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Abstract: Kernel ridge regression (KRR) is a well-known and popular
nonparametric regression approach with many desirable properties, includ-
ing minimax rate-optimality in estimating functions that belong to common
reproducing kernel Hilbert spaces (RKHS). The approach, however, is com-
putationally intensive for large data sets, due to the need to operate on a
dense n × n kernel matrix, where n is the sample size. Recently, various
approximation schemes for solving KRR have been considered, and some
analyzed. Some approaches such as Nyström approximation and sketching
have been shown to preserve the rate optimality of KRR. In this paper,
we consider the simplest approximation, namely, spectrally truncating the
kernel matrix to its largest r < n eigenvalues. We derive an exact expres-
sion for the maximum risk of this truncated KRR, over the unit ball of
the RKHS. This result can be used to study the exact trade-off between
the level of spectral truncation and the regularization parameter. We show
that, as long as the RKHS is infinite-dimensional, there is a threshold on
r, above which, the spectrally-truncated KRR surprisingly outperforms the
full KRR in terms of the minimax risk, where the minimum is taken over
the regularization parameter. This strengthens the existing results on ap-
proximation schemes, by showing that not only one does not lose in terms
of the rates, truncation can in fact improve the performance, for all finite
samples (above the threshold). Moreover, we show that the implicit reg-
ularization achieved by spectral truncation is not a substitute for Hilbert
norm regularization. Both are needed to achieve the best performance.
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1. Introduction

The general nonparametric regression problem can be stated as

yi = f∗(xi) + wi, i = 1, . . . , n, Ew = 0, cov(w) = σ2In (1.1)

where w = (wi) ∈ R
n is a noise vector and f∗ : X → R is the function of inter-

est to be approximated from the noisy observations {yi}. Here, X is the space
to which the covariates {xi} belong. We consider the fixed design regression
where the covariates are assumed to be deterministic. The problem has a long
history in statistics and machine learning [1, 2]. In this paper, we assume that
f∗ belongs to a reproducing kernel Hilbert space (RKHS), denoted as H [3].
Such spaces are characterized by the existence of a reproducing kernel, that
is, a positive semidefinite function K : X × X → R that uniquely determines
the underlying function space H. RKHSs are very versatile modeling tools and
include, for example, Sobolev spaces of smooth functions whose norms are mea-
sures of function roughness [4]. Throughout, we think of these Sobolev spaces as
the concrete examples of H. By assuming an upper bound on the Hilbert norm
of f∗, we can encode a prior belief that the true data generating function f∗

has a certain degree of smoothness. Without loss of generality, we assume that
f∗ belongs to the unit ball of the RKHS, that is,

f∗ ∈ BH := {f ∈ H : ‖f‖H ≤ 1}. (1.2)

A natural estimator is then, the kernel ridge regression (KRR), defined as the
solution of the following optimization problem:

f̃n,λ := min
f∈H

1

n

n∑
i=1

(yi − f(xi))
2 + λ‖f‖2H, (1.3)

where λ > 0 is a regularization parameter. It is well-known that this problem can
be reduced to a finite-dimensional problem, by an application of the so-called
representer theorem [5]:

min
ω ∈Rn

1

n
‖y −

√
nKω‖2 + λωTKω, where K =

1

n

(
K(xi, xj)

)
∈ R

n×n (1.4)

is the (normalized empirical) kernel matrix. Although (1.4) has a closed form
solution, it involves inverting an n×n dense matrix, with time complexity O(n3),
which is prohibitive in practice.



Spectrally-truncated kernel ridge regression 3745

Various approximation schemes have been proposed to mitigate the com-
putational costs, including (i) approximating the kernel matrix or (ii) directly
approximating the optimization problem (1.4). Examples of the former are the
Nyström approximation, column sampling and their variants [6, 7, 8, 9, 10]. An
example of the latter is sketching [11, 12] where one restricts ω to the subspace
ran(S) := {Sα | α ∈ R

r}, for some random matrix S ∈ R
n×r. It is in fact

known that Nyström can be considered a special case of sketching with random
standard basis vectors [12]. Sketching, with sufficiently large r, has been shown
in [12] to achieve minimax optimal rates over Sobolev spaces, under mild con-
ditions on the sketching matrix S. Similarly, the Nyström approximation has
been analyzed in [13, 14, 15, 11, 16] and [17], the latter showing minimax rate
optimality. In addition to the above, (iii) divide and conquer approaches have
been proposed [18], where one solves the problem over subsamples and then
aggregates by averaging, with some rate optimality guarantees. Other notable
approaches to scaling include (iv) approximating translation-invariant kernel
functions via Monte Carlo averages of tensor products of randomized feature
maps [19, 20] and (v) applying stochastic gradient in the function space [21].
Memory efficiency in kernel approximation is considered in [22].

In this paper, we consider the most direct kernel approximation, namely, re-
placing K by its best rank r approximation (in Frobenius norm). This amounts
to truncating the eigenvalue decomposition of K to its top r eigenvalues. We
refer to the resulting KRR approximation as the spectrally-truncated KRR (ST-
KRR). Although somewhat slower than the Nyström approximation and fast
forms of sketching, ST-KRR can be considered an ideal rank-r spectral approx-
imation. By analyzing it, one can also gain insights about approximate SVD
truncation approaches such as Nyström or sketching. Practically, ST-KRR is a
very viable solution for moderate-size problems. See Appendix A for a discussion
of the time complexity of various schemes.

We derive an exact expression for the maximum (empirical) mean-squared
error (MSE) of ST-KRR, uniformly over the unit ball of the RKHS. This ex-
pression is solely in terms of the eigenvalues {μi} of the kernel matrix K, the
regularization parameter λ, the truncation level r, and the noise level σ2. Thus
if one has access to {μi} and the noise level (or estimates of them), one can plot
the exact regularization curve (maximum MSE versus λ) for a given truncation
level r and sample size n, and determine the optimal value of λ. We also note
that since the empirical eigenvalues {μi} quickly approach those of the integral
operator associated with K, as n → ∞ [23], one can use these idealized eigen-
values instead of {μi} to get an excellent approximation of these regularization
curves.

We then show that there is an optimal threshold on r, the truncation level,
which we denote as rn, such that for all r ≥ rn, the minimax risk of the r-
truncated KRR, with the minimum taken over the regularization parameter,
is strictly smaller than that of the full KRR whenever μr+1 > 0. For infinite-
dimensional RKHSs, we always have μrn+1 > 0, hence truncating at level rn
is guaranteed to strictly improve performance. The slower the decay of the
eigenvalues, the larger this gap in performance.
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This result shows that although the spectral truncation is mainly used as
a computational device, it also has a statistical regularization effect. The next
question is whether the regularization provided by the spectral truncation ren-
ders Hilbert norm regularization (via λ) unnecessary. We answer this question
in the negative by showing that for any truncation level r, the optimal max-
imum risk is achieved for a positive λ. Together, these results show that the
“r-truncated λ-regularized KRR” defines a new class of estimators whose per-
formance cannot be achieved (in finite sample) with either regularization alone.

We also show how the exact expression for the maximum MSE can be used
to easily establish a slightly weaker bound for ST-KRR, similar to those de-
rived in [12] for sketching. We discuss the link between the statistical dimension
considered in [12] and the optimal truncation level rn, and show how the same
rate-optimality guarantees hold for ST-KRR. Rate-optimality also follows form
the fact that ST-KRR, with proper r, strictly dominates full KRR and the lat-
ter is rate-optional. However, we do these calculations to make the comparison
easier.

Finally, we illustrate the results with some numerical simulations showing
some further surprises. For example, the Gaussian kernel has a much faster
eigendecay rate than a Sobolev-1 kernel (exponential versus polynomial decay).
Hence, the optimal truncation level rn asymptotically grows much slower for
the Gaussian kernel. However, for finite samples, depending on the choice of the
Gaussian bandwidth, the exact optimal truncation level, computed numerically,
can be larger than that of Sobolev-1.

2. Preliminaries

Let us start with some observations regarding the original KRR problem in (1.3).
For ω ∈ R

n, consider the kernel mapping

fω :=
1√
n

∑
j

ωjK(·, xj). (2.1)

Note that ω 	→ fω is a linear map from R
n → H. This map is the link between

the solutions of the two optimization problems (1.3) and (1.4): For any optimal
solution ω of (1.4), fω will be an optimal solution of (1.3). The link is easy to
establish by observing the following two identities:

‖fω‖2H = ωTKω, fω(xi) =
√
n(Kω)i, (2.2)

the first of which uses the reproducing property of the kernel: 〈f,K( · , x)〉H =
f(x). We will frequently use this property in the sequel. The proof of the equiv-
alence follows from an argument similar to our discussion of the identifiability
below.

2.1. Identifiability

Let us first observe that f∗ in (1.1) is not (statistically) identifiable. That
is, there are multiple functions f∗ (in fact, infinitely many if H is infinite-
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dimensional) for which the vector (yi) has the exact same distribution. To see
this, let

LX := span{K( · , xi) : i ∈ [n]} = {fω : ω ∈ R
n}, (2.3)

and let fω∗ be the projection of f∗ onto LX . (It is always possible to choose at
least one such ω∗ by the definition of projection and since LX is a closed sub-
space of H.) Given observations (yi), we can only hope to recover the following
equivalence class:

{f ∈ H : f(xi) = f∗(xi), ∀i} = {f ∈ H : 〈f − f∗,K( · , xi)〉H = 0, ∀i}
= {f∗ + g : g ⊥H LX}
= {fω∗ + g : g ∈ L⊥

X} = fω∗ + L⊥
X

where the last line follows since f∗ − fω∗ ∈ L⊥
X by the property of orthogonal

projection (and can be absorbed into g).
We will use fω∗ as the representative of the (identifiable) equivalence class of

f∗. We are interested in measuring functional deviations (e.g., the error in our
estimate relative to the true function) in the empirical �2 norm:

‖f − g‖n =
[ 1
n

n∑
i=1

(
f(xi)− g(xi)

)2]1/2
.

The use of this norm is common in the literature of nonparametric regression [24,
25]. It is interesting to note that ‖f∗ − fω∗‖n = 0,

‖f − f∗‖n = ‖f − fω∗‖n, ∀f ∈ H, (2.4)

and ‖fω∗‖H ≤ ‖f∗‖H, since projections are contractive. Thus, recalling (1.2),
fω∗ also belongs to the Hilbert unit ball: fω∗ ∈ BH. It is in fact easy to see that
fω∗ has the least Hilbert norm among the members in the equivalence class (i.e.,
the smoothest version). Thus, without loss of generality, we can identify f∗ with
fω∗ . Equivalently, we can assume from the start that f∗ is of the form fω∗ for
some ω∗ ∈ R

n. Note that the “no loss of generality” statement holds as long as
we are working with the empirical �2 norm, due to (2.4).

3. Main results

Let K = UDUT be the eigenvalue decomposition (EVD) of the empirical kernel
matrix defined in (1.4). Here, U ∈ R

n×n is an orthogonal matrix and D =
diag(μi)

n
i=1 where μ1 ≥ μ2 ≥ · · · ≥ μn ≥ 0 are the eigenvalues of K. We assume

for simplicity that μn > 0, that is, the exact kernel matrix is invertible. Consider
the rank r approximation of K, obtained by keeping the top r eigenvalues and
truncating the rest to zero, that is,

K̃ = K̃r := U

(
Dr 0
0 0

)
UT = UrDrU

T
r .
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Here, Dr = diag(μ1, . . . , μr) and Ur ∈ R
n×r collects the first r columns of U .

The idea is to solve (1.4) with K replaced with K̃, to obtain ω̃. We then form

our functional estimate f̃ by using the (exact) kernel mapping (2.1).

Definition 1. An r-truncated λ-regularized KRR estimator with input y ∈ R
n,

is a function f̃ := fω̃ = 1√
n

∑
j ω̃jK(·, xj) where

ω̃ ∈ argmin
ω ∈Rn

1

n
‖y −

√
nK̃ω‖2 + λωT K̃ω, (3.1)

such that K̃ω̃ = Kω̃. (3.2)

A minimizer in (3.1), without the additional condition K̃ω̃ = Kω̃, is not

unique due to the rank deficiency of K̃. Thus, we can ask for it to satisfy
additional constraints. The equality condition in (3.2), which can be stated as

ω̃ ∈ ker(K̃ − K) can always be satisfied. It is enough to choose ω̃ to be the

unique minimizer in ran(K̃) = ran(Ur), that is, ω̃ = Urα for some α ∈ R
r. This

is how the estimator is often implemented in practice.
We are interested in the deviation of f̃ from the true function f∗ in the

empirical �2 norm. More precisely, we are interested in the mean-squared error
as the statistical risk:

MSE(f̃ , f∗) = E‖f̃ − f∗‖2n.

Our main result is an expression for the worst-case risk of f̃ over the unit ball
of the RKHS:

Theorem 1. Let f̃ = f̃r,λ be an r-truncated λ-regularized KRR estimator (Def-
inition 1) applied to input y generated from model (1.1). Let

Hr(λ) := max
1≤i≤r

h(λ;μi)

where h(λ;x) = λ2x/(x+ λ)2. Then, for all r = 1, 2, . . . , n and λ > 0,

sup
f∗ ∈BH

MSE(f̃r,λ, f
∗) = max

{
Hr(λ), μr+1

}
+

σ2

n

r∑
i=1

( μi

μi + λ

)2

, (3.3)

with μn+1 := 0.

The first term in (3.3) is the worst-case approximation error (WAE) and the
second term the estimation error (EE). The approximation error (AE) is the
risk (relative to f∗) of f̄ which is obtained by passing the noiseless observations
(f∗(xi)), instead of y, through the estimation procedure. The AE is the deter-
ministic part of the risk and is given by ‖f̄ − f∗‖2n. The estimation error is the

stochastic part of the risk and is given by E‖f̃ − f̄‖2n.
The function x 	→ h(λ;x) attains its maximum of λ/4, over [0,∞), at x = λ.

Thus, as long as λ ∈ [μr, μ1], the bound Hr(λ) ≤ λ/4 is good. In general,

WAEr,λ ≤ max
{λ

4
, μr+1

}
. (3.4)
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We note that since the KRR estimates are linear in y, Theorem 1 easily gives
the maximum MSE expression over the Hilbert ball of arbitrary radius R, by
replacing σ2 in (3.3) with σ2/R2 and multiplying the entire right-hand side by
R2.

We also have a precise result on the regularized risk of the approximating
function:

Proposition 1. Let f̄ = f̄r,λ be obtained by passing the noiseless observations
(f∗(xi)), instead of y, through the estimation procedure in Definition 1. Then,

sup
f∗ ∈BH

‖f∗ − f̄‖2n + λ‖f̄‖2H = max
{

max
1≤i≤n

λμi

μi + λ
, μr+1

}
. (3.5)

3.1. Maximum-risk inadmissibility

Let us now consider how the maximum risk of the truncated KKR compares
with the full version. For every, λ > 0, define

r(λ) := min{r ∈ [n] : μr+1 ≤ Hn(λ)}.

In addition, recalling that f̃n,λ is the full KRR estimator, let

λn := argmin
λ>0

sup
f∗ ∈BH

MSE(f̃n,λ, f
∗), and rn := r(λn). (3.6)

That is, λn is the regularization parameter that achieves the minimal
maximum-risk for the full KRR. We have the following corollary of Theorem 1:

Corollary 1. For every λ > 0, and every r ∈ [n] with r ≥ r(λ),

sup
f∗ ∈BH

MSE(f̃r,λ, f
∗) ≤ sup

f∗ ∈BH

MSE(f̃n,λ, f
∗). (3.7)

In particular, for every r ≥ rn,

min
λ>0

sup
f∗ ∈BH

MSE(f̃r,λ, f
∗) ≤ min

λ>0
sup

f∗ ∈BH

MSE(f̃n,λ, f
∗). (3.8)

Both inequalities are strict whenever μr+1 > 0.

Corollary 1 shows that λ-optimized f̃rn,λ strictly improves on optimized full
KRR whenever μrn+1 > 0, in a sense rendering the full KRR inadmissible, as
far as the maximum risk over BH is concerned. For infinite-dimensional RKHSs,
we always have μrn+1 > 0, hence truncating at level rn is guaranteed to strictly
improve performance. Note that we are not claiming inadmissibility in the clas-
sical sense which requires one estimator to improve on another for all f∗ ∈ BH.
In general, the slower the decay of {μi}, the more significant the improvement
gained by truncation. Note that (3.6) allows one to set the precise truncation
level including the exact constants if one has access to the eigenvalues of the
kernel matrix. In practice, for large n, the eigenvalues of the associated kernel
integral operator (if available) can act as excellent surrogates for {μi} [23].



3750 A. A. Amini

3.2. Do we need both regularizations?

Although the spectral truncation is used as a computational device, intuitively,
it also has an implicit regularization effect. This is confirmed more rigorously
by Corollary 1 where truncation is shown to lead to a smaller optimal worst-
case MSE. The intuition is also supported by the link between the (full) KRR
and Tikhonov regularization. In both cases, one forms (K + λIn)

−1 which can
be considered a form of “spectral filtering”. Eigenvalue truncation followed by
taking the pseudo-inverse can be considered another such filtering. A common
conception is that these two approaches are performing essentially the same
task, hence one of them is enough to achieve the desired regularization effect.
More specifically, one can ask the following: Is Hilbert norm regularization, or λ-
regularization, really needed in the presence of spectral truncation? Theorem 1
allows us to settle this question. For a given truncation level r, let

λr := argmin
λ>0

sup
f∗ ∈BH

MSE(f̃r,λ, f
∗) (3.9)

be the optimal threshold for the r-truncated λ-regularized KRR estimator.

Corollary 2. For every r < n, we have

λr ≥ max
{ μr√

μr/μr+1 − 1
,
σ2

n

(
1 +Br

)}
where Br := minj

∑
i: i>j(μj/μi) +

∑
i: i<j(μ

2
i /μ

2
j ) with i and j running in

{1, . . . , r}.
Corollary 2 shows that for any truncation level r, the optimal choice of λ is

always positive, hence λ-regularization further improves the performance. The
effect is more pronounced when μr is close to μr+1 or, in general, when the
spectrum decays slowly (hence μi ≈ μj for most i, j ∈ [r]). The effect is also
more significant for higher effective noise levels σ2/n.

3.3. Gaussian complexity and rates

Less precise bounds, albeit good enough to capture the correct asymptotic rate
as n → ∞, can be obtained in terms of the Gaussian complexity of the unit ball
of the RKHS. These types of results have been obtained for the Sketched-KRR.
To make a comparison easier, let us show how such bounds can be obtained
from Theorem 1.

Let us define the r-truncated complexity (of the empirical Hilbert ball) as

Rr(δ) =
(σ2

n

r∑
i=1

min{μi, δ
2}
)1/2

. (3.10)

For the case r = n, this matches the definition of the kernel complexity in [12],
which we refer to for the related background. In particular, (3.10) is a tight
upper bound on the Gaussian complexity of the intersection of BH and {f :
‖f‖n ≤ δ} [25, Chapter 13]. We have:
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Corollary 3 (Looser bound). Under the setup of Theorem 1, for λ ≥ max{δ2,
4μr+1},

sup
f∗ ∈BH

MSE(f̃r,λ, f
∗) ≤ 1

4
λ+

(Rr(δ)

δ

)2

. (3.11)

If λ ≥ μ1, one can replace the first term with μ1λ
2/(λ+μ1)

2 for a better bound.

Choosing λ = δ2 ≥ 4μr+1, we obtain

RMSE =
√
MSE ≤ δ

2
+

Rr(δ)

δ
≤ δ

2
+

Rn(δ)

δ
.

The latter upper bound is what one would get for the full KRR. Matching the
two terms in that bound, we chooses δn such that δ2n = 2Rn(δn) which gives
the well-known critical radius for the KRR problem [25]. It is known that δn
gives the optimal rate of convergence for estimating functions in BH, i.e., its
rate of decay matches that of the minimax risk [12]. The above argument shows
that as long as r is taken large enough so that 4μr+1 ≤ δ2n, the r-truncated
KRR achieves (at least) the same rate as the full KRR. For the sketching, the
same conclusion is established in [12], where the smallest r satisfying μr ≤ δ2n
is referred to as the statistical dimension of the kernel.

For Sobolev-α kernels, with eigendecay μi � i−2α, we obtain MSE � δ2n �
(σ2/n)−

2α
2α+1 . Interestingly, in this case, the estimate based on the weaker

bound (3.11) and the exact bound (3.3) give the same rate (cf. Appendix C).
This is expected since the given rate is known to be minimax optimal for Sobolev
spaces. The same goes for the Gaussian kernel for which μj � e−cj log j and the
rate is γ log(1/γ) for γ = σ2/n.

Order-wise, δ2n will be the same as λn defined in (3.6), that is λn � δ2n,
whenever δ2n matches the optimal rate. Hence, often μ1 > λn � μn for large n
and the argument leading to (3.4) suggests that in this case Hn(λn) ≈ λn/4.
Then, rn ≈ min

{
r ∈ [n] : μr+1 ≤ λn

4

}
.

For Sobolev-α kernels, this suggests truncation level rn � (σ2/n)
1

2α+1 which
gives moderate savings for high smoothness levels α. Similarly, for the Gaussian
kernel, it is not hard to see that truncating to rn � log(n/σ2) is enough to get
the same rate as the full KRR, which is a substantial saving.

4. Simulations

We now present some numerical experiments to corroborate the theory. We
consider a Gaussian kernel K(s, t) = e−(u−v)2/2b2 of bandwidth b = 0.1 on
[−1, 1], as well as the Sobolev-1 kernel K(s, t) = min(s, t) on [0, 1]. We take the
covariates {xi} to be n = 200 equi-spaced points in each interval. The top row
of Fig. 1 shows the plot of the theoretical maximum MSE as given by Theorem 1
for the two kernels, for both the full KRR (r = n), and the optimally truncated
version (r = rn). We have used σ = 2 in (3.3). As predicted by Theorem 1, the
minimum achievable maximum MSE is smaller for the truncated KRR.
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Fig 1. Plots of (top) the maximum theoretical MSE (bottom) typical empirical MSE, ver-
sus the regularization parameter (λ) for the Gaussian (with bandwidth = 10) and Sobolev-1
kernels, on [−1, 1] and [0, 1] respectively, with n = 200 equispaced samples. The optimally-
truncated KRR is shown (r = rn) together with the full KRR (r = n).

To compute the optimal truncation, we have evaluated the regularization
curve of the full KRR first, obtained the minimizer λn and then used (3.6) to
compute the optimal truncation level rn. For the setup of the simulation, we get
rn = 10 for the Gaussian and rn = 3 for the Sobolev-1. It is interesting to note
that although in terms of rates, rn for the Gaussian should be asymptotically
much smaller than that of Sobolev-1, in finite samples, the truncation level for
the Gaussian could be bigger as can be seen here. This is due to the unspecified,
potentially large, constants in the rates (that depend on the bandwidth b as
well). Also, notice how surprisingly small rn is relative to n in both cases.

The bottom row of Fig. 1 shows the empirical MSE obtained for a typical
random f∗ ∈ BH, by computing the KRR estimates for observation y and
comparing with f∗. The random true function is generated as f∗ = fω∗ where
ω∗ ∼ N(0, In) and further normalized so that (ω∗)TKω∗ = 1. We have generated
n = 200 observations from (1.1) with σ = 2. The plots were obtained using 1000
replications. The truncation levels are those calculated based on the maximum
MSE formula (3.3). The plots show that for a typical application, the truncated
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Fig 2. The effect of the noise level on the regularization curve of the truncated KRR (n =
200). The plots show the maximum theoretical MSE versus the regularization parameter (λ)
for Sobolev-1 kernel on [0, 1]. Left panel plots have linear scale for the y-axis. The right panel
shows the same plots on the log-scale for y-axis.

KRR also dominates the full KRR.

Fig. 2 shows the effect of the noise level on the performance of the truncated
KRR for the Sobolev-1 kernel. Each plot shows the regularization curve (maxi-
mum MSE versus λ) for various truncation levels r = 3, 10, 50 and the full KRR
corresponding to r = n = 200. Generally, the higher the noise level, the smaller
the truncation level needed to capture the minimum of the full KRR curve. Note
that when the noise level is very small, e.g. σ = 0.1, the regularization curve on
the linear scale looks as if it has its minimum achieved at λ = 0. This is what
practitioners also report in applications. However, looking at the same plot on
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the log-scale, one observes that the minimum is achieved at some positive value
of λ, corroborating Corollary 2. The difference in MSE between the optimal
λ and λ = 0 is, however, small in these low noise settings and might not be
noticeable in practice. That both rank and norm regularizations are needed is
quite easily observed at higher noise levels.

5. Proof of the main result

Here we give the proof of Theorem 1 and Corollaries 1 and 2. The remaining
proofs can be found in Appendix B.

From the discussion in Section 2.1, both the KRR estimate and the true
function belong to LX given in (2.3). It is then useful to have an expression
for the empirical �2 error of functions belonging to this space. First, we observe
that ‖fω‖2n = 1

n

∑n
i=1[fω(xi)]

2 = ‖Kω‖2. Now, take any ω, ω∗ ∈ R
d, and let

u = Kω and u∗ = Kω∗. Then, we have

‖fω − fω∗‖n = ‖fω−ω∗‖n = ‖K(ω − ω∗)‖ = ‖u− u∗‖ (5.1)

where the fist equality is by the linearity of ω 	→ fω. For any function fω ∈ LX ,
we call u = Kω the u-space representation of fω. Identity (5.1) shows that it
is often easier to work in the u-space since the u-transform turns empirical �2
norms on functions into the usual �2 norms on vectors. In other words, the map
fω 	→ u, is a Hilbert space isometry from (LX , ‖·‖n) to (Rn, ‖·‖). In the u-space,
the KRR optimization problem can be equivalently stated as:

min
u∈ ran(K)

1

n
‖y −

√
nu‖2 + λuTK+u (5.2)

where K+ is the pseudo inverse of K, and ran(K) its range. More precisely:

Lemma 1. For any K ∈ R
n×n, problems (1.4) and (5.2) are equivalent in the

following sense:

- For any minimizer ω̄ of (1.4), Kω̄ is a minimizer of (5.2), and
- for any minimizer ū of (5.2), any ω̄ ∈ {ω : Kω = ū} is a minimizer
of (1.4).

It is often the case that the kernel matrix itself is invertible, in which case
K+ = K−1, ran(K) = R

n and problem (5.2) simplifies. However, the equiva-
lence in Lemma 1 holds even if we replace K with an approximation which is
rank deficient. This observation will be useful in the sequel.

Proof of Theorem 1. Take ω̃ to be as in Definition 1 and let ỹ = y/
√
n. Since ω̃

is the minimizer of F (ω; y) = ‖ỹ − K̃ω‖2 + λωT K̃ω, we have ∇F (ω̃; y) = 0 or

K̃(K̃ω̃ − ỹ) + λK̃ω̃ = 0. Hence, (K̃ + λI)K̃ω̃ = K̃ỹ or

K̃ω̃ = Ψλỹ, where Ψλ = (K̃ + λI)−1K̃. (5.3)
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Let w = (wi) ∈ R
n be the noise vector in (1.1) and w̃ = w/

√
n. We also let

u∗ = (fω∗(xi))/
√
n = Kω∗. (5.4)

Then, we can write model (1.1) as ỹ = u∗ + w̃, where w̃ is zero mean with

cov(w̃) = σ2In/n. From (5.1), we have ‖f̃ − f∗‖2n = ‖K(ω̃ − ω∗)‖2, and

K(ω̃ − ω∗) = K̃ω̃ − u∗ = Ψλỹ − u∗ = (Ψλ − I)u∗ +Ψλw̃,

where the first equality uses assumption (3.2). It follows that

E‖f̃ − f∗‖2n = ‖(I −Ψλ)u
∗‖2 + E‖Ψλw̃‖2.

where the first term is the approximation error (AE) and the second term, the

estimation error (EE). Let us write D̃ = diag(μ1, . . . , μr, 0, . . . , 0) ∈ R
n×n so

that K̃ = UD̃UT . We define

Γλ = (D̃ + λI)−1D̃, so that, Ψλ = UΓλU
T (5.5)

and note that Γλ is diagonal. Let v∗ = UTu∗ and ŵ = UT w̃. Then, since �2
norm is unitarily invariant, we have

E‖f̃ − f∗‖2n = ‖(I − Γλ)v
∗‖2 + E‖Γλŵ‖2.

Controlling the estimation error: We have

EEr,λ := E‖Γλŵ‖2 = E
[
ŵTΓ2

λŵ
]
= tr

(
Γ2
λ cov(ŵ)

)
=

σ2

n
tr(Γ2

λ),

using cov(ŵ) = UT cov(w̃)U = (σ2/n)UTU = σ2In/n since U is an orthogonal
matrix. Then,

(Γλ)ii =
( D̃ii

D̃ii + λ

)
=

{
μi

μi+λ , i = 1, . . . , r

0 i = r + 1, . . . , n,
(5.6)

establishing the EE part of the result.
Controlling the approximation error: Recall that we are interested in the worst-
case approximation error (WAE) over the unit ball of the Hilbert space, i.e.,
over f∗ ∈ BH. Also, recall that without loss of generality, we can take f∗ = fω∗ .
Hence,

1 ≥ ‖f‖2H = ‖fω∗‖2H = (ω∗)TKω∗ = (u∗)TK−1u∗ = (v∗)TD−1v∗ (5.7)

where the second equality is from (2.2), and the latter two are by definitions of
u∗ and v∗ = UTu∗. We obtain

WAEr,λ = sup
(v∗)TD−1v∗ ≤ 1

‖(I − Γλ)v
∗‖2.
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A further change of variable v∗ = D1/2v gives

WAEr,λ = sup
vT v≤ 1

‖(I − Γλ)D
1/2v‖2 = ‖(I − Γλ)D

1/2‖2,

where ‖ · ‖, applied to matrices, is the �2 → �2 operator norm. Note that Γλ is
a diagonal matrix with diagonal elements, μi/(μi + λ) for i = 1, . . . , r followed
by n− r zeros. It follows that (I − Γλ)D

1/2 is diagonal with diagonal elements:

[(I − Γλ)D
1/2]ii =

{
λ
√
μi

λ+μi
, i = 1, . . . , r,

√
μi, i = r + 1, . . . , n.

(5.8)

Since {μi} is a non-increasing sequence, we obtain

WAEr,λ = max
{

max
1≤i≤r

λ2μi

(λ+ μi)2
, μr+1

}
,

which is the desired result.

Proof of Corollary 1. Let EEr,λ := σ2

n

∑r
i=1[μi/(μi + λ)]2 be the estimation

error of f̃r,λ as in (3.3). Note that as long as μr+1 > 0, we have EEr,λ <
EEr+1,λ ≤ EEn,λ. It remains to show that the WAE of the truncated KRR is
less than that of full KRR. We have for r ≥ r(λ),

WAEr,λ = max{Hr(λ), μr+1} ≤ max{Hn(λ), μr+1} = Hn(λ) = WAEn,λ.

This proves (3.7). For the second assertion, it is enough to apply (3.7) with
λ = λn, noting that in this case, the RHS will be the minimax risk of the full
KRR and the LHS is further lower bounded by the minimax risk of the truncated
KRR.

Proof of Corollary 2. Let us write WAEr(λ) and Er(λ) for the worst-case ap-
proximation and estimation errors, respectively, as a function of λ. Let Mr(λ)
be the worst-case MSE, so that Mr(λ) = WAEr(λ) + Er(λ). The WAEr(·)
starts off with the constant branch WAEr(λ) = μr+1 for small values of λ. Let
hi(λ) := h(λ;μi). The constant branch starts at λ = 0 and extends to λ = λ(1)

where hr(λ
(1)) = μr+1. Some algebra gives λ(1) = μr/(

√
μr/μr+1 − 1). For

λ ∈ [0, λ(1)], we have M ′
r(λ) = E′

r(λ) < 0 showing that the minimizer of Mr is
≥ λ(1).

The next branch of WAE starts at λ(1) and ends at λ(2) which solves hr(λ
(2)) =

hr−1(λ
(2)). The knots λ(i) determining subsequent branches are determined sim-

ilarly: hr−i+2(λ
(i)) = hr−i+1(λ

(i)) for i = 2, 3, . . . , r and λ(r+1) = ∞. We have
WAEr(λ) = hr−i+1(λ) for λ ∈ Ii := [λ(i), λ(i+1)) for i = 1, . . . , r. See Fig. 3.

Fix i∗ ∈ [r] and let j∗ = r − i∗ + 1. Then for λ ∈ int(Ii∗)

M ′
r(λ)=h′

j∗(λ) + E′
r(λ)=

2μ2
j∗

(μj∗ + λ)3

[(
λ− σ2

n

)
− σ2

n

∑
i �=j∗

μ2
i

(μi + λ)3
(μj∗ + λ)3

μ2
j∗

]
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Fig 3. An illustration of λ �→ WAEr(λ) for a 5×5 Gaussian kernel matrix. The case r = n = 5
corresponds to the full KRR and r = n− 1 = 4 to a truncated version.

where i ranges over [r] \ {j∗}. Note that

∑
i �=j∗

μ2
i

(μi + λ)3
(μj∗ + λ)3

μ2
j∗

≥
( ∑

i>j∗

μj∗

μi
+

∑
i<j∗

μ2
i

μ2
j∗

)
≥ Br.

The first inequality is since λ 	→ (μj∗ + λ)/(μi + λ) is increasing in [0,∞) if
μj∗ < μi, hence lower-bounded by its value at λ = 0, and is decreasing on
[0,∞) if μj∗ > μi, hence lower-bounded by its value as λ → ∞. Then,

M ′
r(λ) ≤

2μ2
j∗

(μj∗ + λ)3

[(
λ− σ2

n

)
− σ2

n
Br

)]
.

It follows that M ′
r(λ) < 0 as long as λ < σ2(1 + Br)/n no matter which

interval Ii contains λ. This shows that the minimizer of Mr has to be ≥ σ2(1 +
Br)/n completing the proof.
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Appendix A: Time complexity comparison

The ST-KRR and approximate versions, such as Nyström and sketching, all
have time complexity of O(nr2 + r3) = O(nr2) for computing the r-truncated
KRR estimate, once the pieces required for approximating the kernel matrix
(e.g., KS and STKS in the case of sketching, Ur and Dr in the case of ST-
KRR and so on) are computed. Computing these pieces is where these methods
differ. For sketching, this step could have complexity as large as O(n2r2) for
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dense sketches, O(n2 log r) for randomized Fourier and Hadamard sketches, to
as low as O(nr) for the Nyström.

For the ST-KRR, this step involves computing the top-r eigenpairs of the
symmetric matrix K, for which the Lanczos algorithm is the standard and for
which a complexity analysis is hard to find in the literature. However, results
of [26] suggest that it has average-case complexity O(n2(r + log n)). More pre-
cisely, [26] show that on average k = O(log n/

√
ε) Lanczos iterations are enough

to compute the top eigenvalue to within relative error ε, hence an overall average-
case complexity O(kN) where N is the number of nonzero entries of matrix K.

Appendix B: Remaining proofs

Proof of Proposition 1. We will use the same notation as in the proof of Theo-
rem 1. By the same argument as in that proof, we have ‖f̄−f∗‖2n = ‖(I−Γλ)v

∗‖2
where Γλ is defined in (5.5) and v∗ = UTu∗ for u∗ given in (5.4). Let ω̄ be the
solution of (3.1) for the input (f∗(xi)) (instead of y) so that f̄ = fω̄. Using the
optimality condition in the proof of Theorem 1,

ū := Kω̄ = K̃ω̄ = Ψλu
∗

where we have used (3.2) and (5.3), with ỹ = u∗ (i.e., w̃ = 0). We can write

‖f̄‖2H = ω̄TKω̄ = (ū)TK−1ū = (u∗)TΨλK
−1Ψλu

∗ = (v∗)TΓλD
−1Γλv

∗

using Ψλ = UΓλU
T , K = UDUT and v∗ = UTu∗. Recall from (5.7) that

f∗ ∈ BH is equivalent to (v∗)TD−1v∗ ≤ 1. It follows that

sup
f∗ ∈BH

(
‖f∗ − f̄‖2n + λ‖f̄‖2H

)
= sup

(v∗)TD−1 v∗ ≤1

[
‖(I − Γλ)v

∗‖2 + λ(v∗)TΓλD
−1Γλv

∗ ]
= sup

(v∗)TD−1 v∗ ≤1

(v∗)T
[
(I − Γλ)

2 + λΓλD
−1Γλ

]
v∗

=‖D1/2[(I − Γλ)
2 + λΓλD

−1Γλ]D
1/2‖

=‖(I − Γλ)
2D + λΓ2

λ‖

where the third equality is using the change of variable v∗ = D1/2v as in the
proof of Theorem 1, and the last line follows since all the matrices are diagonal
and hence commute. The result now follows by combining (5.6) and (5.8), after
some algebra.

Proof of Corollary 3. For any a, b > 0, we have 1
2 (a ∧ b) ≤ (a−1 + b−1)−1 ≤

a ∧ b, where a ∧ b := min{a, b}. Hence, the estimation error in (3.3) is bounded
as

EEr,λ =
σ2

nλ2

r∑
i=1

μ2
iλ

2

(μi + λ)2
=

σ2

nλ2

r∑
i=1

(μ−1
i + λ−1)−2 ≤ σ2

nλ2

r∑
i=1

(μi ∧ λ)2.
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This upper bound is within a factor of 4 of the estimation error. Using μi/(λ+
μi) ≤ 1 to shave off the power by one, we obtain the weaker bound:

EEr,λ =
σ2

nλ

r∑
i=1

μ2
iλ

(μi + λ)2
≤ σ2

nλ

r∑
i=1

μiλ

μi + λ
≤ σ2

nλ

r∑
i=1

μi ∧ λ. (B.1)

Recalling definition (3.10), we conclude that if λ ≥ δ2,

EEr,λ ≤ σ2

nδ2

r∑
i=1

min{μi, δ
2} =

(Rr(δ)

δ

)2

.

Combining with the WAE bound (3.4), we obtain the desired result.

Proof of Lemma 1. Let F (ω) and G(u) be the objective functions in (1.4)
and (5.2), respectively. We have F (ω) = G(Kω) for any ω ∈ R

n, which fol-
lows from the identity KK+K = K. Now, assume that ω̄ is a minimizer of F ,
and let ū := Kω̄. Pick any u ∈ ran(K); there exists ω such that u = Kω, and
we have G(ū) = F (ω̄) ≤ F (ω) = G(u). The other direction follows similarly.

Appendix C: Rate calculations

Here we compute the error rate predicted by the strong and weak bounds and
show that they are the same. Let γ := σ2/n. Assume the polynomial eigendecay
of the Sobolev-α kernel, i.e., μi � i−2α. Taking k to be the smallest integer
satisfying k−2α � δ2, we have

R2
n(δ) = γ

(
kδ2 +

n∑
i=k+1

i−2α
)
≤ γ(kδ2 + k−2α+1) � γkδ2

where the first inequality uses an integral approximation to the sum and the
second uses the definition of k. Setting δ2 � Rn(δ) we have δ

2 � γk � γ(δ2)−
1
2α ,

hence the critical radius δ2n � γ
2α

α+1 .
Now consider the strong bound. As discussed in the text, WAEn,λ � λ. Also,

as the proof of Corollary 3 shows, we have

EEn,λ � γ

λ2

n∑
i=1

min(μ2
i , λ

2).

Letting k be defined as the smallest integer such that μk � λ, we get k−2α � λ
as before. Then, the maximum MSE is bounded as

MSE � λ+
γ

λ2

(
kλ2 +

n∑
i=k+1

i−4α
)
� λ+

γ

λ2

(
kλ2 + k−4α+1

)
.

Since k−4α+1 � kλ2, by the definition of k, we obtain MSE � λ + γk � λ +

γλ− 1
2α . Equating the two terms we obtain MSE � λn � γ

2α
2α+1 as before.

For the Gaussian kernel, with μj � e−cj log j , it is not hard to verify that with
e−ck � λ, we get MSE � λ + γk � λ + γ log(1/λ). Minimizing the bound over
λ, we obtain λ � γ, hence MSE � γ log(1/γ).



3760 A. A. Amini

References

[1] Larry Wasserman. All of Nonparametric Statistics. Springer Science &
Business Media, 2006. MR2172729

[2] Alexandre B. Tsybakov. Introduction to Nonparametric Estimation.
Springer, 2009. MR2724359

[3] Vern I. Paulsen and Mrinal Raghupathi. An Introduction to the Theory
of Reproducing Kernel Hilbert Spaces. Cambridge University Press, 2016.
MR3526117

[4] Grace Wahba. Spline Models for Observational Data. SIAM, 1990.
MR1045442

[5] George Kimeldorf and Grace Wahba. Some results on Tchebycheffian spline
functions. Journal of Mathematical Analysis and Applications, 33(1):82–95,
1971. MR0290013

[6] Christopher K. I. Williams and Matthias Seeger. Using the Nyström
method to speed up kernel machines. In Advances in Neural Information
Processing Systems, pages 682–688, 2001.

[7] Kai Zhang, Ivor W. Tsang, and James T. Kwok. Improved Nyström low-
rank approximation and error analysis. In Proceedings of the 25th Interna-
tional Conference on Machine Learning, pages 1232–1239. ACM, 2008.

[8] Sanjiv Kumar, Mehryar Mohri, and Ameet Talwalkar. Ensemble Nyström
method. In Advances in Neural Information Processing Systems, pages
1060–1068, 2009.

[9] Mu Li, James T. Kwok, and Bao-Liang Lu. Making large-scale Nyström
approximation possible. In Proceedings of the 27th International Conference
on Machine Learning, pages 631–638, 2010.

[10] Ameet Talwalkar and Afshin Rostamizadeh. Matrix coherence and the
Nyström method. arXiv preprint arXiv:1408.2044, 2014.

[11] Ahmed Alaoui and Michael W. Mahoney. Fast randomized kernel ridge
regression with statistical guarantees. In Advances in Neural Information
Processing Systems, pages 775–783, 2015.

[12] Yun Yang, Mert Pilanci, and Martin J. Wainwright. Randomized sketches
for kernels: Fast and optimal nonparametric regression. The Annals of
Statistics, 45(3):991–1023, 2017. MR3662446

[13] Corinna Cortes, Mehryar Mohri, and Ameet Talwalkar. On the impact
of kernel approximation on learning accuracy. In Proceedings of the Thir-
teenth International Conference on Artificial Intelligence and Statistics,
pages 113–120, 2010.

[14] Tianbao Yang, Yu-Feng Li, Mehrdad Mahdavi, Rong Jin, and Zhi-Hua
Zhou. Nyström method vs random Fourier features: A theoretical and em-
pirical comparison. In Advances in Neural Information Processing Systems,
pages 476–484, 2012.

[15] Rong Jin, Tianbao Yang, Mehrdad Mahdavi, Yu-Feng Li, and Zhi-Hua
Zhou. Improved bounds for the Nyström method with application to ker-
nel classification. IEEE Transactions on Information Theory, 59(10):6939–
6949, 2013. MR3106876

https://www.ams.org/mathscinet-getitem?mr=2172729
https://www.ams.org/mathscinet-getitem?mr=2724359
https://www.ams.org/mathscinet-getitem?mr=3526117
https://www.ams.org/mathscinet-getitem?mr=1045442
https://www.ams.org/mathscinet-getitem?mr=0290013
https://arxiv.org/abs/1408.2044
https://www.ams.org/mathscinet-getitem?mr=3662446
https://www.ams.org/mathscinet-getitem?mr=3106876


Spectrally-truncated kernel ridge regression 3761

[16] Francis Bach. Sharp analysis of low-rank kernel matrix approximations. In
Conference on Learning Theory, pages 185–209, 2013.

[17] Alessandro Rudi, Raffaello Camoriano, and Lorenzo Rosasco. Less is more:
Nyström computational regularization. In Advances in Neural Information
Processing Systems, pages 1657–1665, 2015.

[18] Yuchen Zhang, John Duchi, and Martin Wainwright. Divide and conquer
kernel ridge regression. In Conference on Learning Theory, pages 592–617,
2013. MR3450540

[19] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel
machines. In Advances in Neural Information Processing Systems, pages
1177–1184, 2008.

[20] Quoc Le, Tamás Sarlós, and Alexander Smola. Fastfood – Computing
Hilbert space expansions in loglinear time. In International Conference on
Machine Learning, pages 244–252, 2013.

[21] Bo Dai, Bo Xie, Niao He, Yingyu Liang, Anant Raj, Maria-Florina Bal-
can, and Le Song. Scalable kernel methods via doubly stochastic gradients.
In Advances in Neural Information Processing Systems, pages 3041–3049,
2014.

[22] Si Si, Cho-Jui Hsieh, and Inderjit S. Dhillon. Memory efficient kernel ap-
proximation. The Journal of Machine Learning Research, 18(1):682–713,
2017. MR3634887

[23] Vladimir Koltchinskii and Evarist Giné. Random matrix approximation of
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