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Abstract: It is a standard assumption in the density deconvolution prob-
lem that the characteristic function of the measurement error distribution
is non-zero on the real line. While this condition is assumed in the majority
of existing works on the topic, there are many problem instances of interest
where it is violated. In this paper we focus on non–standard settings where
the characteristic function of the measurement errors has zeros, and study
how zeros multiplicity affects the estimation accuracy. For a prototypical
problem of this type we demonstrate that the best achievable estimation
accuracy is determined by the multiplicity of zeros, the rate of decay of
the error characteristic function, as well as by the smoothness and the tail
behavior of the estimated density. We derive lower bounds on the minimax
risk and develop optimal in the minimax sense estimators. In addition, we
consider the problem of adaptive estimation and propose a data–driven esti-
mator that automatically adapts to unknown smoothness and tail behavior
of the density to be estimated.

MSC2020 subject classifications: Primary 62G07, 62G20.
Keywords and phrases: Density deconvolution, minimax risk, charac-
teristic function, Laplace transform, non-standard measurement error, zero
multiplicity.

Received January 2021.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3395
2 Estimator construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 3399

2.1 Idea of construction . . . . . . . . . . . . . . . . . . . . . . . . . 3399
2.2 Measurement error distributions . . . . . . . . . . . . . . . . . . 3401
2.3 Estimator and zero multiplicity . . . . . . . . . . . . . . . . . . . 3402

3 Minimax results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3403
3.1 Functional classes . . . . . . . . . . . . . . . . . . . . . . . . . . . 3403
3.2 Rates of convergence . . . . . . . . . . . . . . . . . . . . . . . . . 3404

4 Adaptive procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3406

∗The research was supported by the Israel Science Foundation (ISF) grant.

3394

https://imstat.org/journals-and-publications/electronic-journal-of-statistics/
https://doi.org/10.1214/21-EJS1863
mailto:goldensh@stat.haifa.ac.il
mailto:ktaeho@campus.haifa.ac.il
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


Density deconvolution with non–standard errors 3395

4.1 Selection rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3406
4.2 Oracle inequality and rates of convergence . . . . . . . . . . . . . 3408

5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3409

A Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3409

A.1 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 3409

A.2 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 3411

A.3 Proof of Corollary 1 . . . . . . . . . . . . . . . . . . . . . . . . . 3416

A.4 Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 3417

A.5 Proof of Corollary 2 . . . . . . . . . . . . . . . . . . . . . . . . . 3420

A.6 Auxiliary results . . . . . . . . . . . . . . . . . . . . . . . . . . . 3422

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3425

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3425

1. Introduction

Statistical inverse problems are ubiquitous in science and engineering; they arise
in such diverse areas as signal and image processing, physics, biology, operations
research, to name but a few. In such problems transformation y = Af of an ob-
ject of interest f (probability distribution/density, signal, image etc.) is observed
with noise, and the goal is to reconstruct f from the noisy indirect observations.
For discussion of various types of statistical inverse problems we refer to the re-
view paper Cavalier [7] where further references to relevant literature can be
found.

Deconvolution is an important class of linear inverse problems in which
transformation A is a convolution integral operator with given kernel A, i.e.
y(x) = (Af)(x) =

∫
A(x − t)f(t)dt. Nonparametric deconvolution problems

naturally arise in models with measurement errors such as error–in–variables
nonparametric regression (Fan and Truong [11]), density estimation from noisy
samples (Carroll and Hall [6], Zhang [29], Fan [10]), and in signal and image
deblurring (Johnstone and Raimondo [19], Johnstone et al. [20], Hall and Koch
[17] and Bertero and Boccacci [3, Chapter 3]). In all these problems the Fourier
transform techniques play a prominent role. Since in spectral domain the op-
eration of convolution is reduced to multiplication, the standard technique for
reconstruction of f is to estimate the Fourier transform of y from the available
data, to divide it by the Fourier transform of the convolution kernel A and to
apply to the ratio the inverse Fourier transform with some regularization. Such
estimation strategies are applicable only if the Fourier transform of the convo-
lution kernel A does not vanish, and nearly all publications in the area require
this assumption. However, this assumption is rather restrictive: it does not hold
in many cases of interest, e.g., when kernel A is compactly supported and/or
discontinuous. In such settings other estimation strategies should be employed,
and in this paper our goal is to develop such a strategy in the context of the
density deconvolution problem.



3396 A. Goldenshluger and T. Kim

Problem Formulation Density deconvolution is a problem of estimating a
probability density from observations with additive measurement errors. Specif-
ically, assume that we observe random sample Y1, Y2, . . . , Yn generated by the
model

Yi = Xi + εi, i = 1, 2, . . . , n,

where Xis are i.i.d. random variables with unknown density f with respect to
the Lebesgue measure on R, εi’s are i.i.d. measurement errors with distribution
function G, and Xis are independent of εi’s. The objective is to estimate f
on the basis of the sample Yn := {Y1, Y2, . . . , Yn}. Since Yi is the sum of two
independent random variables, Xi and εi, the density fY of Yi is given by the
convolution

fY (y) = (f � dG)(y) =

∫ ∞

−∞
f(y − x)dG(x). (1.1)

An estimator of the value of f(x0) is a measurable function of Yn, f̂(x0) =

f̂(x0;Yn), and the risk of f̂(x0) is

Rn[f̂ , f ] :=
[
Ef |f̂(x0)− f(x0)|2

]1/2
,

where Ef stands for the expectation with respect to the probability measure
Pf generated by the observation Yn when the unknown density of Xis is f . For

a particular functional class F , accuracy of f̂(x0) is measured by the maximal
risk

Rn[f̂ ;F ] := sup
f∈F

Rn[f̂ , f ],

and an estimator f̂∗(x0) is called rate–optimal or optimal in order on F if

Rn[f̂∗;F ] � R∗
n[F ] := inf

f̂
Rn[f̂ ;F ], n → ∞.

Here R∗
n[F ] is the minimax risk, and the infimum in its definition is taken

over all possible estimators of f(x0). The objective in the density deconvolution
problem is to construct an optimal in order estimator, and to study the rate at
which the minimax risk R∗

n[F ] converges to zero as n → ∞. In what follows we
refer to the latter as the minimax rate of convergence.

The outlined problem is a subject of vast literature under various assump-
tions on the functional class F and distribution of measurement errors G; see,
e.g., Carroll and Hall [6], Stefanski and Carroll [27], Zhang [29], Fan [10], Bu-
tucea and Tsybakov [4, 5], Meister [25], Lounici and Nickl [23] for representative
publications, where further references can be found. Typically F is a class of
functions satisfying smoothness conditions (e.g., Hölder or Sobolev functional
class). As for assumptions on the measurement error distribution, they are usu-
ally put in terms of the characteristic function of G and read as follows.
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Assumption (E0). Let φg(iω) := F [dG,ω] :=
∫∞
−∞ e−iωxdG(x) be the charac-

teristic function (the Fourier transform) of the measurement error distribution
G. Then,

I. |φg(iω)| �= 0 for all ω ∈ R.
II. |φg(iω)| decreases at polynomial or exponential rate as |ω| → ∞:

ordinary smooth errors: |φg(iω)| � |ω|−γ , |ω| → ∞ for some γ > 0, or
super smooth errors: |φg(iω)| � exp{−c|ω|γ}, |ω| → ∞ for some c, γ > 0.

Assumption (E0) is inarguably conventional and presumed in nearly all works
dealing with density deconvolution problems. Under Assumption (E0) the ac-
curacy in estimating f is determined by the rate at which φg tends to zero
and by the smoothness of f as characterized in terms of functional class F . In
particular, it is well known that in the case of the ordinary smooth errors one
has R∗

n[Hα(A)] � (A1/αn−1)α/(2α+2γ+1) as n → ∞, where Hα(A) denotes the
Hölder functional class of regularity α > 0 (the precise definition of Hα(A) is
given in Section 3.1). The parameter γ characterizes the rate of decay of |φg(iω)|
as |ω| → ∞, and it is usually referred to as the degree of ill–posedness of the
deconvolution problem. The indicated minimax rate of convergence is achieved
by the standard kernel density deconvolution estimator of the form

f̂(x0) =
1

2π

n∑
j=1

∫ ∞

−∞

φK(iωh)

φg(−iω)
eiω(Yj−x0)dω, (1.2)

where K is a kernel satisfying standard properties, φK(i·) is the Fourier trans-
form of K, and h > 0 is a bandwidth that should be specified properly; see,
e.g., [10].

Condition (E0-I) ensures that the statistical model is identifiable (it is well
known that if φg vanishes on a set that contains a non–empty open interval then
f is not identifiable; see, e.g., Meister [25, Section 2.3]). It underlies applicabil-
ity of standard Fourier–transform–based techniques for constructing estimators
of f such as (1.2). Note however that (E0-I) does not hold if φg has isolated
zeros which is the case in many interesting situations, e.g., for continuous distri-
butions with compactly supported densities or for general discrete distributions.
For example, if G is a uniform distribution on [−1, 1], then φg(iω) = sinω/ω
has zeros at ω = ±πk, k ∈ N, and (E0-I) is not fulfilled. In this paper we fo-
cus on the settings where φg has isolated zeros on the imaginary axis so that
standard Fourier–transform–based kernel density deconvolution estimator (1.2)
is not directly applicable.

Related Literature The settings in which the error characteristic function
φg may have isolated zeros have been studied to a considerably lesser extent;
the available results in this area are fragmentary and disparate. Devroye [9]
pointed out that density f can be estimated consistently in the L1–norm when
the characteristic function φg of the error distribution is non-zero almost ev-
erywhere. Although the result is quite general, the convergence is not uniform,
and the evaluation procedure is not based on the minimax criterion. Several
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previous studies investigated the problem with the uniform error distribution.
In particular, Groeneboom and Jongbloed [16] and Feuerverger, Kim and Sun
[12] demonstrate that zeros of the characteristic function φg do not have influ-
ence on the minimax rate of convergence: it remains the same as under condi-
tion (E0-I) when the estimated density f is supported on the positive real line
[16], or has bounded second moment [12]. Considering a more general class of
so-called Fourier–oscillating error distributions, Delaigle and Meister [8] derives
a similar result for densities f having finite left endpoint. In contrast to the
aforementioned results, Hall and Meister [18] demonstrates that for the class of
Fourier–oscillating error distributions zeros of the error characteristic function
lead to a slower minimax convergence rate than the one under condition (E0-I).
Hall and Meister [18] suggested a “ridge” modification of the kernel density de-
convolution estimator in which characteristic function of the error distribution
is regularized to avoid singularities due to the zeros. For another closely related
work we also refer to Meister [24].

Recently a principled method for solving density deconvolution problems un-
der general assumptions on the error characteristic function has been proposed
in Belomestny and Goldenshluger [2]. This method uses the Laplace transform
(the Fourier transform in complex domain) in conjunction with the linear func-
tional strategy for constructing rate–optimal kernel deconvolution estimators.
The results show that zeros of the error characteristic function have no influence
on the achievable estimation accuracy when, in addition to usual smoothness
conditions, the estimated density f has sufficiently light tails. On the other
hand, if f is heavy tailed, then zeros of the error characteristic function affect
the minimax rates of convergence that become slower. Belomestny and Gold-
enshluger [2] provide an explicit condition on the tail behavior of f and zeros
geometry of φg under which the minimax rates of convergence are not influenced
by the zeros of φg.

Main Contributions. In this paper we focus on the setting when φg has
zeros, and f is heavy tailed relative to the multiplicity m of zeros of φg on
the imaginary axis. The prototypical settings of this type arise when measure-
ment error distribution is the binomial distribution with the parameters m and
p = 1/2 or the m–fold convolution of uniform distributions on [−θ, θ]. Utilizing
the methodology proposed in [2] we develop rate–optimal estimators of f and in-
vestigate their properties. It is shown that, in contrast to the well known results
under Assumption (E0), in the considered regime the minimax rate of conver-
gence is determined not only by the smoothness of f and the rate at which φg

tends to zero, but also by the tail behavior of f and the zero multiplicity of φg.
The derived lower bounds on the minimax risk demonstrate that dependence of
the estimation accuracy on these factors is essential.

The construction of the proposed rate–optimal estimator of f depends on
tuning parameters, and their specification requires prior information on smooth-
ness and tail behavior of f . In practice such information is rarely available. To
overcome this difficulty we propose and study an adaptive estimator of f that
is based on the methodology developed in Goldenshluger and Lepski [14, 15].
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An interesting feature of the proposed estimator is that it involves two tuning
parameters, and the adaptation here is not only with respect to the unknown
smoothness, but also with respect to the unknown tail behavior of f . We de-
rive an oracle inequality for the developed adaptive estimator and show that it
achieves the minimax rate of convergence up to a logarithmic factor which is
unavoidable payment for adaptation in point-wise estimation.

Organization of the Paper The rest of the paper is organized as follows. In
Section 2 we present the general idea for estimator construction and introduce
our estimator. Section 3 deals with the minimax estimation of f(x0) with re-
spect to proper functional classes. In Section 4 we introduce the corresponding
adaptive procedure and investigate its properties. Lastly, Section 5 is reserved
for discussion and concluding remarks. All the proofs are deferred to Appendix.

2. Estimator construction

2.1. Idea of construction

We start with presenting the key idea for estimator construction in our den-
sity deconvolution problem. The construction uses Laplace transform (Fourier
transform in the complex domain) which allows us to handle the situation where
the first condition of Assumption (E0) is not satisfied. Our goal is to deliver the
main idea of construction; for further details we refer to Belomestny and Gold-
enshluger [2].

The following definitions will be utilized throughout the study. For a generic
function w the bilateral Laplace transform of w is defined to be

L[w; z] := φw(z) =

∫ ∞

−∞
w(x)e−zxdx. (2.1)

The integral convergence region Σw (if exists) is a vertical strip in the complex
plane, Σw = {z ∈ C : Re(z) ∈ (σ−

w , σ
+
w )} for some σ−

w , σ
+
w ∈ R, and φw(z) is

analytic in Σw. The inverse Laplace transform is given by the formula

w(x) =
1

2πi

∫ s+i∞

s−i∞
φw(z)e

zxdz =
1

2π

∫ ∞

−∞
φw(s+iω)e(s+iω)xdω, s ∈ (σ−

w , σ
+
w );

see Widder [28] for background on the properties of Laplace transform. For
the error distribution function G we write φg(z) :=

∫∞
−∞ e−zxdG(x), and note

that the integral convergence region necessarily includes the imaginary axis
{z ∈ C : Re(z) = 0} with φg(iω) being the characteristic function of G. In what
follows we assume that Σg is a vertical strip in the complex plane, Σg := {z ∈
C : Re(z) ∈ (σ−

g , σ
+
g )} for some σ−

g < 0 < σ+
g .

Our estimator utilizes a kernel whose construction relies upon the linear
functional strategy for the solution of ill–posed problems (see, e.g., [13]). Let
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K ∈ C∞(R) be a kernel on [−1, 1] satisfying standard conditions such that for
fixed k ∈ Z+ ∫ 1

−1

K(t)dt = 1,

∫ 1

−1

tjK(t)dt = 0, ∀j = 1, . . . , k. (2.2)

Note that φK(z) is an entire function, i.e. ΣK = C. We would like to find a
function L : R → R such that for any given x0 ∈ R∫ ∞

−∞
L(y − x0)fY (y)dy =

1

h

∫ ∞

−∞
K
(x− x0

h

)
f(x)dx, (2.3)

where we recall that fY and f are related to each other by the convolution
integral (1.1). If function L satisfying (2.3) is found, then a reasonable estimator
of f(x0) is given by the empirical estimator of the integral on the left hand side
of (2.3) based on the sample Yn. In our deconvolution problem this strategy is
realized as follows.

In addition to the analyticity of φg in Σg we suppose that φg(z) does not
vanish on the set {z : Re(z) ∈

(
κ

−
g ,κ+

g

)
\ {0}} for some κ

−
g , κ+

g such that
σ−
g ≤ κ

−
g < 0 < κ

+
g ≤ σ+

g . Note that φg may have zeros on the imaginary axis
{z : Re(z) = 0}, so that the conventional Fourier transform technique would not
work in this situation. Let Sg :=

{
z : Re(z) ∈

(
−κ

+
g ,−κ

−
g

)
\ {0}

}
; in fact, Sg is

the union of two open vertical strips in the complex plane having the imaginary
axis as the boundary. Note that φg(−z) �= 0 on Sg, and for h > 0 define

φL(z) :=
φK(zh)

φg(−z)
, z ∈ Sg.

Obviously, φL is analytic on Sg, and we define a kernel Ls
h through the following

inverse Laplace transform of φL:

Ls
h(x) :=

1

2π

∫ ∞

−∞

φK((s+ iω)h)

φg(−s− iω)
e(s+iω)xdω, s ∈ (−κ

+
g ,−κ

−
g ) \ {0}. (2.4)

Depending on the sign of parameter s formula (2.4) defines two different kernels
which in the sequel are denoted L+

h (·) for s > 0 and L−
h (·) for s < 0. If the

integral on the right hand side of (2.4) is absolutely convergent and∫ ∞

−∞
|Ls

h(y − x0)|fY (y)dy < ∞,

then by Lemma 1 in [2] kernels Ls
h and K are related to each other via (2.3).

Therefore we define the resulting density deconvolution estimator by

f̂s
h(x0) =

1

n

n∑
j=1

Ls
h(Yj − x0), s ∈ (−κ

+
g ,−κ

−
g ) \ {0}.

While a general form of the kernel Ls
h is given in (2.4), it would be beneficial

to specialize it for particular error distributions. We handle this in the next
subsection in relation to the error characteristic functions φg having zeros on
the imaginary axis.
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2.2. Measurement error distributions

The following assumption on characteristic function of measurement errors has
been introduced in [2].

Assumption (E1). φg is analytic in Σg := {z : Re(z) ∈ (σ−
g , σ

+
g )} with

σ−
g < 0 < σ+

g and admits the following representation

φg(z) =
1

ψ(z)

q∏
k=1

(
1− eakz−ibk

)mk

, (2.5)

where {ak}qk=1 and {bk}qk=1 are real numbers, ak > 0 and bk ∈ [0, 2π), such that
their pairs (ak, bk)’s are distinct throughout k = 1, 2, . . . , q, and {mk}qk=1 are
non-negative integer numbers. The function ψ(z) is represented as

ψ(z) = ψ0(z)
∏

k:bk=0

(−akz)
mk

∏
k:bk �=0

(1− e−ibk)mk ,

where ψ0(z) is an analytic function, it has no zeros in a vertical strip Σψ,
{z : Re(z) = 0} ⊂ Σψ ⊆ Σg, and ψ0(0) = 1. This particular form of ψ(z) follows
from (2.5) and the fact that φg is a characteristic function.

Assumption (E1) postulates that the characteristic function φg(z) is analytic
in a vertical strip and can be factorized in a product of two functions: the first
function 1/ψ(z) does not vanish in a strip around the imaginary axis while
the second function

∏q
k=1(1 − eakz−ibk)mk has zeros on the imaginary axis.

Therefore, the condition (2.5) ensures that the zeros of φg(z) are zk,j = i(bk +
2πj)/ak, j = 0,±1,±2, . . ., zk,j �= 0, and the multiplicity of zk,j is equal to mk

for any j. Note that Assumption (E1) is rather general. It holds for a wide class
of discrete and continuous distributions; for specific examples we refer to [2,
Section 3.2]. Since the main focus of this study is to investigate the effect of
zeros multiplicity of φg(z) on the estimation accuracy, we will concentrate on
the following prototypical examples:

(a) [m–convolution of U(−θ, θ) distribution] Let G be the distribution func-
tion of m–fold convolution of the uniform distribution on [−θ, θ], θ > 0.
Then,

φg(z) =

[
sinh(θz)

θz

]m
= e−mθz(−2θz)−m(1− e2θz)m, (2.6)

so that Assumption (E1) holds with q = 1, a1 = 2θ, b1 = 0, m1 = m and
ψ(z) = (−2θz)memθz.

(b) [binomial distribution with (m, 1/2)] Let G be the distribution function
of the binomial random variable with parameters m and p = 1/2. Then,

φg(z) = 2−m(1 + ez)m, (2.7)

so that Assumption (E1) holds with q = 1, a1 = 1, b1 = π and ψ(z) = 2m.
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It is worth noting that in setting (a) parameter m characterizes both the mul-
tiplicity of zeros and the rate of decay of |φg(iω)| as |ω| → ∞. Thus, parameter
m also plays the role of the degree of ill–posedness, similar to the parameter γ
of Assumption (E0) in the case of the ordinary smooth errors.

2.3. Estimator and zero multiplicity

Under Assumption (E1) the kernel in (2.4) takes the following particular form:

Ls
h(t) =

1

2π

∫ ∞

−∞

φK((s+ iω)h)ψ(−s− iω)∏q
k=1(1− e−ak(s+iω)−ibk)mk

e(s+iω)tdω, s+ iω ∈ Sg. (2.8)

While the denominator does not vanish for s ∈ (−κ+
g ,−κ−

g ) \ {0}, the kernel

representation is either L+
h or L−

h , depending on the sign of s. For examples
(a) and (b) discussed above we can substitute expressions of φg(z) given by
(2.6) and (2.7) for (2.4). Then expanding formally the integrand in series (see, [2,
Section 4.1] for details), we can obtain the following infinite series representation
for the kernels:

(a) m–convolution of U(−θ, θ) distribution:

L±
h (t) =

(±2θ)m

hm+1

∞∑
j=0

Cj,mK(m)

(
t∓ θ(2j +m)

h

)
;

(b) binomial distribution with (m, 1/2):

L±
h (t) =

(±2)m

h

∞∑
j=0

Cj,mK

(
t∓ j

h

)
,

where

Cj,m :=

(
j +m− 1

m− 1

)
is the number of weak compositions of j into m parts (see, e.g., [26]). Note
that the derived kernels L±

h are not integrable and, in general, condition (2.3) is
fulfilled only if f has sufficiently light tails. Thus we truncate the infinite series
in the estimator construction by a cut–off parameter N , so that the resulting
kernels for examples (a) and (b) are of the following forms, respectively:

L±
h,N (t) :=

(±2θ)m

hm+1

N∑
j=0

Cj,mK(m)

(
t∓ θ(2j +m)

h

)
; (2.9)

L±
h,N (t) :=

(±2)m

h

N∑
j=0

Cj,mK

(
t∓ j

h

)
. (2.10)

The multiplicity of zeros clearly manifests itself in construction of kernel
L±
h,N : in setting (a) multiplicity m determines the degree of ill–posedness of
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the deconvolution problem, and in both settings coefficients Cj,m in (2.9) and
(2.10) grow with m affecting the variance of the corresponding estimators in
the case of heavy tailed densities f . Intuitively, the larger multiplicity m, the
flatter the characteristic function φg(z) in the vicinity of zeros, and the harder
the deconvolution problem.

Based on the derived kernels we define the estimators of f(x0) in examples (a)
and (b) by

(a) f̂±
h,N (x0) =

1

n

n∑
i=1

(±2θ)m

hm+1

N∑
j=0

Cj,mK(m)

(
Yi − x0 ∓ θ(2j +m)

h

)
; (2.11)

(b) f̂±
h,N (x0) =

1

n

n∑
i=1

(±2)m

h

N∑
j=0

Cj,mK

(
Yi − x0 ∓ j

h

)
, (2.12)

where h and N are tuning parameters that should be specified.

3. Minimax results

In this section we derive upper bounds on the risk of the estimators constructed
in the previous section, and show that they are rate optimal over functional
classes characterized by smoothness and tail conditions. The analysis of the
risk for both estimators in cases (a) and (b) coincides in almost every detail.
Therefore in the sequel we concentrate on the example (a); the corresponding
results for binomial error distribution are discussed in Section 5.

3.1. Functional classes

The following assumption introduces the functional class over which the accu-
racy of f̂±

h,N (x0) will be assessed.

Assumption (F). Let A and B be a positive real numbers.

(I) For α > 0, a probability density f belongs to the functional class Hα(A)
if f is α� := max{n ∈ N∪ {0} : n < α} times continuously differentiable,
and ∣∣∣f (�α�)(t)− f (�α�)(t′)

∣∣∣ ≤ A|t− t′|α−�α�, ∀t, t′ ∈ R. (3.1)

(II) Let q be a positive real number. We say that a probability density f
belongs to the functional class Nq(B) if

f(t) ≤ B|t|−q, ∀t ∈ R. (3.2)

Combining the two conditions in Assumption (F), we define the following func-
tional class:

Wα,q(A,B) := Hα(A) ∩ Nq(B).
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Remark. While first assumption defines the traditional Hölder class, the second
condition imposes a uniform upper bound on the decay of the tails of the den-
sity. Note that this tail condition is comparable to the moment condition in [2,
Definition 3].

3.2. Rates of convergence

Now we are in a position to establish upper bounds on the maximal risk of the
estimator f̂±

h,N (x0) defined in (2.11). Let

f̂h,N (x0) :=

{
f̂+
h,N (x0), x0 ≥ 0;

f̂−
h,N (x0), x0 < 0,

(3.3)

r :=

{
(α/q)(2m− 1− q), q < 2m− 1;

0, q ≥ 2m− 1,
and ν :=

α

2α+ 2m+ 1 + r
; (3.4)

and define

ϕ(n) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
B1/αA

2m+1
α

)ν
n−ν , q > 2m− 1;(

B1/αA
2m+1

α

)ν( logn
n

)ν
, q = 2m− 1;(

B
2m−1

αq A
2m+1

α

)ν
n−ν , q < 2m− 1.

(3.5)

Theorem 1. Let φg(z) = [sinh(θz)/(θz)]m, m ∈ N. Assume that f ∈ Wα,q(A,B)

with q > 0, and let f̂h,N (x0) be the estimator defined in (3.3) and (2.11) and
associated with kernel K satisfying condition (2.2) with parameter k ≥ α + 1.
Then with h = h∗ and N = N∗ defined in (A.6)–(A.8) in the proof of the
theorem one has

lim sup
n→∞

{
[ϕ(n)]−1Rn[f̂h∗,N∗ ;Wα,q(A,B)]

}
≤ C1,

where C1 is a constant independent of A and B.

Remark.

(a) The result of Theorem 1 shows how the tail behavior of f and zeros multi-
plicity m affect the estimation accuracy. If the tail of f is sufficiently light,
i.e., q > 2m− 1, then the risk of f̂h∗,N∗(x0) converges to zero at the rate
n−α/(2α+2m+1) which is obtained in the ordinary smooth case with γ = m
and non–vanishing characteristic function φg [see Assumption (E0)]. On
the other hand, for heavy tailed densities f with q < 2m− 1 the maximal
risk of f̂h∗,N∗(x0) converges at a slower rate, and parameter r in (3.4)
characterizes the deterioration in the convergence rate.

(b) The existence of different regimes depending on the tail behavior of f and
zeros multiplicity m has been noticed in [2]; however, the case of heavy
tailed densities has not been studied there.
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Next theorem provides a lower bound on the minimax risk of estimation over
the functional class Wα,q(A,B).

Theorem 2. Let φg(z) = [sinh(θz)/(θz)]m, m ∈ N. Then for any fixed α > 0,
q > 1, A > 0 and B > 0, one has

lim inf
n→∞

{(
A−(2m+1)/α n

)ν R∗
n [Wα,q(A,B)]

}
≥ C2,

where ν is defined in (3.4), and C2 is a positive constant independent of A.

Remark.

(a) Theorems 1 and 2 show that there are two regimes in behavior of the
minimax risk. These regimes are characterized by the tail behavior of the
estimated density f and the multiplicity of zeros of the error characteristic
function φg. In the light tail regime, q > 2m − 1, zeros of φg have no
influence on the minimax rate of convergence: it is fully determined by
the tail behavior of φg. On the other hand, if q < 2m − 1 (the heavy tail
regime) then zeros of φg have significant influence on the minimax rate, it
becomes much slower than in the case of non–vanishing φg.

(b) Theorems 1 and 2 demonstrate that the proposed estimator f̂h∗,N∗(x0) is
rate optimal in both light tail and heavy tail regimes. We note that on the
boundary between two regimes, q = 2m − 1, there is a logarithmic gap
between the upper and lower bounds of Theorems 1 and 2.

Thus far, the risk evaluations are under the functional class Wα,q(A,B) de-
fined in Assumption (F). Although these conditions are pretty reasonable in the
context of the density deconvolution, they involve an extra assumption on the
tail behavior of f , and it is natural to ask what happens when the tail condition
does not hold. The next result provides an answer to this question.

Corollary 1. Let φg(z) = [sinh(θz)/(θz)]m, m ∈ N; then

lim inf
n→∞

{
ψ−1
n R∗

n[Hα(A)]
}
≥ C3; (3.6)

lim sup
n→∞

{
ψ−1
n R∗

n[Hα(A) ∩ N1(B)]
}
≤ C4, (3.7)

where ψn := (A(2m+1)/α/n)
α

2mα+2m+1 , and C3 and C4 do not depend on A.

Remark. In view of (3.6), the rate of convergence ψn on the functional class
Hα(A) is significantly slower than the one achieved on Hα(A) in the setting with
non–vanishing characteristic function φg. Note that the upper bound in (3.7) is
achieved on a slightly smaller functional class. The assumption f ∈ N1(B) is
very mild and is fulfilled for virtually any probability density. However it does
not hold uniformly for all densities. We were not able to derive the upper bound
(3.7) without this additional condition.
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4. Adaptive procedure

The minimax results in the previous section can only be achieved when the
information on the functional class is known to us in advance. This is evident
by observing that the optimal choice of tuning parameters h∗ and N∗ requires
knowledge of the functional class. However, in most of applications, it is ex-
tremely rare to have the advance information about the functional class where
the target function f resides in. Therefore, it is natural to ask whether one can
construct an estimator that guarantees an equivalent or comparable accuracy
without knowing the parameters of functional class.

In this section we develop an adaptive estimator of f(x0) whose construc-
tion is based on the idea of data–driven selection from a family of estimators
{f̂h,N (x0) : (h,N) ∈ H×N}, where f̂h,N (x0) is defined in the previous section,
and H and N are some fixed sets of bandwidths and cut–off parameters. Since
the estimator f̂h,N (x0) depends on two tuning parameters, we adopt the general
method of adaptive estimation proposed in [14].

4.1. Selection rule

Let H and N be discrete sets defined as follows: for real numbers 0 < hmin <
hmax = θ and integer number Nmax to be specified later

H :=
{
h ∈ [hmin, hmax] : h = 2−jhmax, j = 0, . . . ,Mh

}
;

N :=
{
j : j = 1, . . . , Nmax =: MN

}
,

where Mh := log2(hmax/hmin)� and MN := Nmax denote the cardinality of
H and N respectively. Let T := H × N with a corresponding element τ :=
(h,N), and consider the family of estimators F(T ) = {f̂±

τ (x0), τ ∈ T }, where
f̂±
τ (x0) = f̂±

h,N (x0) is defined in (2.11) and (3.3). The adaptive estimator is based
on a data–driven selection from the family F(T ). For the sake of definiteness

in the sequel we assume that x0 ≥ 0 and consider estimators f̂+
τ (x0) only; the

case x0 < 0 and f̂−
τ (x0) can be handled in exactly the same way.

The selection rule is based on auxiliary estimators that are constructed as
follows. We first define an operation of coordinate–wise maximum and minimum:

τ∨∧τ ′ := (h ∨ h′, N ∧N ′), ∀τ, τ ′ ∈ T .

Then, we associate the estimator [cf. (2.11)] with any pair τ, τ ′ ∈ T

f̂+
τ∨∧τ ′(x0) :=

1

n

n∑
i=1

(2θ)m

(h ∨ h′)m+1

N∧N ′∑
j=0

Cj,mK(m)

(
Yi − x0 − θ(2j +m)

h ∨ h′

)
.

Observe that f̂+
τ∨∧τ ′(x0) = f̂+

τ ′∨∧τ (x0) for all τ, τ
′ ∈ T .

Selection rules based on convolution–type auxiliary kernel estimators are de-
veloped in [14, 15], while Lepski [22] uses auxiliary estimators that are based on
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the operation of point–wise maximum of multi–bandwidths. Our construction
is close in spirit to the latter one; it is dictated by the structure of estimators
f̂±
h,N (x0) in the deconvolution problem.
An important ingredient in the construction of the proposed selection rule is

a uniform upper bound on the stochastic error of estimator f̂+
τ (x0), τ ∈ T . For

τ ∈ T the stochastic error of f̂+
τ (x0) is

ξτ (x0) :=
1

n

n∑
i=1

L+
τ (Yi − x0)− Ef

[
L+
τ (Y1 − x0)

]
, (4.1)

where

L+
τ (y) :=

(2θ)m

hm+1

N∑
j=0

Cj,mK(m)

(
y − θ(2j +m)

h

)
;

Cf., (2.9). Define

σ2
τ :=

(2θ)2m

h2m+2

N∑
j=0

C2
j,m

∫ ∞

−∞

∣∣∣∣K(m)

(
y − x0 − θ(2j +m)

h

)∣∣∣∣
2

fY (y)dy. (4.2)

The proof of Theorem 1 shows that varf [ξτ (x0)] ≤ σ2
τ/n. Let

uτ := 2m+1θmCN,m‖K(m)‖∞h−m−1, (4.3)

and for real number κ > 0 that will be specified later we put

Λτ (κ) := στ

√
2κ

n
+

2uτκ

3n
. (4.4)

In Lemma 1 in Appendix we demonstrate that Λτ (κ) is a uniform upper bound
on |ξτ (x0)| in the sense that all moments of the random variable supτ∈T [|ξτ (x0)|−
Λτ (κ)]+ are suitably small as κ increases. Note however that Λτ (κ) cannot be
used in the selection rule because it depends on the unknown density. In order
to overcome this problem we consider a data–driven uniform upper bound on
ξτ (x0) that is constructed as follows.

For τ ∈ T let

σ̂2
τ :=

1

n

n∑
i=1

(2θ)2m

h2m+2

N∑
j=0

C2
j,m

∣∣∣∣K(m)

(
Yi − x0 − θ(2j +m)

h

)∣∣∣∣
2

.

Note that σ̂2
τ is the empirical estimator of σ2

τ . Let

Λ̂τ (κ) := 7

(
σ̂τ

√
2κ

n
+

2uτκ

3n

)
. (4.5)

With the introduced notations the selection rule is defined for any τ ∈ T

R̂τ (x0) := sup
τ ′∈T

[∣∣f̂+
τ∨∧τ ′(x0)− f̂+

τ ′(x0)
∣∣− Λ̂τ∨∧τ ′(κ)− Λ̂τ ′(κ)

]
+
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+ Λ̂τ (κ) + sup
τ ′∈T

Λ̂τ∨∧τ ′(κ). (4.6)

Then, the adaptive estimator f̂∗(x0) can be chosen to be

f̂∗(x0) := f̂+
τ̂ (x0), τ̂ =

(
ĥ, N̂

)
:= argmin

τ∈T
R̂τ (x0). (4.7)

Remark. The defined selection rule is fully data–driven; it only requires speci-
fication of parameter κ in (4.5). This parameter provides a uniform control of
the stochastic errors for the family of estimators F(T ), and has no relation to
the properties of the density to be estimated. In addition, the parameters hmin

and Nmax should be chosen; they determine the sets of admissible bandwidths
H and cut–off parameters N .

4.2. Oracle inequality and rates of convergence

For h, h′ ∈ H and N,N ′ ∈ N define

B̄h(f) := sup
h′≤h

sup
x∈R

∣∣∣∣ 1h
∫ ∞

−∞
K
( t− x

h

)
[f(t)− f(x)]dt

∣∣∣∣; (4.8)

B̄N (x0; f) := max
1≤j≤m

sup
|t|≤θ

sup
N ′≥N

[
f
(
t+ x0 + 2θ(N ′ + 1)j

)]
, (4.9)

and let
B̄τ (x0; f) := 2m+1

[
B̄h(f) + (1 + ‖K‖1)B̄N (x0; f)

]
. (4.10)

Theorem 3. Let f̂∗(x0) be the estimator defined in (4.6)–(4.7) and associated
with parameter κ > 0; then

|f̂∗(x0)− f(x0)| ≤ C1 inf
τ∈T

{
B̄τ (x0; f) + Λτ (κ)

}
+ C2

(
δ(x0) +

κ

n

)
, (4.11)

where C1 is an absolute constant, C2 depends only on m and θ, and δ(x0) is
a non–negative random variable whose moments admit the following bound: for
any p ≥ 1

Ef

[
δ(x0)

]p ≤ C3MhMN [Λ̄(κ)]pκ−pe−κ , (4.12)

where Λ̄(κ) := supτ∈T {(1 + uτ )Λτ (κ)}, and constant C3 depends on p only.

Remark. Explicit expressions for constants C1, C2 and C3 appear in the proofs
of Theorem 3 and Lemma 2. Note that the oracle inequality holds for any
probability density f , without any functional class assumptions.

The oracle inequality (4.11) allows us to derive the following result on the

accuracy of the adaptive estimator f̂∗(x0) on the class Wα,q(A,B).

Corollary 2. Let F(T ) be the family of estimators
{
f̂+
h,N (x0), (h,N) ∈ H×N

}
with

hmin :=
( logn

n

)1/(2m+1)

, hmax := θ, Nmax :=
( n

log n

)1/(2m)

. (4.13)
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Let f̂∗(x0) be the estimator defined by selection rule (4.6)–(4.7) and associated
with parameter κ = κ∗ := 5 log n; then for any α > 0, q ≥ 1, A > 0 and B > 0
one has

lim sup
n→∞

{[
ϕ
( n

logn

)]−1

Rn[f̂h∗,N∗ ;Wα,q(A,B)]
}
≤ C,

where ϕ(·) is defined in (3.5), and C does not depend on A and B.

Remark. Note that the resulting rate is the same as the rate of convergence in
Theorem 1 except for the extra logn factor. It is a well-known fact by Lepski
[21] that this factor cannot be avoided in the adaptive nonparametric estimation
of a function at a single point.

5. Concluding remarks

We close this paper with a few concluding remarks.
In this paper we concentrated on the setting when the error distribution is the

m–fold convolution of the uniform distribution on [−θ, θ]. Here the error charac-
teristic function has infinite number of isolated zeros on the imaginary axis, each
of them has the same multiplicity m. Note that the results of Theorems 1, 2,
and Corollary 2 also hold for the binomial error distribution Bin(m, 1/2) with
the following minor changes in notation: in (3.4) parameter ν should be rede-
fined as ν = 1/(2α + 1 + r), and in (3.5) and in the statement of Theorem 2
expression A(2m+1)/α should be replaced by A1/α. The specific form of the error
characteristic functions used in this paper facilitates derivation of lower bounds
on the minimax risk. However, in general, the proposed technique is applica-
ble to other error distributions whose characteristic function has zeros on the
imaginary axis.

We developed rate optimal estimators with respect to the point–wise risk.
It is worth noting that there is a significant difference between settings with
the point–wise and L2–risks when the error characteristic function has zeros
on the imaginary axis. In particular, the minimax rates of convergence and
the heavy tail regimes in these settings are determined by completely different
formulas. This fact has been already noticed in [2]. Some results for density
deconvolution with L2–risk for non–standard error distributions appeared in
[24] and [18]. However, results in these papers are not directly comparable to
ours. In general, deconvolution problems under global losses with non–standard
error distributions deserve a thorough study.

Appendix A: Proofs

A.1. Proof of Theorem 1

Proof. In the subsequent proof c1, c2, . . . stand for positive constants indepen-
dent of A and B. Without loss of generality we assume that x0 ≥ 0; the proof
for the case x0 < 0 is identical in every detail. We follow the ideas of the proof
of Theorem 2 in [2].
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(a). We begin with bounding the variance of f̂+
h,N (x0). It is shown in [2] that

the variance of f̂+
h,N (x0) is bounded from above as follows

varf
[
f̂+
h,N (x0)

]
≤ (2θ)2m

nh2m+2

N∑
j=0

C2
j,m

∫ ∞

−∞

∣∣∣K(m)
(y − x0 − θ(2j +m)

h

)∣∣∣2fY (y)dy
≤ c1θ

2m

nh2m+1

N∑
j=0

C2
j,m

h

∫
Ij(x0)

fY (t)dt, (A.1)

where Ij(x0) := [x0+θ(2j+m)−h, x0+θ(2j+m)+h]. Moreover, by [2, (A.16)],

1

h

∫
Ij(x0)

fY (y)dy ≤ c2
θ

∫ h

−h

f(t+ x0 + 2(j +m)θ)dt+
c3
θ

∫ h

−h

f(t+ x0 + 2jθ)dt

+
c4
θ

∫ mθ

−mθ

f(t+ x0 + (2j +m)θ)dt =: S1,j + S2,j + S3,j .

We have

N∑
j=0

C2
j,mS1,j =

c2
θ

N∑
j=0

C2
j,m

∫ h

−h

f(t+ x0 + 2(j +m)θ)dt

≤ c5

N∑
j=0

j2m−2

θ

∫ x0+2(j+m)θ+h

x0+2(j+m)θ−h

tqf(t)

(x0 + 2θj)q
dt ≤ c6Bh

θq+1

N∑
j=0

j2m−q−2, (A.2)

where we have used that Cj,m =
(
j+m−1
m−1

)
≤ c0j

m−1, f ∈ Nq(B) and θ > h

for large n. The term
∑N

j=0 C
2
j,mS2,j is also bounded from above by the same

expression as on the right hand side of (A.2). Furthermore,

N∑
j=0

C2
j,mS3,j = c4

N∑
j=0

C2
j,m

θ

∫ mθ

−mθ

f(t+ x0 + (2j +m)θ)dt

≤ c8
θ

N∑
j=0

j2m−2

∫ x0+2(j+m)θ

x0+2jθ

tqf(t)

(x0 + 2θj)q
dt ≤ c9B

θq

N∑
j=0

j2m−q−2. (A.3)

Combining (A.3), (A.2) and (A.1) we conclude that

varf
[
f̂+
h,N (x0)

]
≤ c10θ

2m−qBψN

nh2m+1
, ψN :=

⎧⎨
⎩

1, q > 2m− 1;
logN, q = 2m− 1;
N2m−q−1, q < 2m− 1.

(A.4)

(b). Now we bound the bias of f̂+
h,N (x0). It is shown in [2] that

Ef

[
f̂+
h,N (x0)

]
=

1

h

∫ ∞

−∞
K
( t− x0

h

)
f(t)dt+ TN (f ;x0),
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where

TN (f ;x0) =
m∑
j=1

(
m

j

)∫ 1

−1

K(y)f(yh+ x0 + 2θ(N + 1)j)dy.

Taking into account that f ∈ Nq(B) we obtain for any j = 1, . . . ,m

∫ 1

−1

|K(y)|f(yh+ x0 + 2θ(N + 1)j)dy ≤ c11
h

∫ x0+2θ(N+1)j+h

x0+2θ(N+1)j−h

f(y)dy

≤ c12Bh

h(x0 + 2θN)q
≤ c13B

(θN)q
.

This leads to the following upper bound on the bias of f̂h,N (x0):∣∣∣Ef

[
f̂+
h,N (x0)

]
− f(x0)

∣∣∣ ≤ c14

(
Ahα +

B

θqNq

)
. (A.5)

(c). We complete the proof by combining the bounds in (A.4) and (A.5) for
the cases q > 2m−1, q = 2m−1 and q < 2m−1. Straightforward algebra shows
that the following choice of h = h∗ and N = N∗ yields the theorem result:

(i) if q > 2m− 1 then we set

h∗ = c1

( B

A2n

) 1
2α+2m+1

, N∗ ≥ c2

(Bα+2m+1nα

A2m+1

) 1
q(2α+2m+1)

; (A.6)

(ii) if q = 2m− 1 then

h∗ = c3

(B logn

A2n

) 1
2α+2m+1

, N∗ = c4

{
Bα+2m+1

A2m+1

( n

logn

)α } 1
q(2α+2m+1)

;

(A.7)
(iii) if q < 2m− 1 then

h∗ = c5

( B(2m−1)/q

A(2m+q−1)/q

1

n

) 1
2α+2m+1+r

, N∗ = c6(B/A)1/qh
−α/q
∗ , (A.8)

where constants c1, . . . c6 do not depend on A and B.

A.2. Proof of Theorem 2

Proof. Without loss of generality we fix x0 to be 0. The proof is split into a
few steps: (i) defines two functions in Wα,q(A,B) and provides their point–wise
distance; (ii) bounds the χ2–divergence between densities of the observations;
(iii) specifies the proper tuning parameters and provides the rate for the lower
bound, and (iv) deals with derivation of the lower bound for the light tail regime.

(i). For s > 1/2 define

f0(x) :=
C(s)

(1 + x2)s
, x ∈ R, (A.9)
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where C(s) is a normalizing constant depending on s. Then, f0 ∈ Nq(B) for
1 < q ≤ 2s since f0(x) ≤ C(s)/x2s ≤ B/xq for x > 1 with properly chosen
B > 0. In addition, since f0 is infinitely differentiable, f0 ∈ Hα(A) for any α
with properly chosen A.

Define a function η0 on R via its Fourier transform φη0(ω) =
∫∞
−∞ η0(x)e

−iωxdx
as follows. Let φη0 be an infinitely differentiable function on R with the following
properties:

(a) φη0 is supported on [−1, 1];
(b) φη0 is symmetric, φη0(ω) = φη0(−ω), ∀ω ∈ R;
(c) given some fixed δ ∈ (0, 1/8), φη0(ω) = 1 for ω ∈ [0, 1− δ), φη0(ω) = 0 for

ω ≥ 1, and φη0 is monotone decreasing on [1− δ, 1).

Given h ∈ (0, π/θ) and N ∈ N, define

φη(ω) :=

2N∑
k=N+1

{
φη0

(
ω − πk/θ

h

)
+ φη0

(
ω + πk/θ

h

)}
. (A.10)

Note that φη is supported on:

2N⋃
k=N+1

Ak(h), Ak(h) :=

[
−πk

θ
− h,

−πk

θ
+ h

]
∪
[
πk

θ
− h,

πk

θ
+ h

]
. (A.11)

Then, define a function η through the inverse Fourier transform as follows:

η(x) =
1

2π

∫ ∞

−∞
φη(ω)e

iωxdω = 2hη0(hx)

2N∑
k=N+1

cos

(
πkx

θ

)
for x ∈ R. (A.12)

In the subsequent proof the parameters h and N are specified so that h → 0
and N → ∞ as n → ∞; thus, we tacitly assume that N is large and h is small
for large enough sample size n.

Given real numbers M > 0 and c0 > 0, define

f1(x) := f0(x) + c0Mη(x). (A.13)

We demonstrate that under appropriate choice of c0 and M , f1 is a probability
density from Wα,q(A,B) for any h and N . Observe that φη(0) = 0 implies∫∞
−∞ η(x)dx = 0 so that f1 integrates to one. Moreover, since φη0 is infinitely
differentiable and compactly supported, η0 is a rapidly decreasing function, i.e.,

|η(j)0 (x)x
| ≤ cj,l for any j, � = 0, 1, 2, . . .. In particular, for some constant c1(s)
depending on s only one has |η0(x)| ≤ c1(s)|x|−2s for all x ∈ R. It follows from
(A.12) that |η(x)| ≤ c2h

−2s+1|x|−2sN for x ∈ R. Therefore choosing

M = h2s−1N−1

we obtain c0M |η(x)| ≤ f0(x) for c0 small enough. Therefore f0 is non–negative,
and it is a probability density. Moreover, f1 ∈ Nq(B) for q ≤ 2s. If α is a
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positive integer then it follows from (A.12) that

∣∣∣η(α)(x)∣∣∣ =
∣∣∣∣∣2h

α∑
i=0

(
α

i

)
hiη

(i)
0 (xh)

2N∑
k=N+1

cos(α−i)(πkx/θ)

∣∣∣∣∣
≤ c2h

α∑
i=0

hiNα−i+1 ≤ c3hN
α+1.

Therefore, we can ensure f1 ∈ Hα(A) by selecting h and N so that

MhNα+1 = h2sNα ≤ A. (A.14)

Thus, under (A.14) we have f0, f1 ∈ Wα,q(A,B). In addition,

|f1(0)− f0(0)| = c0Mη(0) = c0Mhη0(0)N = c4h
2s. (A.15)

(ii). Now we derive an upper bound on the χ2–divergence between the den-
sities of observations fY,0 = g � f0 and fY,1 = g � f1 that correspond to f0 and
f1. Observe the following expression:

χ2(fY,1, fY,0) :=

∫ ∞

−∞

(fY,1(x)− fY,0(x))
2

fY0(x)
dx

(A.13)
= c20M

2

∫ ∞

−∞

|(g � η)(x)|2
(g � f0)(x)

dx.

Consider the denominator, g � f0, of the integrand. We have

(g � f0)(x) = C(s)

∫ ∞

−∞

g(y)

[1 + (x− y)2]s
dy

≥ C(s)

∫ ∞

−∞

g(y)

2s(1 + y2)s(1 + x2)s
dy ≥ c5

(1 + x2)s
,

where we have used the elementary inequality 1+ |x−y|2 ≤ 2(1+ |x|2)(1+ |y|2),
∀x, y. Then the χ2–divergence can be bounded:

χ2(fY,1; fY,0) ≤ c6M
2

∫ ∞

−∞
|(g � η)(x)|2dx+ c7M

2

∫ ∞

−∞
x2s|(g � η)(x)|2dx.

(A.16)

Let us handle the second integral on the right-hand side. For any positive
integer number s we have

∫ ∞

−∞
x2s|(g � η)(x)|2dx =

1

2π

∫ ∞

−∞

∣∣∣∣ dsdωs
φg(ω)φη(ω)

∣∣∣∣
2

dω. (A.17)

Note that

ds

dωs
φg(ω)φη(ω) =

s∑
j=0

(
s

j

)
φ(j)
g (ω)φ(s−j)

η (ω)
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=

s∑
j=0

(
s

j

)
φ
(j)
g (ω)

hs−j

2N∑
k=N+1

{
φ(s−j)
η0

(
ω − πk/θ

h

)
+ φ(s−j)

η0

(
ω + πk/θ

h

)}
.

Furthermore, φ
(j)
g can be expanded by Faá di Bruno formula for j ∈ N: if

φg0(ω) := sin(θω)/(θω) then φg(ω) = [φg0(ω)]
m and

φ(j)
g (ω) =

dj

dωj

(
sin θω

θω

)m

=

j∑
l=1

j · · · (j − l + 1)

(
sin θω

θω

)m−l

Bj,l

(
φ′
g0(ω), . . . , φ

(j−l+1)
g0 (ω)

)
,

where Bj,l denotes the Bell polynomials. Recall that Bj,l is a homogeneous

polynomial in j variables of degree l, and note that |φ(j)
g0 (ω)| ≤ c8(|ω|−1 ∧ 1),

∀j. Then,

∣∣∣φ(j)
g (ω)

∣∣∣ ≤ c9

j∑
l=1

∣∣∣∣ sin θωθω

∣∣∣∣
m−l

|θω|−l =
c9

|θω|m
j∑

l=1

| sin θω|m−l. (A.18)

Combining the above results and the fact that sets Ak(h) in (A.10) are disjoint
for k = N + 1, . . . , 2N , we bound the integral in (A.17) as follows:

∫ ∞

−∞

∣∣∣∣∣∣
s∑

j=0

(
s

j

)
φ
(j)
g (ω)

hs−j

2N∑
k=N+1

{
φ(s−j)
η0

(
ω − πk/θ

h

)
+ φ(s−j)

η0

(
ω + πk/θ

h

)}∣∣∣∣∣∣
2

dω

≤ c10h
−2s

2N∑
k=N+1

∫
Ak(h)

∣∣∣∣∣∣
s∑

j=0

hjφ(j)
g (ω)

∣∣∣∣∣∣
2

dω

≤ c11h
−2s

2N∑
k=N+1

∫
Ak(h)

⎛
⎝∣∣∣∣ sin θωθω

∣∣∣∣
2m

+
1

|θω|2m
s∑

j=1

h2j

j∑
l=1

| sin θω|2m−2l

⎞
⎠dω

≤ c12h
2m+1−2s

2N∑
k=N+1

1

k2m
= c13h

2m−2s+1N−2m+1.

In addition, the first integral on the left-hand side in (A.16) can be bounded
with s = 0, so that∫ ∞

−∞
|(g � η)(x)|2dx ≤ c14h

2m+1N−2m+1.

Therefore, for positive integer s,

χ2(fY,1; fY,0) ≤ c14M
2h2m+1N−2m+1 + c13M

2h2m−2s+1N−2m+1

≤ c15h
2m+2s−1N−2m−1. (A.19)
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The same upper bound holds for any non-integer s ≥ 0; this fact is due to
the interpolation inequality for the Sobolev spaces, see, e.g., Aubin [1] for the
details.

(iii). Now, based on (A.14) and (A.19), we specify parameters h = h∗ and
N = N∗ as follows:

N∗ :=

(
A

h2s
∗

)1/α

, h∗ :=

(
A

2m+1
α

n

) α
(2m+2s−1)α+2s(2m+1)

.

Under this choice (A.14) holds, and χ2(fY,1, fY,0) ≤ c15/n. Then the lower
bound on the minimax risk is obtained by plugging these expressions in (A.15)
and letting 2s = q > 1:

R∗
n[Wα,q(A,B)] ≥ c4

(
A

2m+1
α

n

) α
2α+2m+1+(α/q)(2m−1−q)

. (A.20)

(iv). To complete the proof of the theorem it remains to observe that in the
considered problem the following standard lower bound on the minimax risk
can be also established:

R∗
n[Wα,q(A,B)] ≥ c4

(
A

2m+1
α

n

) α
2α+2m+1

. (A.21)

For completeness, we provide the proof sketch. Let f0 be given by (A.9), and
let η be the function defined via its Fourier transform φη as follows

φη(ω) = φη0(2ωh− 3) + φη0(2ωh+ 3),

where φη0 is a function with properties (a)–(c). Obviously, φη is symmetric,
supported on [−2/h,−1/h] ∪ [1/h, 2/h], and

η(x) =
1

2π

∫ ∞

−∞

[
φη0(2ωh− 3) + φη0(2ωh+ 3)

]
eiωxdω =

2

h
η0

( x

2h

)
cos

(3x
2

)
.

The function f1 is defined by (A.13), and the choice M = Ahα+1 and properties
of function η0 guarantee that f1 is a density from the class Wα,q(A,B) with
q ≤ 2s. With this construction |f0(0)− f1(0)| = c0Mη(0) = c16Ah

α. The upper
bound on the χ2–divergence between fY,0 and fY,1 is computed along the same
lines as above with the following modifications. Now we apply (A.18) to get

∣∣∣ ds
dωs

φg(ω)φη(ω)
∣∣∣ ≤ s∑

j=0

(
s

j

)∣∣∣φ(j)
g (ω)φ(s−j)

η (ω)
∣∣∣ ≤ c17|θω|−m

s∑
j=0

|φ(s−j)
η (ω)|,

and, by properties of function φη,∫ ∞

−∞
x2s|(g � η)(x)|2dx ≤ c18

∫ 2/h

1/h

|ω|−2mdω = c19h
2m−1.
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The same upper bound holds for the integral
∫∞
−∞ |(g � η)(x)|2dx which leads to

χ2(fY,1; fY,0) ≤ c20M
2h2m−1 = c20A

2h2α+2m+1.

Then (A.21) follows from the choice h∗ = (A2n)−1/(2α+2m+1).
Combining (A.20) and (A.21) and noting that the following relation holds

for 1 < q < 2m− 1

α

2α+ 2m+ 1 + (α/q)(2m− 1− q)
≤ α

2α+ 2m+ 1
,

we complete the proof.

A.3. Proof of Corollary 1

Proof. The upper bound (3.7) is obtained directly from Theorem 1 applied with
q = 1. We need to establish (3.6) only. The proof goes along the lines of the
proof of Theorem 2 with minor modifications that are indicated below.

Define

f0(x) :=
h

π(1 + h2x2)
, x ∈ R,

where h > 0 is a parameter to be specified. Obviously, f0 ∈ Hα(A) for small
enough h. Using the function η defined in (A.10), (A.11), and (A.12), let

f1(x) := f0(x) + c0Mη(x) for x ∈ R.

Similarly to the proof of Theorem 2, |η(x)| ≤ c1h
−1N |x|−2. Set M := N−1, so

that c0M |η(x)| = c0c1/(h|x|2) ≤ f0(x) holds for sufficiently small c0. Since we
use the same function η in Theorem 2, we can ensure f1 ∈ Hα(A) by setting

MhNα+1 = hNα ≤ A. (A.22)

Therefore, for x0 = 0, we have the following point-wise distance

|f1(0)− f0(0)| = c1Mη(0) = c1Mhη0(0)N = c2h.

The bound on the χ2–divergence takes the following form

χ2(fY,1; fY,0) ≤c3
M2

h

∫ ∞

−∞
|(g � η)(x)|2dx+ c4M

2h

∫ ∞

−∞
x2|(g � η)(x)|2dx

≤c5(M
2/h)h2m+1N−2m+1 + c6(M

2h)h2m−1N−2m+1

≤c7h
2mN−2m−1. (A.23)

Based on (A.22) and (A.23), we choose h = h∗ and N = N∗ as follows:

N∗ := (A/h∗)
1/α, h∗ := (A2m+1/nα)

1
2mα+2m+1

which leads to the announced result.
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A.4. Proof of Theorem 3

Proof. (I). The error of estimator f̂+
τ (x0) is

|f̂+
τ (x0)− f(x0)| ≤ |Bτ (x0; f)|+ |ξτ (x0)|,

where Bτ (x0; f) is the bias term, and ξτ (x0) is the stochastic error given by
(4.1). The bias term is expressed as follows (see the proof of Theorem 1):

Bτ (x0; f) :=Ef

[
f̂+
h,N (x0)

]
− f(x0)

=
1

h

∫ ∞

−∞
K
( t− x0

h

)
[f(t)− f(x0)]dt

+

m∑
j=1

(
m
j

)
(−1)j

∫ 1

−1

K(y)f(yh+ x0 + 2θ(N + 1)j)dy

=

m∑
j=0

(
m
j

)
(−1)j

∫ 1

−1

K(y)
[
f(yh+ x0 + 2θ(N + 1)j)

−f(x0 + 2θ(N + 1)j)
]
dy +

m∑
j=1

(
m
j

)
(−1)jf(x0 + 2θ(N + 1)j).

Therefore by definitions of B̄h(f) and B̄N (x0; f) [see (4.8), (4.9)] we have

|Bτ (x0; f)| ≤ 2mB̄h(f) + 2mB̄N (x0; f) ≤ B̄τ (x0; f),

where B̄τ (x0; f) is defined in (4.10).
(II). Now we demonstrate that

|Bτ∨∧τ ′(x0; f)−Bτ ′(x0; f)| ≤ B̄τ (x0; f), ∀τ, τ ′ ∈ T .

For this purpose denote

Sh(x) :=
1

h

∫ ∞

−∞
K
( t− x

h

)
[f(t)− f(x)]dt

TN (x) :=

m∑
j=1

(
m
j

)
(−1)jf(x+ 2θ(N + 1)j)

and write

Bτ (x0; f) = Sh(x0) + TN (x0) +

m∑
j=1

(
m
j

)
(−1)jSh(x0 + 2θ(N + 1)j). (A.24)

In view of (A.24) for any pair τ = (h,N), τ ′ = (h′, N ′) we have

Bτ∨∧τ ′(x0; f)−Bτ ′(x0; f) =
[
Sh∨h′(x0)− Sh′(x0)

]
+
[
TN∧N ′(x0)− TN ′(x0)

]
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+

m∑
j=1

(
m
j

)
(−1)j

[
Sh∨h′(x0 + 2θ(N ∧N ′ + 1)j)− Sh′(x0 + 2θ(N ′ + 1)j)

]
.

(A.25)

We consider the three terms on the right hand side of (A.25):

sup
h′∈H

∣∣Sh∨h′(x0)− Sh′(x0)
∣∣ = sup

h′≤h

∣∣Sh∨h′(x0)− Sh′(x0)
∣∣

≤
∣∣Sh(x0)

∣∣+ sup
h′≤h

∣∣Sh′(x0)
∣∣ ≤ 2 sup

h′≤h

∣∣Sh′(x0)
∣∣, (A.26)

and similarly

sup
N ′∈N

∣∣TN∧N ′(x0)− TN ′(x0)
∣∣ ≤ 2 sup

N ′≥N

m∑
j=1

(
m
j

)
f(x0 + 2θ(N ′ + 1)j). (A.27)

Furthermore

sup
h′,N ′

∣∣Sh∨h′(x0 + 2θ(N ∧N ′ + 1)j)− Sh′(x0 + 2θ(N ′ + 1)j)
∣∣

≤ sup
h′,N ′

∣∣Sh∨h′(x0 + 2θ(N ∧N ′ + 1)j)− Sh′(x0 + 2θ(N ′ ∧N + 1)j)
∣∣

+ sup
h′,N ′

∣∣Sh′(x0 + 2θ(N ∧N ′ + 1)j)− Sh′(x0 + 2θ(N ′ + 1)j)
∣∣

≤ 2 sup
h′≤h

∥∥Sh′
∥∥
∞ + 2 sup

h′∈H
sup

N ′≥N

∣∣Sh′(x0 + 2θ(N ′ + 1)j)
∣∣

≤ 2 sup
h′≤h

∥∥Sh′
∥∥
∞ + 2 sup

h∈H
sup

N ′≥N

∣∣∣∣
∫ 1

−1

K(y)f(yh+ x0 + 2θ(N ′ + 1)j)dy

∣∣∣∣
+ 2 sup

N ′≥N
f(x0 + 2θ(N ′ + 1)j)

≤ 2 sup
h′≤h

∥∥Sh′
∥∥
∞ + 2(1 + ‖K‖1) sup

|t|≤θ

sup
N ′≥N

f(t+ x0 + 2θ(N ′ + 1)j). (A.28)

Combining (A.26)–(A.28) with (A.25) we obtain

sup
τ ′∈T

∣∣Bτ∨∧τ ′(x0; f)−Bτ ′(x0; f)
∣∣ ≤ 2m+1 sup

h′≤h

∥∥Sh′
∥∥
∞

+ 2m+1(1 + ‖K‖1) max
1≤j≤m

sup
|t|≤θ

sup
N ′≥N

f(t+ x0 + 2θ(N ′ + 1)j)

= 2m+1B̄h(f) + 2m+1(1 + ‖K‖1)B̄N (x0; f) ≤ B̄τ (x0; f), (A.29)

where B̄h(f), B̄N (x0; f) and B̄τ (x0; f) are defined in (4.8), (4.9), and (4.10)
respectively.

(III). Let τ̂ = (ĥ, N̂) be the parameter selected by the rule (4.6)–(4.7). For
any τ ∈ T we have the following triangle inequality

|f̂+
τ̂ (x0)−f(x0)| ≤ |f̂+

τ̂ (x0)− f̂+
τ̂∨∧τ (x0)|+ |f̂+

τ∨∧τ̂ (x0)− f̂+
τ (x0)|+ |f̂+

τ (x0)−f(x0)|.
(A.30)
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Now we bound the terms on the right hand side separately.
We begin with the following simple observation: it follows from (4.6) that

R̂τ (x0)− Λ̂τ (κ)− sup
τ ′∈T

Λ̂τ∨∧τ ′(κ)

= sup
τ ′∈T

[∣∣f̂+
τ∨∧τ ′(x0)− f̂+

τ ′(x0)
∣∣− Λ̂τ∨∧τ ′(κ)− Λ̂τ ′(κ)

]
+

≤ sup
τ ′∈T

∣∣Bτ∨∧τ ′(x0; f)−Bτ ′(x0; f)
∣∣

+ sup
τ ′∈T

[
|ξτ∨∧τ ′(x0)− ξτ ′(x0)

∣∣− Λ̂τ∨∧τ ′(κ)− Λ̂τ ′(κ)
]
+
.

Hence by (A.29)

R̂τ (x0) ≤ B̄τ (x0; f) + 2ζ̂(x0) + Λ̂τ (κ) + sup
τ ′∈T

Λ̂τ∨∧τ ′(κ), (A.31)

where
ζ̂(x0) := sup

τ∈T

[
|ξτ (x0)| − Λ̂τ (κ)

]
+
.

Therefore for any τ, τ ′ ∈ T∣∣f̂+
τ∨∧τ ′(x0)− f̂+

τ ′(x0)
∣∣ ≤ ∣∣Bτ∨∧τ ′(x0; f)−Bτ ′(x0; f)

∣∣+ ∣∣ξτ∨∧τ ′(x0)− ξτ ′(x0)
∣∣

≤ B̄τ (x0; f) + 2ζ̂(x0) + Λ̂τ∨∧τ ′(κ) + Λ̂τ ′(κ) ≤ B̄τ (x0; f) + 2ζ̂(x0) + R̂τ ′(x0),

where the last inequality follows from the definition of R̂τ (x0). This inequality
together with (A.31) imply the following bound on the first term on the right
hand side of (A.30):

|f̂+
τ̂∨∧τ (x0)− f̂+

τ̂ (x0)| ≤ B̄τ (x0; f) + 2ζ̂(x0) + R̂τ̂ (x0)

≤ B̄τ (x0; f) + 2ζ̂(x0) + R̂τ (x0) ≤ 2B̄τ (x0; f) + 4ζ̂(x0) + Λ̂τ (κ) + sup
τ ′

Λ̂τ∨∧τ ′(κ),

(A.32)

where in the penultimate inequality we have used that R̂τ̂ (x0) ≤ R̂τ (x0) for any
τ ∈ T .

We proceed with bounding the second term on the right hand side of (A.30):
by definition of R̂τ̂ (x0) we have

|f̂+
τ∨∧τ̂ (x0)− f̂+

τ (x0)| ± [Λ̂τ∨∧τ̂ (κ) + Λ̂τ (κ)]

≤ R̂τ̂ (x0) + sup
τ ′∈T

Λ̂τ∨∧τ ′(κ) + Λ̂τ (κ) ≤ R̂τ (x0) + sup
τ ′∈T

Λ̂τ∨∧τ ′(κ) + Λ̂τ (κ)

≤ B̄τ (x0; f) + 2ζ̂(x0) + 2 sup
τ ′∈T

Λ̂τ∨∧τ ′(κ) + 2Λ̂τ (κ). (A.33)

Finally

|f̂+
τ (x0)− f(x0)| ≤ |Bτ (x0; f)|+ |ξτ (x0)| ≤ B̄τ (x0; f) + Λτ (κ) + ζ(x0), (A.34)



3420 A. Goldenshluger and T. Kim

where we recall that

ζ(x0) := sup
τ∈T

[
|ξτ (x0)| − Λτ (κ)

]
+
.

Combining (A.32), (A.33), (A.34) and (A.30) we obtain

∣∣f̂+
τ̂ (x0)− f(x0)

∣∣ ≤ inf
τ∈T

{
4B̄τ (x0; f) + 3Λ̂τ (κ) + 3 sup

τ ′∈T
Λ̂τ∨∧τ ′(κ) + Λτ (κ)

}
+ 6ζ̂(x0) + ζ(x0).

(IV). We complete the proof using Lemmas 2 and 1 in Appendix. Observing
that Λ̂τ (κ) = 7Λ̃τ (κ) and applying the first inequality in (A.41) we have

ζ̂(x0) ≤ ζ(x0) + sup
τ∈T

[
Λτ (κ)− 7Λ̃τ (κ)

]
+
≤ ζ(x0) + 2cη(x0),

where c = 2−m−2θ‖K(m)‖−1
∞ [cf. Lemma 2]. Then using the second inequality

in (A.41) in order to bound Λ̂τ (κ) and supτ ′∈T Λ̂τ∨∧τ ′(κ) in terms of Λτ (κ) we
obtain∣∣f̂+

τ̂ (x0)− f(x0)
∣∣ ≤ inf

τ∈T

{
4B̄τ (x0; f) + 127Λτ (κ) + 126 sup

τ ′∈T
Λτ∨∧τ ′(κ)

}

+7ζ(x0) + (42 + 12c)η(x0) +
42κ

n
.

By definition of the opeartion ∨∧ and by definition of σ2
τ and uτ [see (4.2) and

(4.3)] we have that σ2
τ∨∧τ ′ ≤ σ2

τ and uτ∨∧τ ′ ≤ uτ for any τ, τ ′ ∈ T ; therefore
supτ ′∈T Λτ∨∧τ ′(κ) ≤ Λτ (κ) for all τ ∈ T . We complete the proof by setting
δ(x0) = ζ(x0) + η(x0) and using Lemma 1.

A.5. Proof of Corollary 2

Proof. Below c1, c2, . . . stand for positive constants independent of n, A and
B. The proof goes along the following lines. We select values of h and N from
H×N and apply the oracle inequality of Theorem 3.

The proof of Theorem 1 shows that if f ∈ Wα,q(A,B) then

B̄h(f) ≤ c1Ah
α, B̄N (x0; f) ≤ c2Bθ−qN−q.

Furthermore, by (A.4)

σ2
τ ≤ c3θ

2m−qBψN

h2m+1
, ψN :=

⎧⎨
⎩

1, q > 2m− 1;
logN, q = 2m− 1;
N2m−q−1, q < 2m− 1.

In addition, with κ∗ = κ0 log n we have

Λτ (κ∗) ≤ c4

(
B1/2ψ

1/2
N

hm+1/2

√
κ0 logn

n
+

Nm−1

hm+1

κ0 logn

n

)
. (A.35)
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First we note that for all hmin ≤ h ≤ hmax and N ≤ Nmax and all sufficiently
large n

Λτ (κ∗) ≤ c5
B1/2ψ

1/2
N

hm+1/2

√
κ0 logn

n
.

Indeed, this inequality follows from (A.35) because by the choice of hmin and
Nmax for large n one has

hmin

( n

logn

)
=
( n

logn

)2m/(2m+1)

≥ N2m−2
max =

( n

logn

)(2m−2)/(2m)

.

Thus, using (4.11) we have

|f̂∗(x0)− f(x0)| ≤ c6 inf
(h,N)∈H×N

{
Ahα +

B

θqNq
+

B1/2ψ
1/2
N

hm+1/2

√
log n

n

}

+c7

(
δ(x0) +

κ0 logn

n

)
.

Now we set h∗ and N∗ to be defined by formulas (A.8), (A.7) and (A.6) with
n replaced by n/ log n. Note that these values of h and N balance the bias and
stochastic error bounds on the right hand side of the previous display formula
[for details see the proof of Theorem 1]. We need to verify that h∗ and N∗ satisfy
h∗ ≥ hmin and N∗ ≤ Nmax for large n. The first inequality is evident because
1/(2α+2m+1) ≥ 1/(2m+1) for all α > 0. To check the inequality N∗ ≤ Nmax

we note that N∗ = O
(
(n/ logn)

α
q(2m+2α+1+r)

)
in the case 1 ≤ q < 2m− 1 and

α

q(2m+ 2α+ 1 + r)
=

α

α(2m− 1 + q) + q(2m+ 1)
≤ 1

2m

for all α > 0. If q > 2m− 1 then N∗ = O
(
(n/ log n)

α
q(2m+2α+1)

)
, and

α

q(2m+ 2α+ 1)
≤ α

(2m− 1)(2m+ 2α+ 1)
≤ 1

4m− 2
, ∀α > 0.

Thus, we always have N∗ ≤ Nmax for large n. The inequalities h∗ ≥ hmin and
N∗ ≤ Nmax imply that sets H and N contain elements that bound h∗ and N∗
from below and from above within constant factors. This yields

|f̂∗(x0)− f(x0)| ≤ c8ϕ(n/ logn) + c7

(
δ(x0) +

κ0 logn

n

)
,

where function ϕ(·) is defined in (3.5).
To complete the proof we note that Mh = O(log2 n), MN = O(n1/(2m)), and

Λ̄(κ∗) ≤ c9
Nm−1

max

h
m+1/2
min

√
log n

n

(
1 +

Nm−1
max

hm+1
min

)
≤ c10

( n

logn

)3/2
,

so that if κ0 ≥ 5 then in view of (4.12) for large n

Ef [δ(x0)]
2 ≤ c11(log2 n)n

1/2m
( n

log n

)3
e−κ0 logn ≤ c12n

−1.

This completes the proof.
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A.6. Auxiliary results

Denote

L+
τ (y) :=

(2θ)m

hm+1

N∑
j=0

Cj,mK(m)

(
y − x0 − θ(2j +m)

h

)
.

Then

varf [f̂
+
τ (x0)] = Ef [ξτ (x0)]

2, ξτ (x0) :=
1

n

n∑
i=1

[
L+
τ (Yi)− EfL

+
τ (Yi)

]
.

Let

ζ(x0) := sup
τ∈T

[
|ξτ (x0)| − Λτ (κ)

]
+
; (A.36)

η(x0) := sup
τ∈T

[
|σ̂2

τ − σ2
τ | − uτΛτ (κ)

]
+
. (A.37)

Lemma 1. For any p ≥ 1 and κ > 0 one has

Ef [ζ(x0)]
p ≤ 2Γ(p+ 1)MhMN

[
Λτ (κ)

]p
κ

−pe−κ ;

Ef [η(x0)]
p ≤ 2Γ(p+ 1)MhMN

[
uτΛτ (κ)

]p
κ

−pe−κ .

Proof. (i). Observe that |L+
τ (Yj)| ≤ uτ/2, where uτ is defined in (4.3); hence

|ξτ | ≤ uτ . In addition, it follows from (A.1) that varf
[
L+
τ (Y1)

]
is bounded above

by:

σ2
τ :=

(2θ)2m

h2m+2

N∑
j=0

C2
j,m

∫ ∞

−∞

∣∣∣∣K(m)

(
y − x0 − θ(2j +m)

h

)∣∣∣∣
2

fY (y)dy.

By Bernstein’s inequality for any z > 0

Pf

[
|ξτ (x0)| ≥ z

]
≤ 2 exp

{
− nz2

2σ2
τ + 2

3uτz

}
.

Therefore for Λτ (κ) defined in (4.4) we obtain

Pf

[
|ξτ (x0)| ≥ Λτ (κ)

]
≤ 2 exp

{
−

(
στ

√
2κ
n + 2

3uτκn
−1
)2

2σ2
τ/n+ 2uτ

3n

(
στ

√
2κ
n + 2κuτ

3n

)
}

≤ 2e−κ ,

(A.38)

where we have used the following elementary inequality: for any a > 0, b > 0
and κ > 0

(
√
κa+ κb)2

a2 + b(
√
κa+ κb)

≥ κ. (A.39)
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Therefore, for any p ≥ 1

Ef

[
|ξτ (x0)| − Λτ (κ)

]p
+
= p

∫ ∞

0

tp−1Pf

[
|ξτ (x0)| ≥ Λτ (κ) + t

]
dt

≤ p
[
Λτ (κ)

]p ∫ ∞

0

yp−1Pf

[
|ξτ (x0)| ≥ Λτ (κ(1 + y))

]
dy

≤ 2p[Λτ (κ)]
p

∫ ∞

0

yp−1e−κ(1+y)dy = 2Γ(p+ 1)
[
Λτ (κ)

]p
κ

−pe−κ ,

(A.40)

where the second line follows from the change of variables and the fact that
Λτ (aκ) ≤ aΛτ (κ) for a ≥ 1; and the third line is a consequence of (A.38).

(ii). Let σ̂2
τ be the empirical estimator for σ2

τ based on the sample Y1, . . . , Yn:

σ̂2
τ :=

(2θ)2m

nh2m+2

n∑
i=1

N∑
j=0

C2
j,m

∣∣∣∣K(m)

(
Yi − x0 − θ(2j +m)

h

)∣∣∣∣
2

.

Then

σ̂2
τ − σ2

τ =
1

n

n∑
i=1

(
ψτ (Yi)− Ef [ψτ (Yi)]

)
,

where we put

ψτ (y) :=
(2θ)2m

h2m+2

N∑
j=0

C2
j,m

∣∣∣∣K(m)

(
y − x0 − θ(2j +m)

h

)∣∣∣∣
2

.

It is evident that

|ψτ (y)| ≤
(2θ)2m

h2m+2
C2

N,m‖K(m)‖2∞ = 1
4u

2
τ , ∀y;

hence
∣∣ψτ (Yi)− Ef [ψτ (Yi)]

∣∣ ≤ u2
τ/4, and

varf [ψτ (Yi)] ≤ Ef

[
ψ2
τ (Yi)

]
≤ 1

4σ
2
τu

2
τ .

Therefore by the Bernstein inequality for any z ≥ 0

Pf

[∣∣σ̂2
τ − σ2

τ

∣∣ ≥ z
]
≤ 2 exp

{
− nz2

1
2σ

2
τu

2
τ + 1

6u
2
τz

}
.

This inequality together with (A.39) implies that

Pf

[
|σ̂2

τ − σ2
τ | ≥ uτΛτ (κ)

]
≤ Pf

[
|σ̂2

τ − σ2
τ | ≥ uτ

(
στ

√
κ

2n
+

uτκ

6n

)]
≤ 2e−κ .

Similarly to the derivation in (A.40) we have for any p ≥ 1

Ef

[
|σ̂2

τ − σ2| − uτΛτ (κ)
]p
+
= p

∫ ∞

0

tp−1Pf

[
|σ̂2

τ − σ2
τ | ≥ uτΛτ (κ) + t

]
dt
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≤ p
[
uτΛτ (κ)

]p ∫ ∞

0

yp−1Pf

[
|σ̂2

τ − σ2
τ | ≥ uτΛτ (κ(1 + y))

]
dy

≤ 2p[uτΛτ (κ)]
p

∫ ∞

0

yp−1e−κ(1+y)dy = 2Γ(p+ 1)
[
uτΛτ (κ)

]p
κ

−pe−κ .

This completes the proof.

Denote

Λ̃τ (κ) := σ̂τ

√
2κ

n
+

2uτκ

3n

and observe that Λ̃τ (κ) =
1
7 Λ̂τ (κ), where Λ̂τ (κ) is defined in (4.5).

Lemma 2. For any τ ∈ T one has

[
Λτ (κ)− 7Λ̃τ (κ)

]
+
≤ 2cη(x0),

[
Λ̃τ (κ)− 6Λτ (κ)

]
+
≤ η(x0) +

κ

n
, (A.41)

where η(x0) is defined in (A.37) and c := 2−m−2θ‖K(m)‖−1
∞ .

Proof. We have Λ̃τ (κ)− Λτ (κ) = (σ̂τ − στ )
√
2κ/n. Define

T1 :=
{
τ ∈ T : στ

√
2κ

n
≥ 4uτκ

n

}
.

If τ ∈ T1 then στ ≥ 2
√
2uτ (κ/n)

1/2 and

|σ̂τ − στ | =
|σ̂2

τ − σ2
τ |

σ̂τ + στ
≤ 1

στ
|σ̂2

τ − σ2
τ | ≤

1

2uτ

√
n

2κ

[
η(x0) + uτΛτ (κ)

]
;

hence for any τ ∈ T1

|Λ̃τ (κ)− Λτ (κ)| ≤ 1
2Λτ (κ) +

η(x0)

2uτ
≤ 1

2Λτ (κ) + cη(x0) (A.42)

where we have used that uτ ≥ 2m+1θ−1‖K(m)‖∞ for all τ ∈ T , and denoted for
brevity c := 2−m−2θ‖K(m)‖−1

∞ . Thus (A.42) implies that[
Λ̃τ (κ)− 3

2Λτ (κ)
]
+
≤ cη(x0) and

[
Λτ (κ)− 2Λ̃τ (κ)

]
+
≤ 2cη(x0), ∀τ ∈ T1.

(A.43)
Now assume that τ ∈ T2 := T \ T1; for such τ , Λτ (κ) ≤ 14

3 uτκ/n. Note also

that by definition Λ̃τ (κ) ≥ 2
3uτκ/n; therefore

[Λτ (κ)− 7Λ̃τ (κ)]+ = 0, ∀τ ∈ T2. (A.44)

Furthermore, we bound |σ̂τ − στ | as follows:

|σ̂τ − στ | ≤ |σ̂2
τ − σ2

τ |1/2 ≤
√

η(x0) +
√
uτΛτ (κ) ≤

√
η(x0) +

√
5uτ

√
κ

n
.
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Therefore for any τ ∈ T2

∣∣Λ̃τ (κ)− Λτ (κ)
∣∣ ≤

√
2κ

n
η(x0) +

√
10

uτκ

n
≤ κ

n
+ η(x0) + 5Λτ (κ),

where the last bound follows from the elementary inequality
√
2ab ≤

√
a2 + b2 ≤

a+ b for a, b ≥ 0. This implies that

[
Λ̃τ (κ)− 6Λτ (κ)

]
+
≤ κ

n
+ η(x0), ∀τ ∈ T2. (A.45)

Combining (A.43), (A.44) and (A.45) we complete the proof.
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