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1. Introduction

While Bayesian model selection for classical low-dimensional problems has a
long history, sparse estimation in high-dimensional regression was studied much
later; see Bondell and Reich [5], Johnson and Rossell [20], and Narisetty and
He [24] for consistent Bayesian model selection methods in high-dimensional
linear models. Extensive theoretical investigations, however, have been carried
out only very recently. Since the pioneering work of Castillo et al. [8], frequentist
asymptotic properties of Bayesian sparse regression have been discovered under
various settings, and there is now a substantial body of literature [e.g., 23, 1,
28, 3, 26, 2, 10, 25, 14, 19, 18].

Most of the existing studies deal with sparse regression setups without nui-
sance parameters and there are only a few exceptions. An unknown variance
parameter, the simplest type of nuisance parameters, was incorporated for high-
dimensional linear regression in Song and Liang [28] and Bai et al. [2]. In these
studies, the optimal properties of Bayesian procedures are characterized with
continuous shrinkage priors. For more involved models, Chae et al. [10] adopted
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a nonparametric approach to estimate unknown symmetric densities in sparse
linear regression. Ning et al. [25] considered a sparse linear model for vector-
valued response variables with unknown covariance matrices.

Although nuisance parameters may not be of primary interest, modeling
frameworks require the complete description of their roles as they explicitly
parameterize models. Therefore, one may want to achieve optimal estimation
properties for sparse regression coefficients, no matter what a nuisance param-
eter is. It may also be of interest to examine posterior contraction of nuisance
parameters as a secondary objective. Despite these facts, however, there have
not been attempts to consider a general class of high-dimensional regression
models with nuisance parameters. In this study, we consider a general form of
Gaussian sparse regression in the presence of nuisance parameters, and establish
a theoretical framework for Bayesian procedures.

We formulate a general framework to treat sparse regression models in a uni-
fied way as follows. Let 1 be possibly an infinite-dimensional nuisance parameter
taking values in a set H. For each n € H and an integer m; € {1,...,m} for
some m > 1, suppose that there are a vector §,; € R™ and a positive defi-
nite matrix A, ; € R™*™ which define a regression model for a vector-valued
response variable Y; € R™: against covariates X; € R™*P given by

)/1' :Xi0+§m+5i, Ei if'n\? Nmi(O,An,i), Z: ].,...,TL, (1)

where 6 € RP is a vector of regression coefficients. Here m; (and m) can in-
crease with n. We consider the high-dimensional situation where p > n, but 6
is assumed to be sparse, with many coordinates zero. The form in (1) clearly
includes sparse linear regression with unknown error variances. Our main inter-
est lies in more complicated setups. As will be shortly discussed in Section 1.1,
many interesting examples belong to form (1).

In this paper, we develop a unified theory of posterior asymptotics in the high-
dimensional sparse regression models described by form (1). To the best of our
knowledge, there is no study thus far considering a general modeling framework
of sparse regression as in (1), even from the frequentist perspective. The results
on complicated high-dimensional regression models are only available at model-
specific levels and cannot be universally used for different model classes. On the
other hand, our approach is a unified theoretical treatment of the general model
structure in (1) under the Bayesian framework. We establish general theorems
on nearly optimal posterior contraction rates, a Bernstein-von Mises theorem
via shape approximation to the posterior distribution of 8, and model selection
consistency.

The general theory of posterior contraction using the canonical root-average-
squared Hellinger metric on the joint density [16] is not very useful in this
context, since to recover rates in terms of the metric of interest on the regression
coefficients, some boundedness conditions are needed [19]. To deal with this
issue, we construct an exponentially powerful likelihood ratio test in small pieces
that are sufficiently separated from the true parameters in terms of the average
Rényi divergence of order 1/2 (which coincides with the average negative log-
affinity). This test provides posterior contraction relative to the corresponding
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divergence. The posterior contraction rates of 8 and n can then be recovered in
terms of the metrics of interest under mild conditions on the parameter space.
Due to a nuisance parameter 7, the resulting posterior contraction for 6 may
be suboptimal. Conditions for the optimal posterior contraction will also be
examined. Our results show that the obtained posterior contraction rates are
adaptive to the unknown sparsity level.

For a Bernstein-von Mises theorem and selection consistency, stronger con-
ditions are required than those used for posterior contraction, in line with the
existing literature [e.g., 8, 23]. As pointed out by Chae et al. [10], the Bernstein-
von Mises theorems for finite dimensional parameters in classical semiparamet-
ric models [e.g., 7] may not be directly useful in the high-dimensional context.
We thus directly characterize a version of the Bernstein von-Mises theorem for
model (1). The key idea is to find a suitable orthogonal projection that satis-
fies some required conditions, which is typically straightforward if the support
of a prior for §,; is a linear space. The complexity of the space of covariance
matrices, measured by its metric entropy, also has an important role in deriving
the Bernstein-von Mises theorem and selection consistency. Combining these
two leads to a single component of normal distributions for an approximation,
which enables to correctly quantify remaining uncertainty on the parameter
through the posterior distribution.

1.1. Sparse linear regression with nuisance parameters

As briefly discussed above, the form in (1) is general and includes many in-
teresting statistical models. Here we provide specific examples belonging to (1)
in detail. In Section 5, these examples will be used to apply the main results
developed in this study.

Example 1 (Multiple response models with missing components). We consider
a general multiple response model with missing values, which is very common
in practice. Suppose that for each ¢, a vector of m responses with covariance
matrix ¥ are supposed to be observed, but for the ith group (or subject) only m;
entries are actually observed with the rest missing. Letting ¥; € R™ be the ¢th
observation and Y;""® € R™ be the augmented vector of Y; and missing entries,
we can write Y; = EIY;"™® and Cov(Y;) = EI Y E;, where E; € R™*™i is the
submatrix of the m x T identity matrix with the jth column included if the
jth element of Y;*"® is observed, j = 1,...,m. Assuming that the mean of Y; is
only X;0 for covariates X; € R™*P and sparse coefficients 8 € RP with p > n,
the model of interest can be written as V; = X;0 + ¢;, &; ~ N,., (0, EISE;),
it =1,...,n. The model belongs to the class described by (1) with &,; = Oy,
and A, ; = EI'SE; for n=%.

Example 2 (Multivariate measurement error models). Suppose that a scalar
response variable Y;* € R is connected to fixed covariates X; € RP with p > n
and random covariates Z; € R? with fixed ¢ > 1, through the following linear
additive relationship: Y;* = a+ X;T0+ ZI B +ef, Zi ~ Ny(11, %), eF ~ N(0,02),
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i =1,...,n. While X is fully observed without noise, we observe a surrogate
W; of Z; as Wy = Z; + 71, 75 N, (0, ¥), where to ensure identifiability, ¥ is
assumed to be known. This type of model is called a measurement error model or
an errors-in-variables model; see Fuller [13] and Carroll et al. [6] for a complete

overview. By direct calculations, the joint distribution of (Y;*, W;) is given by

Y ind N7 CY+X1-*T9+/LT5 BTYB+02 BT
w; o+l u ’ 8 L4+0) )

By writing Y; = (V;*,W)T € RITL X; = (X[,0,5,)7 € RUTDXP ¢ =

K2

(a+ 178, 1T)T € RITY, and Ay = (975" 1%) € RUFDX @D with g

)
(o, B, 1,02, %), the model is of form (1) with m; = ¢ + 1.
(

Example 3 (Parametric correlation structure). For m; > 1,7 =1,...,n, sup-
pose that we have a response variable Y; € R™ and covariates X; € R™i*P
with p > n. We consider a standard regression model given by Y; = X;0 + ¢;,
g~ N, (0,%;),7=1,...,n, but m; is considered to be possibly increasing. For
a known parametric correlation structure G; and a fixed dimensional Euclidean
parameter a, we model the covariance matrix as ¥; = 02G;(a) using a variance
parameter o2 and a correlation matrix G;(a) € R™i*™i, Examples of G; include
first order autoregressive and moving average correlation matrices. The model
belongs to (1) by writing &, ; = O, and A, ; = 02G;(a) with n = (a,0?).

Example 4 (Mixed effects models). For m; > 1, ¢ = 1,...,n, consider a
response variable Y; € R™: and covariates X; € R™*P with p > n and
Z; € R"™ >4 with fixed ¢ > 1. A mixed effect model given by Y; = X,;0+Z;b,+¢7,
bi = N, (0,0), e ~ N, (0,021,,), i = 1,...,n, where ¥ € RI%7 is a posi-
tive definite matrix. Then the marginal law of Y; is given by Y; = X;0 + ¢,
;i ™ Ny, (0,021, + Z; 9 ZT). We assume that 2 is known. The model belongs
to (1) by letting &, ; = 0,,, and A, ; = 02l + Z;WZT with n = .

Example 5 (Graphical structure with a sparse precision matrix). For a re-
sponse variable Y; € R™ and covariates X; € R™*P with increasing m > 1 and
p > n, consider a model given by Y; = X0 + &, &; ~ New(0,Q71), i = 1,...,n,
where 6 is a sparse coefficient vector and the precision matrix € R™*™ ig
a positive definite matrix. Along with 6, we also impose sparsity on the off-
diagonal entries of {2, which accounts for a graphical structure between observa-
tions. More precisely, if an off-diagonal entry is zero, it implies the conditional
independence between the two concerned entries of ¢; given the remaining ones,
and we suppose that most off-diagonal entries are actually zero, even though we
do not know their locations. The model is then seen to be a special case of (1)

by letting &,; = O and A, ; = Q™ with n = Q.

Example 6 (Nonparametric heteroskedastic regression models). For a response
variable Y; € R and a row vector of covariates X; € R'*P, g linear regression
model with a nonparametric heteroskedastic error is given by Y; = X;0+¢;, ¢; iy
N(0,v(z;)), i =1,...,n, where 8 is a sparse coefficient vector, v : [0, 1] — (0, c0)
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is a univariate variance function, and z; € [0,1] is a one-dimensional variable
associated with the ith observation that controls the variance of Y; through
the variance function v.Then the model belongs to (1) by letting &, ; = 0 and
A, =v(z;) with n = v.

Example 7 (Partial linear models). Consider a partial linear model given by
Y; = Xi0 + g(z) + €4, € ~ N(0,0%), i = 1,...,n, where ¥; € R is a response
variable, X; € R!*? is a row vector of covariates with p > n, # € R? is a sparse
coefficient vector, ¢ : [0,1] — R is a univariate function, and z; € [0,1] is a
scalar predictor. This model is expressed in form (1) by writing &, ; = g(z;) and
A, = o® with n = (g,0?).

1.2. Outline

The rest of this paper is organized as follows. In Section 2, some notations are
introduced and a prior distribution on sparse regression coefficients is speci-
fied. Sections 3—4 provide our main results on the posterior contraction, the
Bernstein-von Mises phenomenon, and selection consistency of the posterior
distribution. In Section 5, our general theorems are applied to the examples
considered above to derive the posterior asymptotic properties in each specific
example. All technical proofs are provided in Appendix.

2. Setup, notations, and prior specification
2.1. Notation

Here we describe the notations we use throughout this paper. For a vector
0 = (0;) € R and a set S C {1,...,p} of indices, we write Sy = {j : 6; # 0}
to denote the support of 0, s := |S| (or sg = |Sg|) to denote the cardi-
nality of S (or Sp), and 0 = {6, : j € S} and Osc = {6; : j ¢ S} to
separate components of # using S. In particular, the support of the true pa-
rameter 0y and its cardinality are written as Sp and so := |Sp|, respectively.
The notation [|0], = (3_; 10;]9)1/9, 1 < ¢ < oo, stands for the £,-norm and
|0]|c = max; |6;] denotes the maximum norm. We write pmin(A) and pmax(A4)
for the minimum and maximum eigenvalues of a square matrix A, respectively.
For a matrix X = ((z;5)), let || X||sp = prln/fx(XTX) stand for the spectral norm
and || X|p = (3, ; #%)"/? stand for the Frobenius norm of X. We also define a
matrix norm || X||« = max;|| X ;|2 for X.; the jth column of X, which is used
for compatibility conditions. The column space of X is denoted by span(X). For
further convenience, we write Gyin(X) = plln/ii(X T X) for the minimum singular
value of X. The notation Xg means the submatrix of X with columns chosen
by S. For sequences a,, and b,, a, < b, (or b, 2 a,) stands for a,, < Cb,, for

some constant C' > 0 independent of n, and a, =< b, means a, < b, < a,.
These inequalities are also used for relations involving constant sequences.
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For given parameters 6 and 7, we write the joint density as pg,, = [[;—, Po,n.i
for pgn. the density of the ith observation vector Y;. In particular, the true
joint density is expressed as po = [[;—, poi for po; = Poy.no,i With the true
parameters 6y and 79. The notation [Ey denotes the expectation operator with
the true density pg. For two probability measures P and Q, let || P—Q||Tv denote
the total variation between P and Q. For two n-variate densities f = [[,_, fi
and g := [[;, g; of independent variables, denote the average Rényi divergence
(of order 1/2) by R, (f,g) = —n"'> 1 log [ /[igi.

For any 1,2 € Ha we define drzL(nla 772) = d%,n(nla 772) + dZB,n(nth) for the
two squared pseudo-metrics:

dA n 7717772 ZHfm, 57]271'”37 dBn 771,772 Z”Am, Anz,i”%"

For compatibility conditions, the uniform compatibility number ¢; and the
smallest scaled singular value ¢ are defined as

1 X6]2]9]*" RGP
¢1(s) = in . do(s in
() 0:1<|Ss1<s || X||]10]1 (s = 0:1<]Se1<s || X ||« ]10l2°
We write Y = (Y{I,...,¥,])T for the observation vector, n, = >_i_ m; for

the dimension of Y ("), and © = R? for the parameter space of 0. Lastly, for a
(pseudo-)metric space (F,d), let N(e, F,d) denote the e-covering number, the
minimal number of e-balls that cover F.

2.2. Prior for the high-dimensional coefficients

In this subsection, we specify a prior distribution for the high-dimensional re-
gression coefficients 0. A prior for 1 should satisfy the conditions required for
the main results, so its specific characterization is deferred to Section 3. On the
other hand, the prior for 8 specified here is always good for our purposes and
satisfies all requirements.

We first select a dimension s from a prior 7m,, and then randomly choose
S c{1,...,p} for given s. A nonzero part 65 of 0 is then selected from a prior
gs on R* while fgc is fixed to zero. The resulting prior specification for (S, 0) is
formulated as

(s
(S, 9) —> I()Ig))gs(es)(so(esc), (2)
S
where Jj is the Dirac measure at zero on RP™* with suppressed dimensionality.
For the prior 7, on the model dimensions, we consider a prior satisfying the
following: for some constants A;, As, As, Ay > 0,

A1p_A37rp(s — 1) < 7-(-1,(8) < A2p_A47TP(5 - 1)) s§= 1’ RV (3)

Examples of priors satisfying (3) can be found in Castillo and van der Vaart [9]
and Castillo et al. [8]. For the prior gg, the s-fold product of the exponential
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power density is considered, where the regularization parameter is allowed to
vary with p and || X]||., i.e.,

[ X 1]«
Lypt=

Ls|| Xl
v

<A<

g9s(0s) =T %GXP(—M@H),

JES

(4)

for some constants Ly, Ly, Ls > 0. The order of X is important in that it de-
termines the boundedness requirement of the true signal 6y (see condition (C3)
below). A particularly interesting case is obtained when A is set to the lower
bound || X||+/(L1p¥?). Then the boundedness condition becomes very mild by
choosing Loy sufficiently large. When A is set to the upper bound, the bound-
edness condition is still reasonably mild. However, it can actually be relaxed
if the true signal is known to be small enough, though we do not pursue this
generalization in this study. In Section 4, we shall see that values of A that do
not increase too fast are in fact necessary for a distributional approximation
and selection consistency.

Remark 1. Since some size restriction on 8y will be made unlike Castillo et al.
[8], we note that the use of the Laplace density is not necessary and other prior
distributions may also be used for 6. For example, normal densities can be used
for gs to exploit semi-conjugacy. However, if its precision parameter is fixed
independent of n, a normal prior requires a stronger restriction on the true
signal than (C3) below. To achieve the nearly optimal posterior contraction,
other densities with similar tail properties should also work with appropriate
modifications for the true signal size (see, e.g., Jeong and Ghosal [19]). Instead
of the spike-and-slab prior in (2) and (3), a class of continuous shrinkage priors
may also be used at the expense of substantial modifications in the technical
details [28]. In this paper, we only consider the prior in (2)—(4).

3. Posterior contraction rates

The prior for a nuisance parameter n should be chosen to complete the prior
specification. Once we assign the prior for the full parameters, the posterior
distribution II(- | Y(")) is defined by Bayes’ rule. How the prior for 7 is chosen is
crucial to obtain desirable asymptotic properties of the posterior distribution.
In this subsection, we shall examine such conditions on the prior distribution
for a nuisance parameter and study the posterior contraction rates for both 6
and 7.

The prior for n is put on a subspace H C H. In many instances, we take
H = H, especially when a nuisance parameter is finite dimensional, but the
flexibility of a subspace may be beneficial in infinite-dimensional situations. We
need to choose H to satisfy certain conditions.

(C1) There exists a nondecreasing sequence a,, = o(n) such that

|2 =e, — 0, forsomen €H,

a, max ||A, ;i — Ny,
n 1S’L§n|| mn, 70,
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m.aX ||A7]11i - A"?Z»i”% S a‘ndQB,n(nlvn2)7 m, 12 S H
1<i<n

(C2) For some sequence €, such that a,é2

satisfying (C1),

— 0 and néZ — oo with a,

logIl (n € H : dn(n,m0) < &) = —né2.

~

The first condition of (C1) implies that we have a good approximation to the
true parameter value in the parameter set 7. This holds trivially if there exists
n' € H such that A,/ ; = A, ; for every i < n, which is obviously true if ny € H.
The second condition of (C1) means that in H, the maximum Frobenius norm
of the difference between covariance matrices can be controlled by the average
Frobenius norm multiplied by the sequence a,,. Clearly, this holds with a,, = 1
if A, ; is the same for every ¢ < n. By the triangle inequality, we see that (C1)
implies that

max HA’fhi - Ano,i| %‘ g en + and237n(77a770>7 newH, (5)

1<i<n
which is used throughout the paper. Condition (C2) is typically called the prior
concentration condition, which requires a prior to put sufficient mass around
the true parameter 79, measured by the pseudo-metric d,,. As in other infinite-
dimensional situations, such a closeness is translated into the closeness in terms
of the Kullback-Leibler divergence and variation (see Lemma 1 in Appendix for
more details).
As noted in Section 1, the true parameters should be restricted to certain
norm-bounded subset of the parameter space. This is clarified as follows.

(C3) The true signal satisfies ||0p]/cc < A™1 log p.
(C4) The eigenvalues of the true covariance matrix satisfy
1 ,S 1I§nzl£n pmin(Ano,i) < 1?%)(” pmax(Ano,i) ,S 1.

Condition (C3) is required to apply the general strategy for posterior contrac-
tion to our modeling framework containing nuisance parameters. More specif-
ically, the condition is imposed such that the prior assigns sufficient mass on
a Kullback-Leibler neighborhood of 8. If nuisance parameters are not present,
one can directly handle the model and such a restriction may be removed [e.g.,
8, 14]. One may refer to Song and Liang [28], Ning et al. [25], and Bai et al. [2]
for conditions similar to ours, where a variance parameter stands for a nuisance
parameter. Still, the condition is mild if A is chosen to decrease at an appro-
priate order. In particular, if A is matched to the lower bound 1/(Lip*?), the
condition becomes [|fp]lcc < (p¥2 logp)/|| X ||« which is very mild if Lo is suffi-
ciently large. Even if the upper bound L3|| X||./+/n is chosen, the condition is
not restrictive as the right hand side of the condition can be made nondecreasing
as long as || X ||, is increasing at a suitable order. Condition (C4) implies that
the eigenvalues of the true covariance matrix are bounded below and above. The
lower and upper bounds are required for a lot of technical details, including the
construction of an exponentially powerful test in Lemma 2 in Appendix.



Bayesian sparse linear regression 3049

Remark 2. Condition (C3) is actually stronger than what it needs to be, but is
adopted for the ease of interpretation. For Theorem 3 below to hold, it suffices
if we have A||6p|l1 < (sologp) V né2 for &, satisfying (C2). For the optimal

posterior contraction in Theorem 4 below, a slightly stronger bound is needed:
Mlboll1 < sologp (see Lemma 6 and its proof in Appendix).

3.1. Rényi posterior contraction and recovery

The goal of this subsection is to study posterior contraction of # relative to the
£1- and f>-metrics. To do so, we derive the posterior contraction rate with respect
to the average Rényi divergence R, (f,g), and then the rates for 6 relative to
more concrete metrics will be recovered from the Rényi contraction.

To proceed, we first need to examine a dimensionality property of the support
of 8. The following theorem shows that the posterior distribution is concentrated
on models of relatively small sizes.

Theorem 1 (Dimension). Suppose that (C1)—(C4) are satisfied. Then for s, :
= 89 V (né2/logp), there exists a constant Ky such that

EoIl (9 csg > Ky, yYW) 0.

Compared to the literature [e.g., 8, 23, 3], the rate in Theorem 1 is floored by
the extra term ne2 / log p. This arises from the presence of a nuisance parameter
in the model formulation. To minimize its impact, a prior on 7 should be chosen
such that (C2) holds for as small €, as possible; a suitable choice induces the
(nearly) optimal contraction rate.

Using the basic results in Theorem 1, the next theorem obtains the rate
at which the posterior distribution contracts at the truth with respect to the
average Rényi divergence. The theorem requires additional assumptions on a
prior.

C5) For s, = 59 V (né2/logp) with €, satisfying (C2), a sufficiently large

n/ 108 yimg y larg

B > 0, and some sequences 7, and €, > \/s* log(p VMV y,)/n satis-
fying €2 /m — 0, there exists a subset H,, C H such that

1

L 4 NS
Lin nlergn Pmin(An.i) > o (6)

1 2
IOgN (Gm'ynng/Q’Hn7dn) rg nen’ (7)
eBsloePII (1 \ H,,) — 0. (8)

The above conditions are related to the classical ones in the literature (e.g., see
Theorem 2.1. of Ghosal et al. [15]). Condition (6) requires that for every i < n,
the minimum eigenvalue of A, ; is not too small on a sieve H,,. Although =,
can be any positive sequence, a sequence increasing exponentially fast makes
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the entropy in (7) too large, resulting in a suboptimal rate €,. If v, can be
chosen to be smaller than p and M, then this does not lead to any deterioration
of the rate in €,. The entropy condition (7) is actually stronger than needed.
Scrutinizing the proof of the theorem, one can see that the entropy appearing
in the theorem is obtained using pieces that are smaller than those giving the
exponentially powerful test in Lemma 2 in Appendix. However, the covering
number with those pieces looks more complicated and the form in (7) suffices
for all examples in the present paper. Lastly, condition (8) implies that the
outside of a sieve H,, should possess sufficiently small prior mass to kill the
factor s, log p arising from the lower bound of the denominator of the posterior
distribution. In fact, conditions similar to (C2), (7) and (8) are also required for
the prior of 6. By reading the proof, it is easy to see that the prior (2) explicitly
satisfies the analogous conditions on an appropriately chosen sieve.

Theorem 2 (Contraction rate, Rényi). Suppose that (C1)—(C5) are satisfied.
Then there exists a constant Ko such that

EOH ((9377) : Rn(p@,’r])po) > K2€31 ’Y(n)) N 0

We want to sharpen the rate €, > /s, log(p V™ V 7,,) /n as much as possible.
In most instances, 7, can be chosen such that log~y, < logp. This is trivially
satisfied if v, is some polynomial in n as in the examples in this paper. If p
is known to increase much faster than n, e.g., logp =< n¢ for some ¢ € (0,1),
then v, need not be a polynomial in n and the condition can be met more
easily with a sequence that grows even faster. Note also that we typically have
logm < log p in most cases. These postulates lead to €, > /(8x logp)/n. Indeed,
it is often possible to choose €, = /(4 log p)/n, which is commonly guaranteed
by choosing an appropriate sieve H,, and a prior. The condition will be made
precise in (C5%) below for recovery and we only consider the situation that
€n = v/ (8+10g p)/n in what follows.

Although Theorem 2 provides the basic results for posterior contraction, it
does not give precise interpretations for the parameters 6 and 7 themselves,
because of the abstruse expression of the average Rényi divergence. The con-
traction rates with respect to more concrete metrics are recovered under some
additional conditions. Under the additional assumption a,e? — 0, it can be

n

shown that Theorem 1 and Theorem 2 explicitly imply that for the set
A, = {(9,17) €O xH:s9 < Kisy,

1 2 2 2

- D IIXi(0 = 00) + &.i — Enoill3 + . (m,m0) < Myel ¢,
i=1

with a sufficiently large constant M, the posterior mass of A, goes to one in
probability (see the proof of Theorem 3). To complete the recovery, we need to
separate the sum of squares of the mean into || X (6 — 0y)||2 and ndi’n(n,no),
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which requires an additional condition. The conditions required for the recovery
are clarified as follows.

(C5*) While logm < logp, (C5) holds for v, and €, = /(s«logp)/n such
that logvy, <logp and a,e2 — 0 with a,, satisfying (C1).

~

(C6) For s, satisfying (C5*), there exists . € H such that

"0 —0)TXT (& — €
liminf inf 21:1(9 90)2 1 (527],2 gn*,z) > _1’
n>1 (0meA, || X (0 —00)l13 +ndZ ,, (n,1:) 2

1
dan(mem0) S \/75 zgp,

where €, in A,, satisfies €, = \/(sxlogp)/n.

By expanding the quadratic term for the mean in A,,, one can see that the
separation is possible if (C6) is satisfied. Clearly, (C6) is trivially satisfied if the
model has only X6 for its mean, in which we take &, ; =&, i = &.,i —&no,i = 0 for
every ¢ < n. In many cases where there exists 7’ € H such that d (1, n0) =0,
we can often take 7, = n’ for the second inequality of (C6) to hold automatically.

The following theorem shows that the posterior distribution of 6 and 7 con-
tracts at their respective true values at some rates, relative to more easily com-
prehensible metrics than the average Rényi divergence. In the expressions, if
Kis, + sg < 1, the compatibility numbers should be understood be equal to 1
for interpretation.

Theorem 3 (Recovery). Suppose that (C1)—(C4), (C5*), and (C6) are satisfied.
Then, there exists a constant K3 such that

K3s,/logp
P1(K1sx + s0) [ X[

Ks+/s, logp
P2(K1s. + s0) [ X[«

Foll (9 X (0 60)l2 > Ks+/s,logp| Y<n)) Lo

w1
EolI (77 sdn(n,m0) > K34/ i ng Y(”)> — 0.

The thresholds for contraction depend upon the compatibility conditions,
which make their implication somewhat vague. As Kjs, + sg is much smaller
than n., it is not unreasonable to assume that ¢q (K18, + s0) and ¢2 (K784 + So)
are bounded away from zero, whence the compatibility number is removed from
the rates. We refer to Example 7 of Castillo et al. [8] for more discussion. In the
next subsection, we will see that one of these restrictions is actually necessary
for shape approximation or selection consistency.

EolI (9: 16 — 6ol > y<n>) Lo,

Eoll (9: 160 — 6ol > Y<">) -0,

Remark 3. The separation condition (C6) can be left as an assumption to be
satisfied, but can also be verified by a stronger condition on the design matrix
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without resorting to the values of the parameters. Suppose that for some integer
g > 1, there exists a matrix Z; € R™*? such that &, ; = Z;h(n) for every n € H,
with some map h : H +— R?. Since we can write &, ; —&,. s = Z;(h(n) —h(n.)) for
any 1, 1. € H, the Cauchy-Schwarz inequality indicates that the first inequality
of (C6) is implied by

_ o \NTxT .
lim inf inf (0 — o) X Z(h(n) — h(n.))
n>1 (0.m)e0xH:so<Kis. || X (0 —6o)|2]|Z(h(n) — h(n.))]l2

> —1,

for Z = (ZT,...,ZT)T. The left hand side is always between —1 and 1 by the
Cauchy-Schwarz inequality, and is exactly equal to —1 or 1 if and only if the two
vectors are linearly dependent. A sufficient condition for the preceding display is
thus min{cmin ([Xs, Z]) : s < K154 4+ so} = 1 since the linear dependence cannot
happen under such a condition due to the inequality sp_g, < sg+50 < K15++50
for 6 such that sy < Kis,. This sufficient condition is not restrictive at all if
g = o(n) as we already have Kis, + sg = o(n). Since there typically exists
7. € H satisfying the second inequality of (C6) as long as H provides a good
approximation for the true parameter 79, condition (C6) can be easily satisfied
if the sufficient condition is met.

Notwithstanding the lack of formal study of minimax rates with additional
complications, we still want to match our rates for 6 with those in simple linear
regression, which we call the “optimal” rates. In this sense, Theorem 3 only
provides the suboptimal rates for 6 if s = o(s4). Although the theorem gives
the optimal results if sologp = né2, it is practically hard to check this condition
as sg is unknown. If sy is known to be nonzero, the desired conclusion is trivially
achieved as soon as né2 /logp < 1. The following corollary, however, shows that
the optimal rates are still available even if sg = 0, with restrictions on €, and
the prior.

Corollary 1 (Optimality under restriction). For €, satisfying the conditions
for Theorem 3, we have the following assertions.

(a) Assume that né2/logp — 0. Then, Theorems 1 and 3 hold for s, replaced
by sg.

(b) Assume that ne2/logp < 1. Then, Theorems 1 and 3 hold for s, replaced
by so if either Ay in (3) is chosen large enough or so > 0.

The corollary is useful in limited situations, especially when a parametric
rate is available for a nuisance parameter. Even if né2 = logn, we need to
further assume that logn = o(logp), i.e., the ultra high-dimensional setup, to
conclude that (a) holds, while we can always apply (b) because logn < logp.
Although assertion (b) holds for any sg > 0 if A4 is chosen sufficiently large,
its specific threshold is not directly available. Indeed, by carefully reading the
proof of Theorem 1 together with Lemma 1 in Appendix, one can see that
the threshold depends on unknown constant bounds for the eigenvalues of the
true covariance matrix in (C4). Still, (b) holds for any A4 > 0 if s > 0.
We believe that the assumption sy > 0 is very mild, and hence simply apply
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(b) with this assumption to conclude the optimal contraction for models with
finite dimensional nuisance parameters. The optimal rates can still be achieved
for any so > 0 by verifying the conditions in the following subsection. With
finite dimensional nuisance parameters, we do not pursue this direction as it
seems an overkill considering the mildness of the assumption sg > 0, though
those conditions are actually required for the Bernstein-von Mises theorem and
selection consistency in Section 4.

In semiparametric situations with high- or infinite-dimensional nuisance pa-
rameters, none of (a) and (b) generally works unless p increases sufficiently fast.
Still, the optimal rates can be achieved under stronger conditions using the
semiparametric theory, as the following subsection provides.

3.2. Optimal posterior contraction for 6

Recall that only suboptimal rates may be available from Theorem 3 if sglogp <
né2. In many semiparametric situations, however, it is often possible to obtain
parametric rates for finite dimensional parameters under stronger conditions,
even when there are infinite-dimensional nuisance parameters in a model [4, 7].
It has also been shown that a similar argument holds in some high-dimensional
semiparametric regression models [10]. Therefore, it is naturally of interest to
examine under what conditions we can replace s, by s in the rates for 8, even
if sologp < né2. Similar to other semiparametric settings [4, 10], this can be
established by the semiparametric theory, but requires stronger conditions than
those in traditional fixed dimensional parametric cases because of the high-
dimensions of the parameters in our setup.

To proceed, some additional conditions are required for technical reasons,
which are made for the size of €, as the optimal rates are automatically attained
if sologp > me2. Still, in a practical sense, the conditions almost always need
to be verified to reach the optimal rates, since only oracle rates are generally
available and we do not know which term is greater.

In what follows, we write 5, := né2/logp for €, satisfying the conditions of
Theorem 3 through the definition of ¢,,. We first assume the following condition
on the uniform compatibility number.

(C7) For a sufficiently large M, the uniform compatibility number ¢ (M35, +
S0) is bounded away from zero.

This condition is weaker than assuming that the smallest scaled singular value
D2 (M5, +5p) is bounded away from zero, as we have ¢1(s) > ¢o(s) for any s > 0
by the Cauchy-Schwarz inequality. We will also resort on a slightly stronger
condition with respect to ¢, for a distributional approximation in the following
section. In this sense, our condition is weaker than those for Theorem 4 of
Castillo et al. [8]. Condition (C7) is not restrictive as (C5*) requires s, = o(n);
we again refer to Example 7 of Castillo et al. [8].

To precisely describe other conditions, hereafter we use the following addi-
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tional notations. We write

—1/2 —-1/2
Api X At €n
X = ; eR™*P & = : € R"™,
—1/2 —-1/2
Aﬁoﬂ/l Xn Anoft nn
and An to denote the collection of A, ; for i = 1,...,n. In particular, Xg €

R™*ISI denotes the submatrix of X with columns chosen by an index set S.
We also define the following neighborhoods of the true parameters: for s, and
€, satisfying (C5%), and sufficiently large constants My and Mo,

O, = {0 €050 < Kusu, | X (0~ 00)l2 < NV |

- . (10)
H, = {T} eH:dn(nmn) < M2€n} .
Combined by other conditions, Theorem 3 implies that the posterior probabil-
ities of these neighborhoods tend to one in probability if sglogp < ne2. We
need some bounding conditions on these neighborhoods, which will be specified
below. ~
Let ®(n) = (&, An) for any given n € H. For a given 0, we choose a bijective
map 1 — 7, (0,n) : H — H such that ®(7,(0,1)) = (&, + HX (0 — 6),A,) for
some orthogonal projection H which may depend on the true parameter values,
but not on 6 and 7. The projection H plays a key role here and for a distribu-
tional approximation in the following section, and thus should be appropriately
chosen to satisfy the followings.

(C8) The orthogonal projection H satisfies

1

Gov D Togp S 10— H)(E — &)z = 0.

n€EHR

I-H)X
win MM Estl
S:5<K15, vER®:||v]2=1 HXS”UHQ

(C9) The conditional law II, ¢ of 7,,(6,n) given 6, induced by the prior, is
absolutely continuous relative to its distribution II,, g, at 8 = 6y (which
is the same as the prior for ), and the Radon-Nikodym derivative
dIl, ¢/dIl, g, satisfies

sup sup
0€0,, nefn

dHn9
log —"% ()| < 1.
og M0, (77)‘ N

By reading the proof, one can see that Theorem 4 below is based on the
approximate likelihood ratio. The first condition of (C8) is required to control
the remainder of an approximation. The second condition of (C8) implies that
lulle < I(I = H)ulla < |lul|2 for every u € span(Xg) with S such that s < K;3,,
as the second inequality trivially holds by the fact that I — H is an orthogonal



Bayesian sparse linear regression 3055

projection. The use of the shifting map n — 7j,,(6,n) is justified by the condition
(C9), which implies that a shift in certain directions does not substantially affect
the prior on 7. This is related in spirit to the absolute continuity condition in the
semiparametric Bernstein-von Mises theorem (see, for example, Theorem 12. 8 of
Ghosal and van der Vaart [17]). We will see that a distributional approximation
also requires similar, but stronger conditions.

Lastly, the complexity of the neighborhood ., should also be controlled.
Specifically, we make the following condition.

(C10) For ay, and e, satisfying (C1) and a sufficiently large C' > 0,

né (en + an€y)
(soV1)logp

Cé, —
+ an / \/log N8, Hn,dp)ds — 0.
0

(C11) The parameter space H is separable with the pseudo-metric dp .

Similar to (C8), these conditions are required to control the remainder of an
approximation. The integral term comes from the expected supremum of a sep-
arable Gaussian process, exploiting the Gaussian likelihood of the model and
the separability of #,, with the standard deviation metric. Condition (C11) is
crucial for this reason. Since we usually put a prior on 7 in an explicit way, con-
dition (C11) is rarely violated in practice. One may see a connection between
the first term of (C10) and the conditions for Corollary 1. The former easily
tends to zero even if ne2/logp is increasing, due to the extra term &, which
commonly tends to zero in a polynomial order. Note also that the term so V 1
appears in (C8) and (C10). Although this gives sharper bounds, the conditions
often need to be verified with sg V 1 replaced by 1 as sg is unknown.

Under the conditions specified above, we obtain the following theorem for the
contraction rates for 6 which do not depend on €,. The compatibility numbers
below should be understood to be 1 if sg = 0.

Theorem 4 (Optimal posterior contraction). Suppose that (C1)-(C4), (C5*),
and (C6)—(C11) are satisfied. Then, there exist constants K4 and Ks such that

EoII (0 59>K450’Y( )%0,
K580 10g )
Eoll [ 6: 160 — 651 > — 0,
ot (0510l > o T, -
Ks+/s0logp )
Eoll (6 : (16 — 65l > 0,
0 ( 1660l > s+ Do) X

Eoll (9 X0 = 60) |2 > Ks+/50logp| Y™ ) 0.

Similar to the paragraph followed by Theorem 3, the compatibility numbers
are easily bounded away from zero so that they can be removed from the ex-
pressions. These are actually weaker than before as sg < s,. The simplified rates
are then available for ease of interpretation.
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Remark 4. In regression models where no additional mean part §,; exists,
conditions (C8) and (C9) are trivially satisfied by choosing the zero matrix for
H. This is also true for (C8%) and (C9*) specified in the next section.

Remark 5. Suppose that there exists a matrix Z; € R™*4 such that §,; =
Z;h(n) for every n € H with some map h : H — RY. Then, a general strategy to
choose H is to set H = Z(ZT2) ' Z7 for Z = (Zngolf, L ZTAGHT In
this case, by the triangle inequality, the first condition of (C8) is satisfied if there
exists 7. € H such that nd% ,, (n.,70)/(s0logp) = 0. For (C8*) in the next sec-
tion, this is replaced by (s2 log p)nd1247n(77*7 79) — 0. These are trivially the case
if there exists ' € H such that da (1, m0) = 0. Also similar to Remark 3, a suf-
ficient condition for the second line of (C8) is min{¢min ([Xs, Z]) : s < K18,} 2> 1
as pre-multiplication of a positive definite matrix by Xg and Z is an isomor-
phism. This is also sufficient for (C8*) in the next section with s, replaced by
Sx-

Remark 6. In many instances, for every § > 0 and (,, > 0, we typically have

bn n
108 N (6, (1 € 1 di(01.0) < G}l ) <0V tog (2552 )

for some sequences r,, and b,,, especially when the part of n involved with dg ,, is

an r,-dimensional Euclidean parameter. Note that fOCC” \/ 0V ry,log(b,(,/0)dd

is equal to

(CAbR)Cn
/ \/7n log <b”<" ) dsé
0 5

by, _
= (C Abp)Cny[n log ( > 4 bl e~ dt.
C Aby, /1og(bn/(CABR))

If b, is increasing, the right hand side is bounded by a multiple of ¢, /7y, log b,
by the tail probability of a normal distribution, while it is bounded by a multiple
of (,,bp+/Tr, for nonincreasing b,,. This simplification is useful to verify (C10) in
many applications, and can also be used for (C10*) in the next section.

4. Bernstein-von Mises and selection consistency

An extremely important question is whether the true support Sy is recovered
with probability tending to one, which is the property called selection consis-
tency. We will show this based on a distributional approximation to the posterior
distribution. Combined with selection consistency, the shape approximation also
leads to the product of a point mass and a normal distribution, which we call the
Bernstein-von Mises theorem. This reduced approximate distribution enables us
to correctly quantify the remaining uncertainty of the parameter through the
posterior distribution.
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4.1. Shape approximation to the posterior distribution

It is worth noting that selection consistency can often be verified without a dis-
tributional approximation. For example, in sparse linear regression with scalar
unknown variance o2, Song and Liang [28] deployed the marginal likelihood of
the model support which can be obtained by integrating out # and ¢2 from the
likelihood using the inverse gamma kernel. In our general formulation, however,
this approach is hard to implement due to the arbitrary structure of a nuisance
parameter 7. Indeed, the approach is not directly available even for a parametric
covariance matrix with dimension m > 2. In this sense, using a shape approx-
imation could be a natural solution to the problem, which may require some
extra conditions on the parameter space and on the priors for 6 and 7.

Recall that the results in Section 3.2 are based on the semiparametric theory.
In this section we will need very similar conditions as before, but the require-
ments are generally stronger, as the remainder of an approximation should be
strictly manipulated. Since the setup is high-dimensional, our conditions are
even more restrictive than those for semiparametric models with a fixed dimen-
sional parametric segment [e.g., 7]. One may refer to Section 3.3 of Chae et al.
[10] for a relevant discussion.

Throughout this section, we only consider s, that satisfies the conditions of
Theorem 3. First of all, we make a modification of (C7). The following condition
is slightly stronger than (C7), but is still not too restrictive as (C5*) requires
sx = o(n).

(C7*) Condition (C7) is satisfied with s, replaced by s,.

The assumption on the prior for € is made only through the regularization
parameter A. As in Castillo et al. [§], A should not increase too fast and should
satisfy As,v/1ogp/||X||« — 0. In our setup, the range of A induces a sufficient
condition for this: s2 logp = o(n). Since this is weaker than the one that will be
made later in this section, the “small lambda regime” is automatically met by
a stronger condition for the entire procedure for a distributional approximation
(see (C10*) below and the following paragraph).

For sufficiently large constants M, and M, we now define the neighborhoods,

0, = {9 €0 :sp< Kisy, |0— 001 < Mls*\/logp/HXH*},
~ A log p s, lo (12)
Hy = {77 € H:dan(n,no) < Mas,yf 5 ,dB.n(n,m0) < May/ = gp}-

n

Note that (:jn is defined with an ¢;-ball, which makes it contract more slowly
than ©,, in (10) under (C7*). This is due to technical reasons that for a dis-
tributional approximation, the ¢;-ball should be directly manipulated in the
complement of 6) The neighborhood Hn is also increased to be matched with
@ We leave more details on this to the reader; refer to the proof of Theorem 5
below.
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As in Section 3.2, we choose a bijective map n — 7,(0,n) which gives rise
to ®(7,(0,n)) = (& + HX(0 — 6y),A,) for some orthogonal projection H.
Again, the orthogonal projection H should be carefully chosen to satisfy some
boundedness conditions. The conditions are similar to, but stronger than those
in Section 3.2. This is not only because of the increased neighborhoods ©,, and
H., but also because the remainder of an approximation should be bounded on
their complements. We precisely make the required conditions below.

(C8*) The orthogonal projection H satisfies

s3logp sup [|(I = H)(& — &)ll3 = 0,
nEHn
I-H)X
min in w >1
S:5<K15, vER®:||v|2=1 I Xsvl|2

(C9*) The conditional law IL, ¢ of 7,(6,7n) given 6, induced by the prior, is
absolutely continuous relative to its distribution II, g, at 8 = 6y, and
the Radon-Nikodym derivative dIl,, g/dIl, g, satisfies

dll, ¢
dIl, g,

sup sup |log

0€0, netl,

] 0

(C10*) For a, and e, satisfying (C1) and a sufficiently large C > 0,

n *1
. logp{s*m
n
C/ (s« logp)/n —
+\/an/ \/logN(d,’Hn,dB,n>d5 — 0.
0

Conditions (C8*)—(C10*) are required for similar reasons as in Section 3.2. We
mention that (C10*) is a sufficient condition for the small lambda regime, since
its necessary condition is s? log® p = o(n) that is stronger than s2logp = o(n).
This necessary condition for (C10%*) is often a sufficient condition in many finite
dimensional models.

We define the standardized vector,

AV = X100 — Ego1)

U= : € R™.
—1/2

A’I]()J/‘L (Yn - XneO - gno,n)

Under the assumptions above, the posterior distribution of # is approximated

by II*° given by

me@e- Y™ = Y wS(N5

5
65, X7 (1-m)%s © 00 ) (e, (13)
S:s<Ki154
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where NV 5 q is the Gaussian measure with mean p € R® and precision 2 € R**¢

on the coordinate S, 5(? is the Dirac measure at zero on S°¢, fg is the least
squares solution 0g = (X (I — H)Xs) ' XL (I — H)(U + X6o), and the weights
wg satisfy

b o "2(8) (é) (27)*/2 det (Xg“(f - H)X’S)_l/2 exp {%|(I - H)Xsésng}.

(1) \2

Another way to express I1°°, for any measurable B C RP, is

S sicrrs. T(8) ()T (A/2)" [ AL(B)d{L(Bs) @ b0 (b))}
ZS:ngls* 7Tp(8) (z)_l ()‘/2)‘S pr A:L(e)d{‘c(es) & 60(956)}’

where £ denotes the Lebesgue measure and

=@ eB|y™) =

N0) =exp {511~ X0 - )l + U~ X6 -0} (1)

It can be easily checked that both the expressions are equivalent. The results
are summarized in the following theorem.

Theorem 5 (Distributional approximation). Suppose that (C1)—(C4), (C5%),
(C6), (CT*)—(C10*), and (C11) are satisfied for some orthogonal projection H.
Then

EOHH(QE-\Y<">) —TI(9 e~|Y<">)HTv 0. (15)

4.2. Model selection consistency

The shape approximation to the posterior distribution facilitates obtaining the
next theorem which shows that the posterior distribution is concentrated on
subsets of the true support with probability tending to one. The result is then
used as the basis of selection consistency. Similar to the literature, the theorem
requires an additional condition on the prior as follows.

(C12) The prior satisfies A4 > 1 and s, < p® for a < Ay — 1.

Theorem 6 (Selection, no supersets). Suppose that (C1)—(C4), (C5*), (C6),
(CT*)—(C10%*), and (C11)—(C12) are satisfied for some orthogonal projection H .
Then

Eoll (9 . Sy O So, Sy # So |Y(”)) 0. (16)

Since coefficients that are too close to zero cannot be identified by any se-
lection strategy, some threshold for the true nonzero coefficients is needed for
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detection. The requirement of a threshold is a fundamental limitation in high-
dimensional setups. We make the following threshold, the so-called beta-min
condition. The condition is made in view of the third assertion of Theorem 4.
The second assertion can also be used to make a similar threshold, but we only
consider the given one below as it is generally weaker.

(C13) The true parameter satisfies

Ks+v/sologp
$2((Ka + 1)so) [ X"

min |0g ;| >
90,3'7&0‘ OJ‘

Since Theorem 3 implies that the posterior distribution of the support of
0 includes that of the true support with probability tending to one, selection
consistency is an easy consequence of Theorem 6 under the beta-min condition
(C13). Moreover, this improves the distributional approximation in (15) so that
the posterior distribution can be approximated by a single component of the
mixture; that is, the Bernstein-von Mises theorem holds for the parameter com-
ponent 0g,. The arguments here are summarized in the following two corollaries,
whose proofs are straightforward and thus are omitted.

Corollary 2 (Selection consistency). Suppose that (C1)-(C4), (C5%), (C6),
(C7T*)—(C10%*), and (C11)—(C13) are satisfied for some orthogonal projection
H. Then

oIl (9 . Sy # S |Y(")) 0. (17)

Corollary 3 (Bernstein-von Mises). Suppose that (C1)—(C4), (C5%), (C6),
(C7*)—(C10%), and (C11)-(C13) are satisfied for some orthogonal projection
H. Then

Eo 0. (18)

TV

n S So
g e | ym) — (Néso,XsToU—H))?so ® 500) @€

Corollary 3 enables us to quantify the remaining uncertainty of the parameter
through the posterior distribution. Specifically, we can construct credible sets
for the individual components of 6, as in Castillo et al. [8]. It is easy to see that
by the definition of 950, its jth component has a normal distribution, whose
mean is the jth element of 65, and variance is the jth diagonal element of
(Xg:o (I — H)Xg,)~". Correct uncertainty quantification is thus guaranteed by
the weak convergence.

5. Applications

In this section, we apply the main results established in this study to the exam-
ples considered in Section 1.1. The main objective is to obtain nearly optimal
posterior contraction rates and selection consistency via shape approximation
to the posterior distribution with the Bernstein-von Mises phenomenon.
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To use Corollary 1 for the optimal posterior contraction when ne? = logn,
we simply assume that sy > 0 for all examples in this section, although The-
orem 4 can also be applied under stronger conditions. The assumption sg > 0
is extremely mild rather than considering the ultra high-dimensional case, i.e.,
logn = o(logp). A large enough A, is also sufficient instead of the assumption
sp > 0, but we do not pursue this direction as a specific threshold is not avail-
able. We check the conditions of Theorem 4 only for more complicated models
where ne2 > logn.

5.1. Multiple response models with missing components

We first apply the main results to Example 1. To recover posterior contraction
of ¥ from the primitive results, it is necessary to assume that every entry of
the response is jointly observed sufficiently many times. To be more specific,
let e;; be 1 if the jth entry of Y;™# is observed and be zero otherwise. The
contraction rate of the (j, k)th element of ¥ is directly determined by the order
of n™t 37" . e;jeik. The ideal case is when this quantity is bounded away from
zero, that is, the entries are jointly observed at a rate proportional to n. Then the
recovery is possible without any loss of information. If n=!>"" | e;;e;, decays
to zero, then the optimal recovery is not attainable, but consistent estimation
may still be possible with slower rates. With an inverse Wishart prior on 3,
the following theorem studies the posterior asymptotic properties of the given
model.

Theorem 7. Assume that so > 0, 1 < pmin(Z0) < pmax(Z0) < 1, [00]lce S
A" tlogp, and min; n-! Z?:l eijeik 2 c;l for some nondecreasing c, such

that cps0logp = o(n). Then the following assertions hold.

(a) The optimal posterior contraction rates for 0 in (11) are obtained.
(b) The posterior contraction rate for X is v/ cn(so log p)/n with respect to the
Frobenius norm.

Assume further that c,(s3 V logc,)(sologp)® = o(n) and ¢1(Dsg) = 1 for a
sufficiently large D. Then the following assertions hold.

(¢) For H € R™*™ the zero matriz, the distributional approzimation in (15)
holds.

(d) If Ay > 1 and sg S p® for a < Ay — 1, then the no-superset result in (16)
holds.

(e) Under the beta-min condition as well as the conditions for (d), the se-
lection consistency in (17) and the Bernstein-von Mises theorem in (18)

hold.

5.2. Multivariate measurement error models

We now consider Example 2. For convenience we write Y* = (Y7*,... V)T € R",
W=W, . .., WhHT e R, and X* = (X7,...,X})T € R"*? in what follows.



3062 S. Jeong and S. Ghosal

In this subsection, we use the symbol ® for the Kronecker product of matrices.
For priors of the nuisance parameters, normal prior distributions are assigned
for the location parameters («, §, and u) and an inverse gamma and inverse
Wishart prior are used for the scale parameters (02 and ¥). The next theorem
shows posterior asymptotic properties of the model. In particular, specific forms
of their mean and variance for shape approximation are provided considering
the modeling structure.

Theorem 8. Assume that sg > 0, sologp = o(n), |ao| V ||Bolloe V |0l <
L1<05 S5, 1S pmin(20) € pmax(o) S 1, 0ol S A7'logp, and

min{min([X%,1,]) : s < Dso} 2 1 for a sufficiently large D. Then the fol-
lowing assertions hold.

(a) The optimal posterior contraction rates for  in (11) are obtained.

(b) The contraction rates for «, B, p, and o? are \/(sologp)/n relative to
the £5-norms. The same rate is also obtained for ¥ with respect to the
Frobenius norm.

Assume further that s3log®p = o(n) and ¢1(Dso) = 1 for a sufficiently large
D. Then the following assertions hold.

(¢) The distributional approximation in (15) holds with the mean vector
bs =(X5"H X5) " X5 {H*[ (v* = (a0 + 1 o)1)
~ (I ® (BT Zo(So +9)7) W~ L ® o) |}

and the covariance matriz (o + B¢ So(So + V) 1 WE)(XETH*X5) ™! for
H*=1,-n"11,17.

(d) If Ay > 1 and sg < p® for a < Ay — 1, then the no-superset result in (16)
holds.

(e) Under the beta-min condition as well as the conditions for (d), the se-
lection consistency in (17) and the Bernstein-von Mises theorem in (18)
hold.

We note that the marginal law of W; is given by W; ~ N(u, ¥+ ). This gives
a hope that the rates for g and X may actually be improved up to the parametric
rate n~1/2 (possibly up to some logarithmic factors). However, other parameters
are connected to the high-dimensional coefficients 6, so such a parametric rate
may not be obtained for them.

5.3. Parametric correlation structure

Next, our main results are applied to Example 3. A correlation matrix G;(«)
should be chosen so that the conditions in the main theorems can be satisfied.
Here we consider a compound-symmetric, a first order autoregressive, and a first
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order moving average correlation matrices: for « € (by, by) with fixed boundaries
by and by of the range, respectively, {GSS(a)}jr = 1(j = k) + al(j # k),
{GAR(a)} 0 = alH, and {GMA(@)}yu = 1(j = k) + aL(j — k| = 1). The
range is chosen so that the corresponding correlation matrix can be positive
definite, i.e., (b1,b2) = (0,1) for G5(a), (b1,b2) = (—1,1) for G*R(a), and
(by,b2) = (—1/2,1/2) for GM*(a). Again, an inverse gamma prior is assigned
to 2. For a prior on «, we consider a density

1
(Oé — b1>01 (bg — Oz)c2

H(dOé) X exp { } ) o€ (bla b2)a
for some ¢y, ¢y > 0 such that II(a < t) < exp(—(t — by) ™) for t > by close to
by and II(a > t) < exp(—(by — ¢) ™) for ¢t < by close to bs.

Theorem 9. Assume that so > 0, sglogp = o(n), mn < n., ||6]lec < A !logp,
02 =1, ag € [b1 +¢,by — €] for some fized € > 0. Suppose further that m < 1 for
the compound-symmetric correlation matriz and logm < logp for the autore-

gressive and moving average correlation matrices. Then the following assertions
hold.

(a) For any correlation matriz discussed above, the optimal posterior contrac-
tion rates for 6 in (11) are obtained.

(b) For the autoregressive and moving average correlation matrices, the pos-
terior contraction rates for a* and o are \/(sologp)/(mn) with respect
to the ls-norms. For the compound-symmetric correlation matriz, their

contraction rates are /(splogp)/n relative to the ly-norm.

Assume further that s3log®p = o(n) and ¢1(Dso) = 1 for a sufficiently large
D. Then the following assertions hold.

(¢) For H € R™*™ the zero matriz, the distributional approzimation in (15)
holds.

(d) If Ay > 1 and s, < p® for a < Ay — 1, then the no-superset result in (16)
holds.

(e) Under the beta-min condition as well as the conditions for (d), the se-
lection consistency in (17) and the Bernstein-von Mises theorem in (18)
hold.

As for the prior for «, the property that the tail probabilities decay to zero
exponentially fast near both zero and one is crucial for the optimal posterior
contraction rates. It should be noted that many common probability distribu-
tions with compact supports may not be enough for this purpose (e.g., beta
distributions).

The main difference between this example and those in the preceding sub-
sections is that we consider possibly increasing m; here. Although we have the
same form of contraction rates for € as in previous examples, the implication is
not the same due to a different order of | X||... For increasing m;, it is expected
to have || X||. < y/n, which is commonly the case in regression settings. This
is reduced to || X||« =< y/n for the cases with fixed m;, and hence increasing m;
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may help get faster rates. While the increasing dimensionality of m; is often a
benefit for contraction properties of 8, this may or may not be the case for the
nuisance parameters since it depends on the dimensionality of 7. In the example
in this subsection, the dimension of the nuisance parameters is fixed although
m; can increase, which makes their posterior contraction rates faster than those
with fixed m;. However, this may not be true if 7 is increasing dimensional. For
example, see the example in Section 5.5.

5.4. Mized effects models

For the mixed effects models with sparse regression coefficients in Example 4,
we assume that the maximum of || Z;||sp is bounded, which is particularly mild
if m is bounded. We also assume that Y ;" | 1(m; > ¢) < n and min;{Gmin(Z;) :
m; > q} 2 1, that is, m; is likely to be larger than ¢ with fixed probability
and Z; is a full rank. These conditions are required for (C1) to hold. We put an
inverse Wishart prior on ¥ as in other examples. The following theorem shows
that the posterior asymptotic properties of the mixed effects models.

Theorem 10. Assume that so > 0, splogp =0(n), 1 < pmin (Vo) < Pmax(Po) <
1, [|0o]le < A tlogp, Yo A(m; > q) < n, ming{emin(Z;) : mi > ¢} 21, and
max; || Z;|lsp S 1. Then the following assertions hold.

a e optimal posterior contraction rates for 0 in are obtained.
Th timal teri tracti t 0 in (11 btained
(b) The posterior contraction rate for ¥ is \/(sglogp)/n with respect to the

Frobenius norm.

Assume further that s3log®p = o(n) and ¢1(Dso) = 1 for a sufficiently large
D. Then the following assertions hold.

(¢) For H € R™*" the zero matriz, the distributional approzimation in (15)
holds.

(d) If Ay > 1 and sg < p® for a < Ay — 1, then the no-superset result in (16)
holds.

(e) Under the beta-min condition as well as the conditions for (d), the se-
lection consistency in (17) and the Bernstein-von Mises theorem in (18)
hold.

Note that we assume that o2 is known, which is actually unnecessary at
the modeling stage. The assumption was made to find a sequence a,, satisfying
(C1) with ease. This can be relaxed only with stronger assumptions on Z;. For
example, if ¢ = 1 and Z; is an all-one vector, then the model is equivalent to
that with a compound-symmetric correlation matrix in Section 5.3 with some
reparameterization, in which o2 can be treated as unknown.

5.5. Graphical structure with a sparse precision matriz

For the graphical structure models in Example 5, we define an edge-inclusion
indicator T = {v;; : 1 < j < k <M} such that v =1 if wj; # 0 and v, =0
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otherwise, where wjy, is the (j, k)th element of . We put a prior with a density
f1 on (0, 00) to the nonzero off-diagonal entries and a prior with a density fo on
R to the diagonal entries of 2, such that the support is truncated to a matrix
space with restricted eigenvalues and entries. For the edge-inclusion indicator,
we use a binomial prior with probability @ when |Y] =}, Ujk is given, and
assign a prior to | Y| such that logII(| Y| < 7) < —Flog 7. The prior specification
is summarized as

3\

Q) o [[ filws Hf (@it ) Lpgt () (D)

Jkvje=1 Jj=1

I(Y) x @™ (1 - @)D TI(|Y| = 7), logIl(|Y| <7) < —FlogF,

where M (L) is a collection of 7 x 7 positive definite matrices for a sufficiently
large L, in which eigenvalues are between [L~!, L] and entries are also bounded
by L in absolute value.

Theorem 11. Let s, = soV 5, for 5, = (M+d)(logn)/logp. Assume that sg >
0, sologp = o(n), mlogn = o(n), |Yo| < d for some d such that dlogn = o(n),
Qo € M (cL) for some 0 < ¢ < 1, and ||0]loc < A~ tlogp. Then the following
assertions hold.

(a) The posterior contraction rates for 6 are given by (9). If 5, < 1, the
optimal rates in (11) are obtained.

(b) The posterior contraction rate of 2 is \/(sologp V (M + d)logn)/n with
respect to the Frobenius norm.

If further (5, vV m2)5,logp = o(n) and ¢1(D5,) 2 1 for a sufficiently large D,
then the following assertion holds.

(¢) The optimal posterior contraction rates for 6 in (11) are obtained even if
S, — 00.

Assume further that (s, V m)2(s,logp)® = o(n) and ¢1(Ds,) = 1 for a suffi-
ciently large D. Then the following assertions hold.

(d) For H € R™ " the zero matriz, the distributional approzimation in (15)
holds.

(e) If Ay > 1 and s, S p® for a < Ay — 1, then the no-superset result in (16)
holds.

(f) Under the beta-min condition as well as the conditions for (e), the selection
consistency in (17) and the Bernstein-von Mises theorem in (18) hold.

Note that increasing 7 is likely to improve the fo-norm contraction rate for
0 as we expect that || X ||, =< v/mn. In particular, the improvement is clearly the
case if d < m and ¢3(Ds,) = 1 for a sufficiently large D. However, as pointed
out in Section 5.3, this is not the case for {2 as its dimension is also increasing.
If we assume that logn < logm, then the term +/(m + d)(log n)/n arising
from the sparse precision matrix 2 becomes /(M + d)(logm)/n. The latter is
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comparable to the frequentist convergence rate of the graphical lasso in Rothman
et al. [27]. Therefore, our rate is deemed to be optimal considering the additional
complication due to the mean term involving sparse regression coefficients.

5.6. Nonparametric heteroskedastic regression models

Next, we use the main results for Example 6. For a bounded, convex subset
X C R, define the a-Holder class €*(X) as the collection of functions f : X — R
such that ||f|le« < 00, where

(Le)) — f(le))
_ (k) |f1ed (@) — feV(y)]
o = max sup r)|+ sup
I flle oJpax sup |f ()] e iz — yo-1a]

)

with the kth derivative f*) of f and |a] the largest integer that is strictly
smaller than a. Let the true function vy belong to €*[0, 1] with assumption that
vp s strictly positive. While o > 1/2 suffices for the basic posterior contraction,
we will see that the optimal posterior contraction for 6 requires a > 1. The
stronger condition a > 2 is even needed for the Bernstein-von Mises theorem and
the selection consistency, but all these conditions are mild if the true function
is sufficiently smooth.

We put a prior on g through B-splines. The function is expressed as a linear
combination of J-dimensional B-spline basis terms Bj; of order ¢ > «, i.e.,
vg(2) = BT B,(z), while an inverse Gaussian prior distribution is independently
assigned to each entry of . For any measurable function f : [0,1] — R, we
let [[floe = supocoy [F(2)] and | fllzm = (n"L 57 [£(20)2)1/2 denote the
sup-norm and empirical Lo-norm, respectively. To deploy the properties of B-
splines, we assume that z; are sufficiently regularly distributed on [0, 1].

Theorem 12. The true function vy is assumed to be strictly positive on [0, 1]
and belong to €~[0,1] with a > 1/2. We choose J =< (n/logn)/(+1) Let
S. = 50 V 5 for 5, = (logn)?/CetDpt/atl) /og p and assume that sg > 0,
Jsologp = o(n), and ||0o|lcc < A logp. Then the following assertions hold.

< 1, the

~

(a) The posterior contraction rates for 0 are given by (9). If 5.
optimal rates in (11) are obtained.

(b) The posterior contraction rate for v is \/(sologp)/n V (logn/n)®/(2e+1)
with respect to the ||-||2.n-norm.

If further a > 1 and ¢1(D5y) 2 1 for a sufficiently large D, then the following
assertion holds.

(¢) The optimal posterior contraction rates for 6 in (11) are obtained even if
Sy, — 00.

Assume further that a > 2, J(s2V J)(s4logp)® = o(n) and ¢1(Ds,) = 1 for a
sufficiently large D. Then the following assertions hold.

(d) The distributional approzimation in (15) holds with H the n x n zero
matriz.
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(e) If Ay > 1 and s, S p* for a < Ay — 1, then the no-superset result in (16)
holds.

(f) Under the beta-min condition as well as the conditions for (e), the selection
consistency in (17) and the Bernstein-von Mises theorem in (18) hold.

An inverse Gaussian prior is used due to the property that its tail probabilities
at both zero and infinity decay to zero exponentially fast. The exponentially
decaying tail probabilities in both directions are essential to obtain the optimal
contraction rate. Note that standard choices such as gamma and inverse gamma
distributions do not satisfy this property.

By investigating the proof, it can be seen that the condition o > 1/2 is
required to satisfy condition (C1) for posterior contraction, so this condition
is not avoidable in applying the main theorems. Unlike Theorem 13 below,
assertion (c¢) does not require any further boundedness condition. This is because
the restriction o > 1 makes the required bound tend to zero. For the Bernstein-
von Mises theorem and the selection consistency, it can be seen that a > 2
is necessary for the condition J(s2 V J)(s.logp)® = o(n) but not sufficient.
Although the requirement o > 2 is implied by the latter condition, we specify
this in the statement due to its importance. We refer to the proof of Theorem 12
for more details.

5.7. Partial linear models

Lastly, we consider Example 7. We assume that the true function gy belongs to
€[0,1] for with o > 0. Any « > 0 suffices for the basic posterior contraction,
but stronger restrictions are required for further assertions as in Theorem 12.
We put a prior on g through J-dimensional B-spline basis terms of order ¢ > a,
ie., gs(z) = BTB;(2). With a given J, we define the design matrix W; =
(Bj(21),...,Bs(2,))T € R™’. The standard normal prior is independently
assigned to each component of 5 and an inverse gamma prior is assigned to o2.
Similar to Section 5.6, we assume that z; are sufficiently regularly distributed
on [0, 1].

Theorem 13. The true function is assumed to satisfy go € €*[0, 1] with a > 0.
We choose J =< (n/logn)"/ YD) for some a < a. Let s, = sg V 5, for 5, =
(logn)?a/2atl)nt/(2a+1) /log p and assume that so > 0, sologp = o(n), 02 < 1,
100]lc < A tlogp, and min{euin([Xs, Ws]) : s < Ds.} = 1 for a sufficiently
large D. Then the following assertions hold.

(a) The posterior contraction rates for 6 are given by (9). If 5, < 1, the
optimal rates in (11) are obtained.

(b) The contraction rates for g and o® are \/(sologp)/n V (logn/n)®/(2a+1)
with respect to the ||-||2.n- and o-norms, respectively.

Iffm“ther 1/2 <a<a, (10g n)2(a/\2(1)/(2&+1)n(—2(a/\2&)+2&+1)/(2&+1) — O(Ing),
and $1(D3,) 2 1 for a sufficiently large D, then the following assertion holds.
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(¢) The optimal posterior contraction rates for 6 in (11) are obtained even if
S, — 00.

Assume that 1 < & < a — 1/2, (s2logp)(logn)?®/Gatl)pa-a)+1)/at+l) —
o(1), s%log®p = o(n), and ¢1(Ds,) > 1 for a sufficiently large D. Then the
following assertions hold.

(d) The distributional approxzimation in (15) holds for the projection matriz
H= WJ(W?WJ)iJ'W}j,

(e) If Ay > 1 and s, S p* for a < Ay — 1, then the no-superset result in (16)
holds.

(f) Under the beta-min condition as well as the conditions for (e), the selection
consistency in (17) and the Bernstein-von Mises theorem in (18) hold.

Here we elaborate more on the choices of the number J of basis terms. For
assertions (a)—(b), J can be chosen such that @ = a which gives rise to the
optimal rates for the nuisance parameters. This choice, however, does not satisfy
(C8) and (C8*), and hence we need a better approximation for |[(I — H)&,, ||
with some & < « to strictly control the remaining bias. For example, if @ = «,
the bondedness condition for (¢) is reduced to 5, = o(1), which gives the optimal
contraction for 6 by (a). Therefore, to incorporate the case that 5, — oo, there
is a need to consider some appropriate & that is strictly smaller than «. For
the Bernstein-von Mises theorem and the selection consistency, the required
restriction becomes even stronger such that & < o — 1/2.

Appendix A: Proofs for the main results

In this section, we provide proofs of the main theorems. We first describe the
additional notations used for the proofs. For a matrix X, we write p1(X) >
p2(X) > - - for the eigenvalues of X in decreasing order. The notation A,,(6,7n) =
[T, (Po.n,i/Po,i)(Y;) stands for the likelihood ratio of pg , and po. Let Eg,, de-
note the expectation operator with the density py,, and let Py denote the prob-
ability operator with the true density. For two densities f and g, let K(f,g) =
[ flog(f/g) and V(f,g) = [ fllog(f/g) — K(f.g)|* stand for the Kullback-
Leibler divergence and variation, respectively. Using some constants Po>Po >0,
we rewrite (C4) as [ min; Pmin (Ang,i) < Max; Pmax(Ay,.i) < Py for clarity.

A.1. Proof of Theorem 1

We first state a lemma showing that the denominator of the posterior distribu-
tion is bounded below by a factor with probability tending to one, which will
be used to prove the main theorems.

Lemma 1. Suppose that (C1)—(C4) are satisfied. Then there exists a constant
Ko such that

]P’o(/ Ay (0,m)dIL(0,n) > Wp(so)e_KU(SU logm‘"ei)) — 1. (19)
OXH
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Proof. We define the Kullback-Leibler-type neighborhood B,, = {(0,7) € ©xH :
Z?:l K(pO,i7p9,n,i) S C’lnE%, Z?:l V(pO,i;pG,n,i) S Cl’flg%} for a suﬂiciently
large C7. Then Lemma 10 of Ghosal and van der Vaart [16] implies that for any
C >0,

2 1
< 7(1+C)C1nen < .
]PO (/B,,L An(aa n)dﬂ(evﬂ) se€ H(Bn)> = CQCﬂLE% (20)

Hence, it suffices to show that II(B,,) is bounded below as in the lemma. By
Lemma 9, the Kullback-Leibler divergence and variation of the ith observation
are given by

1 m; i} m; X
K (po,irpon,i) = 5{ - ZIngi,k: - Z(l = Pik)
k=1 k=1

+ 1A, V2 (X0(0 — bo) + i — fno,i)|§}7

my

1 X 1/2 5
Vi(po.isPoni) = 5 ST 012+ IAYEALNX(0 — 00) + Epi — E000) 13,
k=1
N _ 1/2 1A1/2 _
where p ., k= 1,...,m;, are the eigenvalues ofA A Ano s ForZ,s ={1<

i<n:y il (1-pf k) > 6} with small 6 > 0 and |In75| the cardinality of Z,, s,
we see that on B,

n m;

ane ZZ 2 M o Z Zl_sz : (21)

i=1 k=1 ’L¢I{3k1

Since every i ¢ T, 5 satisfies 37", (1 — p};)* < 0 for small § > 0, observe that

Zzl_pzk2> Zzl_l/pzk Z_ZHAUl_AUOJHIQW

ZQIn s k=1 Zgzn S k=1 Zgzn )

where the first inequality follows by the relation |1 —z| < |1 —2z~!| as z — 1 and
the second inequality holds by (i) of Lemma 10 in Appendix. Since a,|Z,, s|/n S
an€2 by (21), it follows using (5) that for some constants Cy,C3 > 0,

an|In,5|

112232( ||An i Ano,i”%

— Z [An; — Ano,i”l% > andQB,n(mno) -
’L‘QIH,(;

> (Cy — OBang%) 121?<Xn||Ami - Anoﬂ'”% — €n.

Combining this with (21), we conclude that a,€2 +e, = max;||A,; —A,, :||F on
B, which implies that max;  [1 — p; ;| is small for all sufficiently large n, by (i)
of Lemma 10 and the inequality [1 — x| < [1—2~"| as z — 1. Hence, log p} ;. can
be expanded in the powers of (1—p ) to get —log p} ,, —(1—p} ) ~ (1—p})?/2
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for every i and k. Furthermore, since max; j |1 — pj | is sufficiently small, we
obtain that Z?gl(l - p;k)Q S Z;cn:H(l - 1/P;'k,k)2 S Ay — Ano,i”l%“ by (i)
of Lemma 10, and that ||A;’}||Sp < ||A717(<21A;%A717£2Z||5p < 1 by the restriction
on the eigenvalues of A, ;. Combining these results, it follows that on B,
both n=t 3" | K(po.i,po,n,i) and n=t 3" V(po,i, po,y,i) are bounded above by
a constant multiple of n=1|| X (8 — 69)||3 + d2(n,m0). Hence, C; can be chosen
sufficiently large such that

[(B,) > TL{(8,m) € © x H : 0~ |X[20 — boll3 + d2 (1, m0) < 282}

>T{0c0:n X210 —6|f <&} {neH:di(nmn) <er},
(22)

by the inequality | X0l < >7_110;[|Xjll2 < [|X||<[|0]l1. The logarithm of the
second term on the rightmost side is bounded below by a constant multiple of
—né2 by (C2). To find the lower bound for the first term, we shall first work
with the case sg > 1, and then show that the same lower bound is obtained even
when so = 0.

Now, assume that sy > 1 and let ©g,, = {fs, € R® : n™'/2| X|[.||0s, —
0o.5,|l1 < €} for € > 0 to be chosen later. Then

{0 € © 0 2|X [ ]16 — fuolls < ¢}

”‘255)0) /e g5, (05,)d0s,

50

weﬂlwolh / 950 (05, — 00,5, )05,
Oo,n

50

by the inequality gs,(0s,) > e M%ligg (05, — 6p.s,). Using the relation (6.2)
of Castillo et al. [8] and the assumption on the prior in (4), the integral on the
rightmost side satisfies

/ gs, (05, — 0o.5,)dbs, > eV IXI- (Aﬁx/ﬁ/II'X\I*)S0
Ooun ’ B 5

0-

o e (VA L)
- 80!

(24)

for sp > 0, and thus the rightmost side of (23) is bounded below by
7p(80)(ev/n)*® exp {—A||6o|l1 — Lze — (L1 + 1)sologp — splog L1} ,

by the inequality (p )30! < p*0. Choosing € = €,, the first term on the rightmost

S0

side of (22) satisfies

{0 cO:n "X|2)0 -6l <&}
> m,(s0)(né2)*/2 exp {~\||6oll1 — L3én — (L1 + 1)sglogp — solog L1} .
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Note that né2 > 1 and sg + &, + sologp < sologp if sg > 0, and thus the last
display implies that there exists a constant Cy > 0 such that

II(B,) > mp(so) exp {—04(/\”90”1 + sologp + néi)} .

If so = 0, the first term of (22) is clearly bounded below by ,(0), so that the
same lower bound for II(5,) in the last display is also obtained since we have
M|6oll1 + so logp = 0. Finally, the lemma follows from (20). O

Proof of Theorem 1. For the set B = {(6,n) : s > §} with any integer 5§ > so,
we see that II(B) is equal to

Xp: mp(s) < mp(s0) zp: <1ii)s_so . (;i)SH_SOi (1;2)].

s=5+1 s=5+1 7=0

Let &, be the event in (19). Since A, (#,n) is nonnegative, by Fubini’s theorem
and Lemma 1,

(0, 0,
(BY™)1e, =Eo {ffBA 0 ;75;11((9 77)) En]

< mp(s0) " exp{Ci(so log p + nés,) I(B)
Sexp{(5+1—s0)(log Az — Aglogp) + 2C1s, logp},

(25)

for some constant C; and sufficiently large p. For a sufficiently large constant
C5, choose the largest integer that is smaller than Cys, for 5. Replacing s + 1
by Css, in the last display, it is easy to see that the rightmost side goes to zero.
The proof is complete since Py(ES) — 0 by Lemma 1. O

A.2. Proof of Theorems 2-3 and Corollary 1

The following lemma shows that a small piece of the alternative centered at
any (01,m1) € © x H are locally testable with exponentially small errors, pro-
vided that the center is sufficiently separated from the truth with respect to the
average Rényi divergence. Theorem 2 for posterior contraction relative to the
average Rényi divergence will then be proved by showing that the number of
those pieces is controlled by the target rate. We write p; for the density with
(61,m), and Eq and P for the expectation and probability with p;, respectively.

Lemma 2. For a given sequence 7y, > 0, a sequence a,, satisfying (C1), given
(61,m1) € © x H such that Ry, (po,p1) > 62 with &, = o(v/m), define
52

n

2—16”

fl,nz{w,n)e@x% ZHX@ 00) + € — nr
(26)

dpn(n,m) < ax 1A |y < %}

52
_2m'y./n 1<<
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Then under (C1), there exists a test @, such that

Eopn < e—n&i, sup E0,77(1 —@n) <e
(977])6-7:1,11

—nd?Z /16

Proof. For given (61,11) € © x H such that R, (po,p1) > 62, consider the most
powerful test @n = L, (0,,,)>1} given by the Neyman-Pearson lemma. It is
then easy to see that

Eopn =Po ( Ay (01,m) > 1) < /\/]Tm < e "on,
w05 (VR ) <

The first inequality of the lemma is a direct consequence of the first line of
the preceding display. For the second inequality of the lemma, note that by the
Cauchy-Schwarz inequality, we have

{Eo.n(1 = @)} < Ei(1 = @n) Ex((pon/p1) (Y ™))%

Thus, by the second line of (27), it suffices to show Ei((pa,,/p1)(Y (™))
e™n0% /8 for every (6,m) € Fi . Defining A= A 1/2A A / , observe that

(27)

n1,%
Joax 1AL = Illsp < max ||A illspllAgi - Amvinsp
52
S 1I'£la,<X ||A77 1 ||Sp V andB n(77a 771) — 21’

on the set Fi ,, where the second inequality is due to (C1). Since the leftmost
side of the display is further bounded below by max; |px (A7 ;) — 1| for every
k < m;, we have that

2 2

on 1)
- < < * ) < _n_
L g <, pin(5,) < max pua(A) ST+ om ()

Since 07 /m — 0 and pr(24; ; — I) = 2px(A; ;) — 1 for every k < m;, (28)
implies that 2A} ; — I is nonsingular for every ¢ < n, and hence on Fy 5, it can
be shown that Ey((pg.,/p1)(Y™))? can be written as being equal to

i s a5

i=1

(29)
X exp { ZH (245, 1/2A;1/2(Xi<9 —01) + & — 5711,2‘)%}-

To bound this, note that det(Afm)l/2 det(2I — A;;l)_l/Q is equal to

, 1/2 e .
ﬁ pr(AF ) / < 1— 07 /4m? 1/2 14 ﬁ 2 < (302/4
2-p, ' (AL) “\1-6/m 2m - ’

k=1
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where the first inequality holds by (28), the second inequality holds by the
inequality (1 — 22)/(1 — 2z) < 1+ 3z for small z > 0, and the last inequality
holds by the inequality  + 1 < e®. Now, for every (6,7n) € Fi p, observe that
the exponent in (29) is bounded above by

né2

n
max [|(247 ; = 1) lsp max A Hlp Y IXi(0 = 01) + & — &1l < =

1<i<n ’ 1<i<n 1
since max; | (24} ; — I)7Y|sp < 2 for large n. Combined with (29) and (30), the
display completes the proof. O

Proof of Theorem 2. Let ©, ={6 € © : sg < Kys,} and R} (0,1) = R,,(po,5, Do)-
Then for every € > 0,

Eoll ((9,17) EOXH: R (0,n) > €| Y(”))
< Eoll ((G,n) €O, xH:VR(0,1) > e Y<">) Bl (@; | Y(”)) :

where the second term on the right hand side goes to zero by Theorem 1.
Hence, it suffices to show that the first term goes to zero for € > 0 chosen to
be the threshold in the theorem. Now, let ©F = {6 € © : 59 < K184, [|0]lcc <
pl2*2/||X ||} and define Fi,, as in (26) with 4/, = v, and 6, = €,. Then
Lemma 2 implies that small pieces of the alternative densities can be tested
with exponentially small errors as long as the center is €,-separated from the
true parameter values relative to the average Rényi divergence. To complete the
proof, we shall show that the minimal number N of those small pieces that are
needed to cover O©F x H, is controlled appropriately in terms of €,, and that
the prior mass of ©,, \ ©X and H \ H,, decreases fast enough to balance the de-
nominator of the posterior distribution. (For more discussion on a construction
of a test using metric entropies, see Section D.2 and Section D.3 of Ghosal and
van der Vaart [17].)
Note that for every 6,6’ € © and n,n’ € H,

(31)

1 & P2
LI~ )+ 01— 6l < 2 { IXIRI0 - O + )}

=1

by the inequality [|X (0 — 0")|l2 < || X||«||0 — &'||1 < p||X||«]|0 — 0| and the
Cauchy-Schwarz inequality. Since a,, < n and €2 > n~!, it is easy to see that
we have Fi , O Fi,, for

2
o P 2 2 2
o= {00 €0 X = 0 + ) €

-1
112%)(””A77,i llsp < 'Yn}a

with the same (61,7:) used to define F7 ,,. Hence, log N, is bounded above by

1 1
logN | ——————,0,, | logN | ——=+ dy | . 32
0g <6m%an||*’ ns H ”OO) + log (6m’ynn3/2’Hn’ ") ( )
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Note that for any small § > 0,

[Kisx] Lo+31\ Kis«
P Splzz-‘r? 3p 2

N@%mwm< )Q—— < (YT
lo) = | feys1 ) \ ST SIXT.

and thus we obtain

1%N( mmeSMMm+m%+mmgmi

6mynpl| X ||’

Using the last display and the entropy condition (7), the right hand side of (32)
is bounded above by a constant multiple of ne2. Hence, by Lemma D.3 of Ghosal
and van der Vaart [17], for every € > ¢,, there exists a test ¢, such that for
some Cy > 0, Egp,, < 2exp(Cine? —ne?) and Eg (1 — ¢,,) < exp(—ne?/16) for
every (0,7n) € ©F x H,, such that \/R%(6,n) > e. Note that under condition (3)
on the prior distribution, we have —logm,(so) < sologp — logm,(0) < s, logp
since m,(0) is bounded away from zero. Hence, for &, the event in (19) and some
constant Cy > 0, the first term on the right hand side of (31) is bounded by

Eoll ((9>77) €O, x H: /Ry (0,1) > € Y(")) e, (1= on) + Eo(pn + 1eg)

S{ sup Eg.n(1— ¢n) +11(6,\05) +H(H\Hn)}ec2s*1°gp
(0,m)€O: XHp:R:(0,n)>€2

+ Eopn + Poé,,,

where the term PyES converges to zero by Lemma 1. Choosing € = Cse,, for a
sufficiently large C3, we have

Eopn — 0, sup Eg,(1— wn)eczs* logp _y ),
(0,1 €O XHpn:R:(0,m)>€?

Furthermore, II(H \ H,)e“2%*1°8P goes to zero by condition (8). Now, to show
that II(©,, \ ©}) goes to zero exponentially fast, observe that

(©,\0;)=1{0 € ©:sy < Kis,, [|0] >p">"?/||X]..}

_ Wp(s)
-2 0

S:s<Kiss

/ gs(0s)dbs
{0s5:110slloo >pE212 /]| X || }

—A4 S
< Z —(A2p ) / gs (es)dgs.
{05:110s lloc>pT2+2/|| X]| }

P

S:s<KiS, <S)

by the inequality 7,(s) < (A2p~44)*m,(0) for every S. Since the tail probability

of the Laplace distribution is given by f\r\> . 2= \e M*ldz = exp(—At) for every

t > 0, the rightmost side of the last display is bounded above by a constant
multiple of

Kiss Loto A s Loto
se- WXL (A2 < o -t x.

Ay ~ O :
s=1 p
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Since ApF2+2/|X||, > p? by (4), the right hand side is bounded by e+’
for some Cy > 0, and thus I1(0,, \ ©%)e“2%+ 18P goes to zero since s, logp =
o(p?). Finally, we conclude that the left hand side of (31) goes to zero with
e = Cse,. O

Proof of Theorem 3. By Theorem 2, we obtain the contraction rate of the pos-
terior distribution with respect to the average Rényi divergence R, (pg.y, Do)
between pg ,, and py given by

- (det A, ;) /*(det A )1/4}
R , n,% 10,
(po,n, o) 21 {det (Ayi+ Ay 2)/2)1/2
1 < -
4—2 D+ By i) (Xi(6 = 60) + Eni — En) 3.
Define

(det Anvi)l/zl(det An07i)1/4

Api Ay )=1— . 33
( 7,05 7]0,1) det((An,i 4 Ar]O,i)/Q)l/Q ( )
Then Theorem 2 implies that by the last display,
1< 1<
6 E Zlog An,u Ano, )) el E Z (An (2 Ano,i)a (34)
=1 =1

where the second inequality holds by the inequality logx < x — 1. Note that by
combining (i) and (ii) of Lemma 10 in Appendix, we obtain g2(A, i, Ay,.i) =
A — Ayy.il|E if the left hand side is small. Thus, using the same approach in

the proof of Lemma 1, (34) is further bounded below by
Cld2B,n(777770) 025 maX ||A77 i Ano,i”%‘ (35)
> (Cl C3an )dB n(n 770) 036?167217

for some constants Cy,Co,C3 > 0. Since C; — Csa,e2 is bounded away from
zero and e, is decreasing, (34) and (35) imply that €, Z dp.n(n,mo). Now, it is
easy to see that by (5),

2
. . < R .
fgiaganAn,z + AWU,Z”sp — 2 fgia‘anHAn,’t Ano,z

2,48 ma A,
Sen+ andzB,n(nv'UO) +1,

which is bounded since e,, + a,e2 = o(1). Hence, we see that for 7, satisfying
(C6), n=H|X (0 — 60)[15 + d% ,,(n,m0) is bounded by a constant multiple of

1

1 n
S - D NIXi(0 = 00) + &i = &y ill3 + 24, (1, m0)

i=1
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n

1 _
S D A+ 200 0) 7 (X0 = 00) + i = Eno )13 + A4 (7 0)-
i=1
The display implies that || X (6 — 60)|13 + nd% ,,(n,70) < nes, by Theorem 2
and (C6). Combining the results verifies the third and fourth assertions of the
theorem. For the remainder, observe that sg_g, < sg + so < K18x + s0 S S«

for 6 such that sy < Kjs,. Therefore by Theorem 1, the first and the second
assertions readily follow from the definitions of ¢, and ¢,. O

Proof of Corollary 1. We first verify the assertion (a). If so > 0 the assertion is
trivial. If s = 0, the condition ne2/logp — 0 implies that s, — 0, and hence
Theorem 1 holds with s, = 0. Since this means that § = 6y = 0 if sg = 0, we
can plug in sq for s, in Theorem 3.

Similarly, the assertion (b) trivially holds if sg > 0 and we only need to verify
the case sg = 0. By reading the proof of Theorem 1, one can see that (25) goes
to zero for large enough Ay if so = 0. This completes the proof. O

A.3. Proof of Theorem 4

To prove Theorem 4, we first provide preliminary results. Some of these will
also be used to prove Theorems 5-6.

Lemma 3. Suppose that (C1), (C2), (C7), (C8) and (C10) are satisfied for
some orthogonal projection H. Then, for A% (6,n) = (pg,n/pgo,ﬁn(g,n))(Y(")) and
A% (0) in (14) with the corresponding H, there exists a positive sequence 6, — 0
such that for any 0 with sg < K134,

Po( sup |log A7 (6,7m) —log A, (0)]
nNEHn (36)

<op {HX(@ —6o)ll2+/ (56 + s0) logp + || X (6 — 90)”3}) — 1

Proof. If sy = sg = 0, the left hand side in the probability operator is zero, and
the assertion trivially holds. We thus only consider the case sy + so > 0 below.

By Markov’s inequality, it suffices to show that there exists a positive se-
quence 4!, = o(d,,) such that

Eo sup [log A7, (6,n) —log A7 (0)]
NEHn (37)

< 8, {1X(0 00 l2v/ (50 + 50) Togp + | X(0 — 00) 3}

Let A} € R™ " be the block-diagonal matrix formed by stacking
A2 A;;A;/Q i=1,...,n, and observe that

no,% 0,27

* 1 * %
log A7, (6.n) = — 5|4/ *(I — H)X (6 — 60)|I3
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+(0—00)" XT(I — H)AL{U — (& — &) — HX (0 — 60)}-

The left hand side of (37) is thus bounded by the sum of the following terms:

sup |(0 —60)" XT(I — H)(I — A})(I — H)X(0 — 6)|, (38)
neEHn
SUP ’(0 - GO)TXT(I - H)A;(gn - 5710 + HX(Q - 90))‘7 (39)
nEHn
Eo sup |(6 —60)" X"(I — H)(I — A})U|. (40)
nEHn

First, observe that (38) is bounded above by a constant multiple of

sup [|1 — Afllsp | X (0 = 60)lI5 S 1 X (0 — 6o)|l5 sup jfoax 1A,
nGHn ne'Hn

ALl
(41)

Using (i) of Lemma 10 and the inequality |1 — 2| < |1 —2~!| as  — 1, we obtain
that for p}, = pk(A1/2.A714A1/2»)

10,2 1,0~ 10,2/
1A, - WHFNZ 1= pip) Z L=1/p)" S 1800 = Dpyill?, (42)
k=1

provided that the rightmost side is sufficiently small. Because max;||A,; —
Apilld < en + andZB,n(n,no) < en + ané: on H,, (42) holds. This implies
that for all sufficiently large n, the right hand side of (41) is bounded above by
a constant multiple of

1X (0 — 6o)lI3 sup \/6n+and23,n(777no) S X (0~ 00)l3V en + ané?,

nEHR

where e, + a,é2 = o(1) due to (C1) and (C2).
Next, (39) is equal to

sup |(6 = 00)" XTI = H) {(& = &) = (T = A7) = & + HX(0 - ) } |

By the triangle inequality, the display is bounded by a constant multiple of

1X (0 = 60)ll2 sup [[(1 = H)(&, = &no)ll2
nEHn

+ sup {[1X(0 = 00)]13 + X (0 — 00 l2vndan(n.m) | max Ay = AL
nEHn

(43)

Using the same approach used in (42), the second term is further bounded above
by a constant multiple of

1X(0 = 0013/ en + anl + | X (0 — 00)ll2v/né2 (en + ane?)
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Therefore, by (C8) and (C10), (43) is bounded by

S X (6 —600)ll2v/(so vV 1) logp + || X (6 — 60)[|3}

for some 4/, — 0. This is not more than the right hand side of (37) if s+ s > 0.
Note also that (40) is bounded by

16 — ol Eo sup [ XT(I — H)(I — A})U|loc

NnEHn
X(0—-6
< V30 50l X(0 —o)ll2 Eo sup [|XT(I — H)(I — AU .
b1(s9 + 50)[| X[« nEHn

We have that ¢1(s¢ + so) > ¢1(K15« + o) 2 1 by condition (C7). By Lemma 4
below, one can see that

Eo sup | XT(I — H)(I — A})Ulls
nEH

Csép (44)

< 11X viogp {¢ T+ fan / Vlog N (6, ﬁn,dB,n)da} ,
0

for some C5 > 0. The term in the braces goes to zero by (C10). Combining the

bounds, we easily see that there exists ¢/, — 0 satisfying (37). The assertion

holds by choosing d,, = 1/d/,. O

Lemma 4. Consider a neighborhood H: = {n € H : dgn(n,m0) < {n} with any
gwen C, = o(a;1/2) for a,, satisfying (C1). Then, for any orthogonal projection
P and a sufficiently large C > 0, we have that under (C1),

Eo sup || X7 P(I — A})U||s
neH;,

S ”XH*\/lng {\/en + anﬁ% =+ \/an/
0

Cen

\/10g N (6, H;, dan)d(S} )

where A} € R " s the block-diagonal matriz formed by stacking the matrices
AVEASIALR =1, .

70, 10,47
Proof. Let W,, ; = X_T;P(I — AN)U for X.j € R the jth column of X. Then,

by Lemma 2.2.2 of van der Vaart and Wellner [29] applied with ¢ (z) = ¢*” —1,
the expectation in the lemma is equal to

Ey max sup |W, ;] <‘ max - sup W5l
1<5< <j<p

1<j<ppens PneHs;

< logp max
P

sup Wy 41|
neH;, P

(45)

where |||y is the Orlicz norm for ¢. For any 1,72 € H}, define the standard
deviation pseudo-metric between W,, ; and W,, ; as

i (11,712) = A Var(Wa, 5 — Woa ) = (A5, = A5, )PX 512
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Using the tail bound for normal distributions and Lemma 2.2.1 of van der Vaart
and Wellner [29], we see that ||W,, ; — Wy, illy S doj(1m1,m2) for every ni,ma €
‘H;. We shall show that #;, is a separable pseudo-metric space with d, ; for
every j < p. Then, under the true model Py, we see that {W, ; :n € H}}isa
separable Gaussian process for d, ;. Hence, by Corollary 2.2.5 of van der Vaart
and Wellner [29], for any fixed ' € HZ,

diam; (H,
sup (Wl < Wi+ [ VBN (/2,15 dog)de, (46
n P

neH;,

where diam;(H}) = sup{ds ;(m1,m2) : Mm,nm2 € H),}. It is clear that W,/ ; pos-

sesses a normal distribution with mean zero and variance ||(I — A}, ) PX ][3.
Using Lemma 2.2.1 of van der Vaart and Wellner [29] again, we see that

Wy slle S 1T = A7) PX; ||2

S 1r£1a<x ”A ”0 i

< ||X||* Ven + an(r%’

for every ' € H¥. Here the last inequality holds by using (42) and the fact that
max; [ Ay — Ay illf < en + andg, (1,m0) S en + angi = o(1) on Hy;, under
(C1).

Next, to further bound the second term in (46), note that for every 7,12 €
Hr,

Ll X gz (47)

2

a’"C Z 2andB n(nka 770) > andB n(7717772) > rgax ||A1717 - Anz,i|
k=1

2
F>

which is further bounded below by

mg 2
1 2 1/2
min pmm(ATIQ,i) max {1 - l/pk( né 1An11, Ani,z)} )

1<i<n 1<i<n

using (i) of Lemma 10. In the last display, we see that min; pmin(4,, ;) is
bounded away from zero since

|sp + max ”Ano, lsp S Ven +an(2 +1,

and hence every eigenvalue py, (A;é iA;lle}h{ 21) is bounded below and above by

a multiple of its reciprocal, as a,(? — 0. This implies that a,(? is further
bounded below by a constant multiple of

e 18

|SP =< fgax ”Anz i no,

m;

2
max {lfpk(Al/Q,A Al/g)}

1<i<n N2,8 M1, 2,0

> 1I<Illl£1 prnln(A"?%‘) 1rga<x ||A771 i 772) HF
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By the definition of d, ; and the preceding displays, we thus obtain
doj(m1,m2) < 1A%, = A7, sl X512
<12 max A7) = AL (45)
S X ll2vands n(n, m2),

for every n1,m2 € Hj;,. Hence, using that diam;(H}) < || X.j]|2Cny/an, we can
bound the second term in (46) above by a constant multiple of

C1]| X jll2¢nvan
/ VI8 N (¢/Ca| X |2/, M. dip ) e,

0

for some Cy,Cy > 0. This can be further bounded by replacing || X ;|2 in the
display by || X||«. Then, using (45), (46), and (47), and by the substitution
d = €/(C|X||«\/an) for the last display, we bound (45) above by a constant
multiple of

C3<n
IIXII*\/logp{\/en +an( + \/E/ \/logN (é, ”H;i,dB,n)de} :
0

for some C3 > 0.
To complete the proof, it remains to show that 7 is a separable pseudo-
metric space with d, ; for every j < p. By (48), we see that ds ;(n1,m2) S

| X ||« r/@nd B n(m,n2) for every m,ne € H;. This implies that H is separable
with d, ; since H is separable with dp . O

Lemma 5. For any orthogonal projection P,
5 2
Po (IX7 PUlloo > 20, "/2/Iogp|1 X]]. ) < -

Proof. Note first that X?PU has a normal distribution with mean zero and

variance ||[PX |3, and hence we have
Py (|)Z'TPU|OO >t max |PX.j2) <2pe 12 10,
1<j<p

by the tail probabilities of normal distributions. By choosing ¢ = 2+/logp and
using the inequality ||PX ;|2 < || X ]2 < £51/2||XH* for every j < p, we verify
the assertion. O

Lemma 6. If (C7) and (C10) are satisfied and sologp < né2, there exists a
constant Ky > 0 such that

Py | inf / Loy (m)yar(g) > e Ko(l+sologn) | _ 1, (49)
TIGHTL peo,n
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Proof. Let ©F = {0 € © : sy = 50, || X (0 — 6p)||3 < 1}. Restricting the integral

to this set, the left hand side of the inequality in (49) is bounded below by

inf [ Lo (ym)ame) > / inf 227 (y()qr1(9)
n€Mn JOr Poo,n ©x neM, Poo,n

(50)
:/ exp< inf log —— Pom (Y(n))> dIL().

nEHn Poo,n

The exponent is equal to

: % * & & 1 * %
i {(0-00)TXTAL0 &+ ) - 518720 - o)

nEHn
Z =110 = boll sup [ XTA;Uoo (51)
nE€EH,
— 11X (6 = 0o)ll2 sup [|&; — Enoll2 — 1X (8 — 60)]13,
nEHn

since [|Afllsp S 1 on H,. We first consider the case sy > 0. Observe that
sup, 7 \\XTA;U||OO < XTU||oo + supneﬁnHXT(I — AF)U||oo, where the first
term is bounded by a constant multiple of || X ||.y/log p with Py-probability tend-
ing to one, due to Lemma 5. By Lemma 4 applied with P = I together with
(C10), the expected value of the second term is bounded by 6, || X||.v/logp for
some d,, — 0. Hence, for any M, — oo,

Py ( sup [|XT(I — A})Ulloe < Mn5n||X||*\/logp> — 1.

nEHn

Consequently, taking a sufficiently slowly increasing M,, for the above, (51) is
bounded below by a constant multiple of

=[IX 1116 = Boll1/log p — | X (6 — 6o)I3,

with Pyp-probability tending to one. Note that | X|.||0 —6o]l1 < v/So + so|| X (0—
00)|l2/¢1(s6 + s0) and ¢1(se + s0) = ¢1(2s0) Z 1 on O}, by (C7), if sologp <
neé2. The last display is thus bounded below by —Cjsglogp for some C; > 0,
uniformly over 6 € ©F. Consequently, with Pg-probability tending to one, (50)
is bounded below by

e—Clso Iong(ez) > 7T_p(s())e—c’gs[) logp’

for some Cy > 0, where the inequality holds by (23) and (24) since A||6p]|1 <
sologp by (C3). Since —logm,(so) S sologp if sg > 0, the display is further
bounded below as in the assertion.

If sp = 0, (51) is equal to zero on ©F, as this is a singleton set {6 : § = 0}.
This means that (50) is bounded below by m,(0), which is also bounded away
from zero. This leads to the desired assertion. O
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Proof of Theorem 4. The idea of our proof is similar in part to that of Theorem
3.5 in Chae et al. [10]. We only need to verify the first and fourth assertions.
The second and third assertions then follow from the definitions of ¢; and ¢s.
Note also that we only need to consider the case s logp < né2, as the assertions
follow from Theorems 1 and 3 if sglogp = ne2.

Let B, = {0 € © : 59 > Kyso} U{0 € ©: HX(9 00)13 > Kss9logp}. Also

define 7-[’ as H, but using a constant M2 < M, such that H, C Hy. Then, by
Theorem 3, we have that

EoIl(6 € B,|Y ™) < EoII(6 € B, N Oy, n € H,|Y ™) + o(1)
< Eoll(6 € B, N On,n e HL[Y™ neH,)+o(l).

Let © be the event that is an intersection of the events in (36), (49), and the
event {||XT(I — H)U||oo < 2p*1/2\/10g [IX||«} whose probability goes to zero

by Lemma 5. Since Py(Q°) — O it suffices to show that

Eoll(6 € B, N O,,n € H,[Y™ neH,)ig
Jo, s, Jir o,y (Y™)dII(n)dI1(6) (52)
I Ji, po.n(Y (™)dll(n)dIL(0)

tends to zero. Observe that by Fubini’s theorem, the denominator of the ratio
is equal to

:EO

/ /pe,n (Y (") dL1(8)pgy L (n)

Poy,n
>{ inf /pa—’"(Y(”))dH(H)}/ P, (Y )dII(n).
NEHn Poo,n o,

By Lemma 6 the term in the braces on the right hand side is further bounded
below by e~ o(1+sologp) on the event ). Note also that the numerator of the
ratio in (52) is equal to

[ / A (07000, 0. (Y )AL () TI(6)
©,NB, .

N A (0, n
< {/~ A% () sup AE (0;7) dH(H)} sup /N Do it (6,1) (Y( ))dH(n).
©,NB, neH!,, n 0€0,NB, /H;

n

Combining the bounds, on the event €2, the ratio in (52) is bounded by

J521, 200,71 0 (Y ) dIL(1)
sup '
6€6,,NB,, fﬁ” Poo,n (Y (™)dIl(n)

X / A%(0) sup Af{fa’")dn(e).

Ko (1+s0 logp)
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At the end of this proof, we will verify that

Sy, Poo a0 (V" )dlL(m) ,
Sup ( ~Y )
0€6,,NB,, fﬁn Poo,n (Y (™)dll(n)

with Pg-probability tending to one. Assuming that this is true for now and
letting ©* be the event satisfying (53), we see that (52) is bounded by

(53)

) A (0
eKo(lJrsolOg;D)EO/ A:L(a) sup n( 7/’7)d]:[(9)152ﬂﬂ* +0(1)

8,.nB, e +(0)

To show that this tends to zero, for ,, in Lemma 3, define B, = {6 € (:)n 1S9 >
Kuso, | X (0—00)|I3 < 62"/ (s0+50) logp}, Bo,u = {0 € O : 59 > Kaso, | X (0
00)12 > 6n /(59 + s0)log p}, and By, = {0 € O, : sp < Kyso, | X (6 — 60)]2 >

Kj5sglogp} such that ©, N B, = Uilek’n. Below we will show that

A(Bk,n) — eK{)(lJrSO log p)
Ax(0
x Eqg A (0) sup ”E ’n)dH(H)]lng* -0, k=1,2,3.
Bi,n nE€EHn An(o)

Since EgAj(f) = 1 by the moment generating function of normal distribu-
tions, we obtain that

A(B1n) < Eo / A (G)e o050 logp)+20, so-+s0) log p gy ()
Bl,n

/ 1/2 A2 s7so
< 7Tp(0) Z €K°(1+SO log p)+26,/“(s+s0) log p ( A4> ]
s>Kaso p

If sp = 0, the rightmost side goes to zero for any K, > 0. If so > 0, it still goes
to zero for K, that is much larger than K.
Note also that by conditions (C4), (C7) and (C8), we have that for some
C1,C5 > 0 and any 0,
1 . -
log A7,(0) = =5 [I(T = H)X(0 = 00)3 + (0 — 60)" X (I = H)U
< —Cal|X (0= 00)3+ 110 = 011 | X" (I = H)U | (54)
< —Chl|X (0 — 00)13 + C2[ X (0 — bo)l|l2v/ (s0 + 50) log p,

on the event Q. Hence by (36) and (54), for every 0 € By,

Az (0
g {430) sup S2H Y < (Cadl/ 4,4 03/ = IO - ) <0,
on the event 2. Therefore,

A(By ,,) < eoltsologp) / dI1(6) + o(1)
B2,n
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, ) A S§—So
< 7, (0)efo(1+s0logp) Z ( A24) +o(1).

s>Kyso p

This tends to zero if K, is sufficiently large.

If s9 = 0, B3, is the empty set as it implies § = ¢y = 0. Hence it suffices
to consider the case that sy > 0 below. By (36) and (54) again, there exists a
constant Cs > 0 such that for every 6 € Bs ,,,

g {2310 sup 220

nNEHn ( )

_ )2 [Batl L )2
Cyf| X (0 00)2+{Cz e +0n 1+\/75 [ X (0 — o)l

~Cs]| X (0 — 0o)l13,

IN

IN

on the event 2, where the last inequality holds by choosing K5 much larger than
K. Therefore,

A(B3n)§eK5(1+301°g1’)/ ¢~ CsIX(6-00)13 1y (9)
Bs,n

< eKé(l'FSO log p)—C3Kss0 logp’

which tends to zero for K that is much larger than Ky, if so > 0.

It only remains to show (53). Since the map n — 7,(0,7n) is bijective for
every fixed 0, for the set defined by 7, (0, H.,) = {fin(0,7) : n € H.,} with given
0 e én, we see that

/~ Do, (0, (Y )l () = / P (Y ™)dlL 6 (), (55)
n n (6,H7,)
by the subbtitution in the integral. Writing Af the block diagonal matrix formed

by stacking An 4t =1,...,n, it can be seen that

0.7 = {1 € #1856 — & — X0~ 03 + i, r.m) < s |.

Hence, we see that M, can be chosen sufficiently larger than Mé such that
(0, H,,) C Hy for every 6 € O, as we have ndan(n,m) S 1€ — &ne —
HX(6—60)||2+ | X (0 — 00)]|2. Therefore, (55) is bounded by

[ a0 exp (g S Yt < [ oo,

by (C9), since dII(n) = dII, ¢, (n). This verifies (53) and thus the proof is com-
plete. O
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A.4. Proof of Theorems 5—6

To prove the shape approximation in Theorem 5 and the selection results in
Theorem 6, we first obtain two lemmas. The first shows that the remainder of
the approximation goes to zero in Py- probability, which is a stronger version of
Lemma 3. The second implies that with a point mass prior for 6 at 6y, we also
obtain a rate which is not worse than that in Theorem 3.

Lemma 7. Suppose that (C1), (C4), (C8*), and (C10*) are satisfied for some
orthogonal projection H. Then, for A}, (6,1) = (po.n/Pay.i. 0.m)) (Y ™) and A% (6)
in (14) with the corresponding H, we have that

Eo sup sup |log A (6,n) —log A% (0)] — 0.
00, nEH,

Proof. Similar to the proof of Lemma 3, it suffices to show the following three
assertions:

sup sup |(6—60)" X" (I — H)(I—A})(I—H)X(6—0) =0,  (56)
9€0,, neH,,
sup sup |(6 — 00)T XT(I - H)AZ(&, — &y +HX(0 — 60))| — 0, (57)
6€6,, nefl,
Eo sup sup |(6 — 00) ' XT (1 - H)(I - A;)U’ — 0. (58)
0€0, neH,

First, note that the left side of (56) is bounded above by a constant multiple of

sup. sup (17— Aoy | (60— 60)]3

0€0,, nEH, (59)

S sup [|X (0 = 60)[3 sup max [|A,; — Ay, ik,
0€0,, nEH, ==

where the inequality holds by (42) and the fact that max;||A,; — A, 4]|E <
en + andy , (1,m0) S en + an(sclogp)/n = o(1) on H,. We see that (59) is
bounded above by a constant multiple of

anSy 1o
sup 1 X |I116 — 90||§ sup \/en + and%,n(nu no) S s IOgPW’

6co,, nEHn

which goes to zero by (C10%).
Next, similar to (43), the left side of (57) is bounded by

sup [| X (6 — 6o)ll2 sup [[(1 = H) (& — &)z

0co, neHn
+ sup sup { (11X (0= 00)I13 + 11X (0 — 00)ll2v/nd, (1,10))
0€0,, nEH,,

x 121?5(n||An’i o Ano,i”SP}'
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Using the same approach used in (42), the display is further bounded above by
a constant multiple of

= - anSy logp
s/ logp sup (1 = H) (& — &no)ll2 +5+2(10gp\/ €n + *Tga

n€EHn

which goes to zero by (C8*) and (C10%).
Now, using Lemma 4, note that (58) is bounded above by

sup [0 — 6ol Eo sup | X7 (1 = H)(I = AU o
0cO, nEHn
anSy logp
n
Ci4/ (s« logp)/n —
+\/_an/ V108 N(6, s di )6 .,
0

< Sy logp{ e, +

for some C} > 0. This tends to zero by (C10%). O

Lemma 8. Suppose that (C1)—(C4), (C5%), and (C6) are satisfied. Then there
exists a constant Kg > 0 such that

EqII® (dn(n,10) > Kgen | V) = 0,

where 1% (- | Y (M) is the posterior distribution induced by the point mass prior
for 6 at g, i.e., dg,(0), in place of the prior in (4).

Proof. Since the prior for 6 is the point mass at 6y, we can reduce to a low
dimensional model Y;* :==Y; — X;00 = &,; +€;, i = 1,...,n. Then the lemma
can be easily verified using the main results on posterior contraction in Sec-
tion 3. The denominator of the posterior distribution with the Dirac prior at
is bounded as in Lemma 1, which can be shown using (20) for the prior concen-
tration condition (C2) and the expressions for the Kullback-Leibler divergence
K (po,i, Poy,n,i) and variation V(po;, pey.n,:) with the true value 6. For a local
test relative to the average Rényi divergence, Lemma 2 applied with F; ,,, modi-
fied so that it can be involved only with a given n; such that R,,(po, pey,,, ) > €2,
implies that a small piece of the alternative is tested with exponentially small er-
rors. Hence, by (C5*), we obtain the contraction rate €2 relative to R, (po, pe,.»)
for I1% (- | Y (™), as in the proof of Theorem 2. The lemma is then obtained by
recovering the contraction rate of n with respect to d,, using the approach in
the proof of Theorem 3. O

Proof of Theorem 5. Our proof is based on the proof of Theorem 6 in Castillo
et al. [8], but is more involved due to . We use the fact that for any probability
measure ) and its renormalized restriction Q 4(+) = Q(-NA)/Q(A) to a set A, we
have [|Q—Qllrv < 2Q(A°). First, using a sufficiently large constant M} that is
smaller than Mo, define H/, as H,, in (12) such that #!, C H,. Let II((6,7) € -)
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be the prior distribution restricted and renormalized on ©,, x ’;Q;L and II((6,7) €
| Y ™) be the corresponding posterior distribution. Also, II°(6 € -|Y (™) is
the restricted and renormalized version of II°°(6 € - | Y(™) to the set ©,,. Then
the left hand side of the theorem is bounded above by

Hn(e e Y™y _T(@e | Y(">)HTV n Hﬁ(e e Y™y _T®@e-| Y("))HTV

+ HHOO(@ e |y —T~(e-| Y(”))H :
TV
(60)

where the first summand goes to zero in Py-probability since II((6,7) € ©,, x
7’-241 | Y (™)) — 1 in Py-probability by Theorem 1 and Theorem 3.

To show that the second summand goes to zero in Py-probability, note that
for every measurable B C R, we obtain

fi(g € B|Y™) / A ﬁ poy (V™) =00 gTT(m)av (6)
Br®, JA,
— [ ) e Ny, 0 () L)V (),
Bre, JA,

ﬁ‘x’(&eB\Y(”))oc/ ~AL(0)dV(0)
BNO,

x / A8 el / Do (Y ) dIL()dV (9),
BNnO, H

where dV (0) =Yg, < xcrs. () (2) " (A/2)°d{L(05) ©8o(fs-)}. In the last line,
the factor e~ Allx J2 P00 (Y () dTI(n) cancels out in the normalizing constant,
but is inserted for the sake of comparison. For any sequences of measures {ug}
and {vg}, if vg is absolutely continuous with respect to pug with the Radon-

Nikodym derivative dvg/dug, then it can be easily verified that

H ZS s ZS Vs
[

dVS
Yostsltv g vslTy

dps

2 _
ZSHMS VSHTVS2SHP

v IZswuslTy s

\1

Hence, for C,, = [, po,.n (Y (M) dTI(n), we see that the second summand of (60)
is bounded by

L[ A e

DR (n)
Co Jar A5(0)e= 00l Pao.in (6. (Y™ )dIL(1)

2 sup
€0,
Using the fact that [A([|6][x — [[6oll1)] < A0 — bolly S AsxvIogp/[| X[ — 0

on O, and that sup{|l — A%(6,7)/A%(0)| : 6 € ©O,,n € H.} goes to zero in
Py-probability by Lemma 7, the last display is further bounded by

2 sup . (61)

06,

1
L—{1+0(1) + op, (1)} o /ﬁ peo,ﬁn(e,n)(Y(”))dH(n)
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Now, note that the map 1 — 7,(0,n) is bijective for every fixed 0 € ©,,. Thus
for the set defined by 7,(0,H.) = {n.(0,7n) : n € H,,} with given 6 € ©,,, we
see that

| om0t = [y (rOilgl). (62
,H’,V‘L ﬁ"’z(07H’IIL)

by the substitution in the integral. Similar to the proof of Theorem 4, observe
that

0.7 = {n € M+ 85(6, — & — HX (6~ 80)]l2 < s,/ (ogp) /.
A (1,110) < Mj/(5.1ogp) /).
Hence, we see that My can be chosen sufficiently large such that T (0, 7:1\;) C Hy

for every 6 € ©,, as we have vVndan(m,m0) S Hé,,—éno —HX(0—00)|2+X||+]|60—
0o||1. Therefore, since dII(n) = dIL, ¢,(n), one can see that (62) is written as

{1+0(1)} o (Y )l (n),
ﬁn(e”;'-[;)
by (C9*), and hence (61) is equal to
fﬁn(g’ﬁ%) Poo,n (Y("))dn(n)
3 poo.n (V) dIT(n)

2 sup |1 —{1+op, (1)} (63)

0€0O,,

Now, observe that we also have the inequality of the other direction: ||§~77 - é,,o -
HX (0 — 6o)||la < v/ndan(n,m0) + | X||+]|0 — 6o]|1. This means that Mj can be
chosen sufficiently large such that {n € H : d,,(n,n0) < Kg€n} C ﬁn(e,ﬁ;) for
every 0 € én Hence, with appropriately chosen constants, we obtain

~ 171 pt‘) s (Y(n))dn(n) -~
inf St Poo = inf II% (n € i (0,7 Y<”>)
06, Jyy Doy (Y (™)dIL(n) 9€6,,

Z H90 (dn(n7’l70) S K6€n ’Y(n)) .

The rightmost term goes to one with probability tending to one by Lemma 8.
This implies that (63) goes to zero in Py-probability, completing the proof for
the second part of (60).

Next, we show that II°°(4 € ©,, | Y(™)) goes to one in Py-probability to verify
that the last summand in (60) goes to zero in Py-probability. Observe that
(0 € ©¢ | Y™) is equal to

S, exp {-% (I — H)X (0 — 00)|12 + UT(I — H)X (0 — 6) L dV (0)

~ )G
Juw exp { =3I = H)X(0 = 00)[3 +UT (I = H)X (0 — 00) } dV (0)
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Clearly, the denominator is bounded below by

Q) Lol as

+UT(I - H)Xs,(0s, — 00,5, )}d&so.

Since the measure Q defined by Q(dfs,) = exp{—(1/2)|(I — H)Xs,(fs, —
0o.5,)|13} is symmetric about g s,, the mean of (85, — ,s,) With respect
to the normalized probability measure @ = Q/Q(R®0) is zero. Note also that
I's = X5 (I — H)Xs is nonsingular for every S such that s < K;s, by (C8*).
Thus, by Jensen’s inequality, (65) is bounded below by

W(<S)0) (%) /R exp {‘%”U — H)Xs, (05, - 9o,so)||§} b,

()

2
Applying the arithmetic-geometric mean inequality to the eigenvalues, we ob-
tain det(T's,) < (tr(T's,)/50)% < [[(I — H)Xs, 7% < py [ X[2*°, and hence
det(I's, ) /2 /A% < BESO/Q(LlpLQ)SO by (4). Furthermore, we have m,(so) 2
A3op~Asso by (3) and (S’;) < p®°. Hence, the preceding display is further bounded
below by a constant multiple of

(Lot Agyse [ AVPT *
p —— . (66)
LivV2

To bound the numerator of (64), let D, = 2£81/2s/log‘p\|X||* and U, =

{|IXT(I — H)U||so < D,}. Then it suffices to show that (64) goes to zero in
Po-probability on the set U, as Po(US) — 0 by Lemma 5. Note that on the set
U,, we have

UT(I — H)X(8 — o) < Dy 16 — bolh

2v/Boll X (8 — 00) 2] o6, ">
[ X[[«¢1(1S6-60])

<D, — Dy|0 — 0o]|1-

Using that [|ulls < ||(I—H)us for every u € span(Xg) with s < Kis, by (C8%),
the preceding display is, for some constant C; > 0, further bounded above by

2v/PoCill(1 — H)X (6 — 60) 2| So—a, "/
! X161 (1So-6,1)

I(7 — H)X (6~ 60)]13 +

D — D10 — 0oll1

2poCT D |S0—00|
[ X131 (1So—6,1)?

Dy |6 — o],

N =

<
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by the Cauchy-Schwarz inequality. We have sg_g, < Kjs, + so on the support
of the measure V. Hence, on the event U, the numerator of (64) is bounded
above by

exp 2p,CiD; (K15 +50) M, D, 5,/Iog p
[ X201 (K1ss + 50)? 2[| X1/«

- Wz(a}f)s)/(g) o~ (Du /21105005111 g .

S:s<Kis« s

< oxp 8?0012(K1+1)s*1ogp Mls*logp ZW L Py
- 2,01 (K15, + s50)? N/ ? Vin )

s=0

since Dy, /2 > Ay/n/(L3,/p;)- Note that we have

i () <5 (58 =

by (3) and that ¢1 (K18, + So) in the denominators is bounded away from zero
by the assumption. Thus, the last display combined with (66) shows that (64)
goes to zero on the event U,,, provided that M is chosen sufficiently large.
Finally we conclude that (60) goes to zero in Py-probability. Since the total
variation metric is bounded by 2, the convergence in mean holds as in the
assertion. O

Proof of Theorem 6. Our proof follows the proof of Theorem 4 in Castillo et al.
[8]. Since Eo||TI(0 € -| Y (™) —T1°°( € - | Y™)| 1y tends to zero by Theorem 5,
it suffices to show that EqII®(6 : Sy € S,|Y™) — 0 for S, = {S : s <
K1584,58 D So,S # Sp}. For the orthogonal projection defined by Hg = (I -
H)XsTg'XZT(I — H) with I's = XE(I — H)Xs, we see that II°(0 : Sy €
S, | Y (™) is bounded by

Kis, —s $—8
eomp(s)(P)(070) faym\ T det(Ts)'"? iis—itsy 013/
} : > max 72 0
s=so+1 Tp(50) (%) V2 seswisi=s | det(T's)

by (13), since (Hs — Hs,) X0y = (Hs — Hs,)(I — H)Xs,00.5, = 0 for every
S €S, due to Sy C S on S,. Note that pr(T's,) < pp(Ts) for k = 1,...,50
because I'g, is a principal submatrix of I's. Hence, det(T'g,) is equal to

’ det(T's) det(T's)
pr(ls,) < 1] pe(Ts) < < _ ’
1:[ ’ ,};[1 Pmin(Ts)*7%0 = (0155 2 $o(s)]| X || )25 —s0)

(67)

for some C; > 0. The last inequality holds since by (C8*), there exists a constant
C1 > 0 such that C?||v||3 < ||(I — H)v||3 for every v € span(Xg) with s < Kjs,,
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and hence we have that by the definition of ¢,
(7 — H)Xsull3 Cia () XI5

Pmin I's) = = —
C9)= el Tl %
Now, we shall show that for any fixed b > 2,
Py (||(1€IS — Hs,)U||3 < b(s — s0) logp, for every S € Sn) — 1. (68)

Note that ||(Hs— Hg,)U|3 has a chi-squared distribution with degree of freedom
s — 8. Therefore, by Lemma 5 of Castillo et al. [8], there exists a constant Co
such that for every b > 2 and given s > sg + 1,

(b—2)/4
P Hg — Hg)U||? > blog N, | < [ — Ca(s=s0)
o (gomms (s~ Fs U > vlog ) < () e

where N, = (27%°) is the cardinality of the set {S € S, : |S| = s}. Since

S—S8o

N < (p—s9)* %0 < p* % for T, the event in the relation (68), it follows that

Kisy 1 (b—2)/4 ( :
c Ca(s—s
s Y (w) e

s=so+1
This goes to zero as p — oo, since for s < K7 sy,

(p—s)™ _ (p—Kis)"* (p—Kls*>”°

N, >
(s—s0)! = (s—sg)s—%0 Kis,

and s,/p = o(1). To complete the proof, it remains to show that II>°(f : Sy €
S, |Y(™) goes to zero on the set 7,. Combining (67) and (68), we see that
(0 : Sy € S, | Y™)17, is bounded by

KZ mp(s)(2) (2230) (Aﬁ)( N )‘

s=s0+1 7Tp(80>(§) \/i CIQSQ(S)HXH*

_ IQZS* (ﬁ).s—é'o <8> L3 K15*7Tﬁopb s$—S8o
B ph so) \ C1¢1(K1sy) 2n ’

s=so+1

which holds by the inequalities m,(s)/m,(s0) < (Agp~#4)*~% and (SI:)) (P=20)/

S$—So

(p) = (SSO) Note that for s < Kis,, we have that (:‘0) = ( s ) < (Kpsy)57%0 <

s s—so/ —
(K1 Cap®)s—*0 for some Coy > 0. Hence, the preceding display goes to zero pro-
vided that a — A4 + b/2 < 0 since s, = o(n). This condition can be translated
to a < A4 — 1 by choosing b arbitrarily close to 2. O

Appendix B: Proofs for the applications
B.1. Proof of Theorem 7

We first verify the conditions for Theorem 3 to prove assertions (a) and (b).
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o Verification of (C1): Let &1 be the (j, k)th element of ¥ — ;. Observe that
d?(%,%)) is equal to

1 m m n 1
—ZHET ¥ — Eo E; ”F - EZZ [ ]kzewezk‘| 2 C_HE_EO”%" (69)
i=1 "

j=1k=1

Hence, we see that ¢, has the same role as a,. We also have e,, = 0 as the
true X belongs to the support of the prior.
o Verification of (C2): Note that

d; (21, 8) = ZIIET (Z1 = B2)Eillf < 121 - Sellf, (70)

=1

for every X1, %y € H. Hence we obtain that for every &, > n~1/2,

logII(d, (2, 30) < &,) > logII(||Z — Xo||lr < €,) 2 log€, = —logn,

since 1 < pmin(Z0) < pPmax(Zo) S 1. This leads us to choose €, = /(logn)/n
for (C2) to be satisfied.

o Verification of (C3): The assumption |||
directly satisfies (C3).

o Verification of (C4): We have the inequalities puin(X0) < pmin(EL Yo E;) <
Pmax(EI S0 E;) < pmax(Zo) for every i < n as El YXoF; is a principal subma-
trix of Xo. Hence (C4) is directly satisfied by the assumption on .

o Verification of (C5*): For a sufficiently large M > 0 and s, = sV (logn/logp),
choose Hy, = {X: ™M < ppin(B) < pmax(X) < eMs+18PY Since EI'YE; is a
principal submatrix of 3, we have puin(ELI L E;) > prin(X) > n~M for every
i <n and ¥ € H,. Hence the minimum eigenvalue condition (6) is satisfied
with log~y, < logn. Also, the entropy relative to d,, is given by

1
log N (76ﬁnM+3/2 s Hos dn)

1 — s« lo
S logN <6mnT3/2’ {E : HZ”F S \/E(?M ~1 gp} 3 ||F)

<logn + s, logp.

< A~ !logp given in the theorem

~

The entropy condition in (7) is thus satisfied if we choose €, = /(sx log p)/n.
To verify the sieve condition (8), note that for some positive constants by, ba,
b3, by and bs, an inverse Wishart distribution satisfies

by M

(Y : prin(Z) < n™M) < bre=b2n™™

71
H(E . pmax(z) > €MS* logp) < b4€_b5Ms* logp; ( )

see, for example, Lemma 9.16 of Ghosal and van der Vaart [17]. The sieve
condition (8) is met provided that M is chosen sufficiently large. Note that
the condition a,e2 — 0 is satisfied by the assumption ¢, s, logp = o(n).
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o Verification of (C6): The separability condition is trivially satisfied in this
example as there is no nuisance mean part.

Therefore, the contraction properties in Theorem 3 are obtained with s, =
s0 V (logn/logp), but s, is replaced by s since sgp > 0 and logn < logp. The
contraction rate for ¥ with respect to the Frobenius norm follows from (69).
The optimal posterior contraction directly follows from Corollary 1. Assertions
(a) and (b) are thus proved.

Next, we verify conditions (C8%)-(C10*) and (C11) to apply Theorems 5-6
and Corollaries 2-3.

o Verification of (C8%)—(C9*): These conditions are trivially satisfied with the
zero matrix H as there is no nuisance mean part.

o Verification of (C10%*): Since the entropy in (C10*) is bounded above by
a constant multiple of log N(6,{% : ||Z — Sollp < May/Cnen}, |-llr) S 0V
log(SMg\/aen/d) using (69) and (70), the term in (C10*) is bounded by a
multiple of (s4 V v/10g ¢, )v/cn (s« logp)3/n by Remark 6. This term tends to
zero as S, can be replaced by sg.

o Verification of (C11): Note that dp ,,(21,22) < |21 — 2|l for every 31,35
by (70), and hence it suffices to show that H is a separable metric space
with the Frobenius norm. Since the support of the prior for ¥ is Euclidean,
separability with the Frobenius norm is trivial.

Hence, under (C7*), Theorem 5 can be applied to obtain the distributional
approximation in (15) with the zero matrix H. Under (C7*) and (C12), Theorem
6 implies the no-superset result in (16). If the beta-min condition (C13) is also
met, the strong results in Corollary 2 and Corollary 3 hold. These establish

(c)~(e).

B.2. Proof of Theorem 8

We first verify the conditions for Theorem 3 for (a) and (b).

o Verification of (C1): Since A, ; is the same for every i < n and the true
parameters belong to the support of the prior, we see that a,, =1 and e,, =0
satisfy (C1).

o Verification of (C2): Observe that for every ny,m2 € H,

1€, = Ena 13 = (a1 — a2) + (] Br — 13 B2)* + [l 11 — pealf3
< lax — aol® + [[pall3l18: — Ball3 + (I1B2ll3 + 1)llpa — pall3
1A, = Ap |IF = (BT 5181 — 5] 22) + (07 — 03)|?
+2||2161 — 2262H§ + |12 - 22”%
S 18113 + D221 = Bl + |of — o3
+ (18113 + [1B2ll5 + DIIZ2llF 181 = Ball3-
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Since ||Boll2, |02], and [|Xo||r are bounded, it follows from the last display
that there exists a constant C; such that |a — ag| + ||5 — Boll2 + |t — poll2 +
|02 — 02| + |2 — Zo|r < C16, implies d,,(n,no) < &, for any small €,. This
shows that (C2) is satisfied as long as we choose &, = +/logn/n, as we have
a0l V 1Bolloe V llloe S 1, 03 < 1, and 1 S puuin(Z0) < punan(Z0) S 1.

o Verification of (C3): The assumption ||fp|/cc < A7! logp given in the theorem
directly satisfies (C3).

o Verification of (C4): Since A, can be written as the sum of two positive

definite matrices as
_ CEDNCRNCED Y o2 0
B = < 2 v )Tlo )

condition (C4) is satisfied as we obtain 02 A pmin(¥) < pmin(Ay,) <
Pmax(Bg) < [[ By v by Weyl’s inequality.

o Verification of (C5*): For a sufficiently large M and s, = so V (logn/logp),
choose a sieve as

Ho = {(c. B, 1) « [ + 1815 + [|ull3 < n®M} x {o:n™M < o? < Movlogry
x {80 ™M < ppin(2) < pumax (D) < eMeloery,

Then we have pmin(A;) > 0% A pmin(¥) > n~M for large n, and hence the
minimum eigenvalue condition (6) is directly met with log~, =< logn by the
definition of the sieve. To see the entropy condition, observe from (72) that
for every ni,m2 € Hp,

% (n1,m) S MM 08P (o — o) + [|B1 — Ball3 + w1 — pell3
+ |21 = Sollf + |oF — 037).

Therefore, for §,, = 1/(6mn>M+3/2eMs10gP)  the entropy relative to d,, is
bounded above by

1og N (0, {(v, B, 1) = lo* + 18113 + lull3 < n®M 3, [I]]2)
+1og N (8,, {0 : 0% < eMs=108PY ||.]|,)
+1og N (6, {Z: [|Z]lr < /geM 18P}, || -Ir)

each summand of which is bounded by a multiple of logn + s, logp. This
shows that the choice €, = 1/(sxlogp)/n satisfies the entropy condition in
(7). Further, it is easy to see that condition (8) holds using the tail bounds
for normal and inverse Wishart distributions as in (71).

o Verification of (C6): Note that the mean of Y is expressed as X0 + Z¢, for
Z =1, ®I,41. Since the condition ¢uyin([X 5, 1,]) 2 1 implies ¢min([Xs, Z]) 2
1, condition (C6) is satisfied by Remark 3.

Therefore we obtain the contraction properties of the posterior distribution as
in (9) with s, replaced by sg as sp > 0 and logn < logp. The rates for n with
respect to more concrete metrics than d,, can now be obtained. Note that for
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small § > 0, d,,(n,n0) < § directly implies ||p — poll2 < § and [|X — Xg||r < § by
the definition of d,,. For 3, observe that

18 = Boll2 < 157 lspI12(8 = Bo) 12
<=M sp (128 = Zoboll2 + 1= — Zolle[lBoll2)
SIS lspo.

Since ||X7!||sp is bounded as ||X — Zgllp < §, the preceding display implies
I8 — Boll2 < 6. Moreover, we have

la —ao| < [u"B — ud Bol + 0
S lpll2ll8 = Bollz + | Boll2llw — poll2 + 0
S (el + 1)d,

and

02 — 03] < [B7S8 — B3 SoBol + (BTS84 0%) — (85 SoBo + 7))
< |1Bll2ll%8 = XoBoll2 + [ Boll2[1ZolspllB — Boll2 + &
S (I1B]l2 + 1)6.

These show that |a — ag| + |02 — 03| < & as ||ul|2 and ||3]|2 are bounded. We
finally conclude that o —ag| + |8 = Bollz + Il — poll2 + [0 — o3| + [|Z — Zo|lr
contracts at the same rate of d,,. The optimal posterior contraction is directly
obtained by Corollary 1. Thus assertions (a) and (b) hold.

Next, we verify conditions (C8*)-(C10*) and (C11) to apply Theorems 5-6
and Corollaries 2—-3. The orthogonal projection defined by H = Z (ZTZ )_1ZT
with Z =1, ® Af,olﬂ is used to check the conditions.

o Verification of (C8%): For H defined above, it is easy to see that the first
condition of (C8%*) is satisfied. The second condition is directly satisfied by
Remark 5.

o Verification of (C9*): Choose a map (a, B, 1,02, %) — (a+n 111 X*(0 —
o), B, 11,02, %) for n in(6,1). To check (C9*), we shall verify that this
map induces ®(7,(0,1)) = (&, + HX(0 — 6p),A,) as follows. Note that for
matrices Ry, k = 1,...,6, we have the properties of the Kronecker product
that (R; ® Ro)(R3 ® Ry) = (R1Ry ® R3Ry) and (Rs ® Rg) ™' = Ry ' @ Ry*
if the matrices allow such operations. Using these properties, we see that H
satisfies

—1/2\(1 T —1\—1 —1/2\T
H=(1,2A, )11, @ A, (1, @ AL?)
1 _ _
= (1, ®An01/2)A770(1n ®A7701/2)T
(1n ®Iq+1)(1£®lq+l)

(1,15 @ I,4q).

SI—3I—3
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Hence,

Z(ZTZ) ZTX(0 - 0) = (I, @ AP H (I, ® A, M) X (0 — 6o)
n=11TX*(0 — 90>>

:HX(9—90)=1n®( 0.0
q

which implies that the shift only for a as in the given map provides
Q(7,(0,n)) = (& + HX (0 — 6y), A,). Without loss of generality, we assume
that the standard normal prior is used for .. Now, observe that

~

dIL, _ *
‘log T .0 (n)‘ < ‘aQ —(a+n lle - 90))2}
TL,Q()
< 2|a||n_11,TLX*(9 — )| + (n_llzX*(é’ — 90))27

since the priors for the other parameters cancel out due to invariance. One
can note that

sup la| S sev/(logp)/n + laol S 1,

nEHn

and

1
= sup [ X(0 —bo)ll2 S s«/(logp)/n.

0cO,

Thus, condition (C9*) is satisfied.

o Verification of (C10%): Note again that dp ,(1,10) < |2 —So||r + 0% — o] +
I8 = Boll2 for every n € H,,. The inequality also holds for the other direction
for every n € ﬁn, by the same argument used for the recovery in the proof

of Theorem 8, (a)—(b). Hence, for some constants Cy,Cs > 0, the entropy in
(C10%*) is bounded above by

log N (C16,{8 5 18— Bol2 < Calbaen } 112
+log N (Clé, {02 Ho? —od| < C’gMgen} , H)

+log N (015, {z 1S = Sollr < CQMzen} : ||-|\F) :

Since all nuisance parameters are of fixed dimensions, the last display is
bounded by a multiple of 0 Vv log(302M2€n/015) for every 4 > 0, so that
(C10*) is bounded by (s2log® p/n)'/? by Remark 6. Since s, < so in this
case, the condition is verified.

o Verification of (C11): Note that by (72), dp.n(n1,72) S |21 — Xa|lp + |0F —
02| 4|81 — Bal|2 for every ny1,ns € H,. Since each of the parameter spaces of
¥, 02, and f3 is a separable metric space with each of these norms, (C11) is
satisfied.
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Therefore, under (C7*), Theorem 5 implies that the distributional approxima-
tion in (15) holds. Under (C7*) and (C12), we obtain the no-superset result in
(16). The remaining assertions in the theorem are direct consequences of Corol-
lary 2 and Corollary 3 if the beta-min condition (C13) is also satisfied. These

prove (c)—(e).
We complete the proof by showing that the covariance matrix of the nonzero
part can be written as in the theorem. For given .S, we obtain

XE(Tnge1) — H)Xs
= x:7 ([n ® {A;;/z}?;) (I, ® Ity — H) (In ® {A7L? .1> X5
= {82 Y X H X,

where {A;01/2}.1 is the first column of A;01/2. Note that {Agol/z}_:q{A;ol/Q}.l =
{A; 111, where {A; 1} is the top-left element of A, which is equal to
(B3 Zobo + 0§ — B Xo(Xo + ) "' EoBo) " = (8 + 47 To(Xo + ¥) "1 WSp) " by
direct calculations. For the mean fg, observe that

XE (Ingg41) — H)(U + X6o)
=X (In ® {A;Ouz}g) (In ® Iyr1 — %17115 ® Iq+1)
(1@ {85721) (Y = (a0 + 1 o)1)
+ (In ® {A;J/Q}«—l)) (W =1, ® o) }

where {A,;Ol/ 2}_(,1) is the submatrix of Agol/ ? consisting of columns except for

{Agol/z}.l the first column. Since {A;01/2}?’£{A7701/2}.(_1) ={A; 1 }1,—1), where
{A; ' }1,(—1) is the first row of A ! with the top-left element excluded, the last
display is equal to

X {H (85 s (V= (@0 + i o)1)
+ (L {A ) (W-1,® MO)] }

As we have {A; '}y (1) = —{Agol}ﬂﬁgzo(zo + W)~ by direct calculations,
it follows that

bs = (X5TH X)) X;T{H* [ (V* = (a0 + p Bo)1,)

— (I ® (BFZo(S0 +0)7) (W =L, @ o) | }.
This completes the proof.
B.3. Proof of Theorem 9

We shall verify the conditions for the posterior contraction in Theorem 3 to
prove (a)—(b). First we give the bounds for the eigenvalues of each correlation



3098 S. Jeong and S. Ghosal

matrix. It can be shown that

l-a= Pmin (GCS ) < Pmax (GCS( )) =1 + (mz - 1)0[, (73)
1-a? AR( AR 1-a?

1+ a2 = < Pmin (G ) < Pmax (G (a )) < m, (74)

1—2[a < pmin (GM2()) < prmax (GMA (@) < 1+ 2]al. (75)

The first assertion in (73) follows directly from the identity ps(G$S(a)) =
pr(alm, 1L )+ 1 — o for every k < m;. For (74), see Theorem 2.1 and Theorem
3.5 of Fikioris [12]. The assertion in (75) is due to Theorem 2.2 of Kulkarni et al.
[21].

e Verification of (C1): For the autoregressive correlation matrix, note that

max o2 G () — 0BG o)

-1
=m(o? —03)* +2 (M — k)(o%a® — o2ak)?.
k=1
Using mn < n,, we have that
m— 1 m—1 n

1
(o%a" - ofab)? < 1

k:l k=1 i=1
n 1

A
= o —agak)?
=1 k=1
and hence
max [ 2GR (@) — oF G ()} S ZH 2 () — o3G (ag) 2.

This gives us a, < 1 for the autoregressive matrices. Similarly, we can also
show that a, =< 1 satisfies (C1) for the compound-symmetric and the mov-
ing average correlation matrices. Also, we have e, = 0 for (C1) as the true
parameter values ag and o3 are in the support of the prior.

e Verification of (C2): Since the nuisance parameters are of fixed dimensions,
condition (C2) is satisfied with €, = 1/(logn)/n due to the restricted range
of the true parameters, o2 < 1 and g € [by + €, ba — €] for some fixed € > 0.

o Verification of (C3): The assumption ||6p||c < A7! logp given in the theorem
directly satisfies (C3).

o Verification of (C4): Using (73)—(75), we see that for the compound-symme-
tric correlation matrix, condition (C4) is satisfied with the bounded range of
the true parameters provided that m is bounded. For the other correlation
matrices, condition (C4) is satisfied even with increasing m.
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o Verification of (C5%): For a sufficiently large M > 0 and s, = 5oV (logn/ log p),
choose a sieve H,, = {0? : n™™ < o2 < eMslogP) x {1 by +n M <
a < by — n~M}. Then using (73)—(75), it is easy to see that the minimum
eigenvalue of each correlation matrix is bounded below by a polynomial in
n, which implies that condition (6) is satisfied with log~, =< logn. For the
entropy calculation, note that for every type of correlation matrix,

1 n
2 (m,m2) = n ZHUfGi(al) — 05Gi(2)|%
i=1

n (76)
< 23 {03~ 03PIGi ) B + o3 Gilen) — Gilan) 2}
=N 1 2 I\ ||F 2 i\ &1 I\2)[|F s -
i=1
From the identity of — o = (a1 — ay) E;:é ol ah™17 for every integer

k > 1, we have that |o} —ak| < klay — ag| for every ay, as € (by, ba). By this
inequality we obtain ||G;(a1) — G;(ao)||2 < M*|a1 — ag|? for every correlation
matrix. Then, the last display is bounded by a multiple of m?(c? — 03)% +
e2Ms«losrmd () — ag)? for every 11,m2 € Hn. The entropy in (7) is thus
bounded by

log N (0, {02 : 0 < 0 < eM* 18P} |- |) +1og N (6, {a: 0 < < 1}, ] - ),

for 6, = (6m3n3/2+C1eMs+108P)~1 with some constant Cy > 0. It can be easily
checked that each term in the last display is bounded by a multiple of s, log p,
by which the entropy condition in (7) is satisfied with €, = /(s logp)/n.
Using the tail bounds of inverse gamma distributions and properties of the
density II(da) near the boundaries, condition (8) is satisfied as long as M is
chosen sufficiently large.

o Verification of (C6): The separation condition is trivially satisfied as there is
no nuisance mean part.

Therefore, we obtain the posterior contraction properties of 8 with s, = sg V
(logmn/logp) by Theorem 3. The term s, can be replaced by s since sg > 0
and logn < logp. Since we have m;(0? — 03)? < ||0?G;(a) — 08 Gi(ao)||% by
the diagonal entries of each matrix, the contraction rate /(sologp)/(mn) is
obtained for o2 with respect to the fy-norm, for every correlation matrix, as
mn < n,. In particular, for the compound-symmetric correlation matrix, this
rate is reduced to /(sglogp)/n since m is bounded in that case. We also have
mi(o0?a—odap)? < ||o?G;(a)—02G;(a)||3 for every correlation matrix, as there
are more than m; entries that is equal to o?a — o2ag. Hence, by the relation
o — ap| < |o2a — ddag| + |al|o? — o3|, the same rate is also obtained for a
relative to the fo-norm. The optimal posterior contraction directly follows from
Corollary 1. Thus assertions (a)—(b) hold.

Next, we verify conditions (C8*)-(C10*) and (C11) to apply Theorems 5-6
and Corollaries 2-3.

o Verification of (C8%)—(C9*): These conditions are trivially satisfied with the
zero matrix H since there is no nuisance mean part.
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o Verification of (C10%*): Using the results of contraction rates of o2 and a,
note that there exists a constant Co > 0 such that {n € H : dp(n,1m0) <
Myen} € {02 : |02 — 02| < Coen/Vm} x {a : |a — ag| < Coen/v/m}. Thus
the entropy in (C10%*) is bounded by 0V 21log(3Cse, /vmd). By Remark 6,
(C10*) is bounded by a multiple of {(s%log® p)/n}'/2, which goes to zero by
the assumption since s, < sg.

e Verification of (C11): Using (76), we have dp ,(n1,12) < |03 —02|+m?|ay —
a| for every ny,mo € ’ﬁn Since the parameter spaces of a and o2 are Eu-
clidean and hence separable under the ¢3-metric, condition (C11) is satisfied.

Therefore, under (C7*), the distributional approximation in (15) holds with
the zero matrix H by Theorem 5. Under (C7*) and (C12), Theorem 6 implies
that the no-superset result in (16) holds. The strong results in Corollary 2 and
Corollary 3 follow explicitly from the beta-min condition (C13). These prove

(c)=(e).
B.4. Proof of Theorem 10

We verify the conditions for the posterior contraction in Theorem 3 to show
(a)-(b).

o Verification of (C1): Using the assumption max;||Z;||sp < 1, note that

(T — W) 2T |2
oax [1Z:(¥ — o) Z ||k

< W — o3 1glf<anZiH§p

1
S 1Z:(¥ — o) Z{ |12 1(Z Zi) 1 2] | (77)
> im1 L(mi > q) M;Zq ! P
1 n
S - ZHZz‘(‘I’ - o) Z] |I%

=1

where the last inequality holds since min;{¢nin(Z;) : m; > ¢} = 1 and
o 1(m; > q) < n. Thus we have a,, < 1 and e,, = 0.

o Verification of (C2): The condition is satisfied with €, = /(logn)/n as U is
fixed dimensional and we have 1 < ppmin (Vo) < pmax(Po) S 1.

e Verification of (C3): The assumption ||6p||c < A7! logp given in the theorem
directly satisfies (C3).

o Verification of (C4): By Weyl’s inequality, we obtain that

i (2] , Ty > 52 i (7 T
1Ignz‘1£n Pmin (0 L, + Z; V027 ) > 0% + 121%171 Pmin(ZiVoZ; ), (78)
2r , Ty < o2 2.
1rélz‘agxn Pmax (0" Im, + ZiVoZ; ) < 0 + pmax(¥o) g?anHZszp (79)

Since Z;¥oZ! is nonnegative definite, the right hand side of (78) is further
bounded below by o2, while the right hand side of (79) is bounded. The
condition (C4) is thus satisfied.
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o Verification of (C5%): For a sufficiently large M and s, = so V (logn/logp),
define a sieve as H,, = {¥ : ™M < ppin(2) < pmax(B) < eMs+198P) 50 that
the minimum eigenvalue condition (6) can be satisfied with log~y, =< logn.
Similar to the proof of Theorem 7, it can be easily shown that conditions (7)
and (8) are satisfied with €, = \/(sxlogp)/n.

o Verification of (C6): The separation condition is trivially satisfied as there is
no nuisance mean part.

Therefore, the posterior contraction rates for 6 are given by Theorem 3 with s,
replaced by sg since so > 0 and logn < log p. The contraction rate for ¥ relative
to the Frobenius norm is a direct consequence of (77). The optimal posterior
contraction easily follows from Corollary 1. Thus assertions (a)—(b) hold.

Now, we verify conditions (C8%)-(C10*) and (C11) to apply Theorems 5-6
and Corollaries 2-3.

o Verification of (C8%)—(C9*): These conditions are trivially satisfied with the
zero matrix H since there is no nuisance mean part.

o Verification of (C10*): For some Cy > 0, the entropy in (C10*) is bounded
above by a multiple of log N(6,{Z : ||Z — Zollp < MaCren}, ||I-|r) S 0V
log(3M5Cle, /8) by (77). The expression in (C10%*) is thus bounded by a
constant multiple of s? log® p by Remark 6. This tends to zero since s, < sq.

o Verification of (C11): It is easy to see that dp ., (n,m0) S [|[¥ — Pollp since
max; || Z;|lsp S 1. The separability of the space is thus trivial.

Hence, under (C7*), Theorem 5 can be applied to obtain the distributional ap-
proximation in (15) with the zero matrix H. Under (C7*) and (C12), we obtain
the no-superset result in (16) by Theorem 6. The strong results in Corollary
2 and Corollary 3 follow explicitly from the beta-min condition (C13). These
establish (c)—(e).

B.5. Proof of Theorem 11

We verify the conditions for the posterior contraction in Theorem 3.

e Verification of (C1): Since A, ; = Q7! for every i < n and Qo € M (cL) for
some 0 < ¢ < 1, a, =1 and e, = 0 satisfy (C1).

e Verification of (C2): Using (i) of Lemma 10 and the relation 1 —2 < 1 — 27!
as x — 1, observe that |71 — Q5 tlr < |2 — Qollr < &, if the right hand

side is small enough. Thus, there exists a constant C; > 0 such that {{ :

197" — Qe < &) D {Q: Q- Qlr < C1&,}. Furthermore, although

the components of {2 are not a priori independent as the prior is truncated

to M{ (L), the truncation can only increase prior concentration since Qo €

M (cL) for some 0 < ¢ < 1. Hence, for some Cy > 0,

m

—1 -1 _ [ — C2€n e
(127 = Q' lr < &) 2 T(IQ — Qolleo < Cafn/T) 2 :

which justifies the choice &, < \/(m + d)(logn)/n for (C2).
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< A~ !logp given in the theorem

~

o Verification of (C3): The assumption |||
directly satisfies (C3).

e Verification of (C4): This is trivially met as Qo € Mg (cL) for some 0 < c < 1.

o Verification of (C5*): Note that the minimum eigenvalue condition (6) is
trivially satisfied with v, = 1 since the prior is put on Mg (L). Now, for
Fn = Ms,logp/logn with s, = sg V (né2/logp) and sufficiently large M,
choose a sieve as H,, = {Q € M (L) : >k Hwjk # 0} < 7}, that is, the
maximum number of edges of Q does not exceed 7,,. Then, for 6, = 1/6mn3/2,
the entropy in (7) is bounded by

1og N (8 /778, Hon, ||-]|oc) < log { (%L)mﬂn ((§)> }

< (m+ 7y)log(mL/é,) + 27, logm,
where in the second term, the factor (mL/d,)™ comes from the diagonal
elements of 2, while the rest is from the off-diagonal entries. It is easy to
see that the last display is bounded by a multiple of s, logp with chosen 7,,
and hence the entropy condition in (7) is satisfied. Lastly, note that for some

03 > 0,
log IN(H \ Hp) = log IL(| Y| > 7p)

Therefore, condition (8) is satisfied with sufficiently large M.
o Verification of (C6): The separation condition is trivially met as there is no
nuisance mean part.

< —7p log T, < —C3M s, logp.

~

Therefore, we obtain the posterior contraction properties for 8§ by Theorem 3.
The theorem also implies that the posterior distribution of 27! contracts to Qg !
at the rate €, = \/(sologpV (m + d)logn)/n with respect to the Frobenius
norm. This is also translated as convergence of 2 to )y at the same rate, since
we obtain

12 - QollF S 197! - Q5 E S e (80)

no

by (i) of Lemma 10 and the inequality 1 —2 < 1 — 27! as z — 1. The assertion

for the optimal posterior contraction is directly justified by Corollary 1. These
prove (a)—(b).

Next, we verify conditions (C8)—(C11) to obtain the optimal posterior con-
traction by applying Theorem 4.

o Verification of (C8)—(C9): These conditions are trivially satisfied with the
zero matrix H since there is no nuisance mean part.

o Verification of (C10): Note that by (80), there exists a constant Cy > 0
such that the entropy in (C10) is bounded by log N(6,{Q : || — Qollr <
Cy€pn},dp ) for every 6 > 0. Using (81), the entropy is further bounded by
log N(C56, {2 : |2 — Qollp < Cuén}, ||-|lr) for some C5 > 0. This is clearly
bounded by a multiple of 0V m? log(3C4€,/C5d), and hence using Remark 6

we bound (C10) by a multiple of (1/5, V 7)1/ (54« logp)/n which goes to zero
by assumption.
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e Verification of (C11): For every 4,5 € H,,, note that

127" = Q3 S 1191 — Q2 S 127 — Q% F S €, (81)

using (i) of Lemma 10 and the inequality 1 —2z < 1 —2~! as  — 1 again. By

the first inequality, it suffices to show that 7 is separable metric space with
the Frobenius norm. This is trivial as the parameter space is Euclidean.

Hence, under condition (C7), Theorem 4 verifies (c).
Now, we verify conditions (C8*)—(C10*) to apply Theorems 5-6 and Corol-
laries 2-3.

o Verification of (C8%)—(C9*): These are trivially satisfied for the same reason
as (C8)—(C9).

o Verification of (C10*): Similar to the verification of (C10), the entropy in
(C10*) is bounded by a multiple of 0 V m? log(3Cse,, /§) for some Cg > 0. Hence
using Remark 6 we bound (C10*) by a multiple of (s, V T)+/(s« logp)3/n
which goes to zero by assumption.

Therefore, under (C7*), we obtain the distributional approximation in (15) with
the zero matrix H by Theorem 5. Under (C7*) and (C12), the no-superset result
in (16) holds by Theorem 6. Lastly, we obtain the strong results in Corollary 2
and Corollary 3 if the beta-min condition (C13) is also met. These prove (d)—(f).

B.6. Proof of Theorem 12

To verify the conditions for Theorem 3, we will use the following properties of
B-splines.
For any f € €2[0,1], there exists 3, € R’ with ||Bs||oc < ||f|lee such that

1B B = flloe S T fllee (82)

by the well-known approximation theory of B-splines [11, page 170]. Writing
fs = BT By, this gives

1fs = fllzn < [1fs = flloo S T fllex +1f5 = f5.

We also use the following inequalities: for every 3 € R,

1Bl S I fsllos < 1Bllocs  N18ll2 S VIS5 l20 S 182 (84)

See Lemma E.6 of Ghosal and van der Vaart [17] for proofs with respect to
Lso- and Lo-norms. Hence the first relation can be formally justified. For the
second relation with respect to the empirical Lo-norm, we assume that z; are
sufficiently regularly distributed as in (7.12) of Ghosal and van der Vaart [16].

oo- (83)

o Verification of (C1): If vy is strictly positive on [0, 1], then vy satisfies the
same approximation rule in (82) for some 3, € (0,00)”7 with ||B«|lec < ||v0]e=
(see Lemma E.5 of Ghosal and van der Vaart [17]). Therefore the approxi-
mation in (83) also holds for vy even if 5 is restricted to have positive entries
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only, and thus by (82) and (84),
s, —volleo S J7%, for some B € (0,00)",
om, B, € (0,00)7,
which tells us that we have a,, < J and e,, < J'~2¢ for (C1).
o Verification of (C2): Note that if J=* < €,, it follows that for some Cy > 0,
log IN(B : [lug — voll2.n < &) = 1ogII(B : [|B = Billoc < CrEn) Z Jlog &p.

This implies that condition (C2) is satisfied with €, = 1/(Jlogn)/n.

o Verification of (C3): The assumption ||fp||s < A7!logp given in the theorem
directly satisfies (C3).

o Verification of (C4): Since vy is strictly positive on [0,1] and belongs to a
fixed multiple of the unit ball of €¥[0, 1], we have that

”Uﬁl - v52||00 5 \/ijﬁl — UB,

1< inf vp(z) < sup wo(z) S 1.
ZG[Ovl] 26[071]

The condition (C4) is thus satisfied.

o Verification of (C5*): For a sufficiently large M, choose a sieve as H, =
H'jjzl{ﬁj :n~M < B; <nM}. Then the minimum eigenvalue condition (6) is
satisfied with log~, = logn because for every i < n,

J J
. . . . -M
Jnf vp(zi) = inf jz_:l Byj(z:)B; 2 jinf min §; ; Byj(zi) 2n™,
where B ; and 3; denote the jth components of By and (3, respectively. To
check the entropy condition in (7), note that for every n;,m2 € H,,, we have
dn(n1,m2) S |1B1 — B2llee by (84). Hence, for some Cy > 0, the entropy in (7)
is bounded above by a multiple of

1 M
- - . . <
08 N ( oz 10 190 < 0 H e ) € Tlogn,

The condition (8) holds since an inverse Gaussian prior on each 3; produces

IM(H\ Hn) S Je=Csm™ for some constant Cs, by its exponentially small
bounds for tail probabilities on both sides. By matching J~% = ¢, and né2 <
Jlogn, we obtain J < (n/logn)t/(?**1) and €, = (logn/n)*/(?*+1). Note
that the conditions a,e2 — 0 and e,, — 0 hold only if o > 1/2.

o Verification of (C6): The separation condition holds as there is no additional
mean part.

Hence, we obtain the posterior contraction rates for § by Theorem 3. The con-
traction rate for v is also obtained by the same theorem. The assertion for the
optimal posterior contraction is directly justified by Corollary 1. Hence we have
verified (a)—(b).

Now, we verify (C8)—(C11) for the optimal posterior contraction in Theo-
rem 4.
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o Verification of (C8)—(C9): These conditions are trivially satisfied as there is
no nuisance mean part.

o Verification of (C10): Note that by the inequality |lvg — voll2.n S |lvg —
v, ||2,n + €n, the entropy in the integrand is bounded by
_ 3046@
log N (8v/7,{8: 118 = Bull < Cav/Ten b |I-2) S0V Tlog =),

for some C4y > 0. Thus, the second term of (C10) is bounded by Jg, by
Remark 6, while the first term is bounded by /.Js2(logp)/n. Since §, =
(Jlogn)/logp < J, (C10) is bounded by J&, = (n/logn)1~®/C+1 which
tends to zero as o > 1. R

o Verification of (C11): For every wvg,,vs, € Hn, note that dp,(ni,n2) =
lvg, — vg,ll2.n S 1181 — B2ll2 by (84). Since we put a prior for v using the B-
splines through a Euclidean parameter 3, the separability is trivially satisfied.

Therefore, since (C7) is satisfied the assumption, assertion (c¢) holds by Theo-
rem 4.

Next, we verify conditions (C8%)—(C10*) to apply Theorems 5-6 and Corol-
laries 2-3.

o Verification of (C8%)—(C9*): These are trivially satisfied for the same reason
as before.

o Verification of (C10*): Similar to the verification of (C10), the entropy of
interest is bounded by a constant multiple of 0V J log(3Cjse,, /§) for some C5 >
0. Thus, (C10*) is bounded above by a multiple of {(s2V.J)J(s, logp)3/n}'/?
by Remark 6, and hence goes to zero by the assumption. The condition a > 2
is seen to be necessary by the inequality

(SE V. J)J(S* 1ng)3/n > J2n2€47jl — n2(—a+2)/(2a+1)10gn2(3a71)/(2a+1).

Under (C7*), the distributional approximation in (15) holds with the zero matrix
H by Theorem 5. Under (C7*) and (C12), the no-superset result in (16) holds
by Theorem 6. We also obtain the strong results in Corollary 2 and Corollary 3
if the beta-min condition (C13) is also met. These prove (d)—(f).

B.7. Proof of Theorem 13

We verify the conditions for the posterior contraction in Theorem 3.

e Verification of (C1): Since A,,; = o2 for every i < n and o2 belongs to the
support of the prior, we have a,, = 1 and e,, = 0.

o Verification of (C2): Note that we write d2(n,m0) = |0? —03|*+ /95 — g0
To verify the prior concentration condition, observe that

2
2,n"

logn(n eH: dn(777770) S En)

€ €
>logll | B: — < =) +lo H<0:02—02<—”>,
> 10811 (55193 — ollan < 5 ) + 10wt (o102~ o < %
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where the second term on the right hand side is trivially bounded below by a
constant multiple of log €,. Using (82)—(84), it is easy to see that if J=* < €,

€n _ _
1%n@wm—%mm<ﬁ)>mnwwﬁwwm<awsz%,

for some C7 > 0. Since @ < «, this implies that (C2) is satisfied with &, =
(Jlogn)/n.

o Verification of (C3): The assumption ||fp||cc < A7! logp given in the theorem
directly satisfies the condition.

o Verification of (C4): This is directly satisfied by o7 < 1.

o Verification of (C5%): For a sufficiently large constant M and s, = sg V
(Jlogn/logp), choose H, = {gs : [|Blloc < nM} x {0 : n™™ < 02 <
eMs+1ogp} from which the minimum eigenvalue condition (6) is directly sat-
isfied with log~, =< logn. To check the entropy condition in (7), note that
for every 11,12 € Hn, we have dj. (11,1m2) < [|f1 — BallZ + |0F — a3|* by (84).
Hence, for some C3 > 0, the entropy in (7) is bounded above by a multiple of

1 M
08 N ( oz 19 190 < 1l

1 .
10N (i (o 0% < ).

The display is further bounded by a multiple of Jlogn + s, log p, and hence
(7) is satisfied with €, = 1/ (s« logp)/n. Using the tail bounds of normal and
inverse gamma distributions, condition (8) is also satisfied.

o Verification of (C6): The separation condition holds by Remark 3 as we have

dan(ne,m0) = 95 — goll2m < € for 0. = (gg., 0F) in view of (82).
Therefore, the contraction rates for 6 are given by Theorem 3. The rate for g
is also obtained by the same theorem. The assertion for the optimal posterior

contraction is directly justified by Corollary 1. We thus see (a)—(b) hold.
Now, we verify (C8)—(C11) for Theorem 4.

o Verification of (C8): Observe that the left hand side of the first line of (C8)
is equal to
1

5oV 1) Togp lgo — B Bsl3...

~ . n
_ H v 2 = 0
”5770 E/UHQ 0’3(50 \/1) log p

where 3; = WIW ) =IWF(go(21),- .., 90(zn))" is the the least squares solu-
tion. Since (3 is the solution minimizing [lgo — 57 B3 ,, for some 8, € R”,
the last display is bounded above by

n

otlogp

n
llgo — BY Bullz <

—_ 85
o0 v J204 logp) ( )

by (82), where so V 1 is replaced by 1 as sg is unknown. Plugging in J =<
(n/logn)/ (2341 it is easy to see that the right hand side of (85) is the same
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order of (logn)?®/(2a+)p(=2a+2a+1)/(2a+1) /190 . This tends to zero by the
given boundedness assumption. The necessary condition & < « is implied
by this, because logp = o(n). The second condition of (C8) is satisfied by
Remark 5.

o Verification of (C9): Let 7,(0,n) = (g95(-) + BY()WIW,)7*W¥X (6 —
0p),0?) for a given 6, where n = (gg(-), o?). This setting satisfies ®(7},(0,7)) =
(5,7 + HX(0—6y), An). Since each entry of 8 has the standard normal prior,
gp(-) is a zero mean Gaussian process with the covariance kernel K (t1,t2) =
Bj(t1)TBj(ts), and thus its reproducing kernel Hilbert space (RKHS) K is
the set of all functions of the form >, ¢, B, (tx)? B;(-) with coefficients (j, k €
{1,2,...}. Tt is easy to see that the shift (—0o)T XTW,;(WIW,;)~1B,(-)isin
the RKHS K since it is expressed as (0 —00)" XTW,;(WTW;)"*W;'W;B,(:)
using an invertible matrix W; € R7*/ with rows B (tx) evaluated by some ty,
k=1,...,J. Hence, by the Cameron-Martin theorem, for v = (vy,...,v;)T =
WEH=XWTW,)"'WTX (0 - 6) and ||-||x the RKHS norm, we see that

dHn ,0

] Y
8 4T, 6,

J
L, 7o : L5
(n) = > vgs(te) = 5 IV WaBy |z = V"W — S Wv,
k=1

almost surely. This gives that

dHn,0 —
o S 00| S 11 OVT ) WX - 60l
L]

(86)
+ [[(WFW5) T W7 X (0 — 60)ll5-
Note that we have
sup |82 < sup 18— Bl + 1.l
nEHn nNEHn

SV sup llgs — gpllam + 1.5 Ve, + 1,
nEHn

and

Wil = ||X(0—20
[Wllsp supgea, [1X( 0)ll2 <VJe,,

sup [[(WiW,) "' Wi X(0—6o)2 S S
O / J pmin(WfWJ)

0co,

using (84). Since v/J&, is bounded due to & > 1/2, (86) is bounded.

o Verification of (C10): Since the entropy in the integral in (C10) is bounded
above by a multiple of 0 V log(3]\;[2€n/5) for every § > 0, the second term of
(C10) is bounded by a constant multiple of €, due to Remark 6. The first
term is €2y/n/logp = (logn)?®/ Ga+1)p(=at1/2)/(2a+1) /\ /logp that tends to
zero by the boundedness assumption.

o Verification of (C11): Since we have dg ,,(m1,12) = |02 —03| for every 03,03 €
(0,00) and the parameter space of o2 is Euclidean, the condition is trivially
satisfied.

Therefore, assertion (c¢) holds by Theorem 4 since (C7) is also satisfied by the
given assumption.
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Lastly, we verify conditions (C8*)—(C10*) to apply Theorems 5-6 and Corol-
laries 2-3.

o Verification of (C8*): Similar to the verification of (C8), the first line of (C8%*)
is equal to

- - ns2logp
53 longfno - vam”% < }?

Plugging in J < (n/log n)l/(25‘+1), it is easy to see that this tends to zero by
the given boundedness condition, which requires that & < o — 1/2.
o Verification of (C9*): Similar to the verification of (C9), we now have

sup [|Bl2 < s«v/(Jlogp)/n+1,

n€EHn
[Wllsp suppeg, [1X (0 — 0o)ll2
pmin(WfWJ)

< s«y/(Jlogp)/n.

Since Jlogn = né2 < s, logp, (86) tends to zero since s%log® p = o(n).

o Verification of (C10*): By the similar calculations as before, we see that
(C10*) is bounded by (s2 log® p/n)'/? which tends to zero. The condition & >
1 is necessary since (s2log® p)/n > n?e = (logn)®a/Gathy—2a-1)/Qa+1),

sup (W7 W) "' W7X (0 = 0)l2 <
€0,

Therefore, under (C7*), we have the distributional approximation in (15) by
Theorem 5. Under (C7*) and (C12), Theorem 6 implies that the no-superset re-
sult in (16) holds. The stronger assertions in (17) and (18) are explicitly derived
from Corollary 2 and Corollary 3 if the beta-min condition (C13) is also met.

Appendix C: Auxiliary results

Here we provide some auxiliary results used to prove the main results.

Lemma 9. Let py be the density of N,.(ug, Xx) for k =1,2. Then,

1 { det 22

K ==
(P1p2) 2 18 det >

1 _ _ - -
V(p1,p2) :§{m~(2122 'yt - 2er(31 85 + 7’} + =155 (1 — p2) |3

sy — 152 — u2>||§} ,

Proof. Let Z = S73(X — pi1) ~ N.(0,1) for X ~ py and A = £1/25;157/2,
Then by direct calculations, we have

K(pn.2) = By {10 200}

1 det X9 T Ty—1
= JSlog———=+E, 7' AZ — — > —
3 { og dot >, + Ky, T+ (1 — p2)” By (1 — p2) ¢y
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which verifies the first assertion because E,, ZT AZ = trA. After some algebra,
we also obtain

2
V(p1,p2) = Ep, {10&’; f)—;(X) - K(phm)}

1 2
= {En {—ZTZ + ZTAZ +2(u — p2)TS5 027 — tr(A) + r} .

The rightmost side involves forms of E,, (ZZ7Q12) and E,, (ZTQ1227Q2Z)
for two positive definite matrices @1 and Q2. It is easy to see that the former
is zero, while it can be shown the latter equals 2tr(Q1Q2) + tr(Q1)tr(Q2); for
example, see Lemma 6.2 of Magnus [22]. Plugging in this for the expected values
of the products of quadratic forms, it is easy (but tedious) to verify the second
assertion. U

Lemma 10. For r x r positive definite matrices X1 and Yo, let dq,...,d, be
the eigenvalues of E;/2Ef12é/2. Then the following assertions hold:
() Pre(Z2)l[31 = Dol < X (' = 1) < pin(Bo) 1 = o,
(ii) maxy |dx — 1| can be made arbitrarily small if g*(X1,X2) is chosen suffi-
ciently small, where g is defined in (33).

Proof. Let A = 251/221251/2. Since the eigenvalues of A — I, are dj' —
1,...,d -t — 1, we can see that |21 — X5]|% is equal to

T

1ZY2(A — L)Y 23 < 2 (S2)l|A = LlJE = p2an(B2) > (d ' — 1)
k=1

Conversely, using the sub-multiplicative property of the Frobenius norm,
|BC||¢ < ||Bllspl|C]|F, it can be seen that ",_, (d; ' — 1)? is equal to

A= LI = 125251 = 22)%5 21} < o35 D121 — sl
These verify (i). Now, note that by direct calculations,

(det X21)/4(det $p)1/4 1 e g
T+ ) = |7 detAt AT

27"

k=1

r ~1/2
/2, —1/2
— {Ha(dk/ +d M )} :
Hence, g?(21,Y5) < 6 for a sufficiently small § > 0 implies that

11 %(d}f A7) < (1-822)2.

k=1
Since every term in the product of the last display is greater than or equal to
1, we have (d,lc/2 + d,:l/Q)/Q < (1 —62/2)72 for every k. As a function of dy,
(d,lc/2 + d,;l/z)/2 has the global minimum at dj = 1, and hence § can be chosen

sufficiently small to make |d; — 1| small for every k = 1,...,r, which establishes
(ii). O
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