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reversing an INAR(1) process, a non-INAR(1) Markov affine counting pro-
cess, or a random coefficient INAR(1) [RCINAR(1)] process. The noncausal
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1. Introduction

Recently, real-valued linear noncausal processes have raised much interest thanks
to their ability to capture irreversible1, bubble-like phenomena, that are widely
observed in financial applications [see e.g. [26, 20]]. However, these models are
not suitable for (low) counting processes. To motivate the need for introducing
“bubbles” for counting processes, we display in Figure 1 the hourly amount of
rainfall, measured by a rain gauge as multiples of mm in an Indian city.2

To understand and predict (micro-)floods, such high-frequency, high-resolution
rainfall data is much more useful than traditional ones, which are often either too
temporally (daily or monthly) aggregated, or spatially aggregated across vari-
ous sites are hence real-valued. We see that the above hourly rainfall amount
curve features cycles of “bubbles”, or cloudbursts, characterized by a period of
steady increase of the rainfall intensity analogous to the accumulation phase of
a financial bubble, and then followed by a sharp decrease, which spells the end
of the cloudburst, that is the analog of the burst of the bubble. In the afore-
mentioned literature on real-valued time series, it has been shown that unlike
standard ARMA type processes, a new class of noncausal processes can capture

1A process is time reversible (resp. irreversible) if and only if its dynamics is the same (resp.
different) in both time directions. For a Markov process (Xt), this condition is equivalent to
the symmetry (resp. asymmetry) of the distribution of (Xt, Xt+1).

2Thus these rainfall amounts are integer-valued. This figure is downloaded from
the website of the Indian Water Portal: https://www.indiawaterportal.org/articles/

playing-uttarakhand-rainfall-data

https://www.indiawaterportal.org/articles/playing-uttarakhand-rainfall-data
https://www.indiawaterportal.org/articles/playing-uttarakhand-rainfall-data


3854 C. Gouriéroux and Y. Lu

Fig 1. Hourly rainfall on June 15th, 16th and 17th in 2013 in a weather station in Dehradun,
Uttarakhand, India. This extreme rainfall resulted in the 2013 North India floods, with a
casualty of more than 5000 killed.

the bubble phenomenon very well. A similar problem exists for count time se-
ries, since the path of a standard, say, INAR(1) process [see equation (1) below
for its definition] usually only features occasional abrupt positive jump followed
by steady decrease, which is opposite to the phenomenon observed in Figure 1.
The aim of our paper is to introduce the notion of noncausality to the counting
process literature. To fix the idea, let us first consider Markov, causal processes
of the type:

Xt+1 =

Xt∑
i=1

Zi,t+1 + εt+1, ∀t, (1)

where latent counts Zi,t+1’s are independent ofXt = {Xt, Xt−1, ...}, whereas the
shocks εt+1’s are i.i.d., independent of the Xt and Zi,t+1’s. The decomposition
(1) leads to different dynamics depending on the distributions selected for the
Zi,t+1’s and for εt+1:

a) If the Zi,t+1’s are i.i.d. Bernoulli variables, then process (Xt) is integer-
autoregressive of order 1 [INAR(1)], [see [30], [1]]. An INAR(1) process can
be viewed as the decomposition of the total number of customers Xt+1 into

the sum of new arrivals εt+1 and staying old customers
∑Xt

i=1 Zi,t+1 [see
[33, 29, 38]]. The INAR(1) is the most famous counting process model and
a special attention will be paid in the paper to this family, as well as its
queuing interpretation.

b) The counts Zi,t+1’s can also be i.i.d. only, but non binary. For instance, in
[35, 18], the Zi,t+1’s have geometric distribution and εt+1 is negative bi-
nomial, whereas in the INARCH(1) model [[41]], the Zi,t+1’s are Poisson3.
These processes are also called Galton-Watson process in the probability lit-

3See also the review of [40].
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erature [see e.g. [25]], where the term (
∑Xt

i=1 Zi,t+1) can be interpreted as the
number of descendants from the Xt existing customers, who can indepen-
dently give rise to 0, 1, 2... descendants. The major appeal of the INAR(1)
model a) and its extension b) is the special form of the conditional proba-
bility generating function (p.g.f.) of Xt+1 given Xt, which characterizes the
transition distribution. Indeed, it is conveniently given by:

E[uXt+1 |Xt] =
(
E[uZi,t+1 ]

)Xt

E[uεt+1 ], (2)

which is an exponential affine function of the conditioning variable Xt. In
particular (Xt) is a Markov process with respect to the filtration Xt. Such
Markov processes are called affine (or compound autoregressive) [see [9]]. In
the counting process context, [28] shows that they have tractable marginal
and predictive distributions at any horizons.

c) Alternatively, one can also extend the INAR(1) model a) by relaxing the
i.i.d. assumption of the Zi,t+1’s and allow them to be only conditionally
i.i.d. given a stochastic probability parameter pt+1, which itself is an i.i.d.
sequence that is independent of εt+1, as well as of past observations Xt. This
model is called random coefficient INAR(1), or RCINAR(1) [see e.g. [44]].
This model has a similar queuing interpretation as the INAR(1) process, but
with stochastic probability of leaving for current customers.

Equation (1) defines a dynamic factor model with a random number of factors
εt+1, Z1,t+1,..., and ZXt,t+1 for date t. Since at each date t+1, this number, i.e.
Xt+1, is strictly larger than the number of observables equal to 1, neither shocks
εt+1, nor variables Zi,t+1, can be deterministically recovered (except for dates
with Xt = 0). Nevertheless, even if the underlying factors are not recoverable,
their distributions can be identified from the observation of (Xt) only.

Model (1) is called causal, since Xt+1 does not depend on the values of the
future shocks εt+2, εt+3, ..., or future latent factors Zi,t+2, Zi,t+3, i varying. The
noncausal counting process introduced in this paper can be defined simply as a
Markov process whose reverse time dynamics satisfies (1). Our main contribu-
tions are the following ones. First, we characterize all time reversible counting
processes satisfying model (1). From a practical modeling perspective, these ex-
amples are to be discarded since they cannot capture the (time) asymmetry of
the bubble dynamics. Second, we show that when process (1) is time irreversible,
its noncausal version is indeed suitable for capturing bubbles. In particular, when
an affine process [including INAR(1)] is time reversed, the resulting noncausal
process has necessarily a non-affine dynamics. We then derive in closed form this
conditional p.m.f., and through various examples we demonstrate that it often
features multiple modes, with one near zero (corresponding to the burst of the
bubble) and another one away from zero (corresponding to the steady increase
of the bubble). Thirdly, we show that for noncausal INAR(1), an alternative,
equivalent specification is based on the aforementioned queuing interpretation,
but with a different set of distributional assumptions. This new queuing model is
specified through the departure cohorts, rather than the arrival cohorts. Under
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this noncausal specification, the number of arrivals are typically heteroscedastic
across time and dependent on the current population size.

The rest of the paper is organized as follows. Section 2 studies time-reversed
Markov counting process, including their time (ir-)reversibility, as well as the
calendar time predictive distribution. Section 3 relates the causal and noncausal
INAR(1) model through a same, infinite server queuing system. Section 4 con-
cludes. Proofs, as well as some results for noncausal RCINAR(1) processes are
gathered in Appendices.

2. Time reversing a Markov counting process

Let us now analyze irreversible noncausal processes and their calendar time
dynamics. This provides new families of Markov dynamics for counting process,
that are easy to analyze under closed-form, and are appropriate to capture
bubble phenomena.

Definition 1. The counting process (Xt) is noncausal affine, if it has the rep-
resentation:

∀t, Xt =

Xt+1∑
i=1

Zt,i + ε̃t+1, (3)

where shock ε̃t+1 is independent of Xt+1 = {Xt+1, Xt+2, ...} and is i.i.d. across
t; variables Zt,i’s are i.i.d. when t and i vary, and are independent of Xt+1 and
ε̃t+1.

In particular, if Zt,i’s are Bernoulli distributed, we say that (Xt) is noncausal
INAR(1).

Alternatively, process (Xt) is called noncausal RCINAR(1), if in model (3)
the Zt,i’s are conditionally i.i.d. and Bernoulli B(1, pt), where pt is itself i.i.d.

2.1. Time reversibility

The noncausal process (3) can be interpreted as a counting process (1) observed
in reverse time. Let us derive some general properties of such processes. First,
we note that the Markov and stationarity properties are usually preserved under
time reversal.

Lemma 1 (See Section 1 of [6]). If process (Xt) is stationary and Markov in
calendar time, then it is also stationary and Markov in reverse time.

Thus the noncausal INAR(1) process is also Markov. But what is the form of
its calendar time conditional distribution of Xt+1 given Xt? For instance, if the
reverse time dynamics is affine (including INAR(1)), could the calendar time
dynamics be also affine, that is, can process (Xt) have both a representation of
type (1) and another representation of type (3)? This is equivalent to the time
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reversibility of the process by the following lemma:

Lemma 2 (See Proposition 3 of [19]). If the noncausal affine process (3) is also
affine in calendar time, and is weakly ergodic4 in both time directions, then it
is time reversible.

Let us now characterize the set of all affine time reversible processes. This
result is important, since, once we exclude these reversible examples, other non-
causal affine process will have non-affine calendar time dynamics.

Proposition 1 (Characterization of reversible affine counting processes). Sup-
pose a Markov counting process is affine and its support is N. Then it is time
reversible if and only if it is:

• Either the Poisson-INAR(1) process;

• or an affine process in which Zi,t’s and εt have p.g.f.:

E[uZi,t ] =
1 + θ2(1− u)

1 + θ1(1− u)
, E[uεt ] =

1

[1 + θ1(1− u)]δ
, ∀u ∈ [0, 1+

1

θ1
), (4)

respectively, where parameters δ > 0, θ1 > 0, θ2 > −1, and satisfy 0 < θ1−θ2 <
1. This process has the NB stationary distribution with p.g.f.:

E[uXt ] =
1

[1 + θ1
1−(θ1−θ2)

(1− u)]δ
, ∀u ∈ [0, 1 +

1− θ1 + θ2
θ1

).

Proof. See Appendix A.1.

The second reversible process above is introduced by [3]. The first equality in
equation (4) defines a count distribution when parameter θ2 is either positive, or
between −1, 0. If it is positive, then this distribution is a zero-inflated geometric
distribution since:

1 + θ2(1− u)

1 + θ1(1− u)
= p+ (1− p)

1

1 + θ1(1− u)
, ∀u ∈ [0, 1],

where probability parameter p is given by p = 1− θ2
θ1
. Moreover, in the special

case where θ2 = 0 and θ1 ∈ [0, 1[, this process becomes the NBAR(1) process
of [18], with geometric Zi,t’s. By [18], Prop. 2, the h−step-ahead conditional

p.g.f. of a NBAR(1) is: E[uXt+h |Xt] =
[1+θ1

1−θh1
1−θ1

(1−u)]Xt

[1+θ1
1−θ

h−1
1

1−θ1
(1−u)]δ+Xt

. Thus a tempo-

rally aggregated NBAR(1) process, that is (Yt) = (Xht) where process (Xt) is
NBAR(1), belongs also to affine family (4).

Let us now show that the irreversible, noncausal dynamics defined by (10)

4The (Markov) process (Xt) is weakly ergodic if the conditional distribution of Xt+h given
Xt converges to the stationary distribution when h goes to infinity.
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has quite unique properties that distinguish them from the standard causal
models.

2.2. Calendar time dynamics of a noncausal INAR(1)

From now on we will focus on noncausal INAR(1) processes for which (εt) is not
Poisson, i.e., (Xt) is irreversible. Since in practice Xt+1 is only observed after
Xt, the noncausal representation (3) is not directly usable for the forecasting
of Xt+1 given observation of Xt. Let us derive the corresponding calendar time
one-step-ahead conditional p.m.f. P (xt+1|xt) := P(Xt+1 = xt+1|Xt = xt). By
the Bayes formula, we have:

P (xt+1|xt) =
P (xt+1, xt)

P (xt)
=

P (xt+1)

P (xt)
P (xt|xt+1), (5)

where P (xt), P (xt+1) denote the stationary p.m.f. of the process (Xt) evaluated
at values xt and xt+1, respectively, and P (xt|xt+1) := P(Xt = xt|Xt+1 = xt+1)
is the one-step-backward conditional p.m.f. By simple convolution we have:

P (xt|xt+1) =

min(xt,xt+1)∑
i=0

(
xt+1

i

)
pi(1− p)xt+1−i

P[ε̃t+1 = xt − i]. (6)

Thus, so long as the p.m.f.’s of both (ε̃t) and (Xt) have closed form, so does
the predictive distribution P (xt+1|xt). Moreover, this result can be extended
in two important ways. First, we can also deduce close form expression for the
predictive distribution P (xt+h|xt), for any horizon h larger than 1. Indeed, the
Bayes’ formula can also be used on the joint distribution of (Xt, Xt+h), and the
h-step-backward (resp. forward) predictive distribution of a noncausal (resp.
causal) INAR(1) process is known to allow for closed form expressions [see [28]].
Second, instead of focusing on INAR(1) process, we can extend this result to
affine Markov counting processes, whose transition distribution and stationary
distribution are also generically available in closed form [see [28]].

Let us now provide two examples of noncausal, irreversible INAR(1) pro-
cesses.

2.2.1. Example 1: Noncausal geometric INAR(1)

We first consider the noncausal analog of geometric INAR(1) process [see [31]].
This process has marginally the geometric distribution with p.g.f.: E[uXt ] =

1
1+β(1−u) , with mean β ∈]0,∞[, or alternatively probability parameter 1

1+β ,

which is not necessarily equal to p. Then the p.g.f. of ε̃t is given by:

E[uε̃t ] =
E[uXt−1 ]

E[(pu+ 1− p)Xt ]
=

1 + βp(1− u)

1 + β(1− u)

= (1− p)
1

1 + β(1− u)
+ p, ∀u ∈ [0, 1 +

1

β
).



Noncausal counting processes: A queuing perspective 3859

This is a zero-inflated geometric distribution with p.m.f.:

P[ε̃t = n] =
βn

(1 + β)n+1
(1− p) + p1n=0, ∀n ∈ N. (7)

Figure 2 displays a path of a noncausal geometric INAR(1). Such a simulated
path is easily obtained by simulating backwards a causal INAR(1) process. The
parameter values are set equal to p = 0.85 and β = 3.

Fig 2. Path of a noncausal geometric INAR(1) process. We see several bubble episodes with
abrupt burst of the bubble.

The reverse time conditional p.m.f. is:

P (xt|xt+1) = p1xt≤xt+1

(
xt+1

xt

)
pxt(1− p)xt+1−xt

+ (1− p)

min(xt,xt+1)∑
n=0

(
xt+1

n

)
pn(1− p)xt+1−n βxt−n

(β + 1)xt−n+1
.

Thus the predictive p.m.f. has closed form:

P (xt+1|xt) =
P (xt|xt+1)P (xt+1)

P (xt)
= P (xt|xt+1)

βxt+1−xt

(β + 1)xt+1−xt
.

Figure 3 plots the conditional p.m.f. P[Xt+1 = ·|Xt = i] of the above non-
causal INAR(1) process, for two different values of i ∈ {5, 10}. As a comparison,
we also plot P[Xt = ·|Xt+1 = i], which is equal to the conditional p.m.f. of the
corresponding causal INAR(1) process. Note that both processes have the same
stationary distribution.

In both panels, the two conditional p.m.f.’s coincide at argument x = i.
This is a direct consequence of the Bayes formula (6) and of the stationarity of
the process. The noncausal conditional p.m.f. assigns more weights immediately
right to i, as well as towards zero. In other words, under the noncausal model,
process (Xt) has a larger probability of growing larger and larger, that is the
expansion of the bubble. On the other hand it has also a larger probability of
hitting zero, which corresponds to the collapse of the bubble. Figure 4 displays
the corresponding conditional expectations in calendar time (E[Xt+1|Xt = i])
and reverse time (E[Xt|Xt+1 = i]), as a function of i.
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Fig 3. Comparison between the conditional p.m.f. in a noncausal and causal geometric
INAR(1) process. In the upper panel we set i = 5 and in the lower panel i = 10. In both
panels, the red full (resp. black dashed) line represents the curve of the noncausal (resp.
causal) conditional p.m.f.. In both figures we have also added a vertical blue line crossing the
x axis at i.

Fig 4. Conditional expectations in a noncausal and causal geometric INAR(1) process. Black
full line: noncausal model, red dashed line: causal model.

In reverse time, the conditional expectation E[Xt|Xt+1 = i] = pi + E[εt] is
affine in i, but this affine property no longer holds for the causal expectation
E[Xt+1|Xt = i]. This is expected, since process (Xt) is irreversible. We also
remark that the difference between the two conditional p.m.f.’s is much more
important than that between the two conditional expectations, suggesting the
limit of the conditional expectation in summarizing the nonlinear dynamics.
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2.2.2. Example 2: Noncausal discrete stable INAR(1) [DS-INAR(1)]

Let us now consider another noncausal INAR(1) model, in which the distribution
of (ε̃t) is discrete stable DS(β, ν) [see e.g. [39, 7]]5, with p.g.f.:

E[uε̃t ] = e−β(1−u)ν , ∀u ∈ [0, 1],

where scale parameter β > 0, and shape parameter ν ∈]0, 1[.6 The corresponding
p.m.f. is:

P[ε̃t = k] = (−1)k
∞∑
j=0

(
jν

k

)
(−β)j

j!
, ∀k ∈ N. (8)

This distribution is such that the mean E[ε̃t] is infinite [see [7]], and thus the
resulting model is suitable for heavy-tailed counting process data. Figure 5 plots
a trajectory of a noncausal DS-INAR(1) process with ν = 0.5, β = 0.05, and
p = 0.5.

Fig 5. Simulated path of a noncausal DS-INAR(1) process. We can see two bubble periods.

Let us first derive the stationary distribution of this process. We have:

E[uXt ] = E[uε̃t ]E[(pu+ 1− p)Xt+1 ] = E[uε̃t ]E[(pu+ 1− p)Xt ], ∀u ∈ [0, 1 +
1

p
).

By iterating we get:

E[uXt ] =

∞∏
h=0

e−β(1−phu−(1−ph))ν =

∞∏
h=0

e−βpνh(1−u)ν = e−β
(1−u)ν

1−pν ,

which corresponds to the DS( β
1−pν , ν) distribution. Thus by equation (8), the

marginal p.m.f. is:

P[Xt = k] = (−1)k
∞∑
j=0

(
jν

k

)
1

j!

( −β

1− pν
)j
, ∀k ∈ N. (9)

5The discrete stable distribution can be interpreted as a Poisson distribution with stochas-
tic, alpha-stable distribution distributed parameter.

6In the limiting case ν = 1, we recover the Poisson distribution P(β); thus this case is
omitted.
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Let us now plot the analog of Figure 3. Using equations (6), (8) and (9), we
can compute the conditional p.m.f. P (xt+1|Xt = i). Since a discrete stable
distribution is heavy-tailed, we will consider two large values for the conditioning
observation i = 10, and 25. These conditional p.m.f.’s are plotted in Figure 6.

Fig 6. Comparison between the direct time conditional p.m.f. P[Xt+1 = ·|Xt = i] (red full
line) and the reverse time counterpart, i.e. P[Xt = ·|Xt+1 = i] (black dashed line) in a
noncausal DS-INAR(1) process. Upper panel: the conditioning observation is i = 10; lower
panel: the conditioning observation is i = 25.

The comparison between the causal and noncausal conditional p.m.f.’s is quite
similar as that for Figure 3. In particular, they have two and one local modes,
respectively. Indeed, for a large value of Xt, the causal conditional distribution
assigns a negligible probability to the conditional probability P[Xt+1 > Xt],
whereas, under the noncausal model, this probability is quite significant.

2.3. Other examples

Besides the two examples given in Section 2.2, in general the stationary p.m.f. of
a (causal or noncausal) affine process has no known parametric form. However,
under mild assumptions, this p.m.f. remains computable through inexpensive,
closed form matrix operations [see [28]]. In this subsection, we briefly review
and illustrate this method using two further examples of noncausal INAR(1)
processes with respectively negative binomial and Poisson-Inverse Gaussian dis-
tributed shocks.
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2.3.1. The stationary distribution

Let us first show under what conditions a general noncausal INAR(1) process
has a simple p.g.f.. We have:

E[uXt ] =
∞∏
i=0

g(piu+ 1− pi) = exp
[ ∞∑

i=0

h(piu+ 1− pi)
]
, ∀u ∈ [0, 1], (10)

where h is the log p.g.f. of ε̃t. Thus, if h has a simple Taylor’s expansion ev-
erywhere7 in [0, 1], we can expand each term h(piu+ 1− pi) around u = 0 and
obtain the Taylor’s expansion of logE[uXt ]:

E[uXt ] = exp
[ ∞∑

i=0

∞∑
k=0

h(k)(1− pi)
(piu)k

k!

]

= exp
[
c0 + c1u+ c2u

2 + · · ·+ cnu
n +O(un+1)

]
, (11)

where the coefficients cj , j = 0, ..., n can be computed in closed form and we
choose an order n such that the probability of Xt being larger than n is negli-
gible. Then we have:

Proposition 2.⎡
⎢⎢⎢⎢⎣

P[Xt = 0]
P[Xt = 1]

· · ·
P[Xt = n− 1]
P[Xt = n]

⎤
⎥⎥⎥⎥⎦ = exp(c0)

n∑
j=0

1

j!

⎡
⎢⎢⎢⎢⎣

0 0 0 · · · 0
c1 0 0 · · · 0
c2 c1 0 · · · 0
· · · · · · · · · · · · · · ·
cn cn−1 · · · c1 0

⎤
⎥⎥⎥⎥⎦

j ⎡
⎢⎢⎢⎢⎣
1
0
0
· · ·
0

⎤
⎥⎥⎥⎥⎦ . (12)

Proof. See Appendix A.2.

Although the above algorithm involves a Taylor’s expansion, it is an exact
formula, as it is obtained by matching two Taylor’s expansions.

Finally, although equations (10) and (11) are derived for INAR(1) processes,
the case of general affine counting processes with non-binary Zi,t+1’s is similar
[see [28] for more details].

Let us now give the expression of (ci)
∞
i=0 for two additional examples of

(causal or noncausal) INAR(1) processes.

2.3.2. Negative binomial (NB) shock

Let us assume that ε̃t is NB distributed, with p.g.f.:

E[uε̃t ] =
(1− p0)

ν

(1− p0u)ν
, ∀u ∈ [0,

1

p0
)

7A large family of distributions satisfying this condition is the compound Poisson distri-
butions, or equivalently the infinitely divisible count distributions. [37] have shown that for
these compound Poisson distributions, the p.m.f. of the stationary distribution can also be
obtained through a recursive equation.
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where parameter p0 ∈]0, 1[. Then the p.g.f. of the stationary distribution of the
process is:

E[uXt ] = exp
( ∞∑

i=0

ν[log(1− p0)− log(1− p0 + p0p
i − p0p

iu)]
)

= exp
(
ν

∞∑
i=0

[log(1− p0)− log(1− p0 + p0p
i)− log(1− p0p

i

1− p0 + p0pi
u)]

)

= exp
(
ν

∞∑
i=0

[log(1− p0)− log(1− p0 + p0p
i)]− ν

∞∑
i=0

∞∑
k=1

[
1

k

p0p
i

1− p0 + p0pi
]kuk

)

= exp
(
ν

∞∑
i=0

[log(1− p0)− log(1− p0 + p0p
i)]− ν

∞∑
k=1

∞∑
i=0

[
1

k

p0p
i

1− p0 + p0pi
]kuk

)
.

Thus we have:

c0 = ν

∞∑
i=0

[log(1− p0)− log(1− p0 + p0p
i)],

ck = −ν

∞∑
i=0

(1
k

p0p
i

1− p0 + p0pi

)k

, ∀k ≥ 1.

2.3.3. Poisson-inverse Gaussian (PIG) shock

The negative binomial distribution can be viewed as a mixture of Poisson distri-
butions with a gamma mixing distribution. [43] introduced an alternative, mixed
Poisson distribution with inverse Gaussian mixing distribution. The resulting
distribution is called PIG8 and is better suited for heavy-tailed count distribu-
tions. The causal version of the PIG INAR(1) process has been introduced by
[4]. Below we plot a simulated trajectory of the noncausal PIG INAR(1) process,
in which the inverse Gaussian distribution has mean 0.5 and dispersion 10.

The p.g.f. of the shock distribution is:

E[uε̃t ] = exp
[μ
β
(1−

√
1 + 2β − 2βu)

]
, ∀u ∈ [0, 1 +

1

2β
].

Hence the p.g.f. of the stationary distribution is given by:

E[uXt ] = exp
(μ
β

∞∑
i=0

[1−
√
1 + 2β − 2β(piu+ 1− pi)]

)

= exp
(μ
β

∞∑
i=0

[1−
√

1 + 2βpi

√
1− 2βpi

1 + 2βpi
u]
)

= exp
(μ
β

∞∑
i=0

[
1−

√
1 + 2βpi −

√
1 + 2βpi

∞∑
k=1

(
k

−1
2

)( 2βpi

1 + 2βpi
)k
uk

])
,

8See also [45] for an extension called Generalized PIG.
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Fig 7. Simulated trajectory of a noncausal PIG INAR(1) process.

where the binomial coefficient
(

k
− 1

2

)
is defined by:

(
k

− 1
2

)
=

Γ( 1
2 )

Γ(k+1)Γ( 1
2−k)

, ∀k, and
Γ(·) is the Gamma function. Thus

c0 =
μ

β

∞∑
i=0

(1−
√
1 + 2βpi),

ck = −μ

β

∞∑
i=0

√
1 + 2βpi

(
k

−1
2

)( 2βpi

1 + 2βpi
)k
, ∀k ≥ 1.

2.4. Extremal behavior

Let us now show that the dynamics of a noncausal INAR(1) process can be
totally different from its causal counterpart, especially for large current values of
Xt. For illustration purpose, we re-focus on the noncausal DS-INAR(1) process
introduced in Section 2.2.2.

Since the discrete stable distribution has an infinite mean, the noncausal
conditional expectation E[Xt|Xt+1] does not exist. This might explain why the
causal, DS-INAR(1) process has never been proposed in the literature. Interest-
ingly, the calendar time dynamics of a noncausal DS-INAR(1) has thin tail as
shown in the next proposition.

Proposition 3. For fixed Xt, the conditional p.m.f. is asymptotically equal to:

P[Xt+h = xt+h|Xt = xt] = O
[ (1− ph)xt+h

xν+1−xt

t+h

]
, when xt+h goes to infinity,

and the conditional moment E[Xφ
t+h|Xt] is finite for any power φ > 0 and any

horizon h.

Proof. See Appendix A.3.



3866 C. Gouriéroux and Y. Lu

The finiteness of E[Xt+h|Xt] does not contradict the non existence of E[Xt].
Roughly speaking, the causal prediction E[Xt+h|Xt] is finite for any fixed hori-
zon h, but increases to infinity when h goes to infinity. Figure 8 plots E[Xt+1|Xt=
i] as a function of i. The values are computed numerically from those of the con-
ditional p.m.f., by truncating the identity:

E[Xt+1|Xt = i] =

∞∑
n=0

{
nP[Xt+1 = n|Xt = i]

}
,

at a large, finite order. On the contrary to Figure 4, we have not plotted the
corresponding reverse time conditional expectation, as this latter is infinite.

Fig 8. Causal conditional expectation as a function of the conditioning variable in the non-
causal DS-INAR(1) model.

The conditional expectation seems to increase nearly linearly in i, with a slope
that is larger than 1. This impression is confirmed by Proposition 4, which is the
discrete analog of a result for (real-valued) noncausal linear alpha-stable AR(1)
processes [see [6, 20]], for which the convergence in equation (13) is simply
replaced by an equality.

Proposition 4. For the noncausal DS-INAR(1) process, the conditional expec-
tation is such that:

E[Xt+h|Xt = i]

i
→ (pν−1)h, ∀h ≥ 1, (13)

when i goes to infinity.

Proof. See Appendix A.4.

Thus, for large values of Xt, the conditional expectation is linear with an
“asymptotic” autoregressive coefficient equal to pν−1, which is larger than 1,
since ν, p ∈ [0, 1[. In particular this ratio is different from the autoregressive
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coefficient p in reverse time, which is constant and smaller than 1. Therefore,
conditional on Xt being large, Xt+1 is in average even larger than Xt. Such
a locally explosive feature cannot be replicated by a standard INAR(1) pro-
cess, since in model (1) the autocorrelation coefficient is p < 1 and hence the

corresponding limit of E[Xt+1|Xt=i]
i is p < 1.

As shown in Figure 6, the conditional distribution of Xt+1 given Xt has two
(local) modes, one near zero and the other larger than the current value Xt. A
further investigation reveals that we have the following result:

Proposition 5. For a given ε > 0, when Xt goes to infinity,

• the probability P

[
Xt+1

Xt
∈ (0, ε)|Xt

]
goes to 1− pν .

• the probability P

[
Xt+1

Xt
∈ ( 1p − ε, 1

p + ε) | Xt

]
goes to pν .

Proof. See Appendix A.5.

Thus, when the process is currently in the bubble episode with Xt large,
the conditional distribution of the future scaled value Xt+1

Xt
given Xt is ap-

proximately binary. With a fixed probability pν , the bubble continues to grow
at the geometric rate of 1

p , whereas with fixed probability 1 − pν , the bubble
collapses. This also echoes Proposition 4, which says that the conditional ex-
pectation E[Xt+1|Xt] is approximately equal to pν−1Xt−1, that is

Xt

p times the
probability pν .

Proposition 5 is linked to the recent literature on (linear) noncausal AR(1)
processes, which is the real-valued analog of the noncausal DS-INAR(1) [[15],
Prop. 2.2]. This similarity is due to the fact that the joint distribution of
(Xt, Xt+1) is within the domain of attraction of a certain bivariate alpha-stable
vector (Yt, Yt+1), where process (Yt) is a noncausal alpha-stable linear AR(1)
process. Thus the joint distribution of (Xt, Xt+1) is asymptotically “close to”
that of (Yt, Yt+1), for which the result of [15] applies.

The presence of several local modes also implies that standard point fore-
casting tools for time series counts, based on the conditional expectation and
the (single) conditional mode, only, [see [14]] can be misleading. Hence the im-
portance of the closed form conditional p.m.f. derived in this paper. Whereas
the marginal distribution of a (causal or noncausal) INAR(1) process is neces-
sarily uni-modal [see [39]], the conditional distribution of a noncausal INAR(1)
process is instead often multi-modal. This is the reason for bubble detection by
bivariate pattern recognition developed in [17].

3. The queuing interpretation

Besides its tractability for estimation and (nonlinear) prediction purposes, an-
other advantage of the causal INAR(1) process is its intuitive, queuing inter-
pretation. In this section, we show that a duality between arrival and departure
events leads to a similar queuing interpretation for the noncausal INAR(1) pro-
cess.
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3.1. A Lexis diagram

We temporarily leave the laws of count variables unspecified, and focus on the
deterministic relationships between these variables. We do not assume model
(1) in this section.

Imagine a bar with an infinite capacity.9 It has existed since the infinite past
and will stay indefinitely open. Time is discrete and Z−valued. This double
direction is essential later on when we study the reverse time property of the
queuing system. In particular, the date t = 0 is not the origin of the bar, which
is open since the infinite past. Moreover, the choice of this time origin is not
important, as we will focus on stationary queuing systems.

When a customer arrives at date t, she is immediately served and counts as
a customer. In other words, we have an infinite server queue. At the earliest she
can leave the bar at date t+1, and she will no longer be a customer at the date
of departure. Hence, the duration spent by each customer at the bar (or service
time) is at least equal to one. We are interested in the counts of customers with
various arrival and/or departure dates, as well as the total number of customers
at each date. To this end, for each couple (s, t) ∈ Z

2 such that s < t, we
denote by ηs,t the number of customers arriving at date s and leaving at date t.
This definition prioritizes neither the two dates s, t, nor the two time directions.
Indeed, for a given s, the sequence (ηs,t)t is indexed in calendar time t, which
increases from s+ 1 to +∞; on the other hand, given t, the sequence (ηs,t)s is
indexed in reverse time, s decreasing from t−1 to −∞. Let us now report these
count variables in the following Lexis diagram [see e.g. [10]]:

· · · · · · · · · · · · · · · · · ·
0 ηt−1,t ηt−1,t+1 ηt−1,t+2 ηt−1,t+3 · · ·

0 ηt,t+1 ηt,t+2 ηt,t+3 · · ·
0 ηt+1,t+2 ηt+1,t+3 · · ·

0 · · · · · ·

(14)

This is an infinite, upper triangular matrix, in which variable ηs,t appears on
the s−th row and the t-th column.10 In particular, only terms strictly above the
diagonal s = t can be non zero due to the constraint s < t.

3.2. The arrival and departure cohorts

The doubly indexed sequence (ηs,t) will now serve as the building block of other
count sequences allowing to follow the movements of customers by either arrival,
or departure cohort.

9We could also follow the queuing literature and use the terminology of a queue with an
infinity of servers. However, we think that, compared to “queue”, the terminology “bar” can
better convey the idea that customers in the bar do not wait to be served, whereas in many
stochastic queue models, customers are served sequentially by order of arrival.

10The direction of the s−axis is southwards and the direction of the t−axis is eastwards.
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The arrival cohorts. For a given date s and each posterior date t ≥ s, we
denote by εs(t) the number of customers arriving at date s and staying at least
until date t, with the convention that εs(s) = εs is the number of customers
arriving at date s regardless of their departure date. Here index s is prioritized,
whereas integer t appears merely as an argument of the s−indexed process. We
call index s the arrival cohort of these individuals, and εs the (initial) size of
this cohort. The sequence εs(t), where t ≥ s, is nonincreasing in t, and we have:

0 ≤ ηs,t = εs(t− 1)− εs(t), ∀t ≥ s+ 1. (15)

Thus this sequence converges to a nonnegative integer limit, and ηs,t is neces-
sarily zero for large t. Hence, in each row of the Lexis diagram (14), there are at
most a finite number of positive terms. Throughout the paper we assume that:

Assumption 1. For each given cohort s, sequence εs(t) is equal to zero for suf-
ficiently large t.

In other words, there are no indefinitely staying customers. Then equation
(15) can be equivalently rewritten into:

εs(t) = ηs,t+1 + ηs,t+2 + ηs,t+3 + · · · , ∀t ≥ s, (16)

that is, those arriving at date s and staying until date t will ultimately leave at
one of the following dates: t+1, t+2, .... In particular, taking s = t, the above
equality yields:

εs(s) := εs = ηs,s+1 + ηs,s+2 + ηs,s+3 + · · · . (17)

Equations (16) and (17) are easy to interpret using the Lexis diagram (14).
Equation (17) says that variables on the s−th row sum up to εs. Moreover, if
we truncate this summation and keep only terms on the right hand side (RHS)
of ηs,t in the Lexis diagram, excluding ηs,t, we get εs(t) by equation (16).

The departure cohorts. Let us now consider the departure time t of the
customers. More precisely, for a given date t and each s ≤ t, we denote by
ε̃t(s) the number of customers leaving at date t and arriving before date s. This
sequence is nondecreasing in s, and we have:

0 ≤ ηs,t = ε̃t(s+ 1)− ε̃t(s), ∀s ≤ t− 1. (18)

Each column of the Lexis diagram contains also a finite number of non zero
terms and similarly as Assumption 1, we assume that:

Assumption 2. For each given t, sequence ε̃s(t) goes to 0, when s goes back to
−∞.

In other words, no customers have been in the bar since the infinite past.
Thus, for small s, both ε̃t(s) (and hence also ηs(t)) are equal to 0 and we have:

ε̃t(s) = ηs−1,t + ηs−2,t + ηs−3,t + · · · , ∀s ≤ t. (19)
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In terms of the Lexis diagram, ε̃t(s) is obtained by summing all the terms above
ηs,t. In particular, when s = t, we get:

ε̃t := ε̃t(t) = ηt−1,t + ηt−2,t + ηt−3,t + · · · , (20)

In the following we will denote by ε̃s the RHS of the above equation, which is
the total number of customers leaving at date t, or the size of the departure
cohort t. It is equal to the sum of all elements on the t−th column of the Lexis
diagram.

An arrival/departure duality. Let us now relate definitions (18), (19),
(20) to equations (15), (16), (17). Instead of observing customers’ movements
in calendar time (CT), alternatively we can observe them in reverse time (RT),
that is by looking at the time-reversed video.11 In other words, for any t ∈ Z,
the picture of the bar taken at CT date t is observed at RT date −t. Therefore:

• When a customer arrives at CT date s ∈ Z, s is also the earliest CT date
when she is at the bar. When the video is reversed, −s becomes her last RT
date at the bar, hence she leaves the bar at RT date −s+ 1;

• Similarly, when the customer leaves at CT date t ∈ Z, the last CT date when
she is at the bar is t− 1; when the time is reversed, −t+1 becomes her first RT
date at the bar. In other words she arrives at the bar at RT date −t+ 1.

To summarize, we have the following duality table:

Table 1

Correspondence between calendar/reverse time and arrival/departure.

Arrival Departure Order of the two
date date dates

In calendar time s t s < t
In reverse time −t+ 1 −s+ 1 −t+ 1 < −s+ 1

Reversing the time direction is equivalent to interchanging the arrivals and
departures, taking the opposite, then shifting by +1 all the dates. As a conse-
quence, counts defined in Section 2.2.2, which concern the different CT departure
cohorts, correspond to RT arrival cohorts. This explains the similarity between
equations (18), (19), (20) on the one hand, and equations (15), (16), (17) on the
other hand.

3.3. The current customer counts

It remains to count the current number of customers Xt. We have:

Xt = εt + εt−1(t) + εt−2(t) + · · · , (21)

according to their arrival cohort t, t − 1, t − 2.... In the Lexis diagram, εt is
the sum of all the entries in the t-th row that are right to ηt,t+1 (inclusively);

11Such a duality has previously been considered in the (continuous time) queuing literature
by [13].
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εt−1(t) is the sum of all the entries in the (t−1)-th row that are right to ηt−1,t+1

(inclusively), and so on. Thus we have:

Xt =
∑
s≤t

∑
t<τ

ηs,τ , (22)

where the summation is with respect to both arrival time s with s ≤ t, and
departure time τ with τ > t. In other words Xt is the sum of all the entries in
the northeast of ηt,t+1:

Xt =
∑

(i,j)∈At

ηi,j , where At = {(i, j) ∈ Z
2, i ≤ t, j ≥ t+ 1}.

Figure 9 below illustrates the region At in the Lexis diagram.

Fig 9. The infinite rectangular area filled with northeast lines defines region At.

Similarly, by counting the current customers according to their departure
dates, we get:

Xt = ε̃t+1 + ε̃t+2(t+ 1) + ε̃t+3(t+ 1) + · · · (23)

Linking the departure and arrival population sizes There exists also a
relationship between the sizes of arrival cohorts (εt), those of departure cohorts
(ε̃t), as well as (Xt):

ε̃t+1 +Xt+1 = Xt + εt+1, (24)

that is, at date t+1, the counts of leaving customers, ε̃t+1, plus those currently in
the bar, Xt+1, is equal to the previous customer count Xt plus the new arrivals
εt+1.
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Summary. The four count sequences (ηs,t)s,t, (εs(t))s,t, (ε̃t(s))s,t, (Xt)t in-
troduced so far are linked as follows:

• There is a one-to-one relationship between (ηs,t)s,t and (εs(t))s,t [see eq.
(15), (16)].

• There is a one-to-one relationship between (ηs,t)s,t and (ε̃t(s))s,t [see eq.
(18), (19)].

• (Xt)t is a linear combination of either (εs(t))s,t, or (ε̃t(s))s,t, or (ηs,t)s,t
[see eq. (21), (23)].

• The sizes of departure cohorts (ε̃t), arrival cohorts (εt) and the count of
current customers (Xt) are linked through (24). For a given (Xt), this
link between departure cohort sizes (ε̃t) and arrival cohort sizes (εt) is
one-to-one.

In particular, as in model (1), it is impossible to recover the other underlying
latent counts from the knowledge of (Xt)t alone.

3.4. The Markov property

Since model (1) is Markov, we will focus on stochastic specifications for the
latent (εs(t)) under which the resulting process (Xt) defined by equation (21)
is Markov, that is such that:

P (xt|xt−1) = P (xt|xt−1), (25)

where the symbol P (·) refers to the conditional probability mass function (p.m.f.),
that is the conditional density with respect to the counting measure on N. Let
us define ε•(t − 1) as the information set of population sizes of various arrival
cohorts at date t− 1:

ε•(t− 1) = {εs(t− 1), s = t− 1, t− 2, ...}.

The information set of all realized arrival counts up to time t−1 is: ε•(t− 1) :=
{εs(τ), s ≤ τ ≤ t − 1} = {ηs(τ), s ≤ τ ≤ t − 1}. These information sets are
ordered by:

σ(Xt−1) ⊂ σ(Xt−1, ε•(t− 1)) ⊂ σ(ε•(t− 1)).

Therefore, we have:

Lemma 3. A sufficient condition for (Xt) to be Markov is that:

P (xt|ε•(t− 1)) = P (xt|xt−1). (26)

Intuitively, this lemma says that, if increasing the information set from Xt−1

to ε•(t− 1) does not improve the prediction of Xt, then increasing to an in-
termediate information set Xt−1 should not provide extra useful information
either. Let us now look for conditions for (26) to hold. Since by (21), Xt is the
sum of εs(t), s varying, it will be convenient to assume:
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Assumption 3. For two different arrival cohorts s1 
= s2, the processes of popu-
lation sizes of different cohorts (εs1(s1 + τ))τ≥0 and (εs2(s2 + τ))τ≥0 are i.i.d.

Under this assumption, εs(t) is independent of, and has the same distribution
as, εs+1(t+ 1). Next, we also assume that:

Assumption 4. Within each cohort s, the sequence of sizes (εs(t))t is itself
Markov, that is,

Ps,t

(
εs(t)|εs(t− 1), εs(t− 2), · · ·

)
= Ps,t

(
εs(t)|εs(t− 1)

)
, ∀s, t. (27)

In other words the future size of an arrival cohort s at time t depends only on
its current size, but not on the previous ones. We use the double subscript s, t
in Ps,t(·| · · · ), since by definition the conditional p.m.f. of εs(t) given εs(t − 1)
has the support {0, 1, ..., εs(t− 1)}, and is thus time-inhomogeneous. Moreover,
by Assumption 3, the measurable function Ps,t(·|εs(t− 1)) depends on s, t and
εs(t− 1) only through εs(t− 1) and the time lag t− s.

Lemma 4. If the queuing system is such that both Assumptions 3, 4 and equa-
tion (26) are satisfied, then there exists p ∈]0, 1[ such that for any s < t and
integer n, the conditional distribution of εs(t) given εs(t − 1) = n is binomial
B(n, p).
Proof. See Appendix A.6.

3.5. Queuing interpretation of the INAR(1) process

The following proposition is a direct consequence of Lemma 4 above. It says
that INAR(1) process can be indeed embedded into the above Markov queuing
system.

Proposition 6 (Arrival cohort-disaggregated representation). The solution to
the causal INAR(1) model (1) has the disaggregate queuing representation (21),
that is:

Xt = εt + εt−1(t) + · · · ,
where the joint distribution of (εs(t)) is as follows:

1. For a given cohort s, sequence (εs(t)) is Markov and the conditional dis-
tribution of εs(t + 1) given εs(t) = n is B(n, p) with a fixed parameter
p ∈]0, 1[. That is,

εs(t+ 1) =

εs(t)∑
i=1

Zi,s,t+1, ∀t ≥ s, (28)

where Zi,s,t+1 are i.i.d. Bernoulli B(1, p) and are independent of εs(t), εs(t−
1), · · ·

2. The sequence (εs) is i.i.d., and sequences (εs(t))t≥s are independent for
different s.
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Proof. See Appendix A.7.

Remark 1. The above representation shares similarities with the integer-valued
moving average (INMA), or INARMA models [see e.g. [2, 24, 11, 5] for discrete
time processes and [42] for a continuous time analog]. For instance, an INMA(n)
process, where n is an integer, has the representation:

Xt = εt +

n∑
i=1

εt−i∑
j=1

Zi,j,t, (29)

where Zi,j,t are mutually independent when i, j, t vary, Bernoulli distributed
with parameter pi ∈ [0, 1], and are independent of Xt−1, Xt−2, ....

The main difference between representations (22) and (29) is that, in the
former case, although each component εt−i(t) has the same distribution as∑εt−i

j=1 Zi,j,t, these terms are dependent within the same cohort, that is when
both t and i vary while keeping t− i constant.

The RCINAR(1) process has a similar queuing interpretation as the INAR(1)
process, except that Assumption 3 is replaced by the assumption that the pop-
ulation counts εs(t), s varying, are conditionally independent given (εs(t− 1))s
and a time-varying factor pt ∈]0, 1[. This is provided in Online Appendix.

3.6. Queuing interpretation of the noncausal INAR(1) process

The queuing interpretation of the noncausal INAR(1) is obtained by using the
arrival-depature duality.

Proposition 7. The noncausal INAR(1) process has the disaggregate represen-
tation (23), that is:

Xt = ε̃t+1 + ε̃t+2(t+ 1) + · · · ,
where the joint distribution of ε̃t(s), t ≥ s is defined as follows:

1. For a given t, the sequence (ε̃t(s))s≤t−1 is such that the terminal value ε̃t(t)
is equal to ε̃t, whereas previous values are defined backward and recursively
by:

ε̃t(s− 1) =

ε̃t(s)∑
i=1

Z∗
i,s,t, ∀s ≤ t− 1, (30)

where Z∗
i,s,t, i = 1, ... are i.i.d. Bernoulli B(1, p), and are independent of

ε̃t(s).
2. The departure counts ε̃s, s ∈ Z, are i.i.d., and are independent of Z∗

i,s,t.

Let us consider a statistician observing the reverse time video: she first ob-
serves the total number of departures ε̃t of the entire departure cohort, then
tries to “trace back” the time of arrival of these customers. Given that a cus-
tomer is in the bar at a certain date s < t, she thinks that there is a probability
of p (resp. 1 − p) that the customer was (resp. was not) already at the bar at
the previous date.
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This proposition is the noncausal analog of Proposition 6, and equation (23)
can be viewed as the MA(∞) representation of the noncausal process, that is
the analog of (21). However, the two models differ fundamentally in terms of
observability. Indeed, the variables on the RHS of (23) involve a departure date
that is posterior to t; thus they are fundamentally unobservable at the present
date t, even if all the movements of the queuing system are observed up to
present.

The causal dynamics of the queuing system for a noncausal INAR(1)
process In Section 2.2, we have derived general formulas to study the causal
dynamics for a noncausal INAR(1) process. Let us now look at the queuing
interpretation of this causal dynamics.

In the noncausal (resp. causal) INAR(1) process, the departure (resp. arrival)
process (ε̃t) [resp. (εt)] is i.i.d. Then the arrival (resp. departure) process is
defined through equation (24). What properties possesses the arrival process?
Can they also be i.i.d.? The following proposition says that this is generally not
the case:

Proposition 8 (The dynamics of the arrival cohort size). In the noncausal
INAR(1) process (1), the arrival process (εt) is also i.i.d., if and only if ε̃t is
Poisson P(λ) distributed for some positive constant λ. In this case, εt is also
Poisson P(λ) distributed.

Similarly, in the causal INAR(1) process (1), the departure process (ε̃t) is
also i.i.d., if and only if εt (then also ε̃t) is Poisson P(λ) distributed for λ > 0.

Proof. See Appendix A.8.

This result completes Thm 1 in [36], which focuses on the causal INAR(1),
and says that (Xt) is truly time reversible if and only if variable (εt) is Poisson
P(λ) distributed.12 The “if” part of the proposition is easily illustrated using
the Lexis diagram: if εt is P(λ) distributed, then by the property of the Poisson
distribution, variables ηt(t+1), ηt(t+2),... in equation (17) are independent and
Poisson distributed with parameters pλ, p2λ,..., respectively. Thus ε̃t defined in
(20) is still Poisson as the sum of independent Poisson variables.

Note that in the continuous time queuing literature, models with non i.i.d.
arrival sequence have already been considered by various authors [see e.g. [12]].
Our model is fundamentally different from theirs since none of these previous
models specify the queuing system in reverse time.

Besides the existence of serial correlation, what else can be said about the
arrival counting process (εt) and the departure decisions of existing customers
of a noncausal, non-Poissonian INAR(1) process? Let us write:

Xt+1 = (Xt+1 − εt+1) + εt+1,

where process (Xt) is noncausal INAR(1) and process (εt) is defined by (24).
This representation is analogous to representation (1), where Xt+1 is decom-

12Schweer’s result focuses on time reversibility whereas our result concerns the indepen-
dence of the errors.
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posed into the sum of the number of newcomers and the number of old cus-
tomers who stay. By equation (24), Xt+1 − εt+1 is equal to Xt − ε̃t+1, which is
nonnegative and non larger than Xt and is interpreted as the number of current
customers who choose to stay at time t. Proposition 9 below summarizes the
major differences between the calendar time dynamics of a noncausal INAR(1)
and the causal INAR(1) process:

Proposition 9. For a noncausal INAR(1) process defined in Definition 1, the
following statements are equivalent:

i) Process (Xt) is time reversible;
ii) Process (εt) is Poisson;
iii) The number of current customers who stay Xt+1 − εt+1 is binomial given

Xt;
iv) The number of arrivals εt+1 is independent of Xt;
v) Xt+1 − εt+1 and εt+1 are independent given Xt.

Proof. See Appendix A.9.

Thus on the contrary to a causal INAR(1) process, for which conditions
iii), iv) and v) in Proposition 9 are all satisfied, in a non-Poisson, noncausal
INAR(1) model, the calendar time dynamics of (Xt) is non thinning-based, the
arrival size process (εt+1) is state-dependent13 and is conditionally dependent
of the number of staying, old customers, i.e. Xt+1 − εt+1. In other words, this
result is the queuing version of Lemma 2.

The distribution of the arrival count Proposition 9 says that in general,
the arrival cohort size (εt) cannot have Poisson stationary distribution. Let us
now compute its p.g.f.:

E[uεt+1 ] = E[uε̃t+1+Xt+1−Xt ] (by equation (24))

= E

[
u
∑Xt+1

i=1 (1−Zi,t)
]

(by equation (3))

= E

{
[(1− p)u+ p]Xt+1

}
, (31)

by compounding the p.g.f. of the distribution of Xt and of the Bernoulli distri-
bution B(1, 1− p). Let us now derive the explicit formula for the two examples
considered in Section 2.2.

Example 1 (Noncausal geometric INAR(1) cont.). If (Xt) has geometric mar-
ginal distribution, i.e. E[uXt ] = 1

1+β(1−u) , then equation (31) becomes:

E[uεt ] =
1

1 + β[1− (1− p)u− p]
=

1

1 + β(1− p)(1− u)
.

Hence (εt) is geometric distributed and we have: E[ε̃t] = β(1− p) = E[εt].

13That is, εt+1 depends on the previous customer count Xt.
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Example 2 (Noncausal discrete stable INAR(1) cont.). Since E[uXt ]=e−β
(1−u)ν

1−pν ,
equation (31) becomes:

E[uεt ] = e−β
(1−p)ν

1−pν (1−u)ν .

Hence the distribution of (εt) is DS(β (1−p)ν

1−pν , ν). Since14 (1−p)ν

1−pν ≥ 1, the sta-
tionary distribution of εt has a larger scale parameter than the distribution of
ε̃t.

4. Conclusion

In this paper we have introduced the concept of noncausality for counting pro-
cesses by time reversing a INAR(1), a Markov affine process, or a RCINAR(1).
These noncausal processes are very often associated with a new, noncausal queu-
ing interpretation. We have also seen that the resulting noncausal processes,
which is generically time irreversible, can feature bubble-like calendar time dy-
namics characterized by some unique bi-modal conditional distribution. This
approach is completely different from the current literature15, which often fo-
cuses on the autocovariance of the process. This latter linear measure of serial
dependence should be used with care, especially since a noncausal process and
its causal counterpart share the same autocovariance function16, but can have
completely different nonlinear dynamics.

Our theoretical analysis of Markov noncausal processes is only the first, but
a necessary step towards the empirical implementation of count models with
noncausal features. While the parameter estimation of a noncausal INAR(1)
process is rather straightforward (indeed, it suffices to estimate a standard causal
INAR(1) model in reverse time), there are numerous other important issues
that await further research. For instance, given that noncausal processes are
different from their causal counterparts only when it is irreversible, can we design
(possibly non-parametric) tests of reversibility on count time series data, before
any meaning estimation is done? See e.g. [8] for similar tests applied to real-
valued process. In a similar spirit, what is the consequence of mis-specifying the
causality of the process, that is, estimating a causal INAR(1) process when the
real data generating process is noncausal? See e.g. [21] for methods to distinguish
between causal and noncausal models for real-valued processes. Finally, a more
flexible, possible extension concerns mixed causal-noncausal INAR(1) models.
Recently, a mixed causal-noncausal autoregressive process has been introduced
by [16], as a natural extension of both the noncausal AR(1) model of [20] and
the standard causal AR(1) model. In the context of count processes, such an
extension would include the causal and noncausal INAR(1) as special cases
and allow the bubble to burst gradually instead of abruptly, at a rate that is
potentially different from its rate of explosion.

14In the limiting Poisson case, when ν = 1, the inequality becomes an equality.
15See [27, 22] for recent developments on counting processes with flexible autocorrelation

function.
16Indeed, the covariance operator is symmetric in the two arguments.
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Appendix A: Proofs

A.1. Proof of Proposition 1

Let us follow the proof of [18], Section 5.3, which give the necessary condition for
the joint and marginal p.g.f. of a general (not necessarily non-negative integer
valued) time reversible affine process. More precisely, let us denote by c(·) the
log-Laplace transform of process (Xt): E[e

−sXt ] = ec(s). Then Proposition 10 of
[18] shows that there exists constants β0, β1, and β2 such that:

d2

ds2
c(s) = β0 + β1

d

ds
c(s) + β2

[ d

ds
c(s)

]2
. (a.32)

Then we have the following cases:

i) β1 = β2 = 0. Then, as in [9], we get a Gaussian process which is not a
counting process.

ii) β1 
= 0, β2 = 0. By solving the differential equation (a.32), we get: c(s) =
δ1s+ δ2(1 − eδ3s). This is the log-Laplace transform of the Poisson distri-
bution up to an affine transformation with intercept δ1 and slope δ3. Then
by the same argument as in [9], we deduce that process (Xt) is Poisson-
INAR(1).

iii) β2
1 − 4β0β2 = 0, β2 
= 0. As in [9], we get a process with gamma stationary

distribution.
iv) β2 
= 0, β2

1 − 4β0β2 > 0. We get: c(s) = δ1s+ δ2 log[pe
δ3s +1− p]. Without

loss of generality let us assume δ3 = −1, δ1 = 0. Then we distinguish two
sub-cases:

• Either δ2 > 0, in which case we get the Bernoulli distribution. Thus
the support of process (Xt) is not all the nonnegative integers.

• Or δ2 < 0, in which case we get the negative binomial distribution.
Then, using the similar calculus as in [9], we get the second reversible
affine counting process mentioned in the Proposition.

v) β2 
= 0, β2
1 − 4β0β2 < 0. As in [9], we get a process with continuous

stationary distribution.

A.2. Proof of Proposition 2

Let us remark that for any count variable Xt, we have:

E[uXt ] =

∞∑
n=0

P[Xt = n]un.

In other words, the stationary p.m.f. of Xt can be obtained by Taylor-expanding
the corresponding p.g.f. More precisely, by equation (11), we have:

E[uXt ] = exp
[
c0 + c1u+ · · ·+ cnu

n +O(un+1)
]

(a.33)
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= exp(c0)

n∑
j=0

1

j!
(c1u+ · · ·+ cnu

n)j +O(un+1). (a.34)

Then we obtain recursively, for each j, the expansion of (c1u+ · · ·+ cnu
n)j up

to order n using the following Lemma due to [28]:

Lemma 5. For any coefficients γi, i = 0, ..., n, the (n + 1) first coefficients of
polynomial (

∑n
j=1 γju

j)k, where k = 0, ...n, are given by the column vector:

⎡
⎢⎢⎢⎢⎣

0 0 0 · · · 0
γ1 0 0 · · · 0
γ2 γ1 0 · · · 0
· · · · · · · · · · · · · · ·
γn γn−1 · · · γ1 0

⎤
⎥⎥⎥⎥⎦

k ⎡
⎢⎢⎢⎢⎣
1
0
0
· · ·
0

⎤
⎥⎥⎥⎥⎦ , ∀k = 0, ..., n. (a.35)

By this lemma and coefficient matching, we get the p.m.f. of the stationary
distribution, that is equation (12).

Remark 2. Note that, compared to standard matrix multiplications, the succes-
sive powers of the Toeplitz matrix in the lemma can be computed much more
quickly since:⎡

⎢⎢⎢⎢⎣
0 0 0 · · · 0
γ1 0 0 · · · 0
γ2 γ1 0 · · · 0
· · · · · · · · · · · · · · ·
γn γn−1 · · · γ1 0

⎤
⎥⎥⎥⎥⎦

k

=

⎡
⎢⎢⎢⎢⎣

0 0 0 · · · 0
γ1,k 0 0 · · · 0
γ2,k γ1,k 0 · · · 0
· · · · · · · · · · · · · · ·
γn,k γn−1,k · · · γ1 0

⎤
⎥⎥⎥⎥⎦

for any integer k, where the sequence (γi,k) satisfies the recursion:

γ1,k+1 = 0

γ2,k+1 = γ1,kγ1

· · · = · · ·
γn,k+1 = γn−1,kγ1 + γn−2,kγ2 + · · ·+ γ1,kγn−1.

Thus the updating step involves at most the computation of n coefficients.

A.3. Proof of Proposition 3

Let us first prove the proposition for h = 2. By [7], the tail of the discrete stable
distribution satisfies:

P[Xt+1 = k] = O
( 1

kν+1

)
,

when k goes to infinity. On the other hand, for a given Xt and for large xt+1

such that xt+1 > xt, the noncausal conditional p.m.f. is:

P (xt|xt+1) =

min(xt,xt+1)∑
i=0

(
xt+1

i

)
pi(1− p)xt+1−iPε̃(xt − i)



3880 C. Gouriéroux and Y. Lu

=

xt∑
i=0

(
xt+1

i

)
pi(1− p)xt+1−iPε̃(xt − i)

= (1− p)xt+1

xt∑
i=0

(
xt+1

i

)( p

1− p

)i

Pε̃(xt − i), (a.36)

where Pε̃ is the p.m.f. of ε̃. For fixed xt, the term Pε̃(xt−i) is uniformly bounded
for varying i, whereas the term

(
xt+1

i

)
is bounded by:(

xt+1

i

)
=

xt+1(xt+1 − 1) · · · (xt+1 − i+ 1)

i!
≤ xi

t+1

i!
.

Thus the RHS of equation (a.36) is bounded by a polynomial of xt+1 of degree

xt, and hence P (xt|xt+1) = O
[
(1−p)xt+1

x
xt
t+1

xt!

]
, when xt+1 goes to infinity. Thus

by the Bayes’ formula:

P (xt+1|xt) =
P (xt|xt+1)P (xt+1)

P (xt)
= O

[ (1− p)xt+1

xν+1−xt
t+1

]
.

Finally, let us explain why the above result remains true for higher horizons
h. For instance for h = 2, we have, by iterated expectation formula:

E[uXt |Xt+2] = E[(pu+ 1− p)Xt+1 |Xt+2]E[u
ε̃t ]

= (p2u+ 1− p2)Xt+2E[(pu+ 1− p)ε̃t ]E[uε̃t ]

= (p2u+ 1− p2)Xt+2e−β(1−p)ν
(1−u)ν

1−pν e−β
(1−u)ν

1−pν .

In other words, the joint distribution of (Xt, Xt+2) has the same parametric
form as that of (Xt, Xt+1), but with a different probability parameter p2. Thus
the above result for h = 1 still applies to the case h = 2.

A.4. Proof of Proposition 4

Let us focus on the proof for h = 1. The formula for larger h is easily deduced
by the iterative expectation theorem. The joint p.g.f. of (Xt, Xt+1) is:

L(u, v) := E[uXtvXt+1 ]

= E

[
E[uXt |Xt+1]v

Xt+1

]
= exp

(
− β(1− u)ν − β

[1− (pu+ 1− p)v]ν

1− pν

)
, ∀u, v ∈ [0, 1[. (a.37)

Then we get, for all u between 0 and 1:

E[Xt+1u
Xt ] =

∂L(u, v)
∂v

|v=1

= e−β
(1−u)ν

1−pν
βν

1− pν
(pu+ 1− p)pν−1(1− u)ν−1. (a.38)
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Similarly, by considering the marginal p.g.f. L(u) := E[uXt ] = e−β
(1−u)ν

1−pν , we
get:

∂L(u)
∂u

= E[Xtu
Xt−1],

or E[pν−1Xtu
Xt ] = pν−1u

∂L(u)
∂u

= e−β
(1−u)ν

1−pν
βν

1− pν
pν−1(1− u)ν−1u. (a.39)

On the other hand, we can expand the LHS of (a.38) and (a.39) and get:

E[Xt+1u
Xt ] =

∞∑
i=0

ui
E[Xt+1|Xt = i]P[Xt = i], (a.40)

E[pν−1Xtu
Xt ] =

∞∑
i=0

uipν−1iP[Xt = i]. (a.41)

Thus, to show that E[Xt+1|Xt = i] and pν−1i are asymptotically equivalent, it
suffices to show that the coefficients of the Taylor’s expansions in u at u = 0
are asymptotically equivalent in equations (a.40) and (a.41). Let us expand:

e−β
(1−u)ν

1−pν
βν

1− pν
pν−1(1− u)ν−1 =

∞∑
i=0

ciu
i. (a.42)

If we multiply the LHS of this above equation times by (pu+1− p), we get the
RHS of (a.38), and, if we multiply it by u, we get the RHS of (a.39). Thus the
i−th coefficient of the expansion of E[Xt+1u

Xt ] is pci−1+(1−p)ci, whereas that
of E[pν−1Xtu

Xt ] is ci−1. Thus it suffices to show that when i goes to infinity, we
have: ci

ci−1
→ 1. This latter condition is satisfied since the radius of convergence

of expansion (a.42) is equal to 1.

A.5. Proof of Proposition 5

Let us first show that the distribution of (Xt, Xt+1) is within the domain of
attraction of a certain bivariate alpha-stable vector (Yt, Yt+1), where process (Yt)
is a noncausal alpha-stable linear AR(1) process. For a deterministic sequence
an that goes to infinity when n goes to infinity (at a rate to be determined
later), we consider the scaled sample average:

(X(1)
t +X

(2)
t + · · ·+X

(n)
t

an
,
X

(1)
t+1 +X

(2)
t+1 + · · ·+X

(n)
t+1

an

)
,

where (X
(i)
t , X

(i)
t+1), i = 1, ..., n, are i.i.d. copies of (Xt, Xt+1). By applying equa-

tion (a.37), the Laplace transform of this vector is such that:{
E[e−

u
an

Xt− v
an

Xt+1 ]
}n
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= exp
{
nβ(1− e−u/an)ν − nβ

1− pν
[1− (pe−u/an + 1− p)e−v/an ]

}
, ∀u, v.

Straightforward, but tedious algebra, shows that, for an = n1/ν , which goes to
infinity in n, and the RHS of the above equality converges to:

exp
(
− βuν − β

1− pν
(pu+ v)ν

)
. (a.43)

Thus the joint distribution of (Xt, Xt+1) belongs to the domain of attraction
of some alpha-stable distribution with Laplace transform given by equation
(a.43) [see e.g. [34]]. The spectral measure of the limiting distribution has two
point masses at (1, 0) and ( p√

1+p2
, 1√

1+p2
).17 Then we apply Thm 4 of [34] and

conclude that process (Xt) satisfies Proposition 5.

A.6. Proof of Lemma 4

We have:

E[uXt |ε•(t− 1)] = E[uεt+εt−1(t)+εt−2(t)+···|ε•(t− 1)]

= E[uεt ]

t−1∏
s=−∞

E[uεs(t)|εs(t− 1)], (a.44)

where the first term E[uεt ] is factored out since, by Assumption 3, εt is in-
dependent of ε•(t− 1), whereas the conditional p.g.f. of εt−1(t) + εt−2(t) + · · ·
becomes the product of conditional p.g.f.’s by the conditional independence (see
Assumption 4). By Assumption 3, the s-th element in the infinite product is a
measurable function of εs(t − 1), u and t − s only, and by equation (21), these
conditioning variables should also sum up to Xt−1. Thus, in order for the con-
ditional p.m.f. P (Xt|ε•(t− 1)) to depend on ε•(t− 1) through Xt−1 only, and
for all possible values of ε•(t− 1), there should exist a constant function of u,
g1(u), say, as well as a function of u and t− s, g2(u, t− s), say, such that:

E[uεs(t)|εs(t− 1)] = [g1(u)]
εs(t−1)g2(u, t− s),

for any s ≤ t − 1. That is, E[uεs(t)|εs(t − 1)] should be an exponential affine
function of εs(t− 1) with a slope that can only depend on u, but not on t− s.
Since the LHS of the above equation is a conditional p.g.f., functions g1 and g2
are further constrained:

17Alternatively, we recognize that the limit (a.43) is the Laplace transform of (Yt, Yt+1),
where (Yt) is a linear noncausal alpha-stable AR(1) process defined by:

Yt = pYt+1 + ξt,

where ξ′ts are i.i.d., and follow alpha-stable distribution, with Laplace transform E[e−uξt ] =
exp(−βuν), for all u > 0. By [15], Thm 2.2, this latter process satisfies the proposition.
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• First by choosing εs(t− 1) = 0 (in this case εs(t) is almost surely zero as
well), we get g2(u, t− s) = 1.

• Then we choose εs(t − 1) = 1, and conclude that g1(·) is necessarily the
p.g.f. of a count distribution. Thus given εs(t− 1), the conditional distri-
bution of εs(t) is the convolution of εs(t− 1) identical count distributions
with p.g.f. g(·). But since εs(t) is bounded by εs(t−1), function g1(·) must
be the p.g.f. of a Bernoulli distribution, say, B(1, p), i.e. g1(u) = pu+1−p.

As a consequence, the conditional distribution of εs(t) given εs(t−1) is binomial
B(εs(t− 1), p).

A.7. Proof of Proposition 6

By Lemma 4, equation (a.44) becomes:

E[uXt |Xt−1] = E[uεt ]
∏

s≤t−1

(pu+ 1− p)εs(t−1) = E[uεt ](pu+ 1− p)Xt−1 ,

which is exactly equation (2) for Bernoulli distributed Zi,t+1’s. This completes
the proof.

A.8. Proof of Proposition 8

First, by the arrival-departure duality, it suffices to prove the proposition for the
causal INAR(1) process. It suffices to show that ε̃t and ε̃t+1 are independent,
if and only if εt is Poisson distributed18. Let us compute their joint p.g.f.. We
have:

E[uε̃tvε̃t+1 ] = E[uXt+εt+1−Xt+1vXt+1+εt+2−Xt+2 ]

= E

[
E[uXt+εt+1−Xt+1vXt+1+εt+2−Xt+2 |Xt+1, εt+2, Xt, εt+1]

]
= E

[
uXt+εt+1−Xt+1vXt+1E[v−Xt+2+εt+2 |Xt+1, εt+2, Xt, εt+1]

]
= E

[
uXt+εt+1−Xt+1vXt+1(

p

v
+ 1− p)Xt+1

]
= E

[
uXt+εt+1(

p+ (1− p)v

u
)Xt+1

]
= E

[
uXt+εt+1E[

(p+ (1− p)v

u

)Xt+1 |Xt, εt+1]
]

= E

[
uXt+εt+1 [p

p+ (1− p)v

u
+ 1− p]Xt(

p+ (1− p)v

u
)εt+1

]
= E

[
[p2 + p(1− p)v + (1− p)u]Xt

]
E

[
[p+ (1− p)v]εt+1

]
.

18Indeed, Theorem 4.2 in [38] shows that if εt is Poisson, i.e. process (Xt) is Poisson-
INAR(1) process, then the departure process ε̃t is i.i.d.
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Thus the RHS is multiplicatively separable if and only if the marginal p.g.f.
function g(u) := E[uXt ] satisfies:

g(x+ y − 1) = g(x)g(y)/g(1),

where x = p2+ p(1− p)v+1− p and y = p+(1− p)u. Under suitable regularity
conditions (such as the continuity of g), the only solution of this functional
equation is g(x+1) = eλx, for some positive19 constant λ. Thus we deduce that
ε̃(t) and ε̃(t+ 1) are independent if and only if g(u) = eλ(u−1), that is if (Xt) is
Poisson P(λ) distributed. Then by stationarity, the p.g.f. of εt is:

E[uεt ] =
E[uXt ]

E[(pu+ 1− p)Xt ]
= e(1−p)λ(u−1), ∀u ∈ [0, 1 +

1

p
[

and εt is also Poisson P((1− p)λ) distributed.

A.9. Proof of Proposition 9

The equivalence between i) and ii) is a consequence of [36].
Let us show that conditions i) and iii) are equivalent. Recall that Xt+1 −

εt+1 = Xt − ε̃t+1, and that Xt − ε̃t+1 and ε̃t+1 are independent by definition
(3). Then using a characterization theorem of the Poisson distribution [see the
Theorem in [32]], Xt+1 − εt+1 = Xt − ε̃t+1 is Binomial conditional on Xt if and
only if Xt− ε̃t+1 and ε̃t+1 are Poisson, or equivalently if and only if process (Xt)
is Poisson INAR(1).

For the equivalence between conditions i) and iv), we have by definition:

εt+1 = ε̃t+1 +Xt+1 −Xt = Xt+1 −
Xt+1∑
i=1

Z∗
i,t, (a.45)

where the Z∗
i,t’s are independent of Xt+1. On the other hand, we have:

Xt = ε̃t+1 +

Xt+1∑
i=1

Z∗
i,t,

where ε̃t+1 is independent of Xt+1. Thus εt+1 and Xt are independent if and

only if Xt+1−
∑Xt+1

i=1 Z∗
i,t and

∑Xt+1

i=1 Z∗
i,t are independent. A simple calculation

shows that the joint p.g.f. of these two variables is equal to:

E

[
uXt+1−

∑Xt+1
i=1 Z∗

i,tv
∑Xt+1

i=1 Z∗
i,t

]
= E

[
[pv + (1− p)u]Xt

]
.

By a similar argument as in Proposition 8, this latter p.g.f. is multiplicatively
separable if and only if the p.g.f. of Xt is Poisson.

19In the limiting case λ = 0, we have εt = 0 almost surely, thus the only stationary solution
of the model is the constant process 0.
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Finally, let us prove the equivalence between conditions i) and iv) by using the
calendar time conditional p.m.f. [eq. (5)]. Xt+1− εt+1 and εt+1 are independent,
if and only if their joint p.g.f. is separable. Using equation (a.45), we can easily
check that this p.g.f. is equal to:

E[uXt+1−εt+1vεt+1 ] = E

[
[pu+ (1− p)v]Xt+1

]
.

By the same argument as in Appendix A.3, this p.g.f. is separable if and only if
Xt+1 is Poisson.

Online Appendix: Noncausal RCINAR(1) process

We have the following characterization concerning the reversibility of RCI-
NAR(1) processes:

Proposition 10 (Characterization of time reversible RCINAR(1) processes). If
the sequence (pt) is i.i.d. and independent of (εt), then the RCINAR(1) process
is time reversible if and only if (pt) is Beta(α, β) distributed, for some α, β ∈
(0,∞), and (εt) is negative binomial NB(β, θ) distributed with p.g.f. E[uεt ] =
(1−θ)β

(1−θu)β
, where θ ∈]0, 1[.

Proof. See Appendix OA.1.

When (ε̃t) is NB(β, θ), the marginal distribution of (Xt) is NB(α + β, θ),
and the departure process ε̃t is also i.i.d. NB(β, θ). This process is introduced
by [23] and applied to real data by [40]. If we let α + β go to infinity, while
at the same time keeping the ratio α

α+β = p0 and the mean of the NB(β, θ)
distribution β θ

1−θ = λ0 constant, then in the limiting case the beta (resp. NB)
distribution tends to the point mass at p0 [resp. Poisson P(λ0) distribution].
Hence we recover the Poisson-INAR(1) process as the limit.

When the RCINAR(1) process is time irreversible, its reverse time dynamics
is different from its calendar time dynamics. Then a noncausal RCINAR(1) is
defined as a time-reversed RCINAR(1) process. Then we can give a queuing
interpretation for the noncausal RCINAR(1), in a similar way as in Section 5.1
for noncausal INAR(1). Such an interpretation would be based on the stochastic
specification of the sequence (ε̃s(t)) instead of (εs(t)) and is omitted due to space
constraint.

Proposition 11 (A queuing interpretation of the RCINAR(1) model). The
solution to the causal, RCINAR(1) model has the disaggregate queuing repre-
sentation (21), where the joint distribution of (εs(t)) is as follows:

1. For a given s, sequence (εs(t)) is Markov and the conditional distribution
of εs(t+1) given εs(t) is conditionally binomial given pt ∈]0, 1[, where (pt)
is i.i.d. for t varying.

2. For any s1 
= s2, variables εs1(t+ 1) and εs2(t+ 1) are independent given
εs1(t), εs2(t) and pt.
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3. The sequence (εs)s is i.i.d.

The proof is obvious and omitted.
Finally, the queuing interpretation of the RCINAR(1) process is obtained in

a similar way, by reversing the roles of arrival and departure processes.

OA.1. Proof of Proposition 10

We follow the proof of [36] for INAR(1) processes. The “if” part of the proposi-
tion is straightforward and we focus on the “only if” part. Suppose that process
(Xt) is RCINAR(1). Then the conditional distribution of the process is:

P (i|j) : = P[Xt+1 = i|Xt = j]

=

min(i,j)∑
k=0

(
j

k

)
Pε(i− k)E[pkt (1− pt)

i−k], ∀i, j ∈ N, (a.46)

where function Pε is the p.m.f. of εt. Under reversibility, we have, for each i ∈ N:

P[(Xt, Xt+1, Xt+2, Xt+3) = (0, 1, i, 0)] = P[(Xt, Xt+1, Xt+2, Xt+3) = (0, i, 1, 0)],
(a.47)

or equivalently20,

P (1|0)P (i|1)P (0|i) = P (i|0)P (1|i)P (0|1). (a.48)

Equation (a.46) leads to:

P (i|0) = Pε(i),

P (0|i) = Pε(0)E[(1− pt)
i],

P (i|1) = Pε(i)E[(1− pt)] + Pε(i− 1)E[pt],

P (1|i) = Pε(1)E[(1− pt)
i] + iPε(0)E[pt(1− pt)

i−1].

We plug in these expressions into equation (a.48) to get:

Pε(1)
{
Pε(i)E[(1− pt)] + Pε(i− 1)E[pt]

}
Pε(0)E[(1− pt)

i]

= pε(i)
{
Pε(1)E[(1− pt)

i] + iPε(0)E[pt(1− pt)
i−1]

}
Pε(0)E[(1− pt)],

or equivalently:

Pε(i) = Pε(i− 1)
Pε(1)E[pt]E[(1− pt)

i]

iPε(0)E[pt(1− pt)i−1]E[(1− pt)]
. (a.49)

Similarly, by considering the paths (0, 2, i, 0) and (0, i, 2, 0) for an i ≥ 2, we
get:

P (2|0)P (i|2)P (0|i) = P (i|0)P (2|i)P (0|2), (a.50)

20We can check that P[εt = 0] > 0.
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or equivalently:

Pε(2)Pε(0)E[(1− pt)
i]
{
Pε(i)E[(1− pt)

2] + 2Pε(i− 1)E[pt(1− pt)]

+ Pε(i− 2)E[p2t ]
}

= Pε(i)Pε(0)E[(1− pt)
2]
{
Pε(2)E[(1− pt)

i] + iPε(1)E[pt(1− pt)
i−1]

+
i(i− 1)

2
Pε(0)E[p

2
t (1− pt)

i−2]
}
.

Let us now expand the parentheses on both sides and check that the first terms
(resp. the second terms) on both sides exactly cancel out due to equation (a.49).
Then the equality between the third terms shows that:

E[(1− pt)
i−1]E[p2t (1− pt)

i−2]

E[pt(1− pt)i−1]E[pt(1− pt)i−2]
(a.51)

is constant when i varies. Let us denote:

mi−1 = E[(1− pt)
i−1], ∀i > 1.

Then we have:

E[pt(1− pt)
i−1] = mi−1 −mi;

E[p2t (1− pt)
i−2] = E[(1− pt − 1)2(1− pt)

i−2] = mi +mi−2 − 2mi−1,

and the term in equation (a.51) becomes:

(mi +mi−2 − 2mi−1)mi−1

(mi−1 −mi)(mi−2 −mi−1)
=

mi−1

mi−2 −mi−1
− 1− mi

mi−1 −mi
,

which should be constant in i. In other words, the sequence ( mi

mi−1−mi
)i is an

arithmetic sequence. If this sequence is constant, then the sequence of integer
moments of 1 − pt is geometric. Since this sequence of moments characterizes
a distribution on [0, 1], we conclude that pt follows a point mass distribution,
that is, process (Xt) is indeed INAR(1). Otherwise, when the increment of this
arithmetic sequence is strictly positive, we have mi

mi−1−mi
= (i − 1)c + d for

positive constants c and d, or equivalently:

mi

mi−1
=

(i− 1) + d/c

(i− 1) + d/c+ 1/c
=

β + i− 1

α+ β + i− 1
, ∀i ≥ 1,

where α = 1
c , β = d

c ∈ [0,∞[, or by iteration mi =
B(α,β+i)
B(α,β) . In other words the

sequence of integer moments of 1−pt coincides with those of a beta distribution
Beta(β, α). Thus pt follows Beta(α, β) distribution. Let us finally get back to
equation (a.49) and show that, in this case, the distribution of (εt) is negative
binomial. Summing up this equation for i = 1, 2, .... yields:

βμ = (β + μ)
Pε(1)

Pε(0)
, (a.52)
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where μ is the expectation of εt. Thus equation (a.49) becomes:

Pε(i) = Pε(i− 1)
β + i− 1

βi

Pε(1)

Pε(0)
= Pε(i− 1)

β + i− 1

i

μ

μ+ β
, ∀i ≥ 1.

(a.53)

By iteration we deduce that (εt) follows a NB distribution with stopping pa-
rameter β and mean μ.

Acknowledgments

Part of the work was conducted while Lu was at University of Paris 13. We
thank anonymous referees for helpful comments.

References

[1] Al-Osh, M. and Alzaid, A. A. (1987). First-Order Integer-Valued Autore-
gressive (INAR(1)) Process. Journal of Time Series Analysis, 8(3):261–275.
MR0903755

[2] Al-Osh, M. and Alzaid, A. A. (1988). Integer-Valued Moving Average
(INMA) Process. Statistical Papers, 29(1):281–300. MR1000749

[3] Aly, E.-E. A. and Bouzar, N. (1994). Explicit Stationary Distributions
for some Galton-Watson Processes with Immigration. Stochastic Models,
10(2):499–517. MR1268562

[4] Barreto-Souza, W. (2019). Mixed Poisson INAR (1) Processes. Statistical
Papers, 60(6):2119–2139. MR4027638

[5] Brännäs, K. and Quoreshi, A. (2010). Integer-Valued Moving Average Mod-
elling of the Number of Transactions in Stocks. Applied Financial Eco-
nomics, 20(18):1429–1440.

[6] Cambanis, S. and Fakhre-Zakeri, I. (1995). On Prediction of Heavy-Tailed
Autoregressive Sequences: Forward Versus Reversed Time. Theory of Prob-
ability & Its Applications, 39(2):217–233. MR1404684

[7] Christoph, G. and Schreiber, K. (1998). Discrete Stable Random Variables.
Statistics & Probability Letters, 37(3):243–247. MR1614930

[8] Darolles, S., Florens, J.-P., and Gourieroux, C. (2004). Kernel-Based Non-
linear Canonical Analysis and Time Reversibility. Journal of Econometrics,
119(2):323–353. MR2057103

[9] Darolles, S., Gourieroux, C., and Jasiak, J. (2006). Structural Laplace
Transform and Compound Autoregressive Models. Journal of Time Series
Analysis, 27(4):477–503. MR2245710

[10] Demeny, P., McNicoll, G., and Hodgson, D. (2003). Encyclopedia of Popu-
lation. Hodgson, Dennis (2003). Contemporary Population Thought.

[11] Enciso-Mora, V., Neal, P., and Subba Rao, T. (2009). Efficient Order Se-
lection Algorithms for Integer-Valued ARMA Processes. Journal of Time
Series Analysis, 30(1):1–18. MR2488633

https://www.ams.org/mathscinet-getitem?mr=0903755
https://www.ams.org/mathscinet-getitem?mr=1000749
https://www.ams.org/mathscinet-getitem?mr=1268562
https://www.ams.org/mathscinet-getitem?mr=4027638
https://www.ams.org/mathscinet-getitem?mr=1404684
https://www.ams.org/mathscinet-getitem?mr=1614930
https://www.ams.org/mathscinet-getitem?mr=2057103
https://www.ams.org/mathscinet-getitem?mr=2245710
https://www.ams.org/mathscinet-getitem?mr=2488633


Noncausal counting processes: A queuing perspective 3889

[12] Fakinos, D. (1984). The Infinite Server Queue with Arrivals Generated by a
Non-Homogeneous Compound Poisson Process. Journal of the Operational
Research Society , 35(5):439–445.

[13] Foster, F. G. (1959). A Unified Theory for Stock, Storage and Queue Con-
trol. Journal of the Operational Research Society , 10(3):121–130.

[14] Freeland, R. K. and McCabe, B. P. (2004). Forecasting Discrete Valued Low
Count Time Series. International Journal of Forecasting , 20(3):427–434.

[15] Fries, S. (2019). Conditional Moments of Anticipative α-Stable Markov
Processes and the Prediction of Bubble Crash Odds. arXiv preprint
arXiv:1805.05397, revised Dec. 2019.

[16] Fries, S. and Zakoian, J.-M. (2019). Mixed Causal-Noncausal AR Processes
and the Modelling of Explosive Bubbles. Econometric Theory , 35(6):1–37.
MR4028969

[17] Gouriéroux, C., Hencic, A., and Jasiak, J. (2021). Forecast Performance
and Bubble Analysis in Noncausal MAR (1, 1) Processes. Journal of Fore-
casting , 40(2):301–326. MR4212339

[18] Gouriéroux, C. and Lu, Y. (2019a). Negative Binomial Autoregressive Pro-
cess with Stochastic Intensity. Journal of Time Series Analysis, 40(2):225–
247. MR3915528

[19] Gouriéroux, C. and Lu, Y. (2019b). Noncausal Affine Processes with Appli-
cation to Derivative Pricing. CREST DP, URL=crest. science/ RePEc/
wpstorage/ 2019-02. pdf .
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