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Abstract: In this paper, we study the nonparametric linear model, when
the error process is a dependent Gaussian process. We focus on the estima-
tion of the mean vector via a model selection approach. We first give the
general theoretical form of the penalty function, ensuring that the penalized
estimator among a collection of models satisfies an oracle inequality. Then
we derive a penalty shape involving the spectral radius of the covariance
matrix of the errors, which can be chosen proportional to the dimension
when the error process is stationary and short range dependent. However,
this penalty can be too rough in some cases, in particular when the error
process is long range dependent. In a second part, we focus on the fixed-
design regression model assuming that the error process is a stationary
Gaussian process. We propose a model selection procedure in order to es-
timate the mean function via piecewise polynomials on a regular partition,
when the error process is either short range dependent, long range depen-
dent or anti-persistent. We present different kinds of penalties, depending
on the memory of the process. For each case, an adaptive estimator is built,
and the rates of convergence are computed. Thanks to several sets of sim-
ulations, we study the performance of these different penalties for all types
of errors (short memory, long memory and anti-persistent errors). Finally,
we give an application of our method to the well-known Nile data, which
clearly shows that the type of dependence of the error process must be
taken into account.
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1. Introduction

Let us consider the linear model

Y = μ∗ + ε, (1.1)

where Y is the n-dimensional vector of observations, μ∗ is an unknown (deter-
ministic) vector to be estimated, and ε is the vector of errors. It is well know that
Model (1.1) can serve as a canonical model to express a large class of statistical
problems (see [10]). In this paper, we focus on the estimation of the vector μ∗
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with a model selection approach, in the general framework where the error pro-
cess ε is a dependent Gaussian random vector, with covariance matrix Σ. Our
first goal is to give the theoretical form of the penalty function, depending on
Σ, ensuring that the penalized estimator among a collection of models satisfies
an oracle inequality.

This model has been widely studied for independent and identically dis-
tributed (i.i.d.) errors, in particular by Birgé and Massart in the Gaussian
case [10]. Baraud worked in the general i.i.d. case with a deterministic design
first [3], then with a random design [4]. Some extensions of these results to a
β-mixing framework are presented in [5]. The idea of using a penalty function
goes back to the pioneering works of Akaike [1] and Mallows [36]. Later, Birgé
and Massart developed a non-asymptotic approach to the selection of penalized
models [10], [11], [12].

We follow in this paper the strategy developed by Birgé and Massart which is
based on a non-asymptotic control of the fluctuations of the empirical contrast.

Let us be more precise here. In order to find a linear subspace that realizes
a bias-variance tradeoff, let us introduce a finite collection of models {Sm,m ∈
M}, denoting by dm the dimension of Sm. Let then μ̂m be the least squares
estimator of μ∗ on Sm. A penalization strategy is used by selecting a model with
a criterion of the form

m̂ ∈ argminm∈M

{
‖Y − μ̂m‖2n + pen(m)

}
,

where ‖·‖n denotes the (normalized) euclidean norm in R
n, and pen : M → R

+

is a penalty function defined on the family of models (as usual, argminm∈M
defines a set of points in M and the notation ∈ means that m̂ can be any point
of that set). Following the Birgé and Massart approach, we derive a penalty
function which provides an oracle inequality for the model selection procedure
in the dependent Gaussian framework.

In Section 2, a general penalty shape is presented. The main term is the
quantity tr(ProjSm

Σ) (tr denoting the trace and ProjSm
denoting the matrix of

the projection on Sm on the canonical basis) which plays the same role as the
term Var(ε1) dm in the results of Birgé and Massart for i.i.d. Gaussian errors.
Similar penalties have already been introduced by Gendre [24] in the context of
model selection for additive regression. However Gendre [24] is not interested in
the same questions as us: he is concerned with additive regression whereas our
objective is to study the Gaussian regression with dependent errors. In the same
way as for us, the analysis of [24] is based on a general Gaussian model selection,
but it appears that for our concern, the general penalty form we provide is more
appropriate than that provided by [24]. In addition, the assumptions of [24] do
not apply to the context of long range dependent or anti-persistent errors.

Note that the trace tr
(
ProjSm

Σ
)
is bounded by dmρ(Σ), where ρ(Σ) is the

spectral radius of the covariance matrix. Hence, neglecting some residual terms
(see Section 2), the following penalty can be used: for any K > 1,

pen(m) ≥ K
ρ(Σ)dm

n
. (1.2)
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For instance, if we suppose that the error process is a short memory stationary
process with bounded spectral density, then the spectral radius is bounded, and
this penalty shape is very close to the i.i.d. case up to a constant. The penalty
can still be chosen proportional to the dimension, as in the i.i.d. case, but the
usual variance term is replaced by the spectral radius of the covariance matrix.

However, the penalty (1.2) may be too rough in some cases, in particular if
the error process is long range dependent. To see how to handle this case in
a concrete situation, we study in Sections 3 and 4 the fixed-design regression
model

Yi = f∗
(
i

n

)
+ εi , (1.3)

where (εi)i≥1 is a stationary Gaussian process. By standard arguments, this
model can be written as a special case of the generic Model (1.1) (see the
beginning of Section 3).

Note that Model (1.3) has been widely studied in the literature (with possibly
non Gaussian errors) via kernel or wavelets methods.

For kernel estimators, let us first quote the paper by Hall and Hart [29],
who considered a particular class of Gaussian errors. The authors showed in
particular that, for a twice differentiable function f∗, the rate is the same as in
the i.i.d. case if and only if

∑
k>0 |Cov(ε1, εk)| < ∞, and they gave minimax

rates in the long range dependent case. Let us also cite the papers by Csörgő and
Mielniczuk [14], [15], [16] (long memory is considered in [15] and [16]), Tran et
al [47] (short memory case), and Robinson [43]. Robinson’s article provides very
general results for short range and long range dependent processes, and rates of
convergence for anti-persistent errors (also called negatively correlated errors)
can be derived from his Lemma 3. Local polynomial fitting with long memory,
short memory and anti-persistent errors is considered by Beran and Feng [8].
Note that none of these articles adresses the issues of adaptive estimation or
data-driven bandwidth selection.

For wavelets type estimators, let us first quote the paper by Wang [48], who
gave minimax results in the long range dependent case, when the function f∗

belongs to a Besov class. Let us also cite the papers by Johnstone and Silver-
man [33], Johnstone [32], and more recently Li and Xiao [35] and Beran and
Shumeyko [9]. These four papers addressed the issue of a data-driven choice
of the threshold. Theorem 1 in [32] gave a very precise minimax result (up to
constants), but for an asymptotic model which is a bit different from (1.3) (see
the discussion at the end of the paper [32]). By adapting the block threshold-
ing method described in Hall et al [30] to the long memory case, Li and Xiao
[35] showed that the block thresholded wavelets estimators are adaptive and
minimax for a large class of functions.

In Sections 3 and 4 of the present paper, we propose a model selection pro-
cedure to estimate f∗ via piecewise polynomials on a regular partition of size
m. The choice of piecewise polynomials is very natural here, since the function
f∗ is supported on [0, 1], and such estimators do not show bad behaviors near
the boundary. We show that
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• For short memory error processes (i.e. when ρ(Σ) is uniformly bounded)
the penalty is of the form

pen(m) = K
m

n

(for some constant K > 0 to be calibrated), the penalized estimator is
adaptive with respect to the unknown regularity of the function f∗, and
yields the same rates of convergence as in the i.i.d setting.

• For long memory processes, that is when the auto-covariances γε(k) of the
error process are such that

|γε(k)| ≤ κk−γ , for some κ > 0 and γ ∈ (0, 1),

the penalty is a concave function of (m/n)

pen(m) = K
(m
n

)γ
(for some constant K > 0 to be calibrated), the penalized estimator is
adaptive with respect to the unknown regularity of the function f∗, and
yields the same minimax rates of convergence as in [48].

• For anti-persistent errors such that

Var(ε1 + · · ·+ εn) ≤ κn2−γ , for some κ > 0 and γ ∈ (1, 2),

and in the case of regressograms (piecewise polynomials of degree 0), the
penalty has the form

pen(m) = K

(
mγ

nγ
+

log(m)

n

)
(for some constant K > 0 to be calibrated). The main part of the penalty
is then a convex function of (m/n). The penalized estimator is adaptive
with respect to the unknown regularity of the function f∗, and yields faster
rates of convergence than in the i.i.d setting. Note that similar rates can
also be deduced from Lemma 3 in [43].

In Section 4, we simulate different kind of short memory processes (a Gaus-
sian ARMA(2,1) process, two non Gaussian β-mixing Markov chains), of long
memory processes (a fractional Gaussian noise with Hurst index in (1/2,1), and
a non Gaussian β-mixing Markov chain), and an anti-persistent process (a frac-
tional Gaussian noise with Hurst index in (0, 1/2)). For regressograms on a
regular partition of size m, we investigate different kind of penalties: the usual
penalty proportional to m/n, a penalty proportional to (m/n)γ in the case of
long range dependent or anti-persistent errors, and some penalties for which γ
is estimated via an estimator of the Hurst index based on the Yi’s or on the
residuals. Finally, an important message of this paper is that the slope heuris-
tics [12] can be adapted to calibrate penalties in the context of regression with
dependent errors.

In Section 5, we give an application of our method to the well known Nile data,
and we continue the discussion started in Robinson’s article [43]. In Section 6, we
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discuss other possible applications of the generals results of Section 2. Finally,
Section 7 is devoted to the proofs of the results of Sections 2 and 3.

To conclude this introduction, let us make some additional remarks.
To give a concrete example of application of the general result of Section 2,

we have chosen to present the fixed-design regression model (1.3) with all the
details. But, as already mentioned in the first paragraph of this introduction,
Model (1.1) can be used in many other situations. For instance, let us consider
the case of random design regression Yi = f∗(Xi) + εi, where (Xi) and (εi)
are two independent sequences of stationary random variables, and (εi) is a
Gaussian sequence. Then, conditioning on the design, our general result still
applies. For instance, following closely the proof in Baraud’s paper ([4], Gaussian
case), we see that, under the same assumptions on the distribution of X and on
the collection of models, his main result still holds provided ρ(Σ) is uniformly
bounded (short memory case). However, the case where the εi’s are long range
dependent is not so clear, a careful study being needed to control the term
tr(ProjSm

Σ) (see the Conjecture in Section (6): Discussion).
Our second remark concerns the Gaussian assumption on the error, which

is of course quite restrictive. Our guess is that some of our results can be ex-
tended to other (non Gaussian) sequences. This is the reason why we consider
some short range dependent and long range dependent Harris recurrent Markov
chains in the simulation section (Section 4). Based on these experiments, it
seems indeed that our method is quite robust, but even for this simple case the
theoretical part has to be written properly. As usual for model selection in a
Gaussian context, the central tool is Cirel’son-Ibragimov-Sudakov concentration
inequality [13] (see Subsection 7.2). Hence, an important problem is to know if
some appropriate concentration inequalities can be stated in other dependent
contexts that include long range dependent processes.

There are many ways to define long range dependence: through the behavior
of autocovariances or of the spectral density, by considering the behavior of the
variance of partial sums, via limit theorems for partial sums or for the empirical
distribution function. One of these definitions is given in Chapter 3 of the mono-
graph [26] (see Definition 3.1.2 there), which contains also many statistical re-
sults for long range dependent processes. Among the processes that are known to
exhibit long range dependence, an important class is the class of linear processes
εk =

∑∞
i=0 aiηk−i, where (ηi)i∈Z is a sequence of i.i.d. random variables with

mean zero and finite variance, and (ai)i≥0 is a sequence of real numbers in �2.
These processes can be short range dependent, long range dependent or anti per-
sistent according to the behavior of the ai’s (for instance if the ai’s are summable
and

∑
i≥0 ai �= 0, then the process is short range dependent): a complete de-

scription is given in Chapter 3 of [26]. Other classes of long memory processes
are the squared LARCH processes (introduced by Robinson [42], see also [27]),
linear processes with infinite variance innovation (see Samorodnisky and Taqqu
[44], and also [41]), bounded functions of stationary Markov chains (see for in-
stance [18]), functions of Gaussian processes (see for instance [19]) and even some
classes of dynamical systems (see [17] and [18]). For all these non Gaussian pro-
cesses, it would be interesting to know if some parts of our results are still valid.
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Our last remark concerns the data-based justification of the existence of long
memory phenomena. Situations where the error process (εk) in Model (1.3) is
long range dependent often occur when considering financial or climatology time
series. For instance the annual series of winter means of the NAO index (North
Atlantic Oscillation index) exhibits long range dependence (see Stephenson et
al. [45]) and also an increasing trend for the last decade (which can possibly be
explained by global warming). Concerning financial time series, we refer to the
paper by Pesee [39] where daily exchange rate data are studied. The classical
monograph by Beran [7] contains also many examples of long memory processes,
such as: Northern hemisphere monthly temperatures, ethernet traffic data from
a local area network, annual data for Nile river minima (see Section 5 for more
details), weight measurements (deviation from 1kg) from the National Bureau
of Standards, . . .

2. A Gaussian linear model selection theorem in a dependent
context

2.1. General setting

Recall the equation of the Gaussian linear model (1.1)

Y = μ∗ + ε,

where the mean vector μ∗ belongs to R
n and where the error vector ε is a

Gaussian random vector. We consider the general setting where the components
of Y are not necessarily independent

ε ∼ Nn(0,Σ).

The covariance matrix Σ is a n× n semi-definite matrix with eigenvalues λ1 ≥
· · · ≥ λn ≥ 0. We also introduce the spectral radius of Σ

ρ(Σ) = max
1≤i≤n

λi = λ1.

The aim is to estimate the unknown vector μ∗ from the observation Y . One
standard strategy is to constrain the estimator to belong to a given linear sub-
space S of Rn. Let ‖ · ‖n denotes the (normalized) euclidean norm in R

n

‖x‖2n =
1

n

n∑
i=1

x2
i .

The least squares contrast is defined for x ∈ R
n by

γn(x) = ‖Y − x‖2n ,

and the minimizer of γn over S is the orthogonal projection of Y on S

ProjS(Y ) = argminx∈S γn(x).
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With a slight abuse of notation, we shall write ProjS for the projection operator
on S and for its matrix on the canonical basis. The �2 risk of an estimator μ̂ is
defined by

R(μ̂) = E

[
‖μ̂− μ∗‖2n

]
,

where the expectation is under the distribution of Y . Using Pythagoras equality
in R

n together with (1.1), we find that the risk of ProjS(Y ) satisfies the following
bias-variance decomposition

E

[
‖μ∗ − ProjS(Y )‖2n

]
= ‖(Id−ProjS)μ

∗‖2n + E

[
‖ProjS(ε)‖

2
n

]
.

The squared bias ‖(Id−ProjS)μ
∗‖2n is small for large enough linear subspace S.

It can be easily checked that the variance term is equal to E

[
‖ProjS(ε)‖

2
n

]
=

1
n tr (ProjS Σ), see the proof of Theorem 2.1. As in the i.i.d. case, the variance
term tends to increase with the dimension of S.

In order to find a linear subspace that realizes a bias-variance tradeoff, we
introduce a finite collection of linear subspaces {Sm,m ∈ M} that we call
models, and we denote by dm the dimension of Sm. For m ∈ M, we denote by
μ̂m the least squares estimator ProjSm

(Y ) of μ∗ on Sm. We also introduce the
oracle model m0, that is the model that provides the least squares estimator
with minimum risk

m0 ∈ argminm∈M{R(μ̂m)}.
Now the aim is to select a model in the collection such that the risk of the
selected estimator is as close as possible to the oracle model.

The true risk R(μ̂m) of μ̂m being unknown in practice, we introduce the
empirical risk

R̂(μ̂m) = ‖Y − μ̂m‖2n .
Obviously this criterion can not be used to select a model in the collection
because of the overfitting effect. We follow a penalization strategy [1, 36, 10, 38]
by selecting a model with a criterion of the form

m̂ ∈ argminm∈M

{
‖Y − μ̂m‖2n + pen(m)

}
, (2.1)

where pen : M → R
+ is a penalty function defined on the family of models.

In this paper we perform a non asymptotic analysis of the risk of the selected
estimator μ̂m̂. By this way we derive a penalty function which provides an oracle
inequality for the model selection procedure, in the dependent Gaussian context.

2.2. A general Gaussian model selection result

Let π = {πm, m ∈ M} be a probability measure defined on M:
∑

m∈M πm = 1.
This probability is introduced to simultaneously control the empirical risks of
all estimators in the collection. It is also chosen such that the final risk of the
selected estimator is as close as possible to the oracle risk.



Gaussian linear model selection in a dependent context 4831

We first give a general shape for the penalty function and the corresponding
oracle inequality.

Theorem 2.1. Let K > 1, and let pen : M → R
+ be a penalty function such

that: for any m ∈ M,

pen(m) ≥ K

n

(√
tr
(
ProjSm

Σ
)
+ ρ(Σ) +

√
ρ(Σ)

√
2 log

(
1

πm

))2

. (2.2)

Then there exists a constant C > 1 which only depends on K such that the
estimator μ̂m̂ selected by the criterion (2.1) satisfies

E

[
‖μ∗ − μ̂m̂‖2n

]
≤ C

(
inf

m∈M

{
E

[
‖μ∗ − μ̂m‖2n

]
+ pen(m)

}
+

ρ(Σ)

n

)
. (2.3)

The main term in the penalty shape (2.2) is the trace term tr
(
ProjSm

Σ
)
.

This quantity plays the same role as the term Var(ε1)dm in the results of Birgé
and Massart for independent Gaussian errors [10, 38]. Of course, this penalty
can only be calculated if the matrix Σ is completely known. However we will
see that, in certain cases, we can consider effective strategies to circumvent this
issue (see Sections 3 and 4).

We can propose penalty shapes from the upper bounds

tr
(
ProjSm

Σ
)
≤

dm∑
i=1

λi ≤ dmρ(Σ). (2.4)

A proof for the first inequality is given in Subsection 7.5. Actually, with a minor
modification of the proof of Theorem 2.1 (this modification being necessary only
to get a better constant in front of

√
ρ(Σ) in (2.2)), it can be checked that the

risk bound (2.3) is still valid when replacing the lower bound in (2.2) by

pen(m) ≥ K

n

⎛⎝
√√√√ dm∑

i=1

λi +
√
ρ(Σ)

√
2 log

(
1

πm

)⎞⎠2

,

or by

pen(m) ≥ K
ρ(Σ)

n

(√
dm +

√
2 log

(
1

πm

))2

, (2.5)

for any K > 1.
If the sequence (εi)i≥1 is a stationary and short memory Gaussian process,

then the spectral radius is bounded (see Remark 3.1 below) and the penalty
shape (2.5) is completely in line with the case of independent Gaussian errors [10,
38], the usual variance term Var(ε1) being replaced by the spectral radius ρ(Σ).

The three penalty shapes given above depend on the probability π. If the
collection of models is not too rich (see for instance [10, 38] or Chapter 2 in [28]),
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it might be chosen in such a way that

ρ(Σ) log

(
1

πm

)
is smaller or of the same order as the main terms tr

(
ProjSm

Σ
)
,
∑dm

i=1 λi or
dmρ(Σ). To sum up, if the spectral radius is bounded and if the collection of
models is not too rich, we see that the penalty can be chosen proportional to
the dimension dm, as in the independent case.

It is tempting to keep the penalty shape (2.5) as a general penalty shape for
Gaussian linear model selection with dependent errors. However, as we will see
later in the paper, this penalty shape is too rough in some cases. For instance,
it cannot lead to minimax rates of convergence for non parametric regression
with long range dependent errors (see Subsection 3.2).

At this point, it should be clearly quoted that a penalty similar to (2.2)
has been given in the paper [24]. The main difference is that, in the inequality
similar to (2.3) proved in [24] (Inequality (2.2) of Theorem 2.1 in [24]), the
residual term is ρ(Σ)Rn/n instead of ρ(Σ)/n. For the questions he has in mind
(which are not directly related to time series), Gendre is able to effectively
control this additional term Rn. But it does not seem easy to handle for long
range dependent errors or anti-persistent errors, which are precisely the kind of
error processes that we want to study in the present paper.

3. Non parametric regression with Gaussian dependent errors

In this section we study the fixed design regression problem with dependent
Gaussian errors. Let f∗ be a function in L

∞([0, 1]), and recall the equation of
model (1.3)

Yi = f∗
(
i

n

)
+ εi, i ∈ {1, . . . n},

where (ε1, . . . , εn) ∼ Nn(0,Σn). The aim is to estimate f∗ based on the obser-
vations Y1, . . . , Yn.

By considering the application

f ∈ L
∞([0, 1]) 
→ I(f) = (f(1/n), . . . , f(1)) ∈ R

n,

we can easily associate a linear subspace of Rn to any linear subspace of L∞([0, 1]).
Slightly abusing the notation, we identify the function f to the vector I(f), and
we write

‖f‖2n =
1

n

n∑
i=1

f2(i/n) = ‖I(f)‖2n, for f ∈ L
∞([0, 1]).

For F a finite linear subspace of L∞([0, 1]), we define the least squares estimator

f̂ of f∗ on F as

f̂ = argminf∈F ‖Y − f‖2n , where ‖Y − f‖2n =
1

n

n∑
i=1

(f(i/n)− Yi)
2.
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We shall only consider here the linear spaces Sm of Rn induced by the linear
space Fm of L

∞([0, 1]) generated by the family of piecewise polynomials of
degree at most r (r ∈ N) on the regular partition of size m of the interval [0, 1].
Obviously, the linear space Sm has dimension dm = (r + 1)m; the case r = 0
corresponds to the regular regressogram of size m.

We denote by f̂m the least squares estimator of f∗ on Fm.
We shall always consider some weights πm of order m−2 (suitably normalized

in such a way that
∑n

m=1 πm = 1). For such weights, the terms involving πm

in the general penalty (2.2) is of order ρ(Σ) log(m); in the applications given
below, it will be negligible with respect to the main term tr

(
ProjSm

Σ
)
.

3.1. The case of short range dependent sequences

In this subsection, we assume that the error process (εi)i≥1 is stationary and
short-range dependent. By short range dependent, we mean that

ρε = sup
n∈N∗

ρ(Σn) < ∞. (3.1)

From (3.1), we immediately see that Var(ε1 + · · · + εn) ≤ nρε; the fact that
the variance of partial sums does not grow faster than n is always required for
short-range dependence. Our definition is however a bit less restrictive than the
usual definitions based on the spectral density or on the summability of the
auto-covariances γε(k) = Cov(ε0, εk), as explained in the following remark.

Remark 3.1. By definition of the spectral radius and of the spectral density gε
of (εi)i≥1, we have

ρ(Σn) = sup
n‖x‖2

n=1

xtΣnx = sup
n‖x‖2

n=1

Var

(
n∑

k=1

xkεk

)

= sup
n‖x‖2

n=1

∫ π

−π

∣∣∣∣∣
n∑

k=1

xke
ikx

∣∣∣∣∣
2

gε(x)dx .

It follows that

ρε ≤ 2π‖gε‖∞ ≤ γε(0) + 2
∞∑
k=1

|γε(k)| ,

Hence Condition (3.1) is implied by the boundedness of gε (and therefore also
by the summability of the γε(k)’s).

Now, if (3.1) holds, the model selection procedure is exactly the same as
in the i.i.d. framework, by replacing the variance of the errors by the spectral
radius in the penalty. More precisely, we obtain a penalty of the form

pen(m) = Kρε
m

n
,
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for some positive constant K depending on the degree r. We now select a model
in Mn according to the criterion (2.1), which can be rewritten as

m̂ ∈ argminm∈{1,...,n}

{∥∥∥Y − f̂m

∥∥∥2
n
+ pen(m)

}
. (3.2)

Following [3], we derive rates of convergence when f∗ belongs to some Besov
spaces Bα,�,∞ for �−1 < α < r + 1 and � ≥ 2 (see [20] for the definition of
Besov spaces). In short, the approximation term in the risk decomposition of

f̂m satisfies (see Sections 4 and 7.4 in [3])

inf
g∈Fm

‖f∗ − g‖2n ≤ C(α, r)|f∗|2α,�
(
m−2α + n−2α+2/�

)
, (3.3)

where | · |α,� is the usual norm on Bα,�,∞. Balancing the variance term and the
approximation terms exactly as in case of i.i.d errors, we end up with the same
rate of convergence as in the i.i.d. case.

Corollary 3.1. Let (�, α) be such that α ∈ (0, r + 1) and � ≥ max(2, (2α +
1)/(2α2)). For a stationary Gaussian process satisfying (3.1), and for the esti-

mator f̂m̂ selected according to the penalized criterion procedure (3.2),

sup
|f∗|α,�≤L

E

∥∥∥f∗ − f̂m̂

∥∥∥2
n
≤ Cn− 2α

2α+1 ,

where C depends on ρε, K, α, � and L.

This upper bound is known to be the minimax rate of convergence for the
estimation of f∗ in the i.i.d. case. This is satisfactory since a sequence of i.i.d.
Gaussian random variables is of course short-range dependent.

As for the Gaussian i.i.d case, the penalty is defined up to a multiplicative
constant K. The spectral radius is unknown, as is the variance of the errors
in the standard i.i.d. setting. In practice, the penalty is chosen proportional to
the model dimension m and calibrated according to the slope heuristic method
introduced by Birgé et Massart [11], see Section 4.1 further.

3.2. The case of long range dependent sequences

In this subsection, we assume that the error process (εi)i≥1 is strictly stationary,
but we do not assume that (3.1) holds. Instead, we assume that

|γε(k)| ≤ κk−γ , for some κ > 0 and γ ∈ (0, 1), (3.4)

where γε(k) is the auto-covariance γε(k) = Cov(ε0, εk). Of course, (3.4) is only
an upper bound, so that it may happen that

∑
k>0 |γε(k)| < ∞; in such a case

(3.1) holds and the process is short range dependent. But the interesting case is
of course when |γε(k)| is exactly of order k−γ , so that

∑
k>0 |γε(k)| = ∞. This

is what we mean here by long range dependent.
To control the main term of the penalty, we shall prove the following lemma
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Lemma 3.1. Let Sm be the linear space of Rn induced by the family of piecewise
polynomials of degree at most r on the regular partition of size m of the interval
[0, 1]. If (3.4) holds, then

tr
(
ProjSm

Σ
)
≤ Cmγn1−γ ,

where C depends on κ, γ and r.

Moreover, by the classical Gerschgorin theorem [25], we easily see that

ρ(Σn) ≤ Bn1−γ ,

where B depends on κ and γ. Combining this last bound with Lemma 3.1, we
infer from (2.2) that one can choose a penalty of the form

pen(m) = K
mγ

nγ
,

for some positive constant K depending on κ, γ and r.
Now, since the bias term (3.3) is still valid for any function f∗ in the Besov

space Bα,�,∞ (with �−1 < α < r + 1 and � ≥ 2), we can proceed as in Section

3.1 to get the rate of convergence of the estimator f̂m̂. The difference is that the
bias-variance problem consists of balancing two terms of order

1

m2α
(bias) and

mγ

nγ
(variance).

This leads to the following corollary.

Corollary 3.2. Let (�, α) be such that α ∈ (0, r + 1) and � ≥ max(2, (2α +
γ)/(2α2)). For a stationary Gaussian process satisfying (3.4), and for the esti-

mator f̂m̂ selected according to the penalized criterion procedure (3.2),

sup
|f∗|α,�≤L

E

∥∥∥f∗ − f̂m̂

∥∥∥2
n
≤ Cn− 2αγ

2α+γ ,

where C depends on γ, K, α, � and L.

This rate is satisfactory, since it corresponds to the minimax rates described
in the same setting by Wang [48] when γε(k) is exactly of order k−γ . Note
however that the minimax rate in [48] is written for the usual L2([0, 1])-norm.

Let us make some additional comments: if the exponent γ is known, then the
slope heuristic can still be used to calibrate the other constants in the penalty
term. We shall see that it works pretty well in the simulation section and we will
also investigate the calibration of γ for the more general and difficult framework
where the exponent γ is unknown.

Remark 3.2. One can also give an upper bound for tr
(
ProjSm

Σ
)
in the case

where γε(k) ∼ k−γL(k), where γ ∈ (0, 1) and L is a slowly varying function.
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From inequality (7.7) of the proof of Lemma 3.1 and the properties of slowly
varying functions (applying for instance Proposition 2.2.1 in [40]), we obtain

tr
(
ProjSm

Σ
)
≤ Cmγn1−γL(n/m)

for some positive constant C. Using a penalty of the form

pen(m) = K
mγ

nγ
L(n/m) ,

and following the computations leading to the rate of Corollary 3.2, we end up
with the rate

sup
|f∗|α,�≤L

E

∥∥∥f∗ − f̂m̂

∥∥∥2
n
≤ Cn− 2αγ

2α+γ L
(
n

2α
2α+γ

)
.

3.3. Regular regressograms and anti-persistent errors

We now assume that the sequence (εi)i≥1 is stationary and anti-persistent in
the following sense: there exists a parameter γ ∈ (1, 2) and a positive constant
κ such that Condition (3.1) holds and

Var

(
n∑

k=1

εk

)
≤ κn2−γ . (3.5)

For instance, Conditions (3.1) and (3.5) hold if (εi)i≥1 is a fractional Gaussian
noise with Hurst index H ∈ (0, 1/2) (see Section 4.2 for the definition of the
Hurst index). In that case, γ = 2 − 2H. The term anti-persistent is borrowed
from this particular case.

In this subsection, we only consider the case of regular regressograms, which
corresponds to estimators via piecewise polynomials of degree 0 on a regular
partition of [0, 1].

To control the main term of the penalty, we shall prove the following lemma.

Lemma 3.2. Let Sm be the linear space of R
n induced by the family of in-

dicators of intervals on the regular partition of size m of the interval [0, 1]. If
Conditions (3.1) and (3.5) hold, then

tr
(
ProjSm

Σ
)
≤ Cmγn1−γ ,

where C depends on κ and γ.

We infer from (2.2) that one can choose a penalty of the form

pen(m) = K

(
mγ

nγ
+

log(m)

n

)
,

for some positive constant K depending on κ, γ and ρε (recall that ρε is the
constant appearing in (3.1)).



Gaussian linear model selection in a dependent context 4837

Now, since the bias term (3.3) is still valid for any function f∗ in the Besov
space Bα,�,∞ (with �−1 < α < 1 and � ≥ 2), we can proceed as in Section 3.1

to get the rate of convergence of the estimator f̂m̂. This leads to the following
corollary.

Corollary 3.3. Let (�, α) be such that α ∈ (0, 1) and � ≥ max(2, (2α+γ)/(2α2)).
For a stationary Gaussian process satisfying Conditions (3.1) and (3.5), and for

the estimator f̂m̂ selected according to the penalized criterion procedure (3.2),

sup
|f∗|α,�≤L

E

∥∥∥f∗ − f̂m̂

∥∥∥2
n
≤ Cn− 2αγ

2α+γ ,

where C depends on γ, K, α, � and L.

It is interesting to notice that, for a regularity α < 1, the rate of convergence
given in Corollary 3.3 is faster than in the case where the sequence (εi)i≥1 is
i.i.d. It would of course be interesting to know if this rate is minimax (to our
knowledge, this has not yet been proven).

4. Numeric experiments

4.1. Slope heuristics

For the results given in the previous sections, the penalty functions are known,
in the best case, up to a multiplicative constant. The aim of the slope heuristics
method proposed by Birgé and Massart [12] is precisely to calibrate a penalty
function for model selection purposes. See [6] and [2] for a general presentation
of the method. This method has shown very good performances and comes
with mathematical guarantees for non parametric Gaussian regression with i.i.d.
error terms, see [12, 2] and references therein. The slope heuristics have several
versions (see [2]). In this paper we use the dimension jump algorithm, which is
implemented for instance in the R package capush.

The aim is to tune the constant κ in a penalty of the form pen(m) =
κ penshape(m) where penshape is a known penalty shape. In the most standard
cases, penshape is the dimension of the model. Let m̂(κ) be the model selected
by the penalized criterion with constant κ

m̂(κ) ∈ argminm∈M

{
1

n

∥∥∥Y − f̂m

∥∥∥2
n
+ κ penshape(m)

}
.

The Dimension Jump algorithm consists of the following steps (see Figure 3b
for an illustration)

1. Compute κ 
→ m̂(κ),
2. Find the constant κ̂dj > 0 that corresponds to the highest jump of the

function κ → dm̂(κ),

3. Select the model m̂(2κ̂dj),

m̂ ∈ argminm∈M

{∥∥∥Y − f̂m

∥∥∥2
n
+ 2κ̂dj penshape(m)

}
.
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4.2. Presentation of the experiments

We simulate n observations according to the following generative model on [0, 1]

Yi = f∗
(
i

n

)
+ εi, i = 1 . . . n. (4.1)

In the simulations we take for f∗ the function

f∗ : t ∈ [0, 1] 
→ 3− 0.1 ∗ t+ 0.5 ∗ t2 − t3 + sin(8 ∗ t).

The aim is to estimate f∗ on a regular partition of sizem, form ∈ {1, . . . , 200}.
We simulate n observations ε according to an ARMA process, a Fractional Gaus-
sian process and a non Gaussian Markov chain. The last framework allows us to
evaluate the robustness of the model selection procedure without the Gaussian
assumption. We shall consider samples of size n = 200, n = 500, n = 2000,
n = 5000; for each estimator that will be considered below, the boxplots of the
risks will be carried out through 100 independent trials.

We now give more details on the error processes we use for the simulations.

• ARMA process. The ARMA(2,1) short memory process is defined by

εi − 0.3εi−1 − 0.1εi−2 = Wi + 0.2Wi−1, (4.2)

where (Wi)i∈Z is a sequence of i.i.d. N (0, 1) random variables.
• Fractional Gaussian Noise. The Fractional Gaussian Noise (FGN, see

for instance [37] and [7]) is a stationary sequence (εi)i≥1 of zero-mean
Gaussian random variables with auto–covariances

γε(k) =
σ2

2

(
|k + 1|2H − 2|k|2H + |k − 1|2H

)
, for k ∈ N,

where σ2 = γε(0) = Var(εi), and H ∈ (0, 1) is the so-called Hurst pa-
rameter. If H = 1/2, the sequence (εi)i≥1 is a Gaussian white noise with
variance σ2. For any H ∈ (0, 1) the following asymptotic expansion is valid

γε(k) ∼ σ2H(2H − 1)k2(H−1) .

Consequently, if H > 1/2, the process is positively correlated and long-
range dependent. If H < 1/2, the process is negatively correlated and∑

k≥0 |γε(k)| < ∞, so that (3.1) holds and the process is short-range
dependent.
In fact, for H < 1/2, the FGN (εi)i≥1 is anti-persistent in the sense of
Definition 3.5 (with γ = 2−2H in Definition 3.5). This is well known (see
for instance [7]), and follows from the fact that the εi’s are the increments
of a fractional Brownian motion BH , that is for i = 1, 2, . . .

εi = BH(i)−BH(i− 1), with Var(BH(t)) = σ2t2H .

In the simulations, we shall consider two cases
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- an anti-persistent case, with H = 0.2,

- a long memory case, with H = 0.7.

• Non Gaussian Markov chain. We start from the Markov chain intro-
duced by Doukhan, Massart and Rio [21].
Let a be a positive real number, let ν be the probability with density x →
(1 + a)xa1[0,1] and π be the probability with density x → axa−11[0,1]. We
define now a strictly stationary Markov chain by specifying its transition
probabilities K(x,A) as follows

K(x,A) = (1− x)δx(A) + xν(A) ,

where δx denotes the Dirac measure at point x. Then π is the unique
invariant probability measure of the chain with transition probabilities
K(x, ·). Let (Zi)i∈Z be the stationary Markov chain on [0, 1] with transition
probabilities K(x, ·) and invariant distribution π. From [21], we know that
the β-mixing coefficients βZ(n) of the chain are such that βZ(n) ∼ 1

na .
One can easily check than Za

i is uniformly distributed over [0, 1], so that

εi = Za
i − 0.5

is a stationary Markov chain (as an invertible function of a stationary
Markov chain), with mean zero and mixing coefficient β(k) ∼ 1

na . This
chain is short range dependent if a > 1 and long-range dependent if a ∈
(0, 1) (see for instance [18] for a deeper discussion on this subject).
In the simulations, we shall consider three cases

- two short memory cases, with a = 8 and a = 1.5,

- a long memory case, with a = 0.5.

In fact, for regressograms on a regular partition of size m, the main term of
the penalty can be exactly determined by the behavior of Var(ε1+ · · ·+εn) (see
the proof of Lemma 3.2). More precisely, if

Var

(
n∑

k=1

εk

)
∼ κn2−γ ,

for some γ ∈ (0, 2), then the main term of the penalty will be of order (m/n)γ .
We then see that γ is related to the usual Hurst index H (see for instance [7])
of the partial sum process

Sn = ε1 + · · ·+ εn ,

via the equality γ = 2− 2H. Hence, for regressograms on a regular partition of
size m, the main term of the penalty is of order (m/n)2−2H .

For long range dependent Gaussian processes, the variance terms of the risk
are not linear functions of the dimension, for sufficiently large dimension they be-
have as mγ for some γ ∈ (0, 1). Figure 1 shows the risk curvem → E[‖f∗−f̂m‖2n]
of the regressograms for observations simulated according to (4.1) with the er-
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Fig 1. Comparison of risk shapes for the fractional Gaussian process with Hurst coefficient
between 0.1 and 0.9, and for n = 2000.

ror process following a Fractional Gaussian distribution with Hurst exponents
between 0.1 and 0.9. As usual this risk is estimated via a basic Monte-Carlo
procedure, by averaging the empirical risk ‖f∗ − f̂m‖2n over N = 100 indepen-
dent trials. For Figure 1, the size of the samples is equal to n = 2000, and m
varies from 1 to 700.

For anti-persistent cases (H < 0.5), the risk curve has a convex behavior
for large dimensions, in accordance with a variance term of order m2−2H (see
Section 3.3). For the i.i.d. case (H = 0.5), the risk curve is linear for high
dimensions. For the long range dependent cases (H > 0.5), the risk curve shows
a concave behavior for large dimensions, in accordance with a variance term of
order m2−2H (see Section 3.2).

Figure 2 shows the risk curve of the regressograms for observations simu-
lated according to (4.1), when the error process is the β-mixing Markov chain
described above with a parameter a between 0.3 and 10. We remark a concave
behavior for large dimensions in the long range dependent case (a < 1) and a
linear behavior for large dimensions in the short range dependent case (a > 1).
This suggests that the theoretical results obtained in Sections 3.1 and 3.2 could
be also valid in non Gaussian contexts.

For the simulations, we use the Whittle MLE-estimator [49] implemented
in the longmemo package, to estimate the Hurst index H. We compare several
approaches

• CDJ: Classical Dimension Jump method with a penalty shape propor-
tional to the dimension.

• HGiven: Dimension Jump for the penalty shape m2−2H with Hurst ex-
ponent H given.

• Wh(Y): Dimension Jump for the penalty shape m2−2Ĥ where Ĥ is the
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Fig 2. Comparison of risk shapes for the Markov chain, for n = 2000.

Whittle estimator computed on the Y process.

• Wh(Res): Dimension Jump for the penalty shape m2−2Ĥ where Ĥ is the
Whittle estimator computed on the residuals of a model.
For the method Wh(Res), we have to propose a model m0 for which the
Hurst exponent is computed on the residuals. Roughly speaking, the idea
is to estimate the Hurst exponent in a sufficiently large model for which
the bias is negligible. We propose a two steps procedure, which is based on
the selection of a pre-model m̂1 to estimate the Hurst exponent H on the
residuals of m̂1. This provides an estimator Ĥ which is used to design the
penalty shape. The dimension jump is then used to select the final model
m̂. We propose two versions for this two-step procedure:

- CDJ+Wh(Res): Classical Dimension Jump to find a pre-model m̂1,
then Whittle estimator Ĥ to estimate the Hurst exponent and finally

Dimension Jump with penalty shape m2−2Ĥ .

- Wh(Y)+Wh(Res): Dimension Jump with penalty shape m2−2Ĥ1

where Ĥ1 is the Whittle estimator on Y , this selects a pre-model
m̂1, then Whittle estimator Ĥ2 on the residuals of the model m̂1 and

finally Dimension Jump with penalty shape m2−2Ĥ2 .

4.3. Short range dependence

In this section we study the performance of the model selection method in the
short memory framework. The penalty shape is chosen proportional to the model
dimension, as in the i.i.d. case and we can apply the classical dimension jump
method (CDJ) to calibrate κ. Roughly speaking, the slope heuristics relies,
among other assumptions, on the fact that the empirical contrast behaves in
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Fig 3. Illustration of the slope heuristics for the ARMA(2,1) process.

high dimension as a linear function of the penalty shape.
We also compare the performances of the CDJ method with the ones of the

other approaches. As we shall see, other methods can give better results for n
small.

• Gaussian ARMA process

We begin with the classical ARMA(2,1) short memory process defined in
(4.2). Figure 3 shows the behavior of the empirical contrast for n = 2000 and an
illustration of the dimension jump algorithm. As expected by the slope heuris-
tics, a linear behavior of the empirical contrast can be observed in high dimen-
sions (m ≥ 25).

Figure 4 shows the performance of the different methods. The boxplots on
the left part of each graph show the risk of this model selection method over
100 trials. On the right, the risk function is displayed.

In this experiment, the classical dimension jump (penalty shape proportional
to the dimension) works clearly well for n large (n ≥ 2000). It is however
less efficient for n small. Indeed, the risk shows a concave behavior in large
dimensions, as in the long memory case (as we shall see later on). For small n,
an estimation of H with the Whittle estimator applied on the Y process and
plugged into the penalty shapes finally gives better results than the classical
dimension jump method.

The Whittle estimator computed on the residuals is also efficient for selecting
the minimal risk model for n small. In this case we consider the residuals process
of the model chosen at first step either by CDJ or by Wh(Y), the method CDJ



Gaussian linear model selection in a dependent context 4843

Fig 4. Short Memory ARMA process. Risk curves and performances of the different calibra-
tion methods for n = 200, 500, 2000, 5000.

+ Wh(res) having bad results for n too small (n = 200).

• Non Gaussian Markov chain

To evaluate the robustness of the model selection procedure without the
Gaussian error assumption, we consider the Non Gaussian Markov chain defined
above. We simulate an error process ε distributed according to this stationary
Markov chain, and we first make simulations in the short dependent case with a
value of a = 8. As shown by Figure 5, a linear behavior of the empirical contrast
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Fig 5. Illustration of the slope heuristics for the non Gaussian process (a = 8).

can be observed, which is a good point for applying the slope heuristics here.
The performances of the methods are summarized on Figure 6. We can check

on this figure that the classical dimension jump shows good performances. For
all sample sizes, the dimension jump based on the Whittle estimator applied to
Y is a little less efficient than the two-step methods.

We now consider a second short memory case with the Markov chain, with
a = 1.5. This case is very close to the limit case a = 1, which separates long
memory from short memory. Figure 7 shows that the CDJ method works well
for n large. But for n small, the four methods do not really manage to select a
model close to the oracle model.

The methods based on the direct estimation of the Hurst exponent, like
Wh(Y), give good results for n smaller than 500. Regarding the two-step meth-
ods, CDJ+Wh(res) shows bad performances for n small (n ≤ 500), while
Wh(Y)+Wh(res) shows good results for n = 500 but poor results for n = 200.

4.4. Long range dependence

For long range dependent Gaussian processes, the variance terms of the risk are
not linear functions of the dimension, they behave as mγ for some parameter
γ ∈ (0, 1). We thus would like to use penalties proportional to mγ , see Sec-
tion 3.2. For instance, for Fractional Gaussian processes, γ = 2− 2H, where H
is the Hurst exponent. Of course this coefficient is unknown in practice and thus
we use some estimator of the Hurst exponent to calibrate the penalty. Generally
speaking, estimating the Hurst exponent is a difficult statistical task, however a
rough estimation can be sufficient for the model selection problem we study here.
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Fig 6. Markov chain with a = 8. Risk curves and performances of the different calibration
methods for n = 200, 500, 2000, 5000.

• Fractional Gaussian Noise

For this experiment we simulate the error process with a Gaussian Fractional
Noise of Hurst parameter H = 0.7. The performances of the methods are sum-
marized on Figure 8. We can check on this figure that when using a penalty
with the true Hurst exponent (H = 0.7) of the error process, the model selec-
tion method works correctly. We also note that the classical dimension jump
(penalty shape proportional to the dimension) shows bad performances. On the
other hand, the Whittle estimator applied to Y and plugged into the penalty
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Fig 7. Markov chain with a = 1.5. Risk curves and performances of the different calibration
methods for n = 200, 500, 2000, 5000.

shape shows good results for all sample sizes. The two steps methods show also
good performances for n large enough.

• Non Gaussian Markov chain

We now evaluate the robustness of our model selection procedure when the
Gaussian error assumption is not satisfied. We consider here the Non Gaussian
Markov chain in the long range dependent setting. As for the Fractional Gaus-
sian Noise, the risk has a concave behavior for large dimension, see Figure 2 for
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Fig 8. Long Memory Fractional Gaussian error process with H = 0.7. Risk curves and
performances of the different calibration methods for n = 200, 500, 2000, 5000.

an illustration. Then the penalty shape is equal to ma, where a is the decay rate
of the covariances.

For this experiment we simulate the Markov chain with a = 0.5 for the error
process. The performances of the methods are displayed on Figure 9. We observe
that the classical dimension jump shows bad performances in this non Gaussian
long range dependent context. When using the penalty shape ma (H given, with
a = 2− 2H), the performances are a little better than before, but not as good
as one could hoped for. For n large enough (n ≥ 2000), the Whittle estimator
applied on Y and plugged into the penalty shape shows satisfactory results. The
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Fig 9. Markov chain process with a = 0.5. Risk curves and performances of the different
calibration methods for n = 200, 500, 2000, 5000.

performances of the two steps methods are similar but from n = 5000 only.
This experiment suggests that more work should be done in this context. It

seems that a concave penalty shape should be used, as expected, but that the
good exponent could perhaps be different from a = 2− 2H.

4.5. Anti-persistent errors with a Fractional Gaussian Noise

We consider the same simulation protocol with anti-persistent errors, following
a Fractional Gaussian Noise with H = 0.2. Again, we observe a linear behaviour
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Fig 10. Short Memory Fractional Gaussian process with H = 0.2. Risk curves and perfor-
mances of the different calibration methods for n = 200, 500, 2000, 5000.

of the empirical contrast in high dimension, see Figure 11a.

The performances of the different methods on this experiment are summa-
rized by Figure 10. We can check that when using a penalty with the true Hurst
exponent (H = 0.2), the model selection method works pretty well. The two-step
methods, with the Whittle estimator computed on the residuals, give similar re-
sults for all n. On the other hand, the Whittle estimator applied directly on Y
shows poor performances for n small, but it is better for n large.

We also note that, in this short range dependent case, the classical dimension
jump shows good results for all n, as in the i.i.d. case.
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Fig 11. Illustration of the slope heuristics for the Fractional Gaussian process (H = 0.2).

4.6. Impact of long memory on risk performances

The aim of this experiment is to discuss the impact of long memory on the
risk performance of our model selection procedure. We consider n = 2000 ob-
servations according to the generative model defined by Equation (4.1) with a
Fractional Gaussian noise distribution. We study the risk performances of three
methods for H between 0.5 (i.i.d. case) and 0.9 with both the Wh(Y)+Wh(Res)
method and CDJ method. The boxplots of the risks are carried out through 100
independent trials.

The results are summarized in Figure 12. Of course, for both methods the
largerH, the more the risk performances deteriorate. We also see that, compared
with the Wh(Y)+Wh(Res) method, the risk of the CDJ procedure strongly
increases for long memory.

We have also estimated the regression function by a naive kernel method
with a cross validation procedure to choose the bandwidth parameter. Since we
have use regressograms in our model selection procedure, it is natural to make
the comparison with the uniform kernel. We apply the npreg and npregbw

functions of the R package np which implements a least squares cross validation
to choose the bandwidth parameter (default method). Figure 12 shows that
the naive uniform kernel method with cross validation performs badly for long
memory, and this is in spite of the fact that it performs really better than the
regressogram for independent observations (H = 1/2).

In conclusion, for long memory settings our method Wh(Y)+Wh(Res) should
be preferably used rather than the CDJ method or a kernel method with a
standard cross validation procedure.
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Fig 12. Boxplots of risk performances logarithmic scale for three methods with H between 0.5
and 0.9.

4.7. Identification

In this experiment, we illustrate some satisfactory properties of our model se-
lection procedure in the specific case where the true regression function belongs
to the model family. We consider the regression model given by Equation (4.1)
with

f	 : x ∈ [0, 1] 
→ 1

2

6∑
j=1

(−1)j1[ j−1
6 , j6 [

(x).

For the error we simulate a Fractional Gaussian noise process with H = 0.7.
The results shown in this paper do not concern the identification of the

correct model in the family. However Table 1 suggests that our model selection
procedures easily identify the correct true model in the collection. This is not
the case with the CDJ procedure, which very often selects a model that is far
too large.

4.8. Conclusion on the experiments

In these experiments we observe that knowing H does dot really improve the
performances of the model selection procedure. This observation is good news
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Table 1

Identification of the correct model in the collection by the model selection procedures over
100 simulations.

n Method ≤ 3 4 5 6 7 8-11 12 > 12

500

Wh(Y)+Wh(Res) 1 1 87 1 6 4
CDJ+Wh(Res) 43 2 3 52

Wh(Y) 1 1 97 1
CDJ 17 6 77

Hgiven 1 91 5 3

1000

Wh(Y)+Wh(Res) 92 5 3
CDJ+Wh(Res) 65 12 23

Wh(Y) 100
CDJ 10 13 77

Hgiven 96 3 1

2000

Wh(Y)+Wh(Res) 93 7
CDJ+Wh(Res) 85 10 5

Wh(Y) 98 2
CDJ 18 24 58

Hgiven 94 6

5000

Wh(Y)+Wh(Res) 92 4 4
CDJ+Wh(Res) 90 4 6

Wh(Y) 99 1
CDJ 19 17 64

Hgiven 91 4 5

for the use of the method: we do not need to estimate H very accurately to
make the model selection works because the method adapts itself to the risk
shape.

Next, we see that the penalty proportional to (m/n) (with a constant cali-
brated thanks to the jump dimension algorithm: CDJ method) performs quite
well for short memory processes, but underperforms in all the other situations.

The Wh(Y) method, with a penalty proportional to (m/n)2−2Ĥ and an esti-
mator Ĥ based ont he Yi’s, performs quite well in most of the cases, but can
show very bad performances (see for instance Figure 10) and is hard to justify
from a heuristic point of view. The two steps methods, with a penalty propor-

tional to (m/n)2−2Ĥ2 and an estimator Ĥ2 based on the residuals of the first
adjustment, perform well in most of the cases, with a clear preference for the
Wh(Y)+Wh(Res) method. In fact, we suspect an overfitting with method CDJ
for long memory processes, so that the residuals based on CDJ are not close to
the original error process (see Table 1 and also the application to the Nile data
in Section 5).

We note that the two steps method Wh(Y)+Wh(Res) gives performances
close, even sometimes better, to the best of the other proposed methods. An
interesting example is the Gaussian ARMA process: for large n (n ≥ 2000),
the risk curve is quasi linear, and the CDJ method is the best method. But for
small n (n ≤ 500), the risk curve is concave, as in the long memory case, and
the Wh(Y)+Wh(Res) is the best method. This suggests that, even for short
memory processes, a penalty proportional to (m/n) is not always a wise choice
in practice.
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Our final comment is then: instead of looking for a penalty proportional to
(m/n)γ for an appropriate γ, it might be preferable to estimate directly the
term tr(ProjSm

Σ). This could perhaps be done by giving an estimation of the
covariance Σ based on the residuals of an appropriate pre-model.

5. Application to Nile data

In this section, we wish to continue the discussion on the Nile data initiated by
Robinson in his 1997 article [43]. We borrow from Robinson his presentation of
this dataset, as well as some other sentences: “These data consist of readings
of annual minimum levels at the Roda gorge near Cairo, commencing in the
year 622; often only the first 663 observations are employed because missing
observations occur after the year 1284 (see [46]). It was one of the hydrological
series examined by Hurst [31] which led to his recognition of the “Hurst effect”
and invention of the R/S statistic”. The data are plotted in Figure 13.

Robinson then summarizes the different ways of understanding these data:
either by considering that the cyclical variations come from a phenomenon of
long memory, or by considering that the series can be written as the sum of a
deterministic tendency plus a random noise. We refer to his article for relevant
references on these questions.

Robinson applied different kernel estimators (with different bandwidths) to
estimate the regression function. Then he estimated the Hurst coefficient H of
the errors from the residuals of the regression (see Section 4 of his paper for
the definition of the estimator of H). He noted that “These estimates thus vary
greatly over the ranges of the smoothing employed” and concluded this section
by “This study highlights the need for developing methods for choosing b and
c which respond automatically to the strength of the dependence in ut” (here b
and c are the bandwidth used to estimate the regression function and the Hurst
index respectively; ut is the error process, according to Robinson’s notations).

This last sentence motivates us to apply our methods on these data, since
we have a way to select automatically a partition from the data. We try two
penalties: the usual penalty proportional to m/n, using the “classical jump
dimension” to calibrate the constant (see CDJ method in Section 4); this method
should work well if the underlying error process was short range dependent.

And a penalty proportional to (m/n)2−2Ĥ2 , where Ĥ2 is the Hurst estimator
based on the residuals, according to the Wh(Y)+Wh(Res) method described in
Section 4. Indeed, this method was the best method according to the different
kind of simulations done in Section 4. The resulting estimators are plotted in
Figure 14.

The CDJ method selects a partition of size m = 54, with a clear impression of
overfitting: the estimated trend seems very irregular, with many sudden changes.
It seems that some randomness is still present in the trend. The Hurst index
estimated through the residuals obtained with the estimated trend gives Ĥ =
0.59, hence not so far from a white noise.

The Wh(Y)+Wh(Res) selects a much smaller partition, with m = 7. The
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Fig 13. Nile River data.

Fig 14. Nile River data and resulting estimators.

trend looks more regular and interpretable, with a clear minimal period, a clear
maximal period, and an almost constant tendency in between. It also suggests
that an irregular partition should be used, which is a priori doable with our
model-selection method, at the price of more tricky computations and algo-
rithms. The Hurst index estimated through the residuals obtained with the
estimated trend gives Ĥ = 0.79, in accordance with the long-range dependence
hypothesis.

To be complete, the graph and the ACF of the residuals obtained with the
Wh(Y) + Wh(Res) method are plotted in Figure 15.
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Fig 15. Residuals and ACF of the residuals for the method Wh(Y)+Wh(res).

6. Discussion

This paper deals with linear model selection with Gaussian dependent errors
through �0 penalization. Several generalizations and extensions could be pro-
posed in future works.

We apply Theorem 2.1 to study the fixed design case, but clearly the theorem
also applies to all the settings considered in [10] (or Chapter 2 in [28]) in the
i.i.d case. In particular, if the error process is short range dependent, then for
all these problems the penalty is the same as in the i.i.d. case, the usual vari-
ance term being replaced by the spectral radius of the covariance matrix. One
natural application concerns high dimensional problems and minimax rates of
convergence in this setting, by considering for instance the models presented in
Chapter 2 of [28].

For long range dependent processes, the situation is more complicated, and
a penalty involving the spectral radius only is no longer adapted. In that case,
however, we conjecture that the upper bound given in (2.4)

tr
(
ProjSm

Σ
)
≤

dm∑
i=1

λi

should be of the right order. More precisely we formulate the following:

Conjecture. If |γε(k)| ≤ κk−γ for some κ > 0 and γ ∈ (0, 1), then there exists
a positive constant C such that

dm∑
i=1

λi ≤ Cdγmn1−γ . (6.1)
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This is an important conjecture: if (6.1) is true, it gives a practical way to deal
with all the problems described above for long range dependent sequences, in
the same way as we did with the fixed design regression model.

The performances of the �0 penalization strategy are studied in this work
assuming that the distribution of the errors is stationary. However, Theorem 2.1
does not require this assumption. In a similar line of work, [23] considers model
selection for heteroscedastic Gaussian regression, for independent observations.
It would be possible to study model selection for heteroscedastic Gaussian linear
models with dependence and in particular in the long memory setting.

An other line of research concerns an extension of Theorem 2.1 for non linear
models. Indeed, in the independent setting, a general model selection for non
linear models is given in [38] (Theorem 4.18). By combining a Gaussian concen-
tration inequality together with a chaining argument for dependent variables,
we believe that it is possible to generalize the �0 penalization strategy for non
linear models.

Our work strongly relies on the Gaussian assumption. It would be also in-
teresting to provide model selection results for non Gaussian noise. Note that
[24] gives a general model selection theorem for linear models, under moment
conditions. It would be interesting to revisit these results in the context of long
range dependence.

As illustrated in the last sections, it appears to be possible to adapt the
slope heuristics for calibrating penalties in the context of regression with de-
pendent errors. It would be more satisfactory to provide justification of the
slope heuristics in this context. A first step would be to justify the slope heuris-
tics for regression with short memory errors. Finally, note that model selection
for density estimation under mixing conditions with resampling penalties has
been studied in [34]. This strategy is computationally expensive but it deserves
to be investigated for regression under short and long memory errors.

7. Proofs

7.1. Proof of Theorem 2.1

We adapt the proof of Theorem 2.2 in [28] in the framework of dependent
Gaussian errors. Starting from the definition of m̂, see Equation (2.1), we find
that for all m ∈ M

‖Y − μ̂m̂‖2n + pen(m̂) ≤ ‖Y − μ̂m‖2n + pen(m).

Next,

‖ε+ (μ∗ − μ̂m̂)‖2n + pen(m̂) ≤ ‖ε+ (μ∗ − μ̂m)‖2n + pen(m),

and thus

‖ε‖2n + ‖μ∗ − μ̂m̂‖2n + 2〈ε, μ∗ − μ̂m̂〉n + pen(m̂)
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≤ ‖ε‖2n + ‖μ∗ − μ̂m‖2n + 2〈ε, μ∗ − μ̂m〉n + pen(m),

where 〈·, ·〉n is the normalized inner product in R
n: 〈·, ·〉n = 1

n 〈·, ·〉. Now, since
E(ε) = 0, we see that

E [〈ε, μ∗ − μ̂m〉n] = −E [〈ε, μ̂m〉n] = −E
(
‖ProjSm

(ε)‖2n
)
≤ 0 ,

and finally we obtain that

E ‖μ∗ − μ̂m̂‖2n ≤ E ‖μ∗ − μ̂m‖2n + pen(m) + 2E (〈ε, μ̂m̂ − μ∗〉n − pen(m̂)) .

The theorem can be directly derived from the next result:

Proposition 7.1.1. For the penalty defined by Equation (2.2), there exist some
constants a > 1 and LK ≥ 0 that only depend on K, and a random variable Z

satisfying E(Z) ≤ LK
ρ(Σ)
n , such that

2〈ε, μ̂m̂ − μ∗〉n − pen(m̂) ≤ a−1 ‖μ̂m̂ − μ∗‖2n + Z.

According to the proposition, we find that

E

[
‖μ∗ − μ̂m̂‖2n

]
≤ E

[
‖μ∗ − μ̂m‖2n

]
+ pen(m) + a−1

E

[
‖μ̂m̂ − μ∗‖2n

]
+ E(Z)

and

a− 1

a
E

[
‖μ∗ − μ̂m̂‖2n

]
≤ E

[
‖μ∗ − μ̂m‖2n

]
+ pen(m) + LK

ρ(Σ)

n
.

Thus,

E

[
‖μ∗ − μ̂m̂‖2n

]
≤ CK

(
E

[
‖μ∗ − μ̂m‖2n

]
+

ρ(Σ)

n
+ pen(m)

)
,

where CK = max
(

a
a−1 ,

aLK

a−1

)
and the proof of Theorem 2.1 is complete.

7.2. Proof of Proposition 7.1.1

We first recall a well known inequality from Cirel’son, Ibragimov and Sudakov [13].

Theorem 7.1. Let F : (Rn, ‖·‖) → R be a 1-Lipschitz function and η a random
vector in R

n such that η ∼ Nn(0, σ
2Id) for some σ > 0. Then there exists a

random variable ξ following an exponential distribution of parameter 1 such that

F (η) ≤ E [F (η)] + σ
√

2ξ.

Note that the Lipschitz condition is expressed with respect to the (non-
normalized) euclidean norm ‖ · ‖ in R

n. We derive the following lemma for
the projection of Gaussian random vectors.



4858 E. Caron et al.

Lemma 7.1. Let Σ be a n× n symmetric semi-definite matrix and S a linear
subspace of R

n. Let ε be a Gaussian random vector such that ε ∼ Nn(0,Σ).
Then there exists a random variable ξ following an exponential distribution of
parameter 1 such that

‖ProjS(ε)‖n ≤ E ‖ProjS(ε)‖n +

√
ρ(Σ)

n

√
2ξ.

Proof. Let ε ∼ Nn(0,Σ), then ε satisfies ε =
√
Ση with η ∼ Nn(0, Id). Let S be

a linear subspace of Rn. We then check that the function η →
∥∥∥ProjS(√Ση)

∥∥∥
n

is a Lipschitz function∥∥∥ProjS(√Σx)− ProjS(
√
Σy)
∥∥∥
n

≤
∥∥∥√Σ(x− y)

∥∥∥
n

≤ ρ(
√
Σ) ‖x− y‖n

≤
√
ρ(Σ) ‖x− y‖n =

√
ρ(Σ)

n
‖x− y‖ .

By applying Theorem 7.1 to the function η →
∥∥∥ProjS(√Ση)

∥∥∥
n
, we find that

∥∥∥ProjS(√Ση)
∥∥∥
n
≤ E

∥∥∥ProjS(√Ση)
∥∥∥
n
+

√
ρ(Σ)

n

√
2ξ.

We are now in position to prove Proposition 7.1.1. Let S̄m be the linear space
spanned by Sm and μ∗. By applying the inequality 2〈x, y〉n ≤ a‖x‖2n + ‖y‖2n/a
for a > 1, we find that

2〈ε, μ̂m̂ − μ∗〉n − pen(m̂) = 2〈ProjS̄m̂
(ε), μ̂m̂ − μ∗〉n − pen(m̂)

≤ a
∥∥ProjS̄m̂

(ε)
∥∥2
n
+ a−1 ‖μ̂m̂ − μ∗‖2n − pen(m̂)

≤ Z + a−1 ‖μ̂m̂ − μ∗‖2n ,

where
Z = a

∥∥ProjS̄m̂
(ε)
∥∥2
n
− pen(m̂).

Now, we can write that

E(Z) = E

[
a
∥∥ProjS̄m̂

(ε)
∥∥2
n
− pen(m̂)

]
≤ aE

[
max
m∈M

(∥∥ProjS̄m
(ε)
∥∥2
n
− 1

a
pen(m)

)]
≤ a

∑
m∈M

E

[(∥∥ProjS̄m
(ε)
∥∥2
n
− 1

a
pen(m)

)
+

]
.

Let m ∈ M. We start from the elementary inequality

E
∥∥ProjS̄m

(ε)
∥∥
n

≤
(
E
∥∥ProjS̄m

(ε)
∥∥2
n

)1/2
. (7.1)
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We can show that the quantity on the right side in (7.1) is exactly equal to√
1
n tr
(
ProjS̄m

Σ
)
(see the arguments below). However S̄m is unknown because

it depends on μ∗ and thus we can not directly define the penalty in function of
tr
(
ProjS̄m

Σ
)
. We then use the decomposition

ProjS̄m
= ProjSm

⊕⊥ ProjVm
,

where Vm is the orthogonal to Sm in S̄m. Note that the dimension of Vm

is (at most) one. By Pythagoras theorem
∥∥ProjS̄m

(ε)
∥∥2
n

=
∥∥ProjSm

(ε)
∥∥2
n
+∥∥ProjVm

(ε)
∥∥2
n
. Now

E
∥∥ProjSm

(ε)
∥∥2
n
=

1

n
trE
(
εt ProjSm

ε
)

=
1

n
trE
(
εεt ProjSm

)
=

1

n
tr
(
ΣProjSm

)
=

1

n
tr
(
ProjSm

Σ
)
,

and

E
∥∥ProjVm

(ε)
∥∥2
n
=

1

n
tr
(
ProjVm

Σ
)
≤ ρ(Σ)

n
.

Finally

E
∥∥ProjS̄m

(ε)
∥∥2
n
≤ 1

n
tr
(
ProjSm

Σ
)
+

ρ(Σ)

n
. (7.2)

According to Lemma 7.1 and using the inequalities (7.1) and (7.2), there
exists a random variable ξm following an exponential distribution of parameter
1 such that∥∥ProjS̄m

(ε)
∥∥
n
≤
√

1

n
tr
(
ProjSm

Σ
)
+

ρ(Σ)

n
+

√
ρ(Σ)

n

√
2ξm.

Thus, the random variable Z satisfies

E(Z) ≤ a
∑

m∈M
E

[(∥∥ProjS̄m
(ε)
∥∥2
n
− 1

a
pen(m)

)
+

]

≤ a
∑

m∈M
E

[((√
1

n
tr
(
ProjSm

Σ
)
+

ρ(Σ)

n
+

√
ρ(Σ)

n

√
2ξm

)2

− 1

a
pen(m)

)
+

]
.

We assume as in (2.2) that

pen(m) ≥ K

n

(√
tr
(
ProjSm

Σ
)
+ ρ(Σ) +

√
ρ(Σ)

√
2 log

(
1

πm

))2

.

Then,
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E(Z) ≤ a

n

∑
m∈M

E

[((√
tr
(
ProjSm

Σ
)
+ ρ(Σ) +

√
ρ(Σ)

√
2ξm

)2

− K

a

(√
tr
(
ProjSm

Σ
)
+ ρ(Σ) +

√
ρ(Σ)

√
2 log

(
1

πm

))2)
+

]
.

Using the inequality (x+ y)2 ≤ (1 + α)x2 + (1 + α−1)y2, and taking α = K−a
a

for K > a > 1, we find that

(√
tr
(
ProjSm

Σ
)
+ ρ(Σ) +

√
ρ(Σ)

√
2ξm

)2

≤
(√

tr
(
ProjSm

Σ
)
+ ρ(Σ) +

√
ρ(Σ)

√
2 log

(
1

πm

)

+
√

ρ(Σ)

√
2

(
ξm − log

(
1

πm

))
+

)2

≤ K

a

(√
tr
(
ProjSm

Σ
)
+ ρ(Σ) +

√
ρ(Σ)

√
2 log

(
1

πm

))2

+
2Kρ(Σ)

K − a

(
ξm − log

(
1

πm

))
+

.

Next,

E

[((√
tr
(
ProjSm

Σ
)
+ ρ(Σ) +

√
ρ(Σ)

√
2ξm

)2

− K

a

(√
tr
(
ProjSm

Σ
)
+ ρ(Σ) +

√
ρ(Σ)

√
2 log

(
1

πm

))2)
+

]

≤ E

[
2Kρ(Σ)

K − a

(
ξm − log

(
1

πm

))
+

]
≤ 2Kρ(Σ)

K − a
πm,

because E

[(
ξm − log

(
1

πm

))
+

]
= exp(− log( 1

πm
)) = πm. Since

∑
m∈M πm = 1,

we finally obtain that

E(Z) ≤ a
∑

m∈M

2K

K − a
πm

ρ(Σ)

n
=

2aK

K − a

ρ(Σ)

n
.

For any K > 1, take a = K+1
2 . Then K > a > 1 is satisfied and the proof of

Proposition 7.1.1 is complete with LK = 2K2+2K
K−1 .
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7.3. Proof of Lemma 3.1

For any m ∈ {1, . . . , n} and any j ∈ {1, . . . ,m}, we define the discrete interval

Ij =

{
i ∈ {1, . . . , n} :

i

n
∈
[
(j − 1)

m
,
j

m

[}
,

and we denote by �(j) the length of Ij : �(j) = Card(Ij). Note that, for all j,
[n/m] ≤ �j ≤ [n/m]+1. The linear space Sm induced by the family of piecewise
polynomials of degree at most r on the regular partition of size m of the interval
[0, 1] is the space generated by the (r + 1)m columns of the design

X =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 . . . 1 0 0 . . . 0 0 . . . 0 0 . . . 0
1 2 . . . 2r 0 0 . . . 0 0 . . . 0 0 . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
1 �1 . . . �r1 0 0 . . . 0 0 . . . 0 0 . . . 0
0 0 . . . 0 1 1 . . . 1 0 . . . 0 0 . . . 0
0 0 . . . 0 1 2 . . . 2r 0 . . . 0 0 . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
0 0 . . . 0 1 �2 . . . �r2 0 . . . 0 0 . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
0 0 . . . 0 0 0 . . . 0 0 . . . 1 1 . . . 1
0 0 . . . 0 0 0 . . . 0 0 . . . 1 2 . . . 2r

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 . . . 0 0 0 . . . 0 0 . . . 1 �m . . . �rm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let ck be the k-th column of the matrix X. Note that these columns are not
all orthogonal, but they are linearly independent.

For k ∈ {1, . . . ,m}, let Vk be the linear subspace of Rn generated by the
cj ’s for j ∈ {(k − 1)(r + 1) + 1, . . . , k(r + 1)}. Note that the subspaces Vk are
orthogonal subspaces, so that

∥∥ProjSm
(ε)
∥∥2
n
=

m∑
k=1

∥∥ProjVk
(ε)
∥∥2
n
.

We shall prove that there exists a constant C > 0 such that, for any k ∈
{1, . . . ,m},

nE
(∥∥ProjVk

(ε)
∥∥2
n

)
≤ C

n1−γ

m1−γ
. (7.3)

If (7.3) is true then the proof of Lemma 3.1 is easy to complete. Indeed

tr
(
ProjSm

Σ
)
= nE

(∥∥ProjSm
(ε)
∥∥2
n

)
=

m∑
k=1

nE
(∥∥ProjVk

(ε)
∥∥2
n

)
≤ Cmγn1−γ .
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It remains to prove (7.3). In fact, it suffices to prove (7.3) for V1, the argument
being unchanged for the other Vk’s. Let ek = ck/

√
ctkck, so that n‖ek‖2n = 1,

and let X1 be the n×(r+1) matrix composed of the (r+1) columns e1, . . . er+1.
We can write

ProjV1
(ε) = α1e1 + · · ·+ αr+1er+1,

where

(α1, . . . , αr+1)
t = (Xt

1X1)
−1Xt

1ε .

Clearly √√√√r+1∑
k=1

α2
k ≤ ρ

(
(Xt

1X1)
−1
)√√√√r+1∑

k=1

(etkε)
2 , (7.4)

where ρ
(
(Xt

1X1)
−1
)
is the spectral radius of (Xt

1X1)
−1. Since

n
∥∥ProjV1

(ε)
∥∥2
n
≤ (r + 1)2

r+1∑
k=1

α2
k ,

we infer from (7.4) that

nE
(∥∥ProjV1

(ε)
∥∥2
n

)
≤
(
(r + 1)ρ

(
(Xt

1X1)
−1
))2 r+1∑

k=1

E
(
(etkε)

2
)
. (7.5)

Before going further, we need to check that ρ
(
(Xt

1X1)
−1
)
is uniformly bounded:

indeed this quantity depends on the length �1, which can be as large as n. This is
true, becauseXt

1X1 tends to A as �1 → ∞, where A is an invertible (r+1)×(r+1)
matrix (in fact one can check that Ai,j =

√
(2j + 1)(2i+ 1)/(j+i+1)). It follows

that, as �1 varies, ρ
(
(Xt

1X1)
−1
)
is a sequence of positive numbers converging

to ρ(A−1): it is therefore uniformly bounded. It follows from (7.5) that there
exists K > 0 such that

nE
(∥∥ProjV1

(ε)
∥∥2
n

)
≤ K

r+1∑
k=1

E
(
(etkε)

2
)
.

Hence (7.3) will be proved for V1 if there exists C1 > 0 such that, for any
k ∈ {1, . . . , r + 1},

E
(
(etkε)

2
)
= E

⎛⎝( ctkε√
ctkck

)2
⎞⎠ ≤ C1

n1−γ

m1−γ
. (7.6)

It remains to prove (7.6). Let then k ∈ {1, . . . , r + 1}. By stationarity,

E

((
ctkε
)2)

=

�1∑
i=1

�1∑
j=1

ikjkγε(j − i) ≤ γε(0)

�1∑
i=1

i2k + 2

�1∑
j=1

|γε(j)|
�1−j∑
i=1

ik(i+ j)k .
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Now, by Cauchy-Schwarz,

�1−j∑
i=1

ik(i+ j)k ≤
�1∑
i=1

i2k = ctkck .

Combining the two last inequalities, we get

E

⎛⎝( ctkε√
ctkck

)2
⎞⎠ ≤ γε(0) + 2

�1∑
j=1

|γε(j)| . (7.7)

Now, recall that (3.4) holds, that is |γε(k)| ≤ κ(k + 1)−γ for some κ > 0 and
γ ∈ (0, 1). From (7.7), we easily infer that there exists C2 > 0 such that

E

⎛⎝( ctkε√
ctkck

)2
⎞⎠ ≤ C2�

1−γ
1 .

Since [n/m] ≤ �1 ≤ [n/m] + 1, (7.6) easily follows. This completes the proof of
Lemma 3.1.

7.4. Proof of Lemma 3.2

We keep the notations of the proof of Lemma 3.1. Recall that the case of regular
regressograms corresponds to the degree r = 0. In that case, the design matrix
X of the proof of Lemma 3.1 contains only the m orthogonal columns filled with
0 and 1, and the linear space Sm has dimension m. Denote by c1, . . . , cm the m
columns of the design X.

We can write the exact expression of ProjSm
(ε)

ProjSm
(ε) = ε̄1c1 + ε̄2c2 + · · ·+ ε̄mcm , with ε̄k =

1

�k

∑
i∈Ik

εi .

Consequently

n
∥∥ProjSm

(ε)
∥∥2
n
= �1ε̄

2
1 + �2ε̄

2
2 + · · ·+ �mε̄2m .

Now, it follows from (3.5) that E(ε̄2i ) ≤ κ�−γ
i . Hence

tr
(
ProjSm

Σ
)
= nE

(∥∥ProjSm
(ε)
∥∥2
n

)
≤ κ

m∑
k=1

�1−γ
k .

Since, for all j, [n/m] ≤ �j ≤ [n/m] + 1, we infer that there exists a positive
constant C depending only on κ and γ such that

tr
(
ProjSm

Σ
)
≤ Cmγn1−γ .

This concludes the proof of Lemma 3.2.
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7.5. Proof of Inequality (2.4)

We give a short proof for the first inequality in (2.4). Let (us)s=1,...,n and
(λs)s=1,...,n be an orthonormal basis of eigenvectors and a family of eigenval-
ues of Σ in decreasing order, in such a way that Σ =

∑n
s=1 λsusu

t
s. Let also√

Σ =
∑n

s=1

√
λsusu

t
s. For any vector space S of dimension d,

tr (ProjS Σ) = tr
(
ProjtS ProjS

√
Σ
√
Σ

t
)

= tr
(
ProjS

√
Σ
√
Σ

t
ProjtS

)
= ‖ProjS

√
Σ‖2F

where ‖ · ‖F is the Frobenius norm. According to the Singular Value Decompo-
sition (and more precisely to the Eckart–Young Theorem for low rank approxi-
mation, see [22]), this inertia term is maximized for S the linear space spanned
by (us)s=1...d and thus

tr (ProjS Σ) ≤
d∑

j=1

λj .
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[15] Csörgő, S. and Mielniczuk, J. (1995b). Distant long-range dependent
sums and regression estimation. Stochastic Process. Appl. 59 143–155.
MR1350260
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