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Abstract: In this paper, we focus on the high-dimensional location testing
problem of directional data under the assumption of rotationally symmet-
ric distributions, where the data dimension is potentially much larger than
the sample size. We study the family of directional weighted spatial sign
tests for this testing problem and establish the asymptotic null distribu-
tions and local power properties of this family. In particular, we find that
the test based on the inverse norm weight, named as the inverse norm
weight spatial sign test, has the maximum asymptotic power in this family.
As demonstrated by extensive numerical results, the inverse norm weight
spatial sign test has advantages in empirical power compared with some
other members in the family as well as some existing tests.
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1. Introduction

Directional data have been widely studied in meteorology [7], astronomy [2],
earth science [22] and biology [10]. These fields naturally yield a large number
of directional data, such as the wind direction data and the earth scale spatial

∗This work was supported by NSFC grants 11501092, 11571068, 11671073, 11671-178,
the Fundamental Research Funds for the Central Universities grant 241201-7BJ002, the Key
Laboratory of Applied Statistics of MOE (KLAS) grants 130026507 and 130028612.

†Corresponding author.

3249

https://imstat.org/journals-and-publications/electronic-journal-of-statistics/
https://doi.org/10.1214/21-EJS1860
mailto:wanghf206@nenu.edu.cn
mailto:fengl100@nenu.edu.cn
mailto:liubh100@nenu.edu.cn
mailto:graceqinzhou@jsnu.edu.cn
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


3250 H. Wang et al.

data, which are commonly considered as an implementation of a random vector
on a hypersphere. Besides, some data from other fields are essential only for
their relative size, hence being projected onto a unit hypersphere, where the
projection removes the overall scale factor associated with the size. For analyzing
directional data, the family of rotationally symmetric distributions is one of
the most commonly used distributions, which has played a central role in the
application of directional statistics [15]. One prominent member of the family of
rotationally symmetric distributions is the Fisher-von Mises-Langevin (FvML)
distribution, which plays a critical role in directional statistics, on par with that
of the Gaussian distribution in the classic multivariate setting.

The literature on the inference of location parameters under the assump-
tion of rotationally symmetric distributions is abundant. For example, [23], [3],
[11], [13] and [19] considered the location inference problems in low-dimensional
situations. [21] and [5] tackled the problem for spherical regression, while [1]
considered the location testing problem under axial frames. [8] considered the
problem of testing rotational symmetry on hyperspheres, and introduced two
locally asymptotically maximin tests against two classes of directional distribu-
tions in the Le Cam sense.

In this paper, we focus on the high-dimensional location testing problem of
directional data under the assumption of rotationally symmetric distributions,
where the null hypothesis is that the location parameter vector is equal to a
given vector on the unit hypersphere. To deal with such a testing problem, [23]
proposed a traditional Watson test based on the mean of the spherical sample.
[17] proposed a class of rank tests and discussed the Le Cam optimality of the
tests. Then, [12] proposed a high-dimensional Watson test by standardizing the
traditional Watson statistic.

To develop some alternative high-dimensional tools for testing location under
rotationally symmetric distributions, in this paper we study the family of direc-
tional weighted spatial sign tests for testing location of directional data under
rotationally symmetric distributions. In particular, we find that the test based
on the inverse norm weight, named as the inverse norm weight spatial sign test,
has the maximum asymptotic power in this family. Indeed, the proposed in-
verse norm weight spatial sign test is an extension of the inverse norm sign test
devised for general data. We then present its asymptotic properties under the
unified framework of directional weighted spatial sign tests, and demonstrate
its empirical power advantages via extensive numerical results.

The rest of the paper is organized as follows. In Section 2, we introduce
the family of directional weighted spatial sign tests for high-dimensional direc-
tional data under rotationally symmetric distributions. Besides, we establish
the corresponding theoretical results, including the limiting null distributions,
the asymptotic power under the local alternative and the asymptotic relative
efficiency results in Section 3. Then, we investigate the numerical performance
of the proposed test in comparison with its main competitors in Section 4.
Finally, we conclude the paper with some discussions in Section 5, and rele-
gate some additional numerical results as well as the technical proofs to the
appendix.



Inverse norm weight spatial sign test 3251

2. Test statistics

Let X1, · · · ,Xn ∈ Sp−1 .={x ∈ R
p : ‖x‖ = 1} be a sequence of p-dimensional in-

dependent and identically distributed (iid) observations from a rotationally sym-
metric distribution with spherical location θ ∈ Sp−1. We recall that a random
vector Xi is said to be rotationally symmetric about some location θ ∈ Sp−1 if
its distribution is invariant under rotations about θ, i.e. if OXi has the same
distribution as Xi for any orthogonal p×p matrix O satisfying Oθ = θ. In par-
ticular, Xi has the density of cf,pf(x

Tθ) with x ∈ Sp−1, where f : [−1, 1] → R
+

is an absolutely continuous function, called the angular function, and cf,p is the
standardization constant. For example, the FvML distribution, one of the most
popular members of the rotationally symmetric distributions, is obtained by
taking the angular function t → exp(κt), where t ∈ [−1, 1] and κ ≥ 0 is the
concentration parameter.

Our interest is to test the location hypotheses

H0 : θ = θ0 versus H1 : θ �= θ0, (2.1)

for some given location θ0 ∈ Sp−1. To test (2.1), we study the family of di-
rectional weighted spatial sign tests, where the test statistics are constructed
as

Tn(ω)
.
=

2

n(n− 1)

∑∑
i<j

ω(‖(Ip − θ0θ
T
0 )Xi‖)ω(‖(Ip − θ0θ

T
0 )Xj‖)

×U{(Ip − θ0θ
T
0 )Xi}TU{(Ip − θ0θ

T
0 )Xj}. (2.2)

Here, ω(·) is a nonnegative and continuous weight function on R
+, Ip de-

notes the p× p identity matrix and U(·) denotes the spatial sign function with
U(a)

.
=a/‖a‖ if a �= 0 and U(a)

.
=0 if a = 0. Define

σ̂2
n(ω)

.
=2n−4p−1

∑∑
i �=j

ω(‖(Ip − θ0θ
T
0 )Xi‖)2ω(‖(Ip − θ0θ

T
0 )Xj‖)2. (2.3)

According to Theorems 3.1 and 3.2 presented in the next section, for each ω, H0

will be rejected when Tn(ω)/
√
σ̂2
n(ω) > zα, where zα is the upper α-quantile of

the standard normal distribution N (0, 1) with significance level α. We will call
this test the Tn(ω)-based test.

In fact, some members of this family are closely related to existing tests for
(2.1). For example, taking ω(t) = ωN(t)

.
=t for t ≥ 0, i.e. using the norm (N)

weight function ωN, the test statistic is

Tn(ωN) =
2

n(n− 1)

∑∑
i<j

‖(Ip − θ0θ
T
0 )Xi‖‖(Ip − θ0θ

T
0 )Xj‖

×U{(Ip − θ0θ
T
0 )Xi}TU{(Ip − θ0θ

T
0 )Xj}. (2.4)

The main part of Tn(ωN) is the same as that of the high-dimensional Watson
test statistic proposed by [12]:

W̃n
.
=

√
2(p− 1)∑n
i=1 v

2
i0

∑∑
i<j

‖(Ip − θ0θ
T
0 )Xi‖‖(Ip − θ0θ

T
0 )Xj‖
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×U{(Ip − θ0θ
T
0 )Xi}TU{(Ip − θ0θ

T
0 )Xj},

where vi0
.
=‖(Ip − θ0θ

T
0 )Xi‖.

The relationship between the two statistics is discussed in the following propo-
sition. To present this relationship, we need to impose the following condition.

(C0) E(v4i )/E
2(v2i ) = O(1), E(v2i ) �= 0 and for each i ∈ {1 · · · , n}, E{v−4

i } exists
for sufficiently large p.

Here, vi
.
= ‖(Ip−θθT)Xi‖ = (1−u2

i )
1/2, where ui

.
= XT

i θ andXi is rotationally
symmetric about θ with concentration parameter κ. The probability density
function of ui is

cp,f,κ
(
1− u2

)(p−3)/2
fκ (u) ,

where u ∈ [−1, 1] and cp,f,κ
.
= 1/

∫ 1

−1

(
1− u2

)(p−3)/2
fκ (u) du. It can be seen

that the distributions of ui and vi do not depend on θ.

Proposition 2.1. As n, p → ∞, under condition (C0) and H0,

W̃n/
Tn(ωN)√
σ̂2
n(ωN )

→ 1 in probability.

This proposition indicates that the Tn(ωN)-based and W̃n-based tests are

asymptotically equivalent, where the W̃n-based test rejects H0 when W̃n > zα.
We recall that all proofs are discussed in the appendix.

In fact, W̃n is a standardized version of the traditional Watson test statistic
[23, 20]

Wn
.
=
n(p− 1)X̄T

n (Ip − θ0θ
T
0 )X̄n

1− 1
n

∑n
i=1(X

T
i θ0)

2
,

with asymptotic mean p − 1 and asymptotic variance 2(p − 1) under the null
hypothesis, where X̄n

.
= 1

n

∑n
i=1 Xi. The Wn-based test rejects H0 when Wn is

larger than the upper α-quantile of χ2
p−1.

Taking ω(t) = ωC(t)
.
=1 for t ≥ 0, i.e. using the constant (C) weight function

ωC, the test statistic is

Tn(ωC) =
2

n(n− 1)

∑∑
i<j

U{(Ip − θ0θ
T
0 )Xi}TU{(Ip − θ0θ

T
0 )Xj}, (2.5)

which is very similar to the test that was mentioned in [18].
In addition to these existing ones, we also consider some other members of

this family. Taking ω(t) = ωIN(t)
.
=t−1 for t ≥ 0, i.e. using the inverse norm (IN)

weight function ωIN, the test statistic is

Tn(ωIN) =
2

n(n− 1)

∑∑
i<j

‖(Ip − θ0θ
T
0 )Xi‖−1‖(Ip − θ0θ

T
0 )Xj‖−1

×U{(Ip − θ0θ
T
0 )Xi}TU{(Ip − θ0θ

T
0 )Xj}, (2.6)
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which can be regarded as an extension of the inverse norm sign test (INST)
proposed by [6] on directional data. In this paper, we name the Tn(ωIN)-based
test as the inverse norm weight spatial sign test.

Taking ω(t) = ωS(t)
.
=t2 and ω(t) = ωR(t)

.
=t1/2 respectively, the test statistics

are

Tn(ωS) =
2

n(n− 1)

∑∑
i<j

‖(Ip − θ0θ
T
0 )Xi‖2‖(Ip − θ0θ

T
0 )Xj‖2

×U{(Ip − θ0θ
T
0 )Xi}TU{(Ip − θ0θ

T
0 )Xj}, (2.7)

and

Tn(ωR) =
2

n(n− 1)

∑∑
i<j

‖(Ip − θ0θ
T
0 )Xi‖1/2‖(Ip − θ0θ

T
0 )Xj‖1/2

×U{(Ip − θ0θ
T
0 )Xi}TU{(Ip − θ0θ

T
0 )Xj}. (2.8)

Now, we have introduced the family of directional weighted spatial sign tests.
In the following section, we will establish the theoretical results of the whole
family, which imply that the Tn(ωIN)-based test has the maximum asymptotic
power among this family. Then, extensive numerical results will demonstrate
the empirical power advantages of the Tn(ωIN)-based test compared with some
other members of this family as well as some existing tests.

3. Theoretical results

In this section, we will establish the theoretical results of the whole family of
directional weighted spatial sign tests with the general form of weight function
ω(·).

3.1. Null distribution

(C1) b4(ω) = O{b2(ω)2}, b2(ω) �= 0 and for each i ∈ {1 · · · , n}, E{v−4
i } exists

for sufficiently large p.

Here, bk(ω)
.
= E{ωk(vi)} for any positive integer k. Note that by choosing

ω = ωN, condition (C1) becomes condition (C0), which leads to E(v4i )/E
2(v2i ) =

o(n), previously used in Theorem 3.1 (iv) of [12] and Theorem 3.1 (b) of [20].

Theorem 3.1. Under condition (C1) and H0, as n, p → ∞, Tn(ω)/σn(ω) →
N (0, 1) in distribution, where σ2

n(ω)
.
=2n−2p−1b22(ω).

We find a ratio-consistent estimation of σ2
n(ω) in the following theorem.

Theorem 3.2. Under condition (C1) and H0, as n, p → ∞, σ̂2
n(ω)/σ

2
n(ω) → 1

in probability, where σ̂2
n(ω) is defined in (2.3).
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3.2. Asymptotic power

Then, we investigate the asymptotic distribution of Tn(ω) under the following
local alternative.

(C2) ‖θ − θ0‖2
√
E(v−4

i ) = O(n−1p−1/2) and var(ui) = o(1) for each i ∈
{1, · · · , n}, where ui = XT

i θ.

Note that var(ui) = o(1) is a weaker condition than condition (c), i.e.
√
pE(u2

i ) =
o(1), of Theorem 3.1 in [20] due to var(ui) ≤ E(u2

i ), which was used to derive

the local power of W̃n. Condition (C2) ensures that the difference between θ
and θ0 is not too large, so that the variance of Tn(ω) can be asymptotically
described by σ2

n(ω).

Theorem 3.3. Under conditions (C1)–(C2), as n, p → ∞,

[Tn(ω)− c0(ω)
2{θT(θθT − θ0θ

T
0 )θ}]/σn(ω) → N (0, 1) in distribution,

where c0(ω)
.
=E(ui)E{ω(vi)v−1

i }.
According to Theorems 3.1 and 3.3, the local power of the Tn(ω)-based test

against an alternative θ that satisfies condition (C2) is

βn,p(ω)
.
=Pθ [Tn(ω) > σn(ω)zα]

=Pθ

[
Tn(ω)− c0(ω)

2{θT(θθT − θ0θ
T
0 )θ}

σn(ω)
> zα − c0(ω)

2{θT(θθT − θ0θ
T
0 )θ}

σn(ω)

]
.

Then, we obtain the asymptotic power of the Tn(ω)-based test:

β(ω)
.
= lim

n,p→∞
βn,p(ω)

= lim
n,p→∞

Φ

[
−zα +

E
2(ui)E

2{ω(vi)v−1
i }

E{ω2(vi)}
p1/2n(θT(θθT − θ0θ

T
0 )θ)√

2

]
. (3.1)

To find a weight function ω that can make β(ω) reach the maximum value, we
only need to find the maximum value of E2(ui)E

2{ω(vi)v−1
i }/E{ω2(vi)}, because

Φ
[
−zα +

E
2(ui)E

2{ω(vi)v
−1
i }

E{ω2(vi)}
p1/2n(θT(θθT−θ0θ

T
0 )θ)√

2

]
in (3.1) is an increasing func-

tion of E2(ui)E
2{ω(vi)v−1

i }/E{ω2(vi)}. By proving E
2{ω(vi)v−1

i }/E{ω2(vi)} ≤
E(vi

−2), we will obtain that taking ω = ωIN makes β(ω) reach the maximum
value.

Theorem 3.4. For all the weight functions satisfying conditions (C1)–(C2), as
n, p → ∞, the maximum value of the asymptotic power β(ω) is

β(ωIN) = lim
n,p→∞

Φ

[
−zα + E

2(ui)E(vi
−2)

p1/2n{θT(θθT − θ0θ
T
0 )θ}√

2

]
.
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In contrast, the asymptotic power of the Tn(ωC)-based, Tn(ωN)-based,
Tn(ωS)-based and Tn(ωR)-based tests are

β(ωN) = lim
n,p→∞

Φ

[
−zα + E

2(ui)E
−1(v2i )

p1/2n{θT(θθT − θ0θ
T
0 )θ}√

2

]
,

β(ωC) = lim
n,p→∞

Φ

[
−zα + E

2(ui)E
2(v−1

i )
p1/2n{θT(θθT − θ0θ

T
0 )θ}√

2

]
,

β(ωS) = lim
n,p→∞

Φ

[
−zα + E

2(ui)
E
2(vi)

E(v4i )

p1/2n{θT(θθT − θ0θ
T
0 )θ}√

2

]
,

β(ωR) = lim
n,p→∞

Φ

[
−zα + E

2(ui)
E
2(v

−1/2
i )

E(vi)

p1/2n{θT(θθT − θ0θ
T
0 )θ}√

2

]
,

respectively.
Next, we consider the asymptotic power of the Tn(ω)-based test in situation

of the FvML distribution.

Corollary 3.1. Suppose Xi follows a FvML distribution. Under conditions
(C1) and (C2), as n, p → ∞, the asymptotic power of the Tn(ω)-based test is

β = lim
n,p→∞

Φ

[
−zα + E

2(ui)E(v
−2
i )

p1/2n{θT(θθT − θ0θ
T
0 )θ}√

2

]
,

which does not depend on the choice of the weight function ω.

This corollary indicates that if Xi follows a FvML distribution, all the direc-
tional weighted spatial sign tests have the same asymptotic power.

3.3. Asymptotic relative efficiency

Then, we derive the asymptotic relative efficiencies (AREs) between the Tn(ωIN)-
based test and the Tn(ωC)-based, Tn(ωN)-based, Tn(ωS)-based, Tn(ωR)-based
tests, respectively. Specifically,

AREIN,N = E(v−2
i )E(v2i ) ≥ 1,

AREIN,C = E(v−2
i )E−2(v−1

i ) = 1 + var(v−1
i )E−2(v−1

i ) ≥ 1,

AREIN,S= E(v−2
i )E(v4i )E

−2(vi) ≥ 1,

AREIN,R= E(v−2
i )E(vi)E

−2(v
−1/2
i ) ≥ 1.

For rotationally symmetric distributions, there are many choices of angu-
lar functions. Below, we present the formulas for calculating the AREs un-
der some commonly used angular functions. First, when Xi follows a rotation-
ally symmetric distribution, the density function of Xi is cp,f,κfκ(x

Tθ), where

cp,f,κ = 1/
∫ 1

−1
(1− t2)(p−3)/2fκ(t)dt. Hence,

AREIN,N =
c2p,f,κ

cp−2,f,κcp+2,f,κ
,
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AREIN,C =
c2p−1,f,κ

cp−2,f,κcp,f,κ
,

AREIN,S =
c2p+1,f,κ

cp−2,f,κcp+4,f,κ
,

AREIN,R =
c2
p− 1

2 ,f,κ

cp−2,f,κ1cp+1,f,κ1

.

Next, when Xi follows the mixture of two rotationally symmetric distribu-
tions with the same location parameter, the density function of Xi can be
denoted as

λcp,f,κ1fκ1(x
Tθ) + (1− λ)cp,f,κ2fκ2(x

Tθ), (3.2)

where cp,f,κ = 1/
∫ 1

−1
(1− t2)(p−3)/2fκ(t)dt. Then, we have

AREIN,N =

[
λ

cp,f,κ1

cp−2,f,κ1

+ (1− λ)
cp,f,κ2

cp−2,f,κ2

]
×
[
λ

cp,f,κ1

cp+2,f,κ1

+ (1− λ)
cp,f,κ2

cp+2,f,κ2

]
,

AREIN,C =

[
λ

cp,f,κ1

cp−2,f,κ1

+ (1− λ)
cp,f,κ2

cp−2,f,κ2

]
/

[
λ

cp,f,κ1

cp−1,f,κ1

+ (1− λ)
cp,f,κ2

cp−1,f,κ2

]2
,

AREIN,S =

[
λ

cp,f,κ1

cp−2,f,κ1

+ (1− λ)
cp,f,κ2

cp−2,f,κ2

]
×
[
λ

cp,f,κ1

cp+4,f,κ1

+ (1− λ)
cp,f,κ2

cp+4,f,κ2

]
/

[
λ

cp,f,κ1

cp+1,f,κ1

+ (1− λ)
cp,f,κ2

cp+1,f,κ2

]2
,

AREIN,R =

[
λ

cp,f,κ1

cp−2,f,κ1

+ (1− λ)
cp,f,κ2

cp−2,f,κ2

]
×
[
λ

cp,f,κ1

cp+1,f,κ1

+ (1− λ)
cp,f,κ2

cp+1,f,κ2

]

/

[
λ

cp,f,κ1

cp− 1
2 ,f,κ1

+ (1− λ)
cp,f,κ2

cp− 1
2 ,f,κ2

]2
.

In the following, we investigate the ARE results numerically under the non-
mixed and mixed rotationally symmetric distributions respectively. Here, we
consider the following three types of angular functions.

(F1) The FvML angular function exp(κt) with t ∈ [−1, 1].
(F2) The angular function 4−κ·arccos(t) with t ∈ [−1, 1].
(F3) The angular function 6−κ·arcsin(t) with t ∈ [−1, 1].

Table 1 presents the corresponding ARE results of the non-mixed rotationally
symmetric distributions, where some different choices of κ and p are considered.
Then, Tables 2, 3 and 4 present the corresponding ARE results of the mixed
distributions for (F1)–(F3) respectively, where two settings are considered: (1)
λ = 0.9 with κ1 = κ/10 and κ2 = 10κ; (2) λ = 0.6 with κ1 = κ/5 and κ2 = 5κ.
Although the Tn(ωIN)-based test does not show obvious advantages in Table 1,
it has obvious advantages as shown in Tables 2, 3 and 4, which indicates that
the proposed Tn(ωIN)-based test performs better than the other four directional
weighted spatial sign tests in situation of mixed distributions.
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Table 1

The ARE results of the non-mixed rotationally symmetric distributions for the three types of
angular functions.

p κ AREIN,N AREIN,C AREIN,S AREIN,R

(F1)
100 p 1.011 1.003 1.026 1.006
200 p 1.006 1.001 1.013 1.003
300 p 1.004 1.001 1.008 1.002
400 p 1.003 1.001 1.006 1.002
100 p2 1.021 1.005 1.046 1.012
200 p2 1.010 1.003 1.023 1.006
300 p2 1.007 1.002 1.015 1.004
400 p2 1.005 1.001 1.011 1.003

(F2)
100 2p 1.037 1.009 1.083 1.021
150 2p 1.024 1.006 1.055 1.014
200 2p 1.018 1.005 1.041 1.010
250 2p 1.014 1.004 1.032 1.008
300 2p 1.012 1.003 1.027 1.007
100 3p 1.039 1.010 1.089 1.022
150 3p 1.026 1.006 1.059 1.014
200 3p 1.019 1.005 1.044 1.011
250 3p 1.015 1.004 1.035 1.009
300 3p 1.013 1.003 1.029 1.007

(F3)
100 2p 1.038 1.010 1.088 1.022
150 2p 1.025 1.006 1.057 1.014
200 2p 1.019 1.005 1.043 1.011
250 2p 1.015 1.004 1.034 1.008
300 2p 1.013 1.003 1.028 1.007
100 3p 1.040 1.010 1.091 1.022
150 3p 1.026 1.007 1.060 1.015
200 3p 1.020 1.005 1.045 1.011
250 3p 1.016 1.004 1.035 1.009
300 3p 1.013 1.003 1.029 1.007

3.4. Two rank-based tests

To make a more extensive comparison in the following simulation studies, in this
subsection we consider two rank-based weights mentioned in [16]. The statistics
are

RW =
2

n(n− 1)

∑∑
i<j

RiRjU{(Ip − θ0θ
T
0 )Xi}TU{(Ip − θ0θ

T
0 )Xj}

and

RS =
2

n(n− 1)

∑∑
i<j

R2
iR

2
jU{(Ip − θ0θ

T
0 )Xi}TU{(Ip − θ0θ

T
0 )Xj}

respectively. Here, Ri is the rank of vi among {v1, v2, · · · , vn},
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Table 2

The ARE results of the mixed rotationally symmetric distributions for angular function
(F1) with two different choices of λ.

λ p κ AREIN,N AREIN,C AREIN,S AREIN,R

0.9 100 p2 9.583 2.978 11.831 6.531
200 p2 9.699 2.998 11.840 6.616
300 p2 9.739 3.005 11.842 6.645
400 p2 9.759 3.009 11.843 6.660
100 p 1.784 1.307 2.041 1.565
200 p 1.775 1.303 2.029 1.557
300 p 1.772 1.301 2.025 1.555
400 p 1.770 1.300 2.023 1.554

0.6 100 p2 6.520 1.570 14.042 3.220
200 p2 6.524 1.569 13.905 3.223
300 p2 6.526 1.569 13.859 3.225
400 p2 6.527 1.568 13.837 3.225
100 p 1.869 1.184 2.851 1.463
200 p 1.855 1.180 2.825 1.455
300 p 1.851 1.179 2.817 1.452
400 p 1.849 1.178 2.813 1.451

Table 3

The ARE results of the mixed rotationally symmetric distributions for angular function
(F2) with two different choices of λ.

λ p κ AREIN,N AREIN,C AREIN,S AREIN,R

0.9 100 2p 67.816 5.764 83.333 33.717
150 2p 66.906 5.731 82.109 33.328
200 2p 66.459 5.715 81.509 33.136
250 2p 66.194 5.706 81.152 33.022
300 2p 66.018 5.699 80.916 32.947
100 3p 139.115 6.703 172.029 59.975
150 3p 137.236 6.669 169.279 59.306
200 3p 136.313 6.653 167.930 58.977
250 3p 135.765 6.643 167.129 58.781
300 3p 135.401 6.636 166.599 58.651

0.6 100 2p 37.454 2.026 94.224 9.777
150 2p 36.951 2.018 92.583 9.682
200 2p 36.705 2.013 91.778 9.635
250 2p 36.558 2.011 91.300 9.607
300 2p 36.461 2.009 90.984 9.589
100 3p 64.558 2.127 168.273 13.679
150 3p 63.686 2.118 164.869 13.552
200 3p 63.257 2.114 163.200 13.489
250 3p 63.003 2.112 162.209 13.452
300 3p 62.834 2.110 161.552 13.428

σ2
n(RW )

.
=2n−4p−1

∑∑
i �=j

i2j2 = 2n−4p−1

⎧⎨⎩
(∑

i

i2

)2

−
∑
i

i4

⎫⎬⎭
=
(n2 − 1)(4n2 − 1)(5n+ 6)

90n3p
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Table 4

The ARE results of the mixed rotationally symmetric distributions for angular function
(F3) with two different choices of λ.

λ p κ AREIN,N AREIN,C AREIN,S AREIN,R

0.9 100 2p 107.571 6.380 132.694 48.888
150 2p 106.121 6.347 130.647 48.334
200 2p 105.409 6.330 129.643 48.062
250 2p 104.985 6.321 129.047 47.900
300 2p 104.705 6.314 128.653 47.792
100 3p 211.010 7.188 262.208 83.162
150 3p 208.153 7.155 257.689 82.265
200 3p 206.750 7.138 255.473 81.824
250 3p 205.917 7.128 254.156 81.561
300 3p 205.364 7.122 253.284 81.387

0.6 100 2p 53.704 2.095 138.357 12.217
150 2p 52.980 2.086 135.713 12.102
200 2p 52.624 2.082 134.417 12.045
250 2p 52.413 2.080 133.647 12.011
300 2p 52.273 2.078 133.137 11.989
100 3p 84.398 2.170 223.751 16.106
150 3p 83.256 2.161 218.766 15.963
200 3p 82.695 2.157 216.324 15.892
250 3p 82.361 2.155 214.874 15.850
300 3p 82.140 2.153 213.914 15.822

and

σ2
n(RS)

.
=2n−4p−1

∑∑
i �=j

i4j4 = 2n−4p−1

⎧⎨⎩
(∑

i

i4

)2

−
∑
i

i8

⎫⎬⎭
=
(n2 − 1)(4n2 − 1)(9n5 + 20n4 − 15n3 − 50n2 + n+ 30)

450n3p
.

Proposition 3.1. Under H0, both RW /
√
σ2
n(RW ) and RS/

√
σ2
n(RS) are

asymptotically standard normal.

The RW -based and RS-based tests rejects H0 when RW /
√
σ2
n(RW ) > zα

and RS/
√

σ2
n(RS) > zα, respectively.

4. Simulation results

In this section, we present some simulation results to investigate the performance
of the Wn-based, W̃n-based, RW -based and RS-based, Tn(ωN)-based, Tn(ωC)-
based, Tn(ωIN)-based, Tn(ωS)-based and Tn(ωR)-based tests, abbreviated asWn,

W̃n, RW , RS , TN, TC, TIN, TS and TR respectively. We let θ0 = (1, 0, · · · , 0)T ∈
Sp−1,

θ = θ0 + δ(−2δ, 2
√

1− δ2, 0, · · · , 0)T ∈ Sp−1. (4.1)
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Fig 1. The empirical size results of the nine tests under the mixed rotationally symmetric
distributions at 5% level with angular function (F1) under settings I and II.

Fig 2. The empirical power results of the nine tests under the mixed rotationally symmetric
distributions at 5% level with angular function (F1) under settings I and II.

We consider two settings of mixed distributions in (3.2), where for setting I,
(λ, κ1, κ2, δ) = (0.9, κ/10, 10κ, 2Δ), and for setting II, (λ, κ1, κ2, δ) = (0.6, κ/5,
5κ,Δ/2). κ and Δ will be set according to the angular function type in the
following text.

For angular function (F1), we let n = 50, p ∈ {100, 200, 300} and consider
two cases:

(1) κ = p/n1/4, Δ = p3/4/ (
√
nκ),

(2) κ = p2, Δ = p1/4/
√
nκ.

Figures 1 and 2 summarize the empirical size and power results of the nine tests
by using angular function (F1), where all the simulation results are based on
1,000 replications. The results in Figure 1 suggest that all these nine tests can
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Fig 3. The empirical size results of the nine tests under the mixed rotationally symmetric
distributions at 5% level with angular function (F2) under settings I and II.

Fig 4. The empirical power results of the nine tests under the mixed rotationally symmetric
distributions at 5% level with angular function (F2) under settings I and II.

properly control the empirical size. For power performance, the power results in
Figure 2 suggest that TIN can outperform the remaining tests.

For angular functions (F2) and (F3), we let κ ∈ {2p, 3p}, Δ = 1/(n1/2p1/2),
n = 50 and p ∈ {100, 150, 200, 250, 300}. Figures 3 and 5 summarize the empiri-
cal size of the nine tests by using angular functions (F2) and (F3), respectively.
Similarly, all the simulation results are based on 1,000 replications. The size re-
sults in Figures 3 and 5 are similar to that for angular function (F1). For power
performance, Figure 4 presents the power curves for angular function (F2), while
Figure 6 presents the power curves for angular function (F3). From Figures 4
and 6, we see that TIN and TC can outperform the remaining tests in power
comparison, while TIN performs much better than TC. In addition, we place
some additional simulation results for the non-mixed distributions in Appendix.
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Fig 5. The empirical size results of the nine tests under the mixed rotationally symmetric
distributions at 5% level with angular function (F3) under settings I and II.

Fig 6. The empirical power results of the nine tests under the mixed rotationally symmetric
distributions at 5% level with angular function (F3) under settings I and II.

5. Discussion

We have studied the general framework of directional weighted spatial sign tests
for testing location of directional data under the commonly used rotationally
symmetric distributions, which includes many members closely related to the
existing tests. The asymptotic properties of the family of tests have been estab-
lished under the rotationally symmetric distributions. Within this framework of
asymptotic properties, we find that the Tn(ωIN)-based test has the maximum
asymptotic power in this family. Then, the power advantages of the Tn(ωIN)-
based test have been fully demonstrated by the theoretical and numerical re-
sults.
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Appendix

Some additional simulation results

In this subsection, we present some additional simulation results of the nine
tests, as Xi follows the non-mixed rotationally symmetric distributions.

For angular function (F1), we perform simulations under the following three
settings:

(a) κ = p2, δ = p1/4/
√
nκ,

(b) κ = p, δ =
√

0.5 +
√
1 + 0.25p3/4/ (

√
nκ),

(c) κ = p/n1/4, δ = p3/4/ (
√
nκ),

which are the same as settings (i)–(iii) used in [20], with concentration κ and
location

θ = (1, 0, · · · , 0)T + δ(−2δ, 2
√

1− δ2, 0, · · · , 0)T ∈ Sp−1. (A.1)

Let (n, p) ∈ {(100, 400), (200, 800)}.
Table 5 summarizes the empirical size and power results of the nine tests

by using the angular function (F1). The size results in Table 5 suggest that all
these nine tests can properly control the empirical size. For power performance,
the power results in Table 5 suggest that the power of the Tn(ω)-based weighted

spatial sign tests are quite similar to that of the Wn-based and W̃n-based tests.
The power of the RW -based and RS-based tests are significantly smaller than
those of the remaining tests.

Next, for angular functions (F2) and (F3), we let p ∈ {100, 150, 200, 250, 300},
n = 40 and κ ∈ {2p, 3p}, respectively. The setting of θ is the same as (A.1)
for angular function (F1). We fix δ =

√
0.65/[n1/2p1/4{E(v−4

i )}1/4] for angular
function (F2), and fix δ =

√
0.70/[n1/2p1/4{E(v−4

i )}1/4] for angular function
(F3).

Table 6 summarizes the empirical size of the nine tests for angular functions
(F2) and (F3), which suggests that all these tests generally control the size. In
particular, we find that the empirical size of the Tn(ω)-based weighted spatial

sign tests are slightly larger than that of the Wn-based and W̃n-based tests.
These may indicate a slight anti-conservatism of the proposed tests.

For power comparison, Figure 7 shows the power curves of κ = 2p and 3p
respectively for angular function (F2), while Figure 8 shows the power curves
of κ = 2p and 3p respectively for angular function (F3). From Figures 7 and 8,
it can be seen that some of the proposed directional weighted spatial sign tests
are more powerful, but not significantly more powerful, than the Wn-based
and W̃n-based tests, considering the slight anti-conservatism of the proposed
tests. In addition, the empirical power of the RS-based and RW -based tests are
much lower than that of the remaining tests. In short, in the case of non-mixed
rotationally symmetric distributions, the power of all tests except the RS-based
and RW -based tests are similar.
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Table 5

The empirical size and power results of the nine tests under the non-mixed rotationally
symmetric distributions at 5% level with angular function (F1).

n p κ Wn W̃n TN TC TIN TS TR RW RS

size
100 400 p2 0.054 0.058 0.062 0.059 0.060 0.061 0.059 0.082 0.076
100 400 p 0.051 0.054 0.056 0.059 0.061 0.052 0.057 0.055 0.057

100 400 p/n1/4 0.054 0.057 0.062 0.062 0.060 0.064 0.062 0.066 0.058
200 800 p2 0.048 0.050 0.050 0.051 0.052 0.047 0.051 0.050 0.051
200 800 p 0.050 0.051 0.053 0.052 0.052 0.054 0.053 0.052 0.047

200 800 p/n1/4 0.060 0.062 0.064 0.064 0.063 0.064 0.064 0.047 0.050
power

100 400 p2 0.814 0.822 0.831 0.830 0.824 0.827 0.832 0.693 0.514
100 400 p 0.826 0.834 0.840 0.840 0.845 0.837 0.841 0.677 0.495

100 400 p/n1/4 0.777 0.785 0.793 0.791 0.791 0.793 0.793 0.631 0.451
200 800 p2 0.837 0.841 0.845 0.845 0.846 0.844 0.846 0.654 0.463
200 800 p 0.838 0.842 0.854 0.847 0.845 0.852 0.851 0.690 0.490

200 800 p/n1/4 0.794 0.805 0.810 0.808 0.807 0.809 0.808 0.601 0.411

Table 6

The empirical size results of the nine tests under the non-mixed rotationally symmetric
distributions at 5% level with angular functions (F2) and (F3).

n p κ Wn W̃n TN TC TIN TS TR RW RS

(F2)
40 100 200 0.049 0.053 0.060 0.062 0.062 0.061 0.059 0.068 0.069
40 100 300 0.043 0.046 0.052 0.056 0.054 0.056 0.056 0.056 0.055
40 150 300 0.050 0.057 0.068 0.061 0.065 0.070 0.064 0.071 0.072
40 150 450 0.044 0.052 0.060 0.059 0.061 0.056 0.058 0.060 0.060
40 200 400 0.045 0.050 0.059 0.055 0.055 0.058 0.056 0.069 0.071
40 200 600 0.044 0.051 0.058 0.056 0.051 0.058 0.055 0.060 0.060
40 250 500 0.046 0.052 0.057 0.063 0.065 0.053 0.062 0.057 0.052
40 250 750 0.041 0.047 0.057 0.058 0.057 0.056 0.058s 0.057 0.057
40 300 600 0.055 0.058 0.062 0.061 0.064 0.063 0.060 0.057 0.053
40 300 900 0.041 0.045 0.052 0.055 0.053 0.050 0.053 0.052 0.063

(F3)
40 100 200 0.042 0.046 0.058 0.058 0.057 0.052 0.058 0.058 0.057
40 100 300 0.044 0.053 0.062 0.060 0.063 0.061 0.058 0.059 0.064
40 150 300 0.040 0.048 0.052 0.055 0.057 0.062 0.053 0.067 0.059
40 150 450 0.046 0.052 0.057 0.057 0.056 0.062 0.056 0.060 0.061
40 200 400 0.044 0.046 0.052 0.057 0.056 0.052 0.057 0.062 0.068
40 200 600 0.045 0.050 0.053 0.051 0.050 0.053 0.054 0.058 0.058
40 250 500 0.048 0.054 0.055 0.056 0.054 0.054 0.055 0.056 0.068
40 250 750 0.045 0.050 0.057 0.062 0.061 0.052 0.060 0.048 0.046
40 300 600 0.056 0.062 0.071 0.072 0.073 0.072 0.074 0.056 0.050
40 300 900 0.052 0.058 0.071 0.066 0.067 0.067 0.066 0.047 0.040

Technical details

If Xi are rotationally symmetric on Sp−1 about θ, then we have the tangent-
normal decomposition of Xi, Xi = uiθ+ viSi, where ui = XT

i θ, v
2
i = 1− u2

i =
‖(Ip−θθT)Xi‖2, Si = U{(Ip−θθT)Xi}. In addition, Si are independent with
ui, and Si is uniformly distributed on Sp−1(θ⊥) : {S ∈ R

p : ‖S‖ = 1,STθ = 0}.
Before starting to prove, we recall Lemma B.1. in [4].
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Fig 7. The power curves of nine tests under the non-mixed rotationally symmetric distribu-
tions for angular function (F2) with κ = 2p and 3p.

Fig 8. The power curves of nine tests under the non-mixed rotationally symmetric distribu-
tions for angular function (F3) with κ = 2p and 3p.

Lemma A.1. Let X1, · · · ,Xn be a sequence of independent and identically
distributed observations with a rotationally symmetric distribution, due to Xi =
uiθ + viSi, we have

(i) E(SiS
T
i ) =

1

p− 1
(Ip − θθT) for any i;

(ii) E
{
(ST

i Sj)
2
}
=

1

p− 1
for any i �= j;

(iii) E
{
(ST

i Sj)
4
}
=

3

p2 − 1
for any i �= j.

Proof of Theorem 3.1

First, it is noteworthy that under H0, Xi are rotationally symmetric with θ0,
hence Si and ui are independent. We have E{Tn(ω)} = 0 under H0 due to
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E(Si) = 0. Then, the variance of Tn(ω) is

var{Tn(ω)} =
2

n(n− 1)
E
{
ω2(vi)ω

2(vj)(S
T
i Sj)

2
}

=
2

n(n− 1)

[
E
{
ω2(vi)

}]2
E(ST

i Sj)
2

=
2

n(n− 1)(p− 1)
b22(ω)

=σ2
n(ω){1 + o(1)}.

The normality of Tn(ω) has yet to be proven. Define Wnk =
∑k

i=2 Zni where

Zni = 2/{n(n − 1)}
∑i−1

j=1 V
T
i Vj , Vi = ω(vi)Si. Let A = E(ViV

T
i ). Note that

A = b2(ω)(Ip − θ0θ
T
0 )/(p − 1) due to Lemma A.1. Let Fn,i

.
=σ{V1, · · · ,Vi} be

the σ-field generated by {Vj , j ≤ i}. Obviously, E(Zni | Fn,i−1) = 0 and it
follows that {Wnk,Fn,k; 2 ≤ k ≤ n} is a zero mean martingale. According to
the Martingale central limit theorem in [9], we only need to show∑n

j=2 E(Z
2
nj | Fn,j−1)

σ2
n(ω)

p→ 1, (A.2)

and

E

⎧⎨⎩
n∑

j=2

E(Z4
nj |Fn,j−1)

⎫⎬⎭ = o{σ4
n(ω)}. (A.3)

It can be shown that

n∑
j=2

E(Z2
nj |Fn,j−1) =

n∑
j=2

E

⎡⎣{ 2

n(n− 1)

j−1∑
i=1

V T
i Vj

}2

|Fn,j−1

⎤⎦
=

n∑
j=2

4

n2(n− 1)2
E

{(
j−1∑
i1=1

j−1∑
i2=1

V T
i1 VjV

T
i2 Vj

)
|Fn,j−1

}

=

n∑
j=2

4

n2(n− 1)2

j−1∑
i1=1

j−1∑
i2=1

V T
i1 E(VjV

T
j )Vi2

=Cn1 + Cn2,

where

Cn1 =
4

n2(n− 1)2

n∑
j=2

j−1∑
i=1

V T
i AVi and Cn2 =

8

n2(n− 1)2

n∑
j=2

j−1∑ j−1∑
i1<i2

V T
i1 AVi2 .

We first consider Cn1. Due to A = E(ViV
T
i ), we have

E(Cn1) =
2

n(n− 1)
E(V T

i AVi)
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=
2

n(n− 1)
tr{E(AViV

T
i )}

=
2

n(n− 1)
tr(A2)

=σ2
n(ω){1 + o(1)},

where A = b2(ω)(Ip−θ0θ
T
0 )/(p−1) and Si = (Ip−θ0θ

T
0 )Xi/vi. We also obtain

ST
i ASi =

1

v2i (p− 1)
b2(ω)X

T
i (Ip − θ0θ

T
0 )(Ip − θ0θ

T
0 ))(Ip − θ0θ

T
0 ))Xi

=
1

p− 1
b2(ω).

Thus,

(ST
i ASi)

2 =
b22(ω)

(p− 1)2
. (A.4)

In addition,

var(Cn1) = var

⎛⎝ 4

n2(n− 1)2

n∑
j=2

j−1∑
i=1

V T
i AVi

⎞⎠
= var

⎧⎨⎩ 4

n2(n− 1)2

n∑
j=2

j−1∑
i=1

1

p− 1
b2(ω)ω

2(vi)

⎫⎬⎭
= var

⎧⎨⎩ 4

n2(n− 1)2

n∑
i=1

n∑
j=i+1

1

p− 1
b2(ω)ω

2(vi)

⎫⎬⎭
= var

{
4

n2(n− 1)2

n∑
i=1

n− i

p− 1
b2(ω)ω

2(vi)

}
≤ O{n−5(p− 1)−2}b4(ω)b22(ω)
= o{σ4

n(ω)},

where we used Condition (C1) in the last equality. Then, we have

Cn1/σ
2
n(ω)

p→ 1.

Similarly,

E(C2
n2) = E

⎧⎨⎩ 8

n2(n− 1)2

n∑
j=2

j−1∑ j−1∑
i1<i2

V T
i1 AVi2

⎫⎬⎭
2

= O(n−8)E

⎛⎝ n∑
j1=2

n∑
j2=2

j1−1∑ j1−1∑
i1<i2

j2−1∑ j2−1∑
i3<i4

V T
i1 AVi2V

T
i3 AVi4

⎞⎠
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= O(n−8)E

⎧⎨⎩
n∑ n∑
j1<j2

j1−1∑ j1−1∑
i1<i2

(V T
i1 AVi2)

2

⎫⎬⎭
= O(n−8)E

⎧⎨⎩
n∑

j2=2

j2−1∑
j1=1

j1−1∑ j1−1∑
i1<i2

(V T
i1 AVi2)

2

⎫⎬⎭
= O(n−4)E

{
(V T

i AVj)
2
}

= O(n−4)E
{
ω2(vi)ω

2(vj)(S
T
i ASj)

2
}

= O(n−4)b22(ω)tr
{
E(ST

i ASjS
T
j ASi)

}
= O(n−4p−3)b42(ω) = o{σ4

n(ω)},

where i �= j in the fourth equality and we used A = (p− 1)−1b2(ω)(Ip − θ0θ
T
0 )

and Lemma A.1 (ii) in the seventh equality. Then (A.2) holds.
Next, we only need to show

E

⎧⎨⎩
n∑

j=2

E(Z4
nj |Fn,j−1)

⎫⎬⎭ = o{σ4
n(ω)}.

Note that

E

⎧⎨⎩
n∑

j=2

E(Z4
nj |Fn,j−1)

⎫⎬⎭ =

n∑
j=2

E(Z4
nj) = O(n−8)

n∑
j=2

E

(
j−1∑
i=1

V T
j Vi

)4

can be decomposed as Q+ P , where

Q =O(n−8)

n∑
j=2

j−1∑ j−1∑
i1<i2

E
(
V T
j Vi1V

T
i1 VjV

T
j Vi2V

T
i2 Vj

)
,

P =O(n−8)

n∑
j=2

j−1∑
i=1

E
{
(V T

j Vi)
4
}
.

Because

Q =O(n−5)E
(
V T
j Vi1V

T
i1 VjV

T
j Vi2V

T
i2 Vj

)
=O(n−5)tr

{
E(Vi1V

T
i1 VjV

T
j Vi2V

T
i2 VjV

T
j )
}

=O(n−5)tr
[
E
{
E
(
Vi1V

T
i1 VjV

T
j Vi2V

T
i2 VjV

T
j |Vj

)}]
=O(n−5)tr

{
E(AVjV

T
j AVjV

T
j )
}

=O(n−5)E
{
(V T

j AVj)
2
}
,

hence, Q = O{n−5(p−1)−2}b4(ω)b22(ω) = o{σ4
n(ω)} due to (A.4) and Condition

(C1). Similarly, due to Lemma A.1 (iii), we can show that

P = O(n−6)E
{
(V T

j Vi)
4
}
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= O(n−6)E
{
ω4(vi)ω

4(vj)(S
T
j Si)

4
}

= O(n−6)b24(ω)E
{
(ST

j Si)
4
}

= O(n−6p−2)b42(ω)

= O{n−2σ4
n(ω)}. (A.5)

Then, we complete the proof.

Proof of Theorem 3.2

We have

σ̂2
n(ω) =2n−4p−1

∑∑
i �=j

ω(‖(Ip − θ0θ
T
0 )Xi‖)2ω(‖(Ip − θ0θ

T
0 )Xj‖)2

=2n−4p−1
∑∑

i �=j

ω(vi)
2ω(vj)

2.

First of all,
E(σ̂2

n(ω)) = 2n−2p−1b22(ω) = σ2
n(ω){1 + o(1)}.

Next, we have

var{σ̂2
n(ω)} =E

⎡⎢⎣
⎧⎨⎩2n−4p−1

∑∑
i �=j

ω(vi)
2ω(vj)

2

⎫⎬⎭
2
⎤⎥⎦

−

⎡⎣E
⎧⎨⎩2n−4p−1

∑∑
i �=j

ω(vi)
2ω(vj)

2

⎫⎬⎭
⎤⎦2

=O(n−6p−2)b24(ω) +O(n−5p−2)b22(ω)b4(ω)

=o{σ4
n(ω)},

where the last equality is due to Condition (C1), which leads to

σ̂2
n(ω)/σ

2
n(ω)

p→ 1.

Proof of Theorem 3.3

We have

U{ (Ip − θ0θ
T
0 )Xi} =U{ (Ip − θθT)Xi + (θθT − θ0θ

T
0 )Xi }

={(Ip − θθT)Xi + (θθT − θ0θ
T
0 )Xi }

×
{
v2i +XT

i (θθ
T − θ0θ

T
0 )Xi

}−1/2

={Si + v−1
i (θθT − θ0θ

T
0 )Xi}
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×
{
1 + v−2

i XT
i (θθ

T − θ0θ
T
0 )Xi

}−1/2

={Si + v−1
i (θθT − θ0θ

T
0 )Xi} {1 + αi}−1/2

,

where αi = v−2
i XT

i (θθ
T − θ0θ

T
0 )Xi. Note that

‖(Ip − θ0θ
T
0 )Xi‖ = vi(1 + αi)

1/2.

Thus,

Tn(ω)

=
2

n(n− 1)

∑∑
i<j

ω{vi(1 + αi)
1/2}ω{vj(1 + αj)

1/2}U((Ip − θ0θ
T
0 )Xi)

T

× U((Ip − θ0θ
T
0 )Xj)

=
2

n(n− 1)

∑∑
i<j

ω{vi(1 + αi)
1/2}ω{vj(1 + αj)

1/2}

× {Si + v−1
i (θθT − θ0θ

T
0 )Xi}T{Sj + v−1

j (θθT − θ0θ
T
0 )Xj}

× (1 + αi)
−1/2(1 + αj)

−1/2

=
2

n(n− 1)

∑∑
i<j

V T
i Vj +A1 +A2 +A3 +A4 +A5 +A6,

where

A1 =
2

n(n− 1)

∑∑
i<j

[
ω{vi(1 + αi)

1/2}ω{vj(1 + αj)
1/2} − ω(vi)ω(vj)

]
ST
i Sj ,

A2 =
2

n(n− 1)

∑∑
i<j

ω{vi(1 + αi)
1/2}ω{vj(1 + αj)

1/2}

× {v−1
i XT

i (θθ
T − θ0θ

T
0 )Sj + v−1

j ST
i (θθ

T − θ0θ
T
0 )Xj},

A3 =
2

n(n− 1)

∑∑
i<j

ω{vi(1 + αi)
1/2}ω{vj(1 + αj)

1/2}

× {v−1
i v−1

j XT
i (θθ

T + θ0θ
T
0 − θθTθ0θ

T
0 − θ0θ

T
0 θθ

T)Xj},

A4 =
2

n(n− 1)

∑∑
i<j

ω{vi(1 + αi)
1/2}ω{vj(1 + αj)

1/2}ST
i Sj

× {(1 + αi)
−1/2(1 + αj)

−1/2 − 1},

A5 =
2

n(n− 1)

∑∑
i<j

ω{vi(1 + αi)
1/2}ω{vj(1 + αj)

1/2}

× {v−1
i XT

i (θθ
T − θ0θ

T
0 )Sj + v−1

j ST
i (θθ

T − θ0θ
T
0 )Xj}

× {(1 + αi)
−1/2(1 + αj)

−1/2 − 1},

A6 =
2

n(n− 1)

∑∑
i<j

ω{vi(1 + αi)
−1/2}ω{vj(1 + αj)

−1/2}{v−1
i v−1

j XT
i
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× (θθT + θ0θ
T
0 − θθTθ0θ

T
0 − θ0θ

T
0 θθ

T)Xj}
× {(1 + αi)

−1/2(1 + αj)
−1/2 − 1}.

Because of the tangent-normal decomposition, we have

αi = v−2
i u2

i − v−2
i u2

iθ
Tθ0θ

T
0 θ − 2v−1

i uiS
T
i θ0θ

T
0 θ − (ST

i θ0)
2,

then,

E(αi) =E(v−2
i u2

i ){θT(θθT − θ0θ
T
0 )θ} − E{(ST

i θ0)
2}

=E(v−2
i u2

i ){θT(θθT − θ0θ
T
0 )θ} − E[{ST

i (θ0 − θ)}2]
≤E(v−2

i u2
i ){θT(θθT − θ0θ

T
0 )θ} − ‖θ0 − θ‖2

≤
√

E(v−4
i u4

i ){θT(θθT − θ0θ
T
0 )θ}.

According to θT(θθT − θ0θ
T
0 )θ = 1− (θTθ0)

2 = ‖θ − θ0‖2 − ‖θ − θ0‖4/4 and
Condition (C2), we have E(αi) = o(1), then we concentrate on the variance of
αi, where

var(αi) ≤E(α2
i )

≤4E
(
v−4
i u4

i

)
{θT(θθT − θ0θ

T
0 )θ}2 + 4E(ST

i θ0)
4

+ 8E
(
uiv

−1
i ST

i θ0θ
T
0 θ
)2

=4E
(
v−4
i u4

i

)
{θT(θθT − θ0θ

T
0 )θ}2 + 4E(ST

i θ0 − ST
i θ)

4

+8E
(
u2
i v

−2
i

)
tr{θ0θT

0 θθ
Tθ0θ

T
0 E(SiS

T
i )}

=o(1) + 4E{ST
i (θ0 − θ)}4

≤4‖θ − θ0‖4 + o(1).

Due to Condition (C2), we have var(αi) = o(1) and then αi = op(1). Thus,

E(A2
1)

=
4

n2(n− 1)2
E

⎛⎝∑∑
i<j

[
ω{vi(1 + αi)

1/2}ω{vj(1 + αj)
1/2} − ω(vi)ω(vj)

]
×ST

i Sj

)2
=

4

n2(n− 1)2
E

⎧⎨⎩∑∑
i<j

([
ω(vi)

−1ω{vi(1 + αi)
1/2}ω(vj)−1ω{vj(1 + αj)

1/2}

−1]× V T
i Vj

)2}
=O(n−2)E

([
ω(vi)

−1ω{vi(1 + αi)
1/2}ω(vj)−1ω{vj(1 + αj)

1/2} − 1
]

×V T
i Vj

)2
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≤O(n−2)

√
E

([
ω(vi)−1ω{vi(1 + αi)1/2}ω(vj)−1ω{vj(1 + αj)1/2} − 1

]4)
×
√

E{(V T
i Vj)4}

=o{n−2b4(ω)}
√
E
{
(ST

i Sj)4
}

=o{σ2
n(ω)},

where the second last equality is due to αi → 0 and Lemma A.1 (iii). This leads
to A1 = op{σn(ω)}. Next, for the first term in A2, we have

E(A2
21) =E

⎛⎝⎡⎣ 2

n(n− 1)

∑∑
i<j

ω{vi(1 + αi)
1/2}ω{vj(1 + αj)

1/2}v−1
i

×XT
i (θθ

T − θ0θ
T
0 )Sj

]2)
=O(n−4)E

⎛⎝⎡⎣∑∑
i<j

ω{vi(1 + αi)
1/2}ω{vj(1 + αj)

1/2}v−1
i

×XT
i (θθ

T − θ0θ
T
0 )Sj

]2)
=O(n−4)E

⎛⎝⎡⎣∑∑
i<j

ω{vi(1 + αi)
1/2}ω{vj(1 + αj)

1/2}v−1
i

×XT
i θ0θ

T
0 Sj

]2)
.
=O(n−2)E

{[
ω(vi)ω(vj)v

−1
i (uiθ

Tθ0θ
T
0 Sj + viS

T
i θ0θ

T
0 Sj)

]2}
+O(n−1)E

{
ω(vi1)ω(vi2)ω(vj)

2v−1
i1

v−1
i2

ui1ui2

}
× E(θTθ0θ

T
0 SjS

T
j θ0θ

T
0 θ),

where i1 �= i2 < j. We have that

O(n−2)E[{ω(vi)ω(vj)v−1
i (uiθ

Tθ0θ
T
0 Sj + viS

T
i θ0θ

T
0 Sj)}2]

≤O(n−2)E
{
ω(vi)ω(vj)v

−1
i uiθ

Tθ0θ
T
0 Sj

}2
+O(n−2)E

{
ω(vi)ω(vj)S

T
i θ0θ

T
0 Sj

}2
=O(n−2)E{ω2(vi)ω

2(vj)v
−2
i u2

i }E{(θTθ0θ
T
0 Sj)

2}
+O{n−2b22(ω)}E{(ST

i θ0θ
T
0 Sj)

2}

≤O(n−2)E{ω2(vj)}
√

E(v−4
i u4

i )E{ω4(vi)}E(θTθ0θ
T
0 SjS

T
j θ0θ

T
0 θ)

+O{n−2b22(ω)}E(ST
i θ0θ

T
0 SjS

T
j θ0θ

T
0 Si)

=o{σ2
n(ω)},

where the second last equality is due to Lemma A.1 (i) and Condition (C2).
Then, due to i1 �= i2 < j, we have that

O(n−1)E
{
ω(vi1)ω(vi2)ω(vj)

2v−1
i1

v−1
i2

ui1ui2

}
E(θTθ0θ

T
0 SjS

T
j θ0θ

T
0 θ)
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=O(n−1)b2(ω)[E{ω(vi)v−1
i ui}]2E(θTθ0θ

T
0 SjS

T
j θ0θ

T
0 θ)

≤O{n−1(p− 1)−1}b2(ω)E{ω2(vi)v
−2
i u2

i }
{
θTθ0θ

T
0 θ − (θTθ0θ

T
0 θ)

2
}

≤O{n−1(p− 1)−1b2(ω)}
√
E{ω4(vi)}E(v−4

i u4
i )
{
θTθ0θ

T
0 θ − (θTθ0θ

T
0 θ)

2
}

=O{n−1(p− 1)−1b22(ω)}
√
E(v−4

i u4
i )
{
θTθ0θ

T
0 θ − (θTθ0θ

T
0 θ)

2
}

=o{σ2
n(ω)},

where i �= j in the first equality, and the second last equality is due to Condition
(C1). In addition, {

θTθ0θ
T
0 θ − (θTθ0θ

T
0 θ)

2
}

=(θTθ0)
2
(
‖θ − θ0‖2 − ‖θ − θ0‖4/4

)
,

hence the last equation holds and A21 = op{σn(ω)}. Similarly, A22 = op{σn(ω)},
hence A2 = op{σn(ω)}. Next, define βi

.
=ω{vi(1 + αi)

1/2}v−1
i , and β0

.
=E(βi).

Then β0 = c0(ω){1 + o(1)}.

E(β2
i ) =E{ω2(vi)v

−2
i }{1 + o(1)}

≤[E{ω4(vi)}E(v−4
i )]1/2

≤O{b2(ω)}
√
E(v−4

i ).

Note that β2
0 ≤ E(β2

i ). We let

A′
3 =

2

n(n− 1)

∑∑
i<j

ω{vi(1 + αi)
1/2}ω{vj(1 + αj)

1/2}v−1
i v−1

j

{E(uiuj)θ
T(θθT − θ0θ

T
0 )θ + vivjS

T
i θ0θ

T
0 Sj}.

Next, we will show A3 = A′
3 + op{σn(ω)} i.e. A3 −A′

3 = op{σn(ω)}.

E(A3 −A′
3) =E[

2

n(n− 1)

∑∑
i<j

ω{vi(1 + αi)
1/2}v−1

i ω{vj(1 + αj)
1/2}v−1

j

× {uiuj − E
2(ui)}θT(θθT − θ0θ

T
0 )θ]

=θT(θθT − θ0θ
T
0 )θE[ω{vi(1 + αi)

1/2}v−1
i ω{vj(1 + αj)

1/2}
× v−1

j {uiuj − E
2(ui)}]

=θT(θθT − θ0θ
T
0 )θ

√
E(β2

i β
2
j )E(uiuj − E2(ui))2

≤θT(θθT − θ0θ
T
0 )θE(β

2
i )
√

E2(u2
i )− E4(ui)

≤θT(θθT − θ0θ
T
0 )θ

√
b4(ω)E(v

−4
i )
√
E2(u2

i )− E4(ui)

=o{σn(ω)},
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where the last equality is due to Condition (C2). Hence we have

E
2(u2

i )− E
4(ui) = o(1).

So, we define uiuj − E
2(ui) = γij , then

var(A3 −A′
3) =E{ 2

n(n− 1)

∑∑
i<j

βiβjγijθ
T(θθT − θ0θ

T
0 )θ}2

− E
2{ 2

n(n− 1)
βiβjγijθ

T(θθT − θ0θ
T
0 )θ}

={θT(θθT − θ0θ
T
0 )θ}2{O(n−1)E(β2

i βjβlγijγil)

+O(n−2)E(β2
i β

2
j γ

2
ij)}

=D1 +D2,

where i < j �= l in the second inequality. At first, we focus on D1. Due to
i < j �= l,

D1 ={θT(θθT − θ0θ
T
0 )θ}2O(n−1)E(β2

i βjβlγijγil)

={θT(θθT − θ0θ
T
0 )θ}2O(n−1)[E(β2

i βjβlu
2
iujul)− E{β2

i βjβlE
2(ui)uiuj}

− E{β2
i βjβlE

2(ui)uiul}+ E{β2
i βjβlE

4(ui)}]
≤{θT(θθT − θ0θ

T
0 )θ}2O(n−1)b4(ω)E(v

−4
i )

=O{n−1b22(ω)}{θT(θθT − θ0θ
T
0 )θ}2E(v−4

i )

=o{σ2
n(ω)},

where the first inequality is because of the Cauchy inequality and |ui| ≤ 1.
The Condition (C2) brings about the last equality. Next, similar to the above
process, we have

D2 = {θT(θθT − θ0θ
T
0 )θ}2O(n−2)E[β2

i β
2
j {u2

iu
2
j + E

4(ui)− 2uiujE
2(ui)}]

≤ O(n−2){θT(θθT − θ0θ
T
0 )θ}2b4(ω)E(v−4

i )

≤ O{n−2b22(ω)}{θT(θθT − θ0θ
T
0 )θ}2E(v−4

i )

= o{σ2
n(ω)}.

Therefore, we can conclude that A3 = A′
3 + op{σn(ω)}. Then, for A′

3, we have

E(A′
3) =β2

0E
2(ui)θ

T(θθT − θ0θ
T
0 )θ

=c20(ω)E
2(ui)θ

T(θθT − θ0θ
T
0 )θ{1 + o(1)}.

Moreover,

var(A′
3) =E

⎛⎝ 2

n(n− 1)

∑∑
i<j

[
βiβjE

2(ui){θT(θθT − θ0θ
T
0 )θ}
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+ω(vi)ω(vj)S
T
i θ0θ

T
0 Sj

])2 − β4
0E

4(ui){θT(θθT − θ0θ
T
0 )θ}2

=E{ 2

n(n− 1)

∑∑
i<j

βiβjE
2(ui)θ

T(θθT − θ0θ
T
0 )θ}2

+ E{ 2

n(n− 1)

∑∑
i<j

ω(vi)(1 + αi)
1/2ω(vj)(1 + αj)

1/2ST
i θ0θ

T
0 Sj}2

− β4
0E

4(ui){θT(θθT − θ0θ
T
0 )θ}2

=O{n−4(θT(θθT − θ0θ
T
0 )θ)

2}E{
∑∑

i<j

∑∑
k<l

(βiβjβkβl − β4
0)}

+O{n−2b22(ω)}E(ST
i θ0θ

T
0 SjS

T
j θ0θ

T
0 Si)

=(θT(θθT − θ0θ
T
0 )θ)

2{O(n−2)E(β2
i β

2
j − β4

0)

+O(n−1)β2
0E(β

2
i − β2

0)}+ o(n−2b22(ω)p
−2)

≤(θT(θθT − θ0θ
T
0 )θ)

2[O(n−2){E(β2
i )}2 +O(n−1){E(β2

i )}2]
+ o{n−2b22(ω)p

−2}
=(θT(θθT − θ0θ

T
0 )θ)

2{O(n−1)b22(ω)E(v
−4
i )}+ o{σ2

n(ω)}
=o{σ2

n(ω)},

where the last equality is due to Condition (C2), which leads to

A3 = c0(ω)
2
E
2(ui){θT(θθT − θ0θ

T
0 )θ}+ op{σn(ω)}.

For A4, by the Cauchy inequality, we have

E(A2
4) =

4

n2(n− 1)2

∑∑
i<j

E

[
V T
i Vj{(1 + αi)

−1/2(1 + αj)
−1/2 − 1}

]2
× {1 + o(1)}

=O(n−2)E{(V T
i Vj)

2}E
[
{(1 + αi)

−1/2(1 + αj)
−1/2 − 1}2

]
× {1 + o(1)}

=o{n−2b22(ω)(p− 1)−1}
=o{n−2p−1b22(ω)}
=o{σ2

n(ω)},

hence A4 = op{σn(ω)}. Similarly, we can obtain that E(A2
5) = o{E(A2

2)} and
E(A2

6) = o{E(A2
3)}, which lead to A5 = op{σn(ω)}, A6 = op{σn(ω)}, respec-

tively.
Combining the above results, we get

Tn(ω) =
2

n(n− 1)

∑∑
i<j

V T
i Vj + c0(ω)

2{θT(θθT − θ0θ
T
0 )θ}+ op{σn(ω)},

using the same procedure as in the proof of Theorem 1. Then, we obtain the
conclusion.
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Proof of theorem 3.4

Under conditions (C1)–(C2), given θ and θ0, we find that the right side of (3.1)
is an increasing function of E2{ω(vi)v−1

i }/E{ω2(vi)}. Interestingly, according to
the Cauchy inequality, it can be seen that

E
2{ω(vi)v−1

i }
E{ω2(vi)}

≤ E{ω2(vi)}E(vi−2)

E{ω2(vi)}
= E(v−2

i ). (A.6)

The above inequality holds for any nonnegative continuous weight function sat-
isfying the condition (C1). So, the maximum value of the asymptotic power in
the whole family is

lim
n,p→∞

Φ

[
−zα + E

2(ui)E(vi
−2)

p1/2n{θT(θθT − θ0θ
T
0 )θ}√

2

]
.

Besides, when taking ω = ωIN, the asymptotic power is

β(ωIN) = lim
n,p→∞

Φ

[
−zα + E

2(ui)E(vi
−2)

p1/2n{θT(θθT − θ0θ
T
0 )θ}√

2

]
,

which equals to the maximum value of the asymptotic power in the whole family.
In addition, we will verify that under the FvML and mixed FvML distribu-

tions, the weight ωIN satisfies condition (C1).
When Xi follows a FvML distribution with density function cp,κ exp(κx

Tθ).

Then, the density function of ui is cp,κ(1− u2)
p−3
2 exp(κu), where

cp,κ = 1/

∫ 1

−1

(1− u2)
p−3
2 exp(κu)du.

So, we have

E(v−4
i ) = cp,κ

∫ 1

−1

(1− u2)
p−7
2 exp(κu)du

and

E(v−2
i ) = cp,κ

∫ 1

−1

(1− u2)
p−5
2 exp(κu)du.

Then, according to (S.2.7) in the supplement of [4], we have

E(v−4
i ) =

(κ/2)2Γ
(
p−5
2

)
I p

2−3(κ)

Γ
(
p−1
2

)
I p

2−1(κ)

and

E(v−2
i ) =

(κ/2)Γ
(
p−3
2

)
I p

2−2(κ)

Γ
(
p−1
2

)
I p

2−1(κ)
,

where

Iν(κ) .
=

(κ/2)ν√
πΓ
(
ν + 1

2

) ∫ 1

−1

(
1− s2

)ν− 1
2 exp(κs)ds
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is the modified Bessel function of the first kind and of order v. Then, we have

E(v−4
i )

E2(v−2
i )

=
Γ
(
p−5
2

)
I p

2−3(κ)Γ
(
p−1
2

)
I p

2−1(κ)

Γ
(
p−3
2

)
I p

2−2(κ)Γ
(
p−3
2

)
I p

2−2(κ)
=

(p− 3)I p
2−3(κ)I p

2−1(κ)

(p− 5)I p
2−2(κ)I p

2−2(κ)
.

Then, according to (S.2.6) and Lemma S.2.2(i) in the supplement of [4], we can
obtain

E(v−4
i )

E2(v−2
i )

=
(p− 3)I p

2−3(κ)I p
2−1(κ)

(p− 5)I p
2−2(κ)I p

2−2(κ)

=
p− 3

p− 5

(
A2

p−2(κ) +
p− 4

κ
Ap−2(κ)

)
≤ p− 3

p− 5

[
1 +

p− 4

(p− 4)/2 +
√
κ2 + (p− 4)2/4

]

≤ p− 3

p− 5

[
1 +

p− 4

p− 4

]
= O(1),

for all p > 5, where Ap(κ)
.
= Ip/2(κ)/Ip/2−1(κ) and

Ap−2(κ) ≤
κ

(p− 4)/2 +
√
κ2 + (p− 4)2/4

.

When Xi follows the mixture of two FvML distributions with the same lo-
cation parameter, the density function of Xi can be denoted as

λcp,κ1 exp(κ1x
Tθ) + (1− λ)cp,κ2 exp(κ2x

Tθ). (A.7)

the density function of ui is

λcp,κ1(1− u2)
p−3
2 exp(κ1u) + (1− λ)cp,κ2(1− u2)

p−3
2 exp(κ2u).

So, we have

E(v−4
i ) =λcp,κ1

∫ 1

−1

(1− u2)
p−7
2 exp(κ1u)du

+ (1− λ)cp,κ2

∫ 1

−1

(1− u2)
p−7
2 exp(κ2u)du

and

E(v−2
i ) =λcp,κ1

∫ 1

−1

(1− u2)
p−5
2 exp(κ1u)du

+ (1− λ)cp,κ2

∫ 1

−1

(1− u2)
p−5
2 exp(κ2u)du.
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Then, according to (S.2.7) in the supplement of [4], we have

E(v−4
i ) = λ

(κ1/2)
2Γ
(
p−5
2

)
I p

2−3(κ1)

Γ
(
p−1
2

)
I p

2−1(κ1)
+ (1− λ)

(κ2/2)
2Γ
(
p−5
2

)
I p

2−3(κ2)

Γ
(
p−1
2

)
I p

2−1(κ2)

= λ
κ2
1I p

2−3(κ1)

(p− 3)(p− 5)I p
2−1(κ1)

+ (1− λ)
κ2
2I p

2−3(κ2)

(p− 3)(p− 5)I p
2−1(κ2)

=
λκ2

1

(p− 3)(p− 5)

(
1 +

p− 4

κ1Ap−2(κ1)

)
+

(1− λ)κ2
2

(p− 3)(p− 5)

(
1 +

p− 4

κ2Ap−2(κ2)

)
≤ λκ2

1

(p− 3)(p− 5)

(
1 +

p− 4

κ1Ap−2(κ1)

)
+

(1− λ)κ2
2

(p− 3)(p− 5)

(
1 +

p− 4

κ2Ap−2(κ2)

)
,

where I p
2−3(κ) = I p

2−1(κ) +
p−4
κ I p

2−2(κ) due to (S.2.6) in supplement of [4].

E(v−2
i ) = λ

(κ1/2)Γ
(
p−3
2

)
I p

2−2(κ1)

Γ
(
p−1
2

)
I p

2−1(κ1)
+ (1− λ)

(κ2/2)Γ
(
p−3
2

)
I p

2−2(κ2)

Γ
(
p−1
2

)
I p

2−1(κ2)

= λ
κ1I p

2−2(κ1)

(p− 3)I p
2−1(κ1)

+ (1− λ)
κ2I p

2−2(κ2)

(p− 3)I p
2−1(κ2)

=
λκ1

(p− 3)Ap−2(κ1)
+

(1− λ)κ2

(p− 3)Ap−2(κ2)
.

Then, we have

E(v−4
i )

E2(v−2
i )

=

λκ2
1

(p−3)(p−5)

(
1 + p−4

κ1Ap−2(κ1)

)
+

(1−λ)κ2
2

(p−3)(p−5)

(
1 + p−4

κ2Ap−2(κ2)

)
[

λκ1

(p−3)Ap−2(κ1)
+ (1−λ)κ2

(p−3)Ap−2(κ2)

]2
≤

λκ2
1

(p−3)(p−5)

(
1 + p−4

κ1Ap−2(κ1)

)
+

(1−λ)κ2
2

(p−3)(p−5)

(
1 + p−4

κ2Ap−2(κ2)

)
[

λκ1

(p−3)Ap−2(κ1)

]2
+
[

(1−λ)κ2

(p−3)Ap−2(κ2)

]2 .

Because
κ2
1

(p−3)(p−5)

(
1 + p−4

κ1Ap−2(κ1)

)
[

κ1

(p−3)Ap−2(κ1)

]2 = O(1)

and
κ2
2

(p−3)(p−5)

(
1 + p−4

κ1Ap−2(κ2)

)
[

κ2

(p−3)Ap−2(κ2)

]2 = O(1),
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Then, we have

E(v−4
i )

E2(v−2
i )

= O(1).

Then, we obtain the conclusion that under the FvML and mixed FvML distri-
butions, the weight ωIN satisfies condition (C1). Similarly, it is easy to verify
that under the FvML and mixed FvML distributions, the weight ωN, ωC, ωR, ωS

satisfies condition (C1).

Proof of Proposition 2.1

Under H0, we have that

W̃n/
Tn(ωN)√
σ2
n(ωN )

=

√
p− 1

p

n− 1

n

b2(ωN )

n−1
∑n

i=1 v
2
i0

.

Therefore, W̃n/
Tn(ωN)√
σ2
n(ωN )

→p 1 as n, p → ∞, because n−1
∑n

i=1 v
2
i0 →p

E(v2i0) =

b2(ωN ). Then, under Condition (C0) and H0, this leads to W̃n/
Tn(ωN)√
σ̂2
n(ωN )

→p 1

as n, p → ∞, due to Theorem 3.2.

Proof of Corollary 3.1

Xi follows the FvML distribution, hence we have that f(·) = exp(·).
First, we will prove that vi converges to a constant with probability one. To

this end, we just need to show that, under the FvML distribution, ui converges
to E(ui) with probability one. Specifically, due to the equation on the last line
of the fourth page of [14], we have

var(ui) = 1− p− 1

κ
Ap(κ)− {Ap(κ)}2 , (A.8)

where Ap(κ)
.
= Ip/2(κ)/Ip/2−1(κ), and

Iν(κ) .
=

(κ/2)ν√
πΓ
(
ν + 1

2

) ∫ 1

−1

(
1− s2

)ν− 1
2 exp(κs)ds

is the modified Bessel function of the first kind and of order v. Due to Lemma
S.2.2(i) in the supplement of [4], we have

Ap(κ) ≥ G p
2 ,

p
2
(κ)

.
=

κ

p
2 +

√
κ2 +

(
p
2

)2 . (A.9)

Hence,

var(ui) =1− p− 1

κ
Ap(κ)− {Ap(κ)}2
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≤1− p− 1

κ

κ

p
2 +

√
κ2 +

(
p
2

)2 − κ2(
p
2 +

√
κ2 +

(
p
2

)2)2

=1− p− 1

p
2 +

√
κ2 +

(
p
2

)2 − κ2(
p
2 +

√
κ2 +

(
p
2

)2)2

≤1− p− 1

p
2 +

√
κ2 +

(
p
2

)2 − κ2(
p
2 +

√
κ2 +

(
p
2

)2)2

≤

√
κ2 +

(
p
2

)2 − p
2 + 1

p
2 +

√
κ2 +

(
p
2

)2 − κ2(
p
2 +

√
κ2 +

(
p
2

)2)2

≤ 1

p
2 +

√
κ2 +

(
p
2

)2 +

√
κ2 +

(
p
2

)2 − p
2

p
2 +

√
κ2 +

(
p
2

)2 − κ2(
p
2 +

√
κ2 +

(
p
2

)2)2

≤1

p
+

(

√
κ2 +

(
p
2

)2 − p
2 )

(
p
2 +

√
κ2 +

(
p
2

)2)
(

p
2 +

√
κ2 +

(
p
2

)2)2

− κ2(
p
2 +

√
κ2 +

(
p
2

)2)2 ≤ 1

p
. (A.10)

Besides, there exist a positive integer p0 and a real constant c such that

E {ui − E(ui)}4 ≤ cE {ui − E(ui)}2

for any p ≥ p0 and any κ > 0 (see Lemma S.2.1(ii) in the supplement of [4]).

Hence, E {ui − E(ui)}4 ≤ c/p2 due to (A.10). Thus, we have E {ui − E(ui)}4 =
O(p−2) and

∞∑
p

P (|ui − E(ui)| ≥ ε) <
∞∑
p

E{ui − E(ui)}4
ε4

< ∞, ∀ε > 0,

that is, ui → E(ui) with probability one.

Then, we have that vi converges to a constant with probability one due to
vi =

√
1− u2

i , which leads to

E
2(ui)E

2{ω(vi)v−1
i }

E{ω2(vi)}
→ E

2(ui)E(v
−2
i ).
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Hence, the asymptotic power of all the Tn(ω)-based tests is

β = lim
n,p→∞

Φ

[
−zα + E

2(ui)E(v
−2
i )

p1/2n{θT(θθT − θ0θ
T
0 )θ}√

2

]
.

Proof of Proposition 3.1

Under H0, since Si = U{(Ip − θ0θ
T
0 )Xi} and vi are independent, so Si and Ri

are also independent. We have

E

⎛⎝ 2

n(n− 1)

∑∑
i<j

RiRjS
T
i Sj

⎞⎠ = 0.

Then, the variance of RW is

var

⎛⎝ 2

n(n− 1)

∑∑
i<j

RiRjS
T
i Sj

⎞⎠
=

2

n(n− 1)
E
{
R2

iR
2
j (S

T
i Sj)

2
}

=
2

n(n− 1)
E(R2

iR
2
j )E(S

T
i Sj)

2

=
2

n(n− 1)(p− 1)
E(R2

iR
2
j )

= 2n−4p−1
∑∑

i �=j

i2j2{1 + o(1)}

= σ2
n(RW ){1 + o(1)},

where σ2
n(RW ) = 2n−4p−1

∑∑
i �=j

i2j2 = O(n2p−1). Similar to the proof of Theo-

rem 3.1, to prove the normality of RW /
√
σ2
n(RW ), we only need to show∑n

j=2 E(Z
2
nj | Fn,j−1)

σ2
n(RW )

p→ 1, (A.11)

and

E

⎧⎨⎩
n∑

j=2

E(Z4
nj |Fn,j−1)

⎫⎬⎭ = o{σ4
n(RW )}, (A.12)

where Zni = 2/{n(n − 1)}
∑i−1

j=1 V
T
i Vj , Vi = RiSi. Let A = E(ViV

T
i ), it can

be shown that

n∑
j=2

E(Z2
nj |Fn,j−1) =

n∑
j=2

E

⎡⎣{ 2

n(n− 1)

j−1∑
i=1

V T
i Vj

}2

|Fn,j−1

⎤⎦
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=

n∑
j=2

4

n2(n− 1)2
E

{(
j−1∑
i1=1

j−1∑
i2=1

V T
i1 VjV

T
i2 Vj

)
|Fn,j−1

}

=

n∑
j=2

4

n2(n− 1)2

j−1∑
i1=1

j−1∑
i2=1

V T
i1 E(VjV

T
j )Vi2

=Cn1 + Cn2,

where

Cn1 =
4

n2(n− 1)2

n∑
j=2

j−1∑
i=1

V T
i AVi and Cn2 =

8

n2(n− 1)2

n∑
j=2

j−1∑ j−1∑
i1<i2

V T
i1 AVi2 .

Next, we consider Cn1 and note that A = E(R2
i )(Ip − θ0θ

T
0 )/(p − 1) due to

Lemma A.1. Furthermore, we have

E(Cn1) =
2

n(n− 1)
E(V T

i AVi)

=
2

n(n− 1)
tr{E(AViV

T
i )}

=
2

n(n− 1)
tr(A2)

=σ2
n(RW ){1 + o(1)},

where Si = (Ip − θ0θ
T
0 )Xi/vi and the last equality holds due to E(R2

iR
2
j ) =

E
2(R2

i ){1− o(1)}. We also obtain

ST
i ASi =

E(R2
i )

v2i (p− 1)
XT

i (Ip − θ0θ
T
0 )(Ip − θ0θ

T
0 ))(Ip − θ0θ

T
0 ))Xi

=
E(R2

i )

(p− 1)
.

Thus,

(ST
i ASi)

2 =
E
2(R2

i )

(p− 1)2
. (A.13)

So, due to E(R4
i ) = O(n4) and E(R2

i ) = O(n2),

var(Cn1) = var

⎛⎝ 4

n2(n− 1)2

n∑
j=2

j−1∑
i=1

V T
i AVi

⎞⎠
= var

⎧⎨⎩ 4

n2(n− 1)2

n∑
j=2

j−1∑
i=1

E(R2
i )

(p− 1)
R2

i

⎫⎬⎭
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= var

⎧⎨⎩ 4

n2(n− 1)2

n∑
i=1

n∑
j=i+1

E(R2
i )

(p− 1)
R2

i

⎫⎬⎭
= var

{
4

n2(n− 1)2

n∑
i=1

E(R2
i )(n− i)

(p− 1)
R2

i

}
≤ O{n−5(p− 1)−2}E(R4

i )E
2(R2

i )

= o{σ4
n(RW )}.

Then, we have Cn1/σ
2
n(RW )→p 1. Similarly,

E(C2
n2) = E

⎧⎨⎩ 8

n2(n− 1)2

n∑
j=2

j−1∑ j−1∑
i1<i2

V T
i1 AVi2

⎫⎬⎭
2

= O(n−8)E

⎛⎝ n∑
j1=2

n∑
j2=2

j1−1∑ j1−1∑
i1<i2

j2−1∑ j2−1∑
i3<i4

V T
i1 AVi2V

T
i3 AVi4

⎞⎠
= O(n−8)E

⎧⎨⎩
n∑ n∑
j1<j2

j1−1∑ j1−1∑
i1<i2

(V T
i1 AVi2)

2

⎫⎬⎭
= O(n−8)E

⎧⎨⎩
n∑

j2=2

j2−1∑
j1=1

j1−1∑ j1−1∑
i1<i2

(V T
i1 AVi2)

2

⎫⎬⎭
= O(n−4)E

{
(V T

i AVj)
2
}

= O(n−4)E
{
R2

iR
2
j (S

T
i ASj)

2
}

= O(n−4)E(R2
iR

2
j )tr

{
E(ST

i ASjS
T
j ASi)

}
= O(n−4p−3)E(R2

iR
2
j )E

2(R2
i ) = o{σ4

n(RW )},

where i �= j in the fourth equality and we used A = (p− 1)−1
E(R2

i )(Ip − θ0θ
T
0 )

and Lemma A.1 (ii) in the seventh equality. Then (A.11) holds.
Next, we only need to show

E

⎧⎨⎩
n∑

j=2

E(Z4
nj |Fn,j−1)

⎫⎬⎭ = o{σ4
n(RW )}.

Note that

E

⎧⎨⎩
n∑

j=2

E(Z4
nj |Fn,j−1)

⎫⎬⎭ =

n∑
j=2

E
{
E(Z4

nj |Fn,j−1)
}

=

n∑
j=2

E(Z4
nj)
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=

n∑
j=2

E

⎛⎜⎝
⎛⎝ 2

n(n− 1)

i−1∑
j=1

V T
i Vj

⎞⎠4
⎞⎟⎠

=O(n−8)

n∑
j=2

E

(
j−1∑
i=1

V T
j Vi

)4

(A.14)

can be decomposed as Q+ P , where

Q =O(n−8)

n∑
j=2

j−1∑ j−1∑
i1<i2

E
(
V T
j Vi1V

T
i1 VjV

T
j Vi2V

T
i2 Vj

)
,

P =O(n−8)

n∑
j=2

j−1∑
i=1

E
{
(V T

j Vi)
4
}
.

Because

Q =O(n−5)E
(
V T
j Vi1V

T
i1 VjV

T
j Vi2V

T
i2 Vj

)
=O(n−5)tr

{
E(Vi1V

T
i1 VjV

T
j Vi2V

T
i2 VjV

T
j )
}

=O(n−5)tr
[
E
{
E
(
Vi1V

T
i1 VjV

T
j Vi2V

T
i2 VjV

T
j |Vj

)}]
=O(n−5)tr

{
E(AVjV

T
j AVjV

T
j )
}

=O(n−5)E
{
(V T

j AVj)
2
}
,

Q = O{n−5(p− 1)−2}E(R4
j )E

2(R2
i ) = o{σ4

n(RW )} due to (A.13). Similarly, due
to Lemma A.1 (iii), we can show that

P = O(n−6)E
{
(V T

j Vi)
4
}

= O(n−6)E
{
(R4

iR
4
j )(S

T
j Si)

4
}

= O(n−6)E(R4
iR

4
j )E

{
(ST

j Si)
4
}

= O(n−6p−2)E(R4
iR

4
j )

= o{σ4
n(RW )}. (A.15)

So, we have complete the proof of RW /
√
σ2
n(RW ). Similarly, RS/

√
σ2
n(RS) is

also asymptotically standard normal. Finally, we obtain the conclusion.
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