, 1), and

(m− 1)(n− 1)

n+m
En,m(X,Y )

d−→
∞∑
k=1

λ2
k

(
Z2
k − 1

)
,

where {Zk} is a sequence of independent N(0, 1) random variables and
λk’s depend on the distribution of (X,Y ).

Proposition A.1, Theorem A.1 and Theorem A.2 demonstrate that E inherits
all the nice properties of generalized energy distance and MMD in the low-
dimensional setting.

A.2. Dependence metrics

Note that Proposition 3.1 in Section 3 and Proposition 3.7 in [26] ensure that
D(X,Y ) completely characterizes independence between X and Y , which leads
to the following result.

Theorem A.3. Under Assumption 5.1, D(X,Y ) = 0 if and only if X ⊥⊥ Y .

The following proposition shows that D̃2
n(X,Y ) is an unbiased estimator of

D2(X,Y ) and is a U-statistic of order four.

Proposition A.2. The U-statistic type estimator D̃2
n (defined in (2.14) in the

main paper) has the following properties:

1. D̃2
n is an unbiased estimator of the squared population D2.

2. D̃2
n is a fourth-order U-statistic which admits the following form:

D̃2
n =

1(
n
4

) ∑
i<j<k<l

hi,j,k,l ,

where

hi,j,k,l =
1

4!

(i,j,k,l)∑
(s,t,u,v)

(dXstd
Y
st + dXstd

Y
uv − 2dXstd

Y
su)

=
1

6

(i,j,k,l)∑
s<t,u<v

(dXstd
Y
st + dXstd

Y
uv)−

1

12

(i,j,k,l)∑
(s,t,u)

dXstd
Y
su ,
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the summation is over all possible permutations of the 4-tuple of indices
(i, j, k, l). For example, when (i, j, k, l) = (1, 2, 3, 4), there exist 24 permu-

tations, including (1, 2, 3, 4), . . . , (4, 3, 2, 1). Furthermore, D̃2
n has degener-

acy of order 1 when X and Y are independent.

The following theorem shows the asymptotic behavior of the U-statistic type
estimator of D2 for fixed p, q and growing n.

Theorem A.4. Under Assumption 5.1, with fixed p, q and n → ∞, we have
the following as n → ∞:

1. D̃2
n(X,Y )

a.s.−→ D2(X,Y );

2. When D2(X,Y ) = 0 (i.e., X ⊥⊥ Y ), n D̃2
n(X,Y )

d−→
∞∑
i=1

λ̃2
i (Z

2
i − 1),

where Z ′
is are i.i.d. standard normal random variables and λ̃i’s depend on

the distribution of (X,Y );

3. When D2(X,Y ) > 0, n D̃2
n(X,Y )

a.s.−→ ∞.

Proposition A.2, Theorem A.3 and Theorem A.4 demonstrate that in the
low-dimensional setting, D inherits all the nice properties of generalized dCov
and HSIC.

Appendix B: High dimension medium sample size (HDMSS)

B.1. Homogeneity metrics

In this subsection, we consider the HDMSS setting where p → ∞ and n,m → ∞
at a slower rate than p. Under H0, we impose the following conditions to obtain
the asymptotic null distribution of the statistic Tn,m under the HDMSS setup.

Assumption B.1. As n,m and p → ∞,

1

n2

E
[
H4(X,X ′)

]
(E [H2(X,X ′)])2

= o(1),
1

n

E
[
H2(X,X ′′)H2(X ′, X ′′)

]
(E [H2(X,X ′)])2

= o(1),

E [H(X,X ′′)H(X ′, X ′′)H(X,X ′′′)H(X ′, X ′′′)]

(E [H2(X,X ′)])2
= o(1).

Remark B.1. We refer the reader to Section 2.2 in [54] and Remark A.2.2 in
[57] for illustrations of Assumption B.1 where ρi has been considered to be the
Euclidean distance or the squared Euclidean distance, respectively, for 1 ≤ i ≤ p.

Assumption B.2. Suppose E [L2(X,X ′)] = O(α2
p) where αp is a positive real

sequence such that τXα2
p = o(1) as p → ∞. Further assume that as n, p → ∞,

n4 τ4X E
[
R4(X,X ′)

]
(E [H2(X,X ′)])2

= o(1) .



Distance and kernel-based metrics in high dimensions 5493

Remark B.2. We refer the reader to Remark 4.1 in the main paper which
illustrates some sufficient conditions under which αp = O( 1√

p ) and consequently

τXα2
p = o(1) holds, as τX � p1/2. In similar lines of Remark D.1 in Section D

of the appendix, it can be argued that E
[
R4(X,X ′)

]
= O

(
1
p4

)
. If we further

assume that Assumption 4.4 holds, then we have E
[
H2(X,X ′)

]
� 1. Combining

all the above, it is easy to verify that
n4 τ4

X E [R4(X,X′)]
(E [H2(X,X′)])2

= o(1) holds provided

n = o(p1/2).

The following theorem illustrates the limiting null distribution of Tn,m under
the HDMSS setup. We refer the reader to Section D of the appendix for a
detailed proof.

Theorem B.1. Under H0 and Assumptions 4.5, B.1 and B.2, as n,m and
p → ∞, we have

Tn,m
d−→ N(0, 1).

B.2. Dependence metrics

In this subsection, we consider the HDMSS setting where p, q → ∞ and n → ∞
at a slower rate than p, q. The following theorem shows that similar to the

HDLSS setting, under the HDMSS setup, D̃2
n is asymptotically equivalent to

the aggregation of group-wise generalized dCov. In other words D̃2
n(X,Y ) can

quantify group-wise nonlinear dependence between X and Y in the HDMSS
setup as well.

Assumption B.3. E[LX(X,X ′)2] = α2
p, E[LX(X,X ′)4] = γ2

p , E[LY (Y, Y
′)2] =

β2
q and E[LY (Y, Y

′)4] = λ2
q, where αp, γp, βq, λq are positive real sequences sat-

isfying nαp = o(1), nβq = o(1), τ2X(αpγp + γ2
p) = o(1), τ2Y (βqλq + λ2

q) = o(1),
and τXY (αpλq + γpβq + γpλq) = o(1).

Remark B.3. Following Remark 4.1 in the main paper, we can write L(X,X ′)
= O( 1p )

∑p
i=1 (Zi − EZi), where Zi = ρi(X(i), X

′
(i)) for 1 ≤ i ≤ p. Assume that

sup1≤i≤p E ρ4i (X(i), 0di) < ∞, which implies sup1≤i≤p EZ4
i < ∞. Under certain

weak dependence assumptions, it can be shown that E
(∑p

i=1(Zi − EZi)
)4

=
O(p2) as p → ∞ (see for example Theorem 1 in [13]). Therefore we have
E[L(X,X ′)4] = O( 1

p2 ). It follows from Hölder’s inequality that E[L(X,X ′)2] =

O( 1p ). Similar arguments can be made about E[L(Y, Y ′)4] and E[L(Y, Y ′)2] as
well.

Theorem B.2. Under Assumptions 4.2 and B.3, we can show that

D̃2
n(X,Y ) =

1

4τXY

p∑
i=1

q∑
j=1

D̃2
n ; ρi,ρj

(X(i), Y(j)) + Rn , (B.1)
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where Rn is the remainder term satisfying that Rn = Op(τXY (αpλq + γpβq +
γpλq)) = op(1), i.e., Rn is of smaller order compared to the leading term and
hence is asymptotically negligible.

The following theorem states the asymptotic null distribution of the studen-
tized test statistic Tn (given in equation (5.8) in the main paper) under the
HDMSS setup. Define

U(Xk, Xl) :=
1

τX

p∑
i=1

dXkl(i), and V (Yk, Yl) :=
1

τY

q∑
i=1

dYkl(i).

Assumption B.4. Assume that

E [U(X,X ′)]4

√
n (E[U(X,X ′)]2)2

= o(1),

E [U(X,X ′)U(X ′, X ′′)U(X ′′, X ′′′)U(X ′′′, X)]

(E[U(X,X ′)]2)2
= o(1),

and the same conditions hold for Y in terms of V (Y, Y ′).

Remark B.4. We refer the reader to Section 2.2 in [54] and Remark A.2.2 in
[57] for illustrations of Assumption B.1 where ρi has been considered to be the
Euclidean distance or the squared Euclidean distance, respectively.

We can show that under H0, the studentized test Tn converge to the standard
normal distribution under the HDMSS setup.

Theorem B.3. Under H0 and Assumptions B.3-B.4, as n, p, q → ∞, we have

Tn d−→ N(0, 1) .

Appendix C: Additional numerical results

C.1. Additional simulation study

In this subsection, we compare the tests for independence based on our proposed
dependence metrics with the tests based on the Euclidean dCov and HSIC when
p and q are much smaller compared to n, for example, p/n = 0.1 (and similar
for q). We try the Examples 6.4.1-6.4.2 and 6.5.1-6.5.3, and consider n = 50 and
p = q = 5. In Examples 6.4.1-6.4.2, the empirical sizes corresponding to all the
tests are quite close to the 10% or 5% nominal level. In Examples 6.5.1-6.5.3,
the empirical power for all the tests turn out to be quite comparable as well,
which is quite expected as both the Euclidean dCov and HSIC can completely
characterize independence in the low-dimensional setting.

C.2. Additional discussions on the real data example for
homogeneity testing
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Fig 3. Comparison of histograms corresponding to the first four variables for the negative
and positive earthquake event groups.

C.3. Additional real data example for independence testing

We consider the monthly closed stock prices of p̃ = 36 companies under the
transport sector and q̃ = 41 companies under the utilities sector between Jan-
uary 1, 2017 and December 31, 2018. The companies under both the sectors
are clustered or grouped according to their countries. The data has been down-
loaded from Yahoo Finance via the R package ‘quantmod’. Under the trans-
port sector, we have q = 14 countries or groups, viz. USA, Brazil, Canada,
Greece, China, Panama, Belgium, Bermuda, UK, Mexico, Chile, Monaco, Ire-
land and Hong Kong, with d = (5, 1, 2, 8, 4, 1, 1, 3, 1, 3, 1, 4, 1, 1). And under the
utilities sector, we have q = 21 countries or groups, viz. USA, Mexico, UK,
India, Canada, China, Hong Kong, Taiwan, Brazil, Cayman Islands, Israel, Ar-
gentina, Chile, Singapore, South Korea, Russia, France, Phillipines, Indonesia,
Spain and Turkey, with g = (5, 1, 3, 1, 5, 2, 3, 1, 4, 1, 1, 4, 1, 1, 2, 1, 1, 1, 1, 1, 1). At
each time t, denote the closed stock prices of these companies from the two
different sectors by Xt = (X1t, . . . , Xpt) and Yt = (Y1t, . . . , Yqt) for 1 ≤ t ≤ 24.
We consider the stock returns SX

t = (SX
1t , . . . , S

X
pt) and SY

t = (SY
1t, . . . , S

Y
qt) for

1 ≤ t ≤ 23, where SX
itl = log

Xi,t+1,l

Xitl
and SY

jtl′ = log
Yj,t+1,l′
Yjtl′

for 1 ≤ l ≤ di,

1 ≤ i ≤ p, 1 ≤ l′ ≤ gj and 1 ≤ j ≤ q.
The intuitive idea is, stock returns of transport companies should affect the

stock returns of companies under the utilities sector, and here both the ran-
dom vectors admit a natural grouping based on the countries. Table 10 below
shows the p-values corresponding to the different tests for independence be-
tween {SX

t }23t=1 and {SY
t }23t=1. The tests based on the proposed dependence

metrics considering the natural grouping deliver much smaller p-values com-
pared to the tests based on the usual dCov and HSIC, as well as the projection
correlation based test, which fail to reject the null hypothesis of independence
between {SX

t }23t=1 and {SY
t }23t=1. This makes intuitive sense as the dependence

among financial asset returns is usually nonlinear in nature and thus cannot
be fully characterized by the usual dCov and HSIC in the high dimensional
setup.
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Table 9

Empirical size and power for the different tests of independence when p/n = 0.1.

I II III IV V VI

10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

Ex 6.4
(1) 0.110 0.067 0.104 0.049 0.110 0.064 0.109 0.069 0.107 0.060 0.106 0.064
(2) 0.124 0.068 0.115 0.072 0.126 0.079 0.102 0.068 0.113 0.076 0.112 0.064

Ex 6.5
(1) 1 1 1 1 1 1 0.988 0.967 1 1 0.998 0.987
(2) 1 1 1 1 1 1 0.806 0.698 0.996 0.993 0.816 0.700
(3) 1 1 1 1 1 1 1 1 1 1 1 1
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Table 10

p-values corresponding to the different tests for cross-sector independence of stock returns
data considering the natural grouping based on countries.

I II III IV V VI VII
0.0008 0.0011 0.0004 0.1106 0.1129 0.4848 0.1120

Table 11 below shows the p-values corresponding to the different tests for
independence when we disregard the natural grouping and consider di = 1 and
gj = 1 for all 1 ≤ i ≤ p and 1 ≤ j ≤ q. Considering unit group sizes makes our
proposed statistics essentially equivalent to the marginal aggregation approach
proposed by [57]. In this case the proposed tests have higher p-values than when
we consider the natural grouping, indicating that grouping or clustering might
improve the power of testing as they are capable of detecting a wider range of
dependencies.

Table 11

p-values corresponding to the different tests for cross-sector independence of stock returns
data considering unit group sizes.

I II III IV V VI VII
0.0067 0.0532 0.0796 0.1106 0.1129 0.4848 0.1120

Appendix D: Technical Appendix

Proof of Proposition 3.1. To prove (1), note that if d is a metric on a space X ,
then so is d1/2. It is easy to see that K2 is a metric on R

p̃. To prove (2), note
that (Rdi , ρi) has strong negative type for 1 ≤ i ≤ p. The rest follows from
Corollary 3.20 in [26]. ♦
Proof of Proposition A.1. It is easy to verify that En,m is an unbiased estimator
of E and is a two-sample U-statistic with the kernel h. ♦
Proof of Theorem A.2. The first part of the proof follows from Theorem 1 in [40]
and the observation that E

[
|h| log+ |h|

]
≤ E[h2]. The power mean inequality

says that for ai ∈ R, 1 ≤ i ≤ n, n ≥ 2 and r > 1,∣∣∣∣∣
n∑

i=1

ai

∣∣∣∣∣
r

≤ nr−1
n∑

i=1

|ai|r . (D.1)

Using the power mean inequality, it is easy to see that the assumptions
sup1≤i≤p Eρi(X(i), 0di) < ∞ and sup1≤i≤p Eρi(Y(i), 0di) < ∞ ensure that E[h2]
< ∞. For proving the second part, define h1,0(X) = E [h(X,X ′;Y, Y ′)|X] and

h0,1(Y ) = E [h(X,X ′;Y, Y ′)|Y ] Clearly, when X
d
= Y , h1,0(X) and h0,1(Y ) are

degenerate at 0 almost surely. Following Theorem 1.1 in [30], we have

(m− 1)(n− 1)

n+m
Enm(X,Y )

d−→
∞∑
k=1

σ2
k

[
(akUk + bkVk)

2 − (a2k + b2k)
]
,
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where {Uk}, {Vk} are two sequences of independent N(0, 1) variables, indepen-
dent of each other, and (σk, ak, bk)’s depend on the distribution of (X,Y ). The
proof can be completed by some simple rearrangement of terms. ♦
Proof of Proposition 4.1. The proof is essentially similar to the proof of Propo-
sition 2.1.1 in [57], replacing the Euclidean distance between, for example, X
and X ′, viz. ‖X − X ′‖p̃, by the new distance metric K(X,X ′). To show that
R(X,X ′) = Op(L

2(X,X ′)) if L(X,X ′) = op(1), we define f(x) =
√
1 + x. By

the definition of the Lagrange’s form of the remainder term from Taylor’s ex-
pansion, we have

R(X,X ′) =

∫ L(X,X′)

0

f ′′(t) (L(X,X ′)− t ) dt .

Using R and L interchangeably with R(X,X ′) and L(X,X ′) respectively, we
can write

|R| ≤ |L|
[∫ L

0

f ′′(t)1L>0 dt +

∫ 0

L

f ′′(t)1L<0 dt

]

=
|L|
2

∣∣1− 1√
1 + L

∣∣
=

|L|
2

|L|
1 + L+

√
1 + L

≤ L2

2(1 + L)
.

(D.2)

It is clear that R(X,X ′) = Op(L
2(X,X ′)) provided that L(X,X ′) = op(1). ♦

Proof of Theorem 4.1. Observe that EL(X,Y ) = EL(X,X ′) = EL(Y, Y ′) = 0.
By Proposition 4.1,

E(X,Y )=2E [τ + τ R(X,Y )] − E [τX + τX R(X,X ′)] − E [τY + τY R(Y, Y ′)]

=2τ − τX − τY + RE .

Clearly |RE | ≤ 2 τ E [ |R(X,Y )| ] + τX E [ |R(X,X ′)| ] + τY E [ |R(Y, Y ′)| ]. By
(D.2) and Assumption 4.3, we have

τ |R(X,Y )| ≤ τL2(X,Y )

2(1 + L(X,Y ))
= O(τa2p) = op(1).

As {√pL2(X,Y )/(1 + L(X,Y ))} is uniformly integrable and τ � √
p, we must

have τE[|R(X,Y )|] = o(1). The other terms can be handled in a similar fashion.
♦
Remark D.1. Write L(X,Y ) = 1

τ2 (Ap − EAp) =
1
τ2

∑p
i=1(Zi − EZi), where

Ap :=
∑p

i=1 Zi and Zi := ρi(Xi, Yi) for 1 ≤ i ≤ p. Assume supi Eρ
8
i (Xi, 0di) <

∞ and supi Eρ
8
i (Xi, 0di) < ∞, which imply supi EZ

8
i < ∞. Denote L(X,Y ) by L
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and R(X,Y ) by R for notational simplicities. Further assume that E exp(tAp) =
O((1−θ1t)

−θ2p) for θ1, θ2 > 0 and θ2 p > 4 uniformly over t < 0 (which is clearly
satisfied when Zi’s are independent and E exp(tZi) ≤ a1(1− a2t)

−a3 uniformly
over t < 0 and 1 ≤ i ≤ p for some a1, a2, a3 > 0 with a3 p > 4). Under certain
weak dependence assumptions, it can be shown that:

1. {√pL2/(1 + L)} is uniformly integrable;
2. ER2 = O( 1

p2 ).

Similar arguments hold for L(X,X ′) and R(X,X ′), and, L(Y, Y ′) and R(Y, Y ′)
as well.

Proof of Remark D.1. To prove the first part, define Lp :=
√
pL2/(1 + L). Fol-

lowing Chapter 6 of [34], it suffices to show that supp EL2
p < ∞. Towards that

end, using Hölder’s inequality we observe

EL2
p ≤

(
E(p2L8)

)1/2 (
E

[ 1

(1 + L)4

])1/2

. (D.3)

With supi EZ
8
i < ∞ and under certain weak dependence assumptions, it

can be shown that E(Ap − EAp)
8 = O(p4) (see for example Theorem 1 in

[13]). Consequently we have EL8 = O( 1
p4 ), as τ � √

p. Clearly this yields

E (p2L8) = O( 1
p2 ).

Now note that

E

[ 1

(1 + L)4

]
= τ8 E

(
1

A4
p

)
. (D.4)

Equation (3) in [9] states that for a non-negative random variable U with
moment-generating function MU (t) = E exp(tU), one can write

E(U−k) = (Γ(k))−1

∫ ∞

0

tk−1MU (−t) dt , (D.5)

for any positive integer k, provided both the integrals exist. Using equation
(D.5), the assumptions stated in Remark D.1 and basic properties of beta inte-
grals, some straightforward calculations yield

E

(
1

A4
p

)
≤ C1

∫ ∞

0

t4−1

(1 + θ1t)θ2p
dt = C2

Γ(θ2p− 4)

Γ(θ2p)
, (D.6)

where C1, C2 are positive constants, which clearly implies that E
(

1
A4

p

)
= O( 1

p4 ).

This together with equation (D.4) implies that E
[

1
(1+L)4

]
= O(1), as τ � √

p.

Combining all the above, we get from (D.3) that EL2
p = O( 1p ) and therefore

supp EL2
p < ∞, which completes the proof of the first part.

To prove the second part, note that following the proof of Proposition 4.1
and Hölder’s inequality we can write

ER2 = O

(
E

[
L4

(1 + L)2

])
= O

((
E(L8)

)1/2 (
E

[ 1

(1 + L)4

])1/2
)

. (D.7)
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Following the arguments as in the proof of the first part, clearly we have EL8 =

O( 1
p4 ) and E

[
1

(1+L)4

]
= O(1). From this and equation (D.7), it is straightforward

to verify that ER2 = O( 1
p2 ), which completes the proof of the second part. ♦

Proof of Lemma 4.1. To see (2), first observe that the sufficient part is straight-
forward from equation (4.3) in the main paper. For the necessary part, denote
a = trΣX , b = trΣY and c = ‖μX − μY ‖2. Then we have 2

√
a+ b+ c =√

2a +
√
2b. Some straightforward calculations yield (

√
2a −

√
2b)2 + 4 c = 0

which implies the rest.
To see (1), again the sufficient part is straightforward from equation (4.2)

in the paper and the form of K given in equation (3.1) in the paper. For the
necessary part, first note that as (Rdi , ρi) is a metric space of strong negative
type for 1 ≤ i ≤ p, there exists a Hilbert space Hi and an injective map
φi : R

di → Hi such that ρi(z, z
′) = ‖φi(z)−φi(z

′)‖2Hi
, where 〈·, ·〉Hi is the inner

product defined on Hi and ‖ · ‖Hi is the norm induced by the inner product
(see Proposition 3 in [39] for detailed discussions). Further, if ki is a distance-
induced kernel induced by the metric ρi, then by Proposition 14 in [39], Hi is
the RKHS with the reproducing kernel ki and φi(z) is essentially the canonical
feature map for Hi, viz. φi(z) : z �→ ki(·, z). It is easy to see that

τ2X =E

p∑
i=1

‖φi(X(i))− φi(X
′
(i))‖2Hi

= 2E

p∑
i=1

‖φi(X(i))− Eφi(X(i))‖2Hi
,

τ2Y =E

p∑
i=1

‖φi(Y(i))− φi(Y
′
(i))‖2Hi

= 2E

p∑
i=1

‖φi(Y(i))− Eφi(Y(i))‖2Hi
,

τ2 =E

p∑
i=1

‖φi(X(i))− φi(Y(i))‖2Hi
= τ2X/2 + τ2Y /2 + ζ2,

where ζ2 =
∑p

i=1 ‖Eφ(X(i))−Eφ(Y(i))‖2Hi
. Thus 2τ −τX −τY = 0 is equivalent

to

4(τ2X/2 + τ2Y /2 + ζ2) = (τX + τY )
2 = τ2X + τ2Y + 2τXτY .

which implies that
4ζ2 + (τX − τY )

2 = 0.

Therefore, 2τ − τX − τY = 0 holds if and only if (1) ζ = 0, i.e., Eφi(X(i)) =
Eφi(Y(i)) for all 1 ≤ i ≤ p, and, (2) τX = τY , i.e.,

E

p∑
i=1

‖φi(X(i))− Eφi(X(i))‖2Hi
= E

p∑
i=1

‖φi(Y(i))− Eφi(Y(i))‖2Hi
.

Now if X ∼ P and Y ∼ Q, then note that

Eφi(X(i)) =

∫
Rdi

ki(·, z) dPi(z) = Πi(Pi)
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and Eφi(Y(i)) =

∫
Rdi

ki(·, z) dQi(z) = Πi(Qi) ,

where Πi is the mean embedding function (associated with the distance induced
kernel ki) defined in Section 2.1, Pi and Qi are the distributions of X(i) and

Y(i), respectively. As ρi is a metric of strong negative type on R
di , the induced

kernel ki is characteristic to M1(R
di) and hence the mean embedding function

Πi is injective. Therefore condition (1) above implies X(i)
d
= Y(i). ♦

Now we introduce some notation before presenting the proof of Theorem
4.2. The key of our analysis is to study the variance of the leading term of
En,m(X,Y ) in the HDLSS setup, propose the variance estimator and study
the asymptotic behavior of the variance estimator. It will be shown later (in
the proof of Theorem 4.2) that the leading term in the Taylor’s expansion of
En,m(X,Y )− (2τ − τX − τY ) can be written as L1 + L2, where

L1 :=
1

nmτ

n∑
k=1

m∑
l=1

p∑
i=1

dkl(i)−
1

n(n− 1)τX

∑
k<l

p∑
i=1

dXkl(i)

− 1

m(m− 1)τY

∑
k<l

p∑
i=1

dYkl(i)

:= L1
1 − L2

1 − L3
1 ,

(D.8)

where Li
1’s are defined accordingly and

L2 :=
1

nmτ

n∑
k=1

m∑
l=1

p∑
i=1

(
E [ρi(Xk(i), Yl(i))|Xk(i)] + [ρi(Xk(i), Yl(i))|Yl(i)]

− 2E ρi(Xk(i), Yl(i))
)

− 1

n(n− 1)τX

∑
k<l

p∑
i=1

(
E [ρi(Xk(i), Xl(i))|Xk(i)] + [ρi(Xk(i), Xl(i))|Xl(i)]

− 2E ρi(Xk(i), Xl(i))
)

− 1

m(m− 1)τY

∑
k<l

p∑
i=1

(
E [ρi(Yk(i), Yl(i))|Yk(i)] + [ρi(Yk(i), Yl(i))|Yl(i)]

− 2E ρi(Yk(i), Yl(i))
)
.

(D.9)

By the double-centering properties, it is easy to see that Li
1 for 1 ≤ i ≤ 3 are

uncorrelated. Define

V :=
1

nmτ2

p∑
i,i′=1

E [dkl(i) dkl(i
′)] +

1

2n(n− 1)τ2X

p∑
i,i′=1

E [dXkl(i) d
X
kl(i

′)]
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+
1

2m(m− 1)τ2Y

p∑
i,i′=1

E [dYkl(i) d
Y
kl(i

′)] (D.10)

:= V1 + V2 + V3,

where Vi’s are defined accordingly. Further let

Ṽ1 := nmV1 , Ṽ2 := 2n(n− 1)V2 , Ṽ3 := 2m(m− 1)V3 . (D.11)

It can be verified that

E [dXkl(i) d
X
kl(i

′)] = D2
ρi,ρi′

(X(i), X(i′)) .

Thus we have

Ṽ2 =
1

τ2X

p∑
i,i′=1

D2
ρi,ρi′

(X(i), X(i′)) and Ṽ3 =
1

τ2Y

p∑
i,i′=1

D2
ρi,ρi′

(Y(i), Y(i′)) .

(D.12)

We study the variances of Li
1 for 1 ≤ i ≤ 3 and propose some suitable

estimators. The variance for L2
1 is given by

var(L2
1) =

1

n2(n− 1)2τ2X

p∑
i,i′=1

∑
k<l

E [dXkl(i) d
X
kl(i

′)] = V2 .

Clearly

n(n− 1)V2

2
=

1

4τ2X

p∑
i,i′=1

D2
ρi,ρj

(X(i), X(i′)) .

From Theorem 5.3 in Section 5.1, we know that for fixed n and growing p,

D̃2
n(X,X) is asymptotically equivalent to 1

4τ2
X

∑p
i,i′=1 D̃

2
n ; ρi,ρj

(X(i), X(i′)).

Therefore an estimator of Ṽ2 is given by 4 D̃2
n(X,X). Note that the computa-

tional cost of D̃2
n(X,X) is linear in p while direct calculation of its leading term

1
4τ2

X

∑p
i,i′=1 D̃

2
n ; ρi,ρj

(X(i), X(i′)) requires computation in the quadratic order of

p. Similarly it can be shown that the variance of L3
1 is V3 and Ṽ3 can be esti-

mated by 4 D̃2
m(Y, Y ). Likewise some easy calculations show that the variance

of L1
1 is V1. Define

ρ̂i(Xk(i), Yl(i)) :=ρi(Xk(i), Yl(i)) − 1

n

n∑
a=1

ρi(Xa(i), Yl(i)) − 1

m

m∑
b=1

ρi(Xk(i), Yb(i))

+
1

nm

n∑
a=1

m∑
b=1

ρi(Xa(i), Yb(i)) ,

(D.13)
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and

R̂(Xk, Yl) := R(Xk, Yl)−
1

n

n∑
a=1

R(Xa, Yl)−
1

m

m∑
b=1

R(Xk, Yb)

+
1

nm

n∑
a=1

m∑
b=1

R(Xa, Yb) .

(D.14)

It can be verified that

ρ̂i(Xk(i), Yl(i)) = dkl(i) − 1

n

n∑
a=1

dal(i) − 1

m

m∑
b=1

dkb(i) +
1

nm

n∑
a=1

m∑
b=1

dab(i).

Observe that

E [ρ̂i(Xk(i), Yl(i))ρi′(Xk(i′), Yl(i′))] = (1− 1/n)(1− 1/m)E [dkl(i) dkl(i
′)] .
(D.15)

Let Âi = (ρ̂i(Xk(i), Yl(i)))k,l, Ai = (ρi(Xk(i), Yl(i)))k,l ∈ R
n×m. Note that

1

(n− 1)(m− 1)
E

n∑
k=1

m∑
l=1

ρ̂i(Xk(i), Yl(i))ρ̂i(Xk(i′), Yl(i′))

=
1

(n− 1)(m− 1)
E tr(ÂiÂ

	
i′ )

=
1

(n− 1)(m− 1)
E tr(ÂiA

	
i′ )

=
1

(n− 1)(m− 1)
E

n∑
k=1

m∑
l=1

ρi(Xk(i′), Yl(i′)) ρ̂i(Xk(i), Yl(i))

= E [dkl(i) dkl(i
′)],

(D.16)

which suggests that

V̆1 =
1

nmτ2

p∑
i,i′=1

1

(n− 1)(m− 1)

n∑
k=1

m∑
l=1

ρ̂i(Xk(i), Yl(i)) ρ̂i(Xk(i′), Yl(i′))

is an unbiased estimator for V1. However, the computational cost for V̆1 is linear
in p2 which is prohibitive for large p. We aim to find a joint metric whose
computational cost is linear in p whose leading term is proportional to V̆1. It
can be verified that cdCov2n,m(X,Y ) is asymptotically equivalent to

1

4τ2

p∑
i,i′=1

1

(n− 1)(m− 1)

n∑
k=1

m∑
l=1

ρ̂i(Xk(i), Yl(i))ρ̂i(Xk(i′), Yl(i′)) .
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This can be seen from the observation that

4 cdCov2n,m(X,Y )

=
1

τ2

p∑
i,i′=1

1

(n− 1)(m− 1)

n∑
k=1

m∑
l=1

ρ̂i(Xk(i), Yl(i)) ρ̂i′(Xk(i′), Yl(i′))

+
τ2

(n− 1)(m− 1)

n∑
k=1

m∑
l=1

R̂2(Xk, Yl)

+
1

(n− 1)(m− 1)

n∑
k=1

m∑
l=1

1

τ

p∑
i=1

ρ̂i(Xk(i), Y(li)) τR̂(Xk, Yl).

(D.17)

Using the Hölder’s inequality as well as the fact that τ2 R̂2(Xk, Yl) is Op(τ
2a4p) =

op(1) under Assumption 4.3. Therefore, we can estimate Ṽ1 by 4cdCov2n,m(X,Y ).
Thus the variance of L1 is V which can be estimated by

V̂ :=
1

nm
4 cdCov2n,m(X,Y ) +

1

2n(n− 1)
4 D̃2

n(X,X)

+
1

2m(m− 1)
4 D̃2

m(Y, Y )

:= V̂1 + V̂2 + V̂3 .

(D.18)

Proof of Theorem 4.2. Using Proposition 4.1, some algebraic calculations yield

Enm(X,Y )− (2τ − τX − τY )

=
τ

nm

n∑
k=1

m∑
l=1

L(Xk, Yl)−
τX

2n(n− 1)

n∑
k �=l

L(Xk, Xl)−
τY

2m(m− 1)

m∑
k �=l

L(Yk, Yl)

+ Rn,m

=
1

nmτ

n∑
k=1

m∑
l=1

p∑
i=1

(
ρi(Xk(i), Yl(i))− E ρi(Xk(i), Yl(i))

)
− 1

2n(n− 1)τX

n∑
k �=l

p∑
i=1

(
ρi(Xk(i), Xl(i))− E ρi(Xk(i), Xl(i))

)
− 1

2m(m− 1)τY

m∑
k �=l

p∑
i=1

(
ρi(Yk(i), Yl(i))− E ρi(Yk(i), Yl(i))

)
+ Rn,m,

where

Rn,m =
2τ

nm

n∑
k=1

m∑
l=1

R(Xk, Yl)−
τX

n(n− 1)

n∑
k �=l

R(Xk, Xl)

− τY
m(m− 1)

m∑
k �=l

R(Yk, Yl) .

(D.19)
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By Assumption 4.3, Rn,m = Op(τa
2
p + τXb2p + τY c

2
p) = op(1) as p → ∞. Denote

the leading term above by L. We can rewrite L as L1 + L2, where L1 and L2

are defined in equations (D.8) and (D.9), respectively. Some calculations yield
that

L2 =
1

n

n∑
k=1

[
1

τ

p∑
i=1

E [ρi(Xk(i), Y(i))|Xk(i)] − 1

τX

p∑
i=1

E [ρi(Xk(i), X
′
(i))|Xk(i)]

]
− (τ − τX)

+
1

m

m∑
l=1

[
1

τ

p∑
i=1

E [ρi(X(i), Yl(i))|Yl(i)] − 1

τY

p∑
i=1

E [ρi(Yl(i), Y
′
(i))|Yl(i)]

]
− (τ − τY )

=
1

n

n∑
k=1

E [τL(Xk, Y )− τXL(Xk, X
′) |Xk]

+
1

m

m∑
l=1

E [τL(X,Yl)− τXL(Yl, Y
′) |Yl] .

(D.20)

For (PX , PY ) ∈ P , we have L2 = op(1).
Under Assumption 4.4, the asymptotic distribution of L1 as p → ∞ is given

by

L1
d−→ N

(
0 ,

σ2

nm
+

σ2
X

2n(n− 1)
+

σ2
Y

2m(m− 1)

)
.

Define the vector dvec :=
(
1
τ

∑p
i=1 dkl(i)

)
1≤k≤n, 1≤l≤m

. It can be verified that

4(n− 1)(m− 1) cdCov2n,m(X,Y ) = d	vec Advec (D.21)

where A = A1 + A2 + A3 + A4 with A1 = In ⊗ Im, A2 = −In ⊗ 1
m1m1	m,

A3 = − 1
n1n1

	
n ⊗ Im and A4 = 1

nm1nm1	nm. Here ⊗ denotes the Kronecker
product. It is not hard to see that A2 = A and rank(A) = (n − 1)(m − 1).
Therefore by Assumption 4.4, we have as p → ∞,

4(n− 1)(m− 1) cdCov2n,m(X,Y )
d→ σ2χ2

(n−1)(m−1).

By Theorem 5.5, we have as p → ∞,

4 D̃2
n(X,X)

d→ σ2
X

vn
χ2
vn , i.e., 4 vn D̃2

n(X,X)
d→ σ2

X χ2
vn ,

and similarly

4 vm D̃2
m(Y, Y )

d→ σ2
Y χ2

vm .

By Assumption 4.4, χ2
(n−1)(m−1), χ

2
vn and χ2

vm are mutually independent. The
proof can be completed by combining all the arguments above and using the
continuous mapping theorem. ♦
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Proof of Proposition 4.2. Note that as n,m → ∞,

E [(M −m0)
2] =

2(n− 1)(m− 1)σ4 + 2vnσ
4
X + 2vmσ4

Y

{ (n− 1)(m− 1) + vn + vm }2
= o(1),

where m0 = E[M ]. Therefore by Chebyshev’s inequality, M − m0 = op(1) as

n,m → ∞. As a consequence, we have M
p−→ m∗

0 as n,m → ∞. Observing that
Φ is a bounded function, the rest follows from Lebesgue’s Dominated Conver-
gence Theorem. ♦

Under H0, without any loss of generality define U1 = X1, . . . , Un = Xn, Un+1

:= Y1, . . . , Un+m := Ym. Further define

φi1i2 := φ(Ui1 , Ui2)

=

⎧⎪⎨⎪⎩
− 1

n(n−1) H(Ui1 , Ui2) if i1, i2 ∈ {1, . . . , n} ,
1

nm H(Ui1 , Ui2) if i1 ∈ {1, . . . , n}, i2 ∈ {n+ 1, . . . , n+m} ,
− 1

m(m−1) H(Ui1 , Ui2) if i1, i2 ∈ {n+ 1, . . . , n+m} .
(D.22)

It can be verified that cov(φi1i2 , φi′1i
′
2
) = 0 if the cardinality of the set {i1, i2}∩

{i′1, i′2} is less than 2. Define

T̆n,m =
En,m(X,Y )√

V
.

Lemma D.1. Under H0 and Assumptions 4.5, B.1 and B.2, as n,m and p →
∞, we have

T̆n,m
d−→ N(0, 1) .

Proof of Lemma D.1. Set N = n +m. Define VNj :=
∑j−1

i=1 φij for 2 ≤ j ≤ N ,

SNr :=
∑r

j=2 VNj =
∑r

j=2

∑j−1
i=1 φij for 2 ≤ r ≤ N , and FN,r := σ(X1, . . . , Xr).

Then the leading term of Enm(X,Y ), viz., L1 (see equation (D.8)) can be ex-
pressed as

L1 = SNN =

N∑
j=2

VNj =

N∑
j=2

j−1∑
i=1

φij

=
∑

1≤i1<i2≤n

φi1i2 +

n∑
i1=1

N∑
i2=n+1

φi1i2 +
∑

n+1≤i1<i2≤N

φi1i2 .

By Corollary 3.1 of [20], it suffices to show the following:

1. For each N , {SNr,FN,r}Nr=1 is a sequence of zero mean and square inte-
grable martingales,

2. 1
V

N∑
j=2

E
[
V 2
Nj | FN,j−1

] P−→ 1 ,
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3. 1
V

N∑
j=2

E

[
V 2
Nj 1(|VNj | > ε

√
V ) | FN,j−1

]
P−→ 0 , ∀ ε > 0.

To show (1), it is easy to see that SNr is square integrable, E(SNr) =
r∑

j=2

j−1∑
i=1

E(φij) = 0, and, FN,1 ⊆ FN,2 ⊆ . . . ⊆ FN,N . We only need to show

E(SNq | FN,r) = SNr for q > r. Now E(SNq | FN,r) =

q∑
j=2

j−1∑
i=1

E(φij | FN,r). If

j ≤ r < q and i < j, then E(φij | FN,r) = φij . If r < j ≤ q, then:

(i) if r < i < j ≤ q, then E(φij | FN,r) = E(φij) = 0,
(ii) if i ≤ r < j ≤ q, then E(φij | FN,r) = 0 (due to U-centering).

Therefore E(SNq | FN,r) = SNr for q > r. This completes the proof of (1).

To show (2), define Lj(i, k) := E [φij φkj | FN,j−1] for i, k < j ≤ N , and

ηN :=
N∑
j=2

E
[
V 2
Nj | FN,j−1

]
=

N∑
j=2

j−1∑
i,k=1

E[φij φkj | FN,j−1] =
N∑
j=2

j−1∑
i,k=1

Lj(i, k) .

Note that E [Lj(i, k)] = 0 for i 	= k. Clearly

E[ηN ] =

N∑
j=2

E[V 2
Nj ] =

N∑
j=2

j−1∑
i,k=1

E[φij φkj ] =

N∑
j=2

j−1∑
i=1

E[φ2
ij ] = V . (D.23)

By virtue of Chebyshev’s inequality, it will suffice to show var(ηN

V ) = o(1). Note
that

E [Lj(i, k)Lj′(i
′, k′)]

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
E
[
φ2(Ui, Uj)φ

2(Ui, U
′
j′)
]

i = k = i′ = k′ ,

E
[
φ(Ui, Uj)φ(Uk, Uj)φ(Ui, U

′
j′)φ(Uk, U

′
j′)
]

i = i′ 	= k = k′

or i = k′ 	= k = i′ ,

E
[
φ2(Ui, Uj)

]
E
[
φ2(Ui′ , Uj′)

]
i = k 	= i′ = k′ .

(D.24)

In view of equation (D.22), it can be verified that the above expression for
ELj(i, k)Lj′(i

′, k′) holds true for j = j′ as well. Therefore

var (η2N ) =

N∑
j,j′=2

j−1∑
i,k=1

j′−1∑
i′,k′=1

cov (Lj(i, k) , Lj′(i
′, k′))

=
∑
j=j′

{
j−1∑
i=1

cov
(
φ2(Ui, Uj), φ

2(Ui, U
′
j)
)

+ 2

j−1∑
i �=k

E
[
φ(Ui, Uj)φ(Uk, Uj)φ(Ui, U

′
j)φ(Uk, U

′
j)
]}
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+ 2
∑

2≤j<j′≤N

{
j−1∑
i=1

cov
(
φ2(Ui, Uj), φ

2(Ui, U
′
j′)
)

+ 2

j−1∑
i �=k

E
[
φ(Ui, Uj)φ(Uk, Uj)φ(Ui, U

′
j′)φ(Uk, U

′
j′)
]}

.

Under Assumption 4.5 and H0, it can be verified that

var(ηN ) = O
( 1

N5
E
[
H2(X,X ′′)H2(X ′, X ′′)

]
+

1

N4
E [H(X,X ′′)H(X ′, X ′′)H(X,X ′′′)H(X ′, X ′′′)]

)
,

(D.25)

and

V 2 � 1

N4

(
E
[
H2(X,X ′)

])2
. (D.26)

Therefore under Assumption B.1 and H0, we have

var
(ηN
V

)
= o(1),

which completes the proof of (2). To show (3), note that it suffices to show

1

V 2

N∑
j=2

E
[
V 4
Nj | FN,j−1

] P−→ 0 .

Observe that

N∑
j=2

E
[
V 4
Nj

]
=

N∑
j=2

E

(
j−1∑
i=1

φij

)4

=

N∑
j=2

j−1∑
i=1

E[φ4(Ui, Uj)] + 3

N∑
j=2

j−1∑
i1 �=i2

E[φ2(Ui1 , Uj)φ
2(Ui2 , Uj)] .

Under Assumption 4.5, we have

N∑
j=2

E
[
V 4
Nj

]
= O

( 1

N6
E
[
H4(X,X ′)

]
+

1

N5
E
[
H2(X,X ′′)H2(X ′, X ′′)

] )
.

This along with the observation from equation (D.25) and Assumption B.1
complete the proof of (3).

Finally to see that
Rn,m√

V
= op(1), note that from equation (D.19) we can

derive using power mean inequality that ER2
n,m ≤ C τ2 E

[
R2(X,X ′)

]
for some
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positive constant C. Using this, equation (D.26), Chebyshev’s inequality and
Hölder’s inequality, we have for any ε > 0

P

(∣∣∣Rn,m√
V

∣∣∣ > ε

)
≤

ER2
n,m

ε2 V
≤ C ′ N

2 τ2 E
[
R2(X,X ′)

]
ε2 E [H2(X,X ′)]

≤ C ′

ε2

(
N4 τ4 E

[
R4(X,X ′)

]
(E [H2(X,X ′)])2

)1/2

,

(D.27)

for some positive constant C ′. From this and Assumptions 4.5 and B.2, we get
Rn,m√

V
= op(1), as N � n. This completes the proof of the lemma. ♦

Lemma D.2. Under H0 and Assumptions 4.5 and B.2, as n,m and p → ∞,
we have ∣∣∣E [V̂i]− Vi

∣∣∣
Vi

= o(1) , 1 ≤ i ≤ 3 ,

where Vi and V̂i, 1 ≤ i ≤ 3 are defined in equations (D.10) and (D.18), respec-
tively in the appendix.

Proof of Lemma D.2. We first deal with V̂2. Note that

D̃2
n(X,X) =

1

n(n− 3)

∑
k �=l

(
D̃X

kl

)2
,

where

D̃X
kl = K(Xk, Xl) − 1

n− 2

n∑
b=1

K(Xk, Xb) − 1

n− 2

n∑
a=1

K(Xa, Xl)

+
1

(n− 1)(n− 2)

n∑
a,b=1

K(Xa, Xb)

=
1

2τ

p∑
i=1

ρ̃i(Xk(i), Xl(i)) + τR̃(Xk, Xl) ,

(D.28)

using Proposition 4.1. As a consequence, we can write

D̃2
n(X,X) =

1

4τ2

p∑
i,i′=1

D̃2
n ; ρi,ρi′

(X(i), X(i′)) +
τ2

n(n− 3)

∑
k �=l

R̃2(Xk, Xl)

+
1

n(n− 3)

∑
k �=l

1

τ

p∑
i=1

ρ̃i(Xk(i), X(li)) τR̃(Xk, Xl) .

(D.29)

Note that following Step 3 in Section 1.6 in the supplementary material of [54],
we can write

R̃(Xk, Xl) =
n− 3

n− 1
R̄(Xk, Xl) − n− 3

(n− 1)(n− 2)

∑
b/∈{k,l}

R̄(Xk, Xb)
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− n− 3

(n− 1)(n− 2)

∑
a/∈{k,l}

R̄(Xa, Xl)

+
1

(n− 1)(n− 2)

∑
a,b/∈{k,l}

R̄(Xa, Xb) ,

where R̄(X,X ′) = R(X,X ′)−E[R(X,X ′)|X]−E[R(X,X ′)|X ′]+E[R(X,X ′)].

Using the power mean inequality, it can be verified that E [R̃2(Xk, Xl)] ≤
C E [R̄2(Xk, Xl)] for some positive constant C. Using this and the Hölder’s in-
equality, the expectation of the third term in the summation in equation (D.29)
can be bounded as follows∣∣∣∣∣∣E

⎡⎣ 1

n(n− 3)

∑
k �=l

1

τ

p∑
i=1

ρ̃i(Xk(i), Xl(i)) τR̃(Xk, Xl)

⎤⎦∣∣∣∣∣∣
≤ 1

n(n− 3)

∑
k �=l

⎛⎝E

⎡⎣(1

τ

p∑
i=1

ρ̃i(Xk(i), Xl(i))

)2
⎤⎦ τ2 E

[
R̄2(Xk, Xl)

]⎞⎠1/2

≤ C ′

⎛⎝⎛⎝ 1

τ2

p∑
i,i′=1

D2
ρi,ρi′

(X(i), X(i′))

⎞⎠ τ2 E
[
R̄2(X,X ′)

]⎞⎠1/2

for some positive constant C ′. Combining all the above, we get

|E (V̂2)− V2| ≤
C1

n(n− 1)
τ2 E R̄2(X,X ′)

+
C2

n(n− 1)

⎛⎝⎛⎝ 1

τ2

p∑
i,i′=1

D2
ρi,ρi′

(X(i), X(i′))

⎞⎠ τ2 E
[
R̄2(X,X ′)

]⎞⎠1/2

,

for some positive constants C1 and C2. As V2 = 1
2n(n−1)E[H2(X,X ′)],∣∣∣E[V̂2]− V2

∣∣∣
V2

= o(1) is satisfied if
τ2 E

[
R̄2(X,X ′)

]
E[H2(X,X ′)]

= o(1) .

Using power mean inequality and Jensen’s inequality, it is not hard to verify
that E

[
R̄4(X,X ′)

]
= O

(
E
[
R4(X,X ′)

])
. Using this and Hölder’s inequality,

we have

τ2 E
[
R̄2(X,X ′)

]
E[H2(X,X ′)]

= O

⎛⎝( τ4 E [R4(X,X ′)]

(E [H2(X,X ′)])2

)1/2
⎞⎠ .

Clearly Assumption B.2 implies τ4
E [R4(X,X′)]

(E [H2(X,X′)])2
= o(1), which in turn implies

τ2 E
[
R̄2(X,X ′)

]
E[H2(X,X ′)]

= o(1) .
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Similar expressions can be derived for V̂3 as well. For the term involving V̂1, in
the similar fashion, we can write

E
[
4 cdCov2n,m(X,Y )

]
=

1

τ2

p∑
i,i′=1

1

(n− 1)(m− 1)

n∑
k=1

m∑
l=1

E
[
ρ̂i(Xk(i), Yl(i)) ρ̂i′(Xk(i′), Yl(i′))

]
+ τ2

1

(n− 1)(m− 1)

n∑
k=1

m∑
l=1

E

[
R̂2(Xk, Yl)

]
+

1

(n− 1)(m− 1)

n∑
k=1

m∑
l=1

1

τ

p∑
i=1

E

[
ρ̂i(Xk(i), Y(li)) τR̂(Xk, Yl)

]
,

(D.30)

where the expression for R̂(Xk, Yl) is given in equation (D.14). Following equa-
tion (D.16) we can write

1

τ2

p∑
i,i′=1

1

(n− 1)(m− 1)

n∑
k=1

m∑
l=1

E
[
ρ̂i(Xk(i), Yl(i)) ρ̂i′(Xk(i′), Yl(i′))

]
= E

[
H2(X,Y )

]
.

Therefore in view of equations (D.10), (D.15) and (D.18), using the power mean
inequality we can write

|E (V̂1)− V1|

≤ C ′
1

nm
τ2 E R̄2(X,Y )+

C ′
2

nm

⎛⎝⎛⎝ 1

τ2

p∑
i,i′=1

E [dkl(i)dkl(i
′)]

⎞⎠ τ2 E
[
R̄2(X,Y )

]⎞⎠1/2

,

for some positive constants C ′
1 and C ′

2. Then under H0 and Assumptions 4.5
and B.2, we have ∣∣∣E (V̂1)− V1

∣∣∣
V1

= o(1).♦

Lemma D.3. Under H0 and Assumptions 4.5, B.1 and B.2, as n,m and p →
∞, we have

var(V̂i)

V 2
i

= o(1), 1 ≤ i ≤ 3 .

Proof of Lemma D.3. Again we deal with V̂2 first. To simplify the notations,
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denote Aij = K(Xi, Xj) and Ãij = D̃X
ij for 1 ≤ i 	= j ≤ n. Observe that

var
(
D̃2

n(X,X)
)

= var

⎛⎝ 1

n(n− 3)

∑
i �=j

Ã2
ij

⎞⎠

� 1

n4

⎡⎢⎢⎣∑
i<j

var(Ã2
ij) +

∑
i<j<j′

cov(Ã2
ij , Ã

2
jj′) +

∑
i<j,i′<j′

{i,j}∩{i′,j′}=φ

cov(Ã2
ij , Ã

2
i′j′)

⎤⎥⎥⎦ .

(D.31)

As in the proof of Lemma D.2, we can write

Ãij =
n− 3

n− 1
Āij − n− 3

(n− 1)(n− 2)

∑
l/∈{i,j}

Āil −
n− 3

(n− 1)(n− 2)

∑
k/∈{i,j}

Ākj

+
1

(n− 1)(n− 2)

∑
k,l/∈{i,j}

Ākl ,

(D.32)

where the four summands are uncorrelated with each other. Using the power
mean inequality, it can be shown that

E (Ã4
ij) ≤ C E (Ā4

ij) = C E
[
K̄4(X,X ′)

]
,

for some positive constant C, where K̄(X,X ′) = K(X,X ′)− E[K(X,X ′)|X]
−E[K(X,X ′)|X ′]+E[K(X,X ′)] (similarly define L̄(X,X ′)). Therefore the first

summand in equation (D.31) scaled by Ṽ2

2
is o(1) as n, p → ∞, provided

1

n2

E
[
K̄4(X,X ′)

]
Ṽ2

2 = o(1) ,

where Ṽ2 is defined in equations (D.11) and (D.12). Note that

K̄(X,X ′) =
τX
2

L̄(X,X ′) + τX R̄(X,X ′) .

Using the power mean inequality we can write

1

n2

E
[
K̄4(X,X ′)

]
(E [H2(X,X ′)])2

≤ C0
1

n2

τ4X E
[
L̄4(X,X ′)

]
(E [H2(X,X ′)])2

+ C ′
0

1

n2

τ4X E
[
R̄4(X,X ′)

]
(E [H2(X,X ′)])2

for some positive constants C0 and C ′
0. It is easy to see that

L̄(Xk, Xl) =
1

τ2X
K̄2(Xk, Xl) =

1

τ2X

p∑
i=1

dXkl(i) =
1

τX
H(Xk, Xl) . (D.33)
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From equation (D.33) it is easy to see that the condition

1

n2

τ4X E
[
L̄4(X,X ′)

]
(E [H2(X,X ′)])2

= o(1) is equivalent to
1

n2

E
[
H4(X,X ′)

]
(E [H2(X,X ′)])2

= o(1).

For the third summand in equation (D.31), observe that

Ã2
ij = O(1)Ā2

ij +O

(
1

n2

) ∑
l,l′ /∈{i,j}

ĀilĀil′ +O

(
1

n2

) ∑
k,k′ /∈{i,j}

ĀkjĀk′j

+O

(
1

n4

) ∑
k,k′,l,l′ /∈{i,j}

ĀklĀk′l′ +O

(
1

n

)
Āij

∑
l/∈{i,j}

Āil

+ O

(
1

n

)
Āij

∑
k/∈{i,j}

Ākj + O

(
1

n2

)
Āij

∑
k,l/∈{i,j}

Ākl

+O

(
1

n2

) ∑
k,l/∈{i,j}

ĀilĀkj +O

(
1

n3

) ∑
k,l,l′ /∈{i,j}

ĀilĀkl′

+ O

(
1

n3

) ∑
k,k′,l/∈{i,j}

ĀklĀk′j .

(D.34)

Likewise Ã2
i′j′ admits a similar expression as in equation (D.34). We claim that

when {i, j} ∩ {i′, j′} = φ, the leading term of cov(Ã2
ij , Ã

2
i′j′) is O

(
1
n2 E (Ā4

ij)
)
.

To see this first note that Āij is independent of Āi′j′ when {i, j} ∩ {i′, j′} = φ.
Using the double-centering properties, it can be verified that

cov

⎛⎝Ā2
i′j′ , Āij

∑
l/∈{i,j}

Āil

⎞⎠ = cov

⎛⎝Ā2
i′j′ , Āij

∑
k/∈{i,j}

Ākj

⎞⎠
= cov

⎛⎝Ā2
i′j′ , Āij

∑
k,l/∈{i,j}

Ākl

⎞⎠ = 0.

To compute the quantity cov

⎛⎝Ā2
i′j′ , O

(
1
n2

) ∑
l,l′ /∈{i,j}

ĀilĀil′

⎞⎠, consider the

following cases:

Case 1. When l = l′ = i′ or l = l′ = j′ or l = i′, l′ = j′, cov
(
Ā2

i′j′ , ĀilĀil′
)
boils

down to cov(Ā2
i′j′ , Ā

2
ii′) or cov(Ā

2
i′j′ , Ā

2
ij′) or cov(Ā

2
i′j′ , Āii′Āij′).

Case 2. When l = i, l′ /∈ {i, j, i′, j′} or l = j′, l′ /∈ {i, j, i′, j′}, cov
(
Ā2

i′j′ , ĀilĀil′
)

boils down to cov(Ā2
i′j′ , Āii′Āil′) or cov(Ā2

i′j′ , Āij′Āil′), which can be
easily verified to be zero.

Case 3. When {l, l′} ∩ {i′, j′} = φ, cov
(
Ā2

i′j′ , ĀilĀil′
)
is again zero.
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Similar arguments can be made about

cov

⎛⎝Ā2
i′j′ , O

(
1

n2

) ∑
k,k′ /∈{i,j}

ĀkjĀk′j

⎞⎠
and

cov

⎛⎝Ā2
i′j′ , O

(
1

n2

) ∑
k,l/∈{i,j}

ĀilĀkj

⎞⎠ .

With this and using Hölder’s inequality, it can be verified that when {i, j} ∩
{i′, j′} = φ, the leading term of cov(Ã2

ij , Ã
2
i′j′) is O

(
1
n2 E (Ā4

ij)
)
. Therefore the

third summand in equation (D.31) scaled by Ṽ2

2
can be argued to be o(1) in

similar lines of the argument for the first summand in equation (D.31).

For the second summand in equation (D.31), in the similar line we can argue

that the leading term of cov(Ã2
ij , Ã

2
jj′) is

O

(
1

n

)
E
[
Ā4

ij

]
+ O(1)E

[
Ā2

ijĀ
2
jj′
]
.

Therefore the leading term of 1
n4

∑
i<j<j′

cov(Ã2
ij , Ã

2
jj′) is

O

(
1

n2

)
E
[
Ā4

ij

]
+ O

(
1

n

)
E
[
Ā2

ijĀ
2
jj′
]
.

For the second term above, using the power mean inequality we can write

1

n

E
[
Ā2

ij Ā
2
jj′
]

(E [H2(X,X ′)])2
≤ C3

1

n

τ4 E
[
L̄2(X,X ′) L̄2(X ′, X ′′)

]
(E [H2(X,X ′)])2

+ C ′
3

1

n

τ4 E
[
L̄2(X,X ′) R̄2(X ′, X ′′)

]
(E [H2(X,X ′)])2

+ C ′′
3

1

n

τ4 E
[
R̄2(X,X ′) R̄2(X ′, X ′′)

]
(E [H2(X,X ′)])2

= C3
1

n

E
[
H2(X,X ′)H2(X ′, X ′′)

]
(E [H2(X,X ′)])2

+ C ′
3

1

n

τ2 E
[
H2(X,X ′) R̄2(X ′, X ′′)

]
(E [H2(X,X ′)])2

+ C ′′
3

1

n

τ4 E
[
R̄2(X,X ′) R̄2(X ′, X ′′)

]
(E [H2(X,X ′)])2

for some positive constants C3, C
′
3 and C ′′

3 . Using Hölder’s inequality it can

be seen that the second summand in equation (D.31) scaled by Ṽ2

2
is o(1) as

n, p → ∞ under Assumptions B.1 and B.2. This completes the proof that

var(V̂2)

V 2
2

= o(1) .
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A similar line of argument and the simple observation that

K̂(Xk, Yl) = K(Xk, Yl)−
1

n

n∑
a=1

K(Xa, Yl)−
1

m

m∑
b=1

K(Xk, Yb)

+
1

nm

n∑
a=1

m∑
b=1

K(Xa, Yb)

= K̄(Xk, Yl)−
1

n

n∑
a=1

K̄(Xa, Yl)−
1

m

m∑
b=1

K̄(Xk, Yb)

+
1

nm

n∑
a=1

m∑
b=1

K̄(Xa, Yb)

will show that under Assumptions 4.5, B.1 and B.2,

var(V̂1)

V 2
1

= o(1) and
var(V̂3)

V 2
3

= o(1) .♦

Lemma D.4. Under H0 and Assumptions 4.5, B.1 and B.2, as n,m and p →
∞, we have V̂ /V

P→ 1 .

Proof. It is enough to show that

E

⎡⎣( V̂

V
− 1

)2
⎤⎦ = o(1) , i.e. ,

var(V̂ ) +
(
E [V̂ ]− V

)2
V 2

= o(1) .

It suffices to show the following

var(V̂i)

V 2
i

= o(1) and

(
E [V̂i]− Vi

)2
V 2
i

= o(1), 1 ≤ i ≤ 3.

The proof can be completed using Lemmas D.2 and D.3. ♦

Proof of Theorem B.1. The proof essentially follows from Lemma D.1 and D.4.
♦

Proof of Proposition A.2. The proof of the first part follows similar lines of the
proof of Proposition 1 in [49], replacing the Euclidean distance between X and
X ′, viz. ‖X−X ′‖p̃, by K(X,X ′). The second part of the proposition has a proof
similar to Lemma 2.1 in [52] and Section 1.1 in the Supplement of [52]. ♦

Proof of Theorem A.4. The first two parts of the theorem immediately follow
from Proposition 2.6 and Theorem 2.7 in [26], respectively and the parallel U-
statistics theory (see for example [41]). The third part follows from the first part
and the fact that D is non-zero for two dependent random vectors. ♦



5516 S. Chakraborty and X. Zhang

Proof of Theorem 5.1. Following the definition of D(X,Y ) and applying Propo-
sition 4.1, we can write

1

τXY
D2(X,Y )

=E
K(X,X ′)

τX

K(Y, Y ′)

τY
+ E

K(X,X ′)

τX
E
K(Y, Y ′)

τY
− 2E

K(X,X ′)

τX

K(Y, Y ′′)

τY

=E

(
1 +

1

2
L(X,X ′) +R(X,X ′)

) (
1 +

1

2
L(Y, Y ′) +R(Y, Y ′)

)
+ E

(
1 +

1

2
L(X,X ′) +R(X,X ′)

)
E

(
1 +

1

2
L(Y, Y ′) +R(Y, Y ′)

)
− 2E

(
1 +

1

2
L(X,X ′) +R(X,X ′)

) (
1 +

1

2
L(Y, Y ′′) +R(Y, Y ′′)

)
=L + R,

where

L =
1

4

[
EL(X,X ′)L(Y, Y ′) + EL(X,X ′)EL(Y, Y ′)

− 2EL(X,X ′)L(Y, Y ′′)
]
,

and

R = E

[
1

2
L(X,X ′)R(Y, Y ′) +

1

2
R(X,X ′)L(Y, Y ′) + R(X,X ′)R(Y, Y ′)

]
− 2E

[ 1
2
L(X,X ′)R(Y, Y ′′) +

1

2
R(X,X ′)L(Y, Y ′′)

+ R(X,X ′)R(Y, Y ′′)
]

+ ER(X,X ′)ER(Y, Y ′).

Some simple calculations yield

L =
1

4τ2XY

{
E [K2(X,X ′)K2(Y, Y ′)] + E [K2(X,X ′)]E [K2(Y, Y ′)]

− 2E [K2(X,X ′)K2(Y, Y ′′)]
}

=
1

4τ2XY

p∑
i=1

q∑
j=1

{
E [ρi(X(i), X

′
(i)) ρj(Y(j), Y

′
(j))]

+ E [ρi(X(i), X
′
(i))]E [ρj(Y(j), Y

′
(j))]

− 2E [ρi(X(i), X
′
(i)) ρj(Y(j), Y

′′
(j))]

}
=

1

4τ2XY

p∑
i=1

q∑
j=1

D2
ρi, ρj

(X(i), Y(j)) .
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To observe that the remainder term is negligible, note that under Assumption
5.2,

E [L(X,X ′)R(Y, Y ′)] ≤
(
E [L(X,X ′)2]E [R(Y, Y ′)2]

)1/2
= O(a′pb

′ 2
q ) ,

E [R(X,X ′)L(Y, Y ′)] ≤
(
E [R(X,X ′)2]E [L(Y, Y ′)2]

)1/2
= O(a′ 2p b′q) ,

E [R(X,X ′)R(Y, Y ′)] ≤
(
E [R(X,X ′)2]E [R(Y, Y ′)2]

)1/2
= O(a′ 2p b′ 2q ) ,

Clearly, R = τXY R = O(τXY a′ 2p b′q + τXY a′pb
′ 2
q ). ♦

Proof of Theorem 5.2. The proof is essentially similar to the proof of Theorem
5.1. Note that using Proposition 4.1, we can write

1

τY
D2(X,Y )

= EK(X,X ′)
K(Y, Y ′)

τY
+ EK(X,X ′)E

K(Y, Y ′)

τY
− 2EK(X,X ′)

K(Y, Y ′′)

τY

= EK(X,X ′)

(
1 +

1

2
L(Y, Y ′) +R(Y, Y ′)

)
+ EK(X,X ′)E

(
1 +

1

2
L(Y, Y ′) +R(Y, Y ′)

)
− 2EK(X,X ′)

(
1 +

1

2
L(Y, Y ′′) +R(Y, Y ′′)

)
= L + R,

where

L =
1

2τ2Y

q∑
j=1

{
E [K(X,X ′) ρj(Y(j), Y

′
(j))] + E [K(X,X ′)E [ρj(Y(j), Y

′
(j))]

− 2E [K(X,X ′) ρj(Y(j), Y
′′
(j))]

}
=

1

2τ2Y

q∑
j=1

D2
K, ρj

(X,Y(j)) ,

and

R = E [K(X,X ′)R(Y, Y ′) ] + E [K(X,X ′)] E [R(Y, Y ′)]

− 2E [K(X,X ′)R(Y, Y ′′) ] .

Under the assumption that E [R2(Y, Y ′)] = O(b′ 4q ), using Hölder’s inequality it
is easy to see that τY R = O(τY b′ 2q ) = o(1). ♦
Proof of Theorem 5.3. Following equation (D.28), we have for 1 ≤ k 	= l ≤ n

D̃X
kl =

τX
2
L̃(Xk, Xl) + τXR̃(Xk, Xl)
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=
1

2τX

p∑
i=1

ρ̃i(Xk(i), Xl(i)) + τXR̃(Xk, Xl) ,

D̃Y
kl =

τY
2
L̃(Yk, Yl) + τY R̃(Yk, Yl) =

1

2τY

q∑
j=1

ρ̃i(Yk(j), Yl(j)) + τY R̃(Yk, Yl) .

From equation (2.14) in the main paper it is easy to check that

D̃2
n(X,Y )

=
1

4τXY

p∑
i=1

q∑
j=1

D̃2
n ; ρi,ρj

(X(i), Y(j)) +
τXY

2n(n− 3)

∑
k �=l

L̃(Xk, Xl)R̃(Yk, Yl)

+
τXY

2n(n− 3)

∑
k �=l

L̃(Yk, Yl)R̃(Xk, Xl) +
τXY

n(n− 3)

∑
k �=l

R̃(Xk, Xl) R̃(Yk, Yl) .

Under Assumption 5.3, using Hölder’s inequality and power mean inequality, it
can be verified that

∑
k �=l

L̃(Xk, Xl)R̃(Yk, Yl) ≤

⎛⎝∑
k �=l

L̃(Xk, Xl)
2
∑
k �=l

R̃(Yk, Yl)
2

⎞⎠1/2

= Op(apb
2
q) ,

∑
k �=l

L̃(Yk, Yl)R̃(Xk, Xl) ≤

⎛⎝∑
k �=l

L̃(Yk, Yl)
2
∑
k �=l

R̃(Xk, Xl)
2

⎞⎠1/2

= Op(a
2
pbq) ,

∑
k �=l

R̃(Xk, Xl)R̃(Yk, Yl) ≤

⎛⎝∑
k �=l

R̃(Xk, Xl)
2
∑
k �=l

R̃(Yk, Yl)
2

⎞⎠1/2

= Op(a
2
pb

2
q) .

This completes the proof of the theorem. ♦
Proof of Theorem 5.4. Following equation (D.28), we have for 1 ≤ k 	= l ≤ n

D̃Y
kl =

1

2τY

q∑
j=1

ρ̃j(Yk(j), Yl(j)) + τY R̃(Yk, Yl) ,

and therefore

D̃2
n(X,Y ) =

1

2τY

q∑
j=1

D̃2
n ;K,ρj

(X,Y(j)) +
τY

n(n− 3)

∑
k �=l

K̃(Xk, Xl)R̃(Yk, Yl) .

Using power mean inequality, it can be verified that
∑

k �=l K̃(Xk, Xl)R̃(Yk, Yl) =

Op(b
2
q). This completes the proof of the theorem. ♦

Proof of Theorem 5.5. The proof follows similar lines of the proof Theorem 2.2.1
in [57], with the distance metric being the one from the class of metrics we
proposed in equation (3.1). ♦
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Proof of Theorem 5.6. The proof of the theorem follows similar lines of the proof
of Proposition 2.2.2 in [57]. ♦
Proof of Theorem B.2. The decomposition into the leading term follows the
similar lines of the proof of Theorem 5.3. The negligibility of the remainder
term can be shown by mimicking the proof of Theorem 3.1.1 in [57]. ♦
Proof of Theorem B.3. It essentially follows similar lines of Proposition 3.2.1 in
[57]. ♦
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