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Abstract: Sentiment analysis measures inclination of textual documents,
aiming to extract and quantify their subjective sentiment polarity. In litera-
ture, most sentiment analysis methods first numericalize textual documents
through certain word embeddings framework, and then formulate sentiment
analysis as an ordinal regression or classification task. Yet it is often ignored
that different people may have different preference of wording, and thus a
uniform word embeddings often leads to suboptimal performance. In this
article, to accommodate the heterogeneity among individual persons, we
propose a covariate-assisted word embeddings in a margin-based ordinal
regression framework, where covariates are incorporated through scaling
factors to adjust the word embeddings. Moreover, we employ a block-wise
coordinate descent scheme to tackle the resultant large-scale optimization
task, and establish theoretical results to quantify the asymptotic behavior
of the proposed method, guaranteeing its fast convergence rate in terms
of prediction accuracy. Finally, we demonstrate the advantages of the pro-
posed method over its competitors in both the Yelp Challenge dataset and
synthetic datasets.
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1. Introduction

Unstructured text data has become increasingly important in recent years, due
to the fast advancement of information technology and evolution of information
storage. It typically arises from text-heavy documents, including customer re-
views, news stories, or online twits. One of the central tasks of text data analysis
is to extract subjective sentiment polarity of the textual documents, which has
been an essential component in modern business analytics and political surveys
[1, 2].

In literature, most sentiment analysis methods first convert textual docu-
ments into numerical vectors, and then formulate it as a classification task,
where sentiment levels are treated as binary or ordinal responses [3, 4, 5]. The
numericalization is often done by using the bag-of-words framework [6], where
word presences or frequencies in the textual documents are extracted as the
numerical features. The bag-of-words framework is interpretable and easy to
implement, but it fails to capture the relationship among meaningful words.
Recently, embedding technique [7] has drawn significant interests from both
statistics and machine learning communities for its flexibility and interpretabil-
ity in representing textual documents, including Word2Vec [8] and Global Vec-
tors for Word Representation (GloVe) [9]. The key idea of word embeddings
is to embed each word into a low-dimensional vector space so that the corre-
sponding vectors of relevant words are close in the embedded space. A number
of embeddings schemes have been proposed from various perspectives, in order
to obtain a uniform word embeddings for all individual persons to facilitate the
subsequent text data analysis.

A uniform word embeddings is simple in nature but also suffers from some
intrinsic limitations, due to the fact that different people may have different
preferences of wording. For example, the word “interesting” can be used to ex-
press neutral or even negative sentiment level by people who tend not to use
negative words to show politeness. Also, it appears very common that people
like to use sarcastic expressions on internet. One review in Yelp dataset says
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“I feel so excited to check out” to express the extremely negative sentiment
without using any negative words. Analyzing such textual statements can be
easily misled by the presence of positive words with strong polarity [10, 11]. In
literature, difference in wording across genders, ages, educational background
and political background has been widely reported [1, 12, 13]. It is thus natu-
ral to consider adaptive word embeddings to capture the heterogeneity among
individual persons so that their preferences of wording can be incorporated to
improve the prediction accuracy. Yet, only a few attempts have been made in lit-
erature, including time-varying word embeddings [14] and topic-adaptive word
embeddings [15, 16].

In this paper, we propose a sentiment analysis method based on a novel
covariate-assisted word embeddings, which integrates covariates into a ordinal
regression framework [17] to refine word embeddings for better prediction accu-
racy. Specifically, a sentiment lexicon and the corresponding word embeddings
will be employed to construct covariate-adjusted representation of each tex-
tual document. For each covariate level, an adjusting factor is introduced to
scale the original word embeddings, which quantifies the deviation of semantics
from the pre-trained word embeddings. Furthermore, we also develop a scalable
block-wise coordinate descent algorithm to tackle the resultant large-scale op-
timization task. Theoretically, the asymptotic convergence rate of the proposed
method is established in terms of sample size, sentiment levels, covariate levels,
lexicon size.

The rest of the paper is organized as follows. Section 2 presents the pro-
posed covariate-assisted word embeddings in an ordinal regression framework
for sentiment analysis, as well as the block-wise coordinate descent algorithm.
Section 3 establishes the asymptotic results for the proposed method assuring
its fast convergence rate under several situations. Section 4 conducts a simu-
lation study to examine the numerical performance of the proposed method in
various synthetic datasets and applies the proposed method to analyze the Yelp
challenge dataset. A brief summary is given in Section 5, and the Appendix
contains the technical proofs.

2. Proposed methodology

2.1. Preambles

In sentiment analysis, a training dataset consists of {(tij , yij); i = 1, · · · , u, j =
1, · · · , Ni}, where tij is the j-th textual document made by the i-th person, and
yij ∈ {1, · · · ,K} indicates its sentiment level with ordering 1 ≺ 2 ≺ · · · ≺ K,
where ≺ denotes less positive in terms of sentiment level. The primary goal of
sentiment analysis is to construct a decision function φ(tij) to accurately predict
the sentiment level of tij , so that the disagreement between φ(tij) and yij can
be minimized.

Various disagreement metrics for ordinal regression have been considered
in literature [18], including mean absolute error(MAE), mean zero-one error
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(MZOE) and mean square error(MSE). However, neither MZOE nor MSE is
originally designed for ordinal regression, and both metrics have their own lim-
itations for analyzing ordinal data. Particularly, MZOE fails to take the or-
dinality into account, which is particularly undesirable in sentiment analysis,
where mis-classifying a positive review as neural is less severe than as negative,
whereas these two type of misclassifications are treated equally in MZOE. As
for MSE, it regards ordinal response as continuous, leading to unnecessary bias,
especially when ordinal responses are only encoded to reflect the ordering but
imply no elaboration of the difference among the ordered values. By contrast,
MAE appears to be a reasonable choice for ordinal regression, and widely used
in literature [17]. It can be written as

MAE(φ) = E
(∣∣y − φ(t)

∣∣) = K−1∑
k=1

E
(
I
(
sgn(y − k) sgn (φ(t)− k) ≤ 0

))
, (2.1)

where I(·) is an indicator function and sgn(x) = 1 when x > 0, and −1 oth-
erwise. It follows immediately from (2.1) that minimizing MAE is equivalently
transformed into solving K − 1 binary classification problems, where sgn(y− k)
can be treated as the binary class label and sgn (φ(t)− k) denotes the corre-
sponding classification decision function.

Instead of estimating φ(t) directly, it is common to introduce K−1 functions
with fK−1(t) ≤ · · · ≤ f1(t), and set φ(t) = min{k : fk(t) ≤ 0}. Then the
estimation of φ is converted to estimating f = (f1, . . . , fK−1), and

MAE(φ) = MAE(f) =

K−1∑
k=1

E
(
I
(
sgn(y − k)fk(t) ≤ 0

))
. (2.2)

The indicator function in (2.2) is computationally intractable for optimization,
thus we replace it by some surrogate margin losses. Specifically, an empirical
version of (2.2) with a surrogate loss and regularization term can then be con-
structed to estimate f ,

min
f

1

N

n∑
i=1

Ni∑
j=1

K−1∑
k=1

V (sgn(yij − k)fk(tij)) + λJ(f) (2.3)

subject to fK−1(tij) ≤ fK−2(tij) ≤ . . . ≤ f1(tij); i = 1, . . . , n, j = 1, . . . , Ni,

where N =
∑n

i=1 Ni, V (z) is a surrogate margin loss function non-decreasing in
z, J(f) is a regularization term, and λ is a tuning parameter. Here V (z) can take
various forms. For instance, V (·) can be the hinge loss V (u) = (1−u)+ [19], the
ψ-loss V (u) = min((1−u)+, 1) [20], or the logistic loss V (u) = 1/(1+ exp(−u))
[21]. It is interesting to note that setting V as the hinge loss or the logistic loss
in (2.3) resembles the ALL-threshold method [22] for ordinal regression.

To facilitate the modelling of f , textual documents need to be pre-processed
into numerical vectors. In literature, primitive approaches extract word pres-
ence or frequency in t as predictors under the bag-of-words framework [6, 23].
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Recently, more informative word embeddings frameworks have been developed,
such as Word2Vec and GloVe [8, 9]. In particular, Word2Vec learns the word
representation via a three-layer neural network, which assumes that words with
similar linguistic meaning should be close in textual documents, resulting in
frequent co-occurrences within a fixed-sized context window.

Specifically, let D = {ω1, ω2, . . . , ωd} be a lexicon of sentiment words and
E ∈ R

p×d be an embedding matrix, where p is the dimension of the embedded
space and each column denotes the embedding of the corresponding word in D.
We further define B(t) = (b1, . . . , bd)

T to be the frequency vector of t based on
D. Then EB(t) is the averaged embeddings of words appearing in t, which can
be viewed as the representation of t in the embedded space, and the sentiment
function fk can be formulated as

fk(tij) = βTEB(tij) + β0,k, (2.4)

where β ∈ R
p, and β0,K−1 ≤ . . . ≤ β0,1. Clearly, f1, . . . , fK−1 are parallel,

and their ordering is inherent in β0,k; k = 1, . . . ,K − 1. Such structures have
been commonly used in literature to enforce ordering among multiple functions
[24, 25, 26].

2.2. Covariate-assisted word embeddings

In many scenarios, some covariates xij = (xij1, xij2, . . . , xijL)
T are also available

for each observation (tij , yij), where xijl ∈ {1, . . . ,ml} denotes the l-th covariate
and ml denotes its number of distinct levels. To incorporate available covariates
in the word embeddings, the proposed covariate-assisted sentiment function fk
can be formulated as

fk(tij ,xij) = βTE
(
B(tij) ◦w(1)

xij1
◦ · · · ◦w(L)

xijL

)
+ β0,k(xij), (2.5)

where ◦ denotes the entry-wise product, w
(l)
xijl ∈ R

d denotes the parameter
vector corresponding to xijl, and the intercept β0,k(x) is allowed to vary with
x. Note that both E and B are pre-trained or pre-specified, and only β, β0,k

and w
(l)
xijl are the unknown parameters in (2.5) that need to be estimated. Par-

ticularly, w
(l)
xijl serves the purpose of adjusting B(tij) in fk(tij ,xij), and the

varying intercept can be viewed as baseline in predicting sentiment for each co-

variate level. Furthermore, although β and w
(l)
xijl may not be identifiable, they

contribute to fk(tij ,xij) only through their product, and thus does not affect
the predictability of the proposed method. If interpretability is also of interest,
one may fix ‖β‖ = 1 to avoid the non-identifiability, which only requires an
additional normalization step of β. Additionally, the proposed method in (2.5)
is mainly designed for binary and categorical covariates, to which a direct exten-
sion to continuous covariates is to divide the domain of covariates into exclusive
subsets, which are then treated as distinct categorical levels.



3020 S. Xu et al.

Let wxij = w
(1)
xij1 ◦ · · · ◦w

(L)
xijL be the overall adjusting effect, then fk(tij ,xij)

can be rewritten as

fk(tij ,xij) = βT
[
E ◦ (1p ⊗wT

xij
)
]
B(tij) + β0,k(xij), (2.6)

where ⊗ denotes the Kronecker product. This formulation leads to the proposed
covariate-assisted word embeddings, where wij calibrates the embedding ma-
trix E by multiplying its embedding vector with a scaling factor. It allows for
a refined word embedding by incorporating the available covariates, which is in
sharp contrast to the uniform word embeddings in literature. For example, a
positive word can be used to express negative sentiment when its embedding
vector is multiplied by a negative scalar. This flexibility is particularly attrac-
tive when analyzing sarcastic statements on internet. Additionally, the overall
adjusting effect wij of documents issued by the same person will be close since
they share common covariates, implying similarity among wordings of different
textual documents by the same person. It also allows certain similarity among
wording of different persons depending on the level of their common covariates.

With the modelling of fk in (2.6), the proposed method can be organized as

min
W ,β,β0

1

N

u∑
i=1

Ni∑
j=1

K−1∑
k=1

V
(
sign(yij − k)(βTE

(
B(tij) ◦ w̄xij

)
+ β0,k(xij))

)
+ λ1J(β) + λ2J(W )

subject to β0,K−1(xij) ≤ β0,K−2(xij) ≤ · · · ≤ β0,1(xij) for all xij , (2.7)

where W = [W (1),W (2), . . . ,W (L)], and W (l) = [w
(l)
1 , . . . ,w

(l)
ml ] denotes the

adjusting matrix of l-th categorical covariate. Here the number of parameters
of β and W are p and d

∑L
l=1 ml, respectively. To control the complexity of

sentiment functions, J(β) and J(W ) can be any regularization term. In the
sequel, we illustrate the proposed method by setting V (·) is the hinge loss,
J(β) = ‖β‖22, and J(W ) = ‖W ‖2F .

Note that the proposed method in (2.7) consists of two tuning parameters
λ1 and λ2, and Lemma 1 shows they play a similar role in (2.7) and thus
significantly simplifies the tuning process for λ1 and λ2.

Lemma 1. The solution to (2.7) remains the same as long as λ1λ
L
2 stays the

same.

Lemma 1 implies that the optimization task in (2.7) with tuning parameters
(λ1, λ2) has the same solution as that with (λ, λ) satisfying λL+1 = λ1λ

L
2 .

Therefore, we simplify the cost function in (2.7) by setting λ1 = λ2 = λ in the
sequel. The proof of Lemma 1 and all other technical proofs are provided in a
supplementary file [27].

2.3. Scalable computation

Note that optimization task in (2.7) is a bi-convex optimization problem with
respect to β and w̄xij , and hence we employ a block-wise coordinate descent
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algorithm to update β and w̄xij sequentially. By introducing a slack variable
ξijk, (2.7) can be reformulated as

min
W ,β,β0,ξijk

∑
i,j,k

ξijk + λ‖β‖22 + λ‖W ‖2F (2.8)

subject to sgn(yij − k)
(
βTE(B(tij) ◦ w̄xij ) + β0,k(xij)

)
≥ 1− ξijk, ξijk ≥ 0,

β0,K−1(xij) ≤ β0,K−2(xij) ≤ · · · ≤ β0,1(xij).

We then break (2.8) into multiple sub-tasks, and update β,W and β0 alter-
natively. Specifically, when W and β0 are fixed, β can be updated by solving

min
β,ξijk

∑
i,j,k

ξijk + λ‖β‖22 (2.9)

subject to sgn(yij − k)
(
βTE(B(tij) ◦ w̄xij ) + β0,k(xij)

)
≥ 1− ξijk, ξijk ≥ 0.

Note that the optimization task in (2.9) resembles linear support vector machine
(SVM) in nature except additional varying intercepts, which can be efficiently
solved by Liblinear [28]. Therefore, we develop a similar optimization scheme
based on dual coordinate descent method as in Liblinear to solve (2.9), which
is named as driftSVM and available in Python package VarSVM.

When β and β0 are fixed, our strategy is to use the back-fitting scheme to
update W (l); l = 1, · · · , L sequentially. Particularly, W (l) can be updated by
solving

min
W (l),ξijk

ml∑
q=1

∑
{xij : xijl=q}

∑
k

ξijk + λ

ml∑
q=1

‖w(l)
q ‖22

subject to sgn(yij − k)
(
(w(l)

q )TB
−wxijl

ij ETβ + β0,k(xij)
)
≥ 1− ξijk, ξijk ≥ 0,

where B
−wxijl

ij = diag{B(tij) ◦ w
(1)
xij1 ◦ · · · ◦ w

(l−1)
xij,l−1 ◦ w

(l+1)
xij,l+1 ◦ · · ·w(L)

xijL} is a

diagonal matrix. Furthermore, w
(l)
q can be optimized in a parallel fashion. That

is, each w
(l)
q , q = 1, · · · ,ml can be updated by solving

min
w

(l)
q ,ξijk

∑
{xij :xijl=q}

∑
k

ξijk + λ‖w(l)
q ‖22 (2.10)

subject to sgn(yij − k)
(
(w(l)

q )TB
−w(l)

q

ij ETβ + β0,k(xij)
)
≥ 1− ξijk, ξijk ≥ 0.

The optimization task in (2.10) is exactly the same as (2.9), and hence can be
solved by following identical optimization scheme.

When β and W are fixed, β0 can be updated by solving

min
β0,ξijk

∑
i,j,k

ξijk (2.11)

subject to sgn(yij − k)β0,k(xij) + ξijk ≥ 1− sgn(yij − k)
(
βTE(B(t)ij ◦ w̄xij )

)
,
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β0,K−1(xij) ≤ β0,K−2(xij) ≤ · · · ≤ β0,1(xij), ξijk ≥ 0.

It is clear that (2.11) is a standard linear programming formulation with respect
to βxij and ξijk, and can be efficiently solved by the popular interior-point
algorithm which is available in Python package cvxopt [29].

The parallel block-wise coordinate descent algorithm for the proposed method
is summarized in Algorithm 1. In essence, this is an implementation of the block
successive convex minimization, and hence it is guaranteed to converge to a
stationary point [30].

Algorithm 1:

(Initialization): Set initial values (β(0),β
(0)
0 ,W (0)), tuning parameters λ, the tolerance

error εtol, and iteration t = 1, ε0 = 1;
while εt−1 > εtol do

(Update for β):

Estimate β(t) by solving (2.9) with β
(t−1)
0 ,W (t−1);

(Update for W ): Set εW = 1,W new = W (t−1);
while εW < εtol do

W old ← W new

for (l = 1, · · · , L) do

Estimate (w
(l)
m )new by solving (2.10) in a parallel fashion with β(t),β

(t−1)
0

and W (l′) as (W (l′))(t) for l′ = 1, · · · , l;
end

εW =
∑L

l=1 ‖(W new)(l) − (W old)(l)‖2F /
∑L

l=1 ‖(W old)(l)‖2F ;

end

W (t) = W new;

(Update for β0):

Estimate β
(t)
0 by solving (2.11) with β(t) and W (t);

Set εt =
∑c

l=1 ‖(W (l))(t) − (W (l))(t−1)‖2F /
∑c

l=1 ‖(W (l))(t−1)‖2F
+‖β(t) − β(t−1)‖22/‖β(t−1)‖22 + ‖β(t)

0 − β
(t−1)
0 ‖22/‖β

(t−1)
0 ‖22

end

3. Theory

This section establishes the asymptotic convergence of the proposed method in
estimating the ideal sentiment function f0 = (f0

1 , . . . , f
0
K−1), which is showed

to satisfy that sgn(f0
k ) = sgn(P (y ≥ k|x, t)− 1

2 ) for k = 1, . . . ,K − 1 [17]. Then
the regret of f is defined as

e(f ,f0) = (K − 1)−1
K−1∑
k=1

E
(
I(sgn(fk(x, t)) 
= sgn(f0

k (x, t))
)
.
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Furthermore, denote V̄ (y,f(x, t)) = (K − 1)−1
∑K−1

k=1 V (sgn(y − k)fk(x, t)),
and eV (f ,f

0) = EV̄ (y,f(x, t))−EV̄ (y,f0(x, t)). We further denote F = {f =
(f1, . . . , fK−1) : fk(x, t) = βTEtw̄x + β0,k(x), β0,K−1(x) ≤ β0,K−2(x) ≤ · · · ≤
β0,1(x)}, where Et = E ◦ (1p ⊗ B(t)). Let n =

∑u
i=1 Ni denote the total

number of observations, and two technical assumptions are made to quantify
the asymptotic behavior of the proposed method.

Assumption A. For any ξn > 0, there exists f∗ ∈ F such that eV (f
∗,f0) ≤

ξn.

Assumption A assures that the approximation error of F in approximating
f0 is governed by ξn, which eventually will impact the asymptotic behavior of
the proposed sentiment function f̂ .

Next, let V T (u) = min(V (u), T ), where T is chosen so that V (sgn(y −
k)f0

k (x, t)) ≤ T almost surely. In addition, we let V̄ T (y,f(x, t)) = (K −
1)−1

∑K−1
k=1 V T (sgn(y−k)fk(x, t)) and define eV T (f ,f0) = E

(
V̄ T (y,f(x, t))

)
−

E
(
V̄ T (y,f0(x, t))

)
.

Assumption B. There exist constants α > 0, 1 ≥ γ ≥ 0 and a1, a2 > 0 such
that for any sufficiently small δn > 0,

sup
f∈Fδn

e(f ,f0) ≤ a1δ
α
n ,

sup
f∈Fδn

Var(V̄ T (sgn(y − k), fk(x, t))− V̄ (sgn(y − k), f0
k (x, t))) ≤ a2δ

γ
n, (3.1)

where Fδn = {f ∈ F : eV T (f ,f0) ≤ δn}.

Assumption B implies the local smoothness of e(f ,f0) and Var(V̄ T (sgn(y −
k)fk(x, t)) − V̄ (sgn(y − k)f0

k (x, t))) within a neighborhood of f0. Here α and
γ are determined by the joint distribution of (x, t) and the loss function V .
Additionally, (3.1) provides a connection between the first and second moments
of V̄ T (sgn(y − k)fk(x, t)) − V̄ T (sgn(y − k)f0

k (x, t)), which is essential for es-
tablishing the subsequent large deviation inequalities. In fact, Assumption B is
a mild assumption and has been verified for various losses and distributions in
literature [31, 32]. For example, Assumption B holds true for the hinge loss and
any distribution P (x, t) with α = 1 and γ = 1 [32].

Theorem 1. Suppose that Assumptions A-B are met. Then for the proposed
sentiment function f̂ defined in (2.7), there exists a constant a3 > 0 such that

P (e(f̂ ,f0) ≥ a1δ
2α
n ) ≤ 3.5 exp

(
− a3n(λJ

∗)2−min(γ,1)
)
,

provided that δ2n ≥ 4λJ∗, where J∗ = min{‖β‖22+‖W ‖2F : sgn(fk) = sgn(f0
k ); k =

1, . . . ,K−1,f ∈ F}, δ2n = min(ε2n+2ξn, 1), and ε2n =
(
D1n

−1 log(n/D1)
)1/(2−γ)

,

where D1 = max{p+ d
∑c

l=1 ml,MK}, M =
∏L

l=1 ml, and a1, γ, ξn are defined
as in Assumptions A-B.
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Corollary 1. Suppose the assumptions of Theorem 1 are met, and that λ sat-
isfies n−1(λJ∗)min(γ,1)−2 = o(1). Then it holds true that

e(f̂ ,f0) = Op(δ
2α
n ) and E|e(f̂ ,f0)| = O(δ2αn ).

Clearly, the rate δ2n is governed by both ε2n and ξn, where ε2n is determined
by the complexity of FV depending on the dimension of the embedded space
p, the size of sentiment lexicon d, and the number of levels of all covariates
ml; l = 1, . . . , L. Usually, there is a trade-off between the approximation error
ξn and the complexity of FV over the choice of f0, so as to attain the optimal
convergence rate δ2αn .

4. Numerical experiments

In this section, we conduct a series of numerical experiments on simulated
datasets and the Yelp challenge dataset to examine the performance of the pro-
posed method. We compare it against various baseline word embedding meth-
ods in literature, including word embeddings based on Google news trained
by word2vec technique [8], word embeddings based on Wikipedia trained by
GloVe [9], and random word embeddings generated by multivariate normal dis-
tribution. Here the random word embeddings are used as baseline to verify the
effectiveness of the other two pre-trained embeddings. Moreover, we let Googlep,
Wikip, and Randomp denote the corresponding covariate-assisted word embed-
dings, whereas Google, Wiki and Random denote their corresponding baseline
embeddings in (2.4), respectively.

For each method, the tuning parameters are selected via grid search over
[10−6, 103], and their numerical performance is measured by MAE evaluated on
a test set,

TE(f) =
1

ntest(K − 1)

K−1∑
k=1

ntest∑
i=1

I(sgn(yi − k) 
= sgn(fk(xi, ti)), (4.1)

where ntest is the size of the test set.

4.1. Yelp challenge

The Yelp challenge dataset consists of four parts, including “business”, “review”,
“user” and “check-in”, and is publicly available at https://www.yelp.com/

dataset/challenge. In “business”, it contains location, latitude-longitude, av-
eraged stars, opening hours, review counts and business categories. In “review”,
a specific review is composed of textual comment, stars, business, user and
corresponding feedback given by other users. In “user”, personal information
associated with each user is given, including users’ social network, starting time
and elite-experience in the Yelp community. Additionally, users’ behavior like
votes and stars are also provided. In “checking”, the counts of check-ins at each

https://www.yelp.com/dataset/challenge
https://www.yelp.com/dataset/challenge
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business are provided. In fact, all capitalized words in the reviews are converted
into lower case by using the nltk package in Python. Other pre-processing steps,
including removing spaces, stop words and punctuation, are also conducted.

We implement the proposed method based on the “review” and “user” parts.
The “review” part contains reviews with star ratings from 1 to 5. Due to the im-
balance of classes in “stars” of reviews, we encode “1” and “2” as 1, “3” as 2, and
“4” and “5” as 3. In the pre-processing step, all capitalized words are converted
into lower case, stop words and punctuation are removed, and frequency vec-
tors are constructed for each review under the bag-of-words framework against
a sentiment lexicon consisting of about 6,800 positive and negative words [33]
combined with 1,000 1-gram features extracted based on term frequency–inverse
document frequency (TF-IDF). The “user” part provides a personal social net-
work, number of fans, counts of “useful”, counts of “cool”, counts of “funny”
and elite-experience. In particular, elite-experience indicates the years when the
user was selected as elite for well-written reviews, high-quality tips, or a de-
tailed personal profile. Furthermore, elite users are characterized by pertinent
comments and useful tips, with which other users have resonated to cast “use-
ful”, “funny” and “cool” votes. About 3.25% of the users in the Yelp community
have elite experience.

One salient difference between elite and non-elite users is their preference
of wording, in particular the frequencies of sentiment words in reviews. For
instances, as showed in Figure 1, “reputable”, “diligence” and “abnormal” are
used much more frequently by non-elite users, whereas “slut” and “catchy” are
much more popular among elite users. Also, as surprising as it appears, non-
elite users tend to use “reputable” in an ironic way to show that the service they
receive does not live up to their expectations, such as “A reputable apartment
would try to fix their errors”, “I’m spending my money on an experience from

Fig 1: Relative frequency of words in average by elite and non-elite users.
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a reputable Salon that has been nothing but rude and unhelpful”, and so on.
In sharp contrast, elite users use “reputable” as a positive comment, leading to
a 3.34 stars in average among those reviews containing “reputable”, while only
2.00 for by non-elite reviews.

Another interesting difference between elite and non-elite users is their pref-
erences in giving “stars”. As seen in Figure 2, the distribution of averaged stars
given by elite users appears to be a normal distribution, whereas the stars given
by non-elite users appear to be more disordered in that they tend to give 1-star
or 5-star reviews.

Fig 2: Histograms of averaged stars for elite and non-elite users, respectively.

Furthermore, number of feedbacks including “helpful”, “cool”, and “funny”
tend to provides useful information about users. Users with a large number of
feedbacks are popular for their objective comments, interesting expressions or
humorous reviews. In fact, these three covariates are proportional to each other,
and hence we only include “helpful” for application, which is converted to a
binary covariate indicating whether “useful” count of the user is in the top 10
percent.

In this numerical experiment, 100,000 reviews are sampled from the Yelp chal-
lenge dataset, which are then split into three equal-sized sets used for training,
validation and testing. The averaged test errors and their standard errors over
100 replications are reported in Table 1. To further evaluate the effectiveness
of the proposed method in sentiment analysis, we also include the word embed-
dings trained by Embeddings from Language Models (ELMo) for comparison
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[34], which generate word embeddings with information of context. Specifically,
each review is converted to averaged word embeddings of length 1,024 obtained
from ELMo based on 1 Billion Word Benchmark [35].

Table 1

Averaged test errors of various methods as well as their standard errors (in parentheses)
over 100 replications in the Yelp dataset.

Google Googlep Wiki Wikip Random Randomp ELMo

0.1492 0.1407 0.1534 0.1410 0.1833 0.1443 0.1423
(0.0002) (0.0002) (0.0002) (0.0002) (0.0003) (0.0001) (0.0003)

Table 1 shows that the proposed method is able to improve the performance
of Google, Wiki and Random by incorporating covariates, with improvement
ranging from 5.7% to 21.3%. Even though word embeddings by ELMo appears
to be more accurate than those trained by Word2Vec and GloVe, the proposed
method yields the best performance on the word embeddings on Google news,
showing that the proposed method is capable of learning covariate-varying word
embeddings to improve prediction accuracy. Interestingly, when using covariates
to adjust random embeddings which does not make use of semantic informa-
tion at all, the improvement is much more significant and the performance of
Randomp is almost comparable to Googlep and Wikip, showing that the pro-
posed method is capable of training a word embeddings adaptive to prediction
task. To verify the significance of the improvement, we further conduct t-tests
between the proposed method on three word embeddings with their correspond-
ing baselines, and the best performer with ELMo.

Table 2

P-values for various pair-wise t-tests.

Google vs Googlep Wiki vs Wikip Random vs Randomp Googlep vs ELMo

0.0000 0.0000 0.0000 0.0003

As shown in Table 2, the improvements on three baseline word embeddings
are statistically significant, showing that a uniform word embeddings in senti-
ment analysis may lead to sub-optimal performance, and hence entails adjusting
effect from covariates. Additionally, Googlep also outperforms ELMo with sta-
tistically significant improvement, suggesting the proposed framework is com-
petitive in sentiment analysis.

4.2. Simulations

We further verify the effectiveness of our proposed method under the assumed
model in 2.4 with various numbers of covariates and degrees of covariate effect.
The simulated examples are generated as follows. We first choose 100 words from
the sentiment lexicon [33] and obtain corresponding word embeddings E based
on GoogleNews. Then we generate wj = (1100−r, w̃j); j = 1, . . . ,m, where w̃j ∈
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R
r with each component generated from unif(−1, 1) and r adjusts the degree

of covariate effect. Then we generate (xi, bi); i = 1, . . . , n, where bi ∈ R
100 is a

sequence of integers denoting word frequencies with each element of bi generated
independently from Pois(1), and xi is uniformly chosen from {1, . . . ,m}. The
sentiment level yi is generated via yi = max{k : βTE(bi ◦wxi) + β0,k(xi) ≤ 0},
where β is generated from N(0, I300) and β0 is set to generate K equal-sized
classes.

Under this data generation scheme, we consider various cases with (n,m,K)
= (2000,2,5), (2000,4,5), (4000,2,5) and (4000,4,5) and r = 20, 40, 60, 80, respec-
tively. In each case, we split the dataset into training, validation and test sets
with ratio 1:1:1. The averaged test errors of various methods over 100 replica-
tions are summarized in Table 3.

Table 3

Averaged test errors of various methods as well as their standard errors (in parentheses)
over 100 replications.

(n,m,K) Googlep Google

r = 20

(2000,2,5) 0.0679(0.0030) 0.1122(0.0030)
(2000,4,5) 0.0794(0.0036) 0.1261(0.0027)
(4000,2,5) 0.0659(0.0035) 0.1135(0.0034)
(4000,4,5) 0.0664(0.0031) 0.1246(0.0024)

r = 40

(2000,2,5) 0.0632(0.0028) 0.1446(0.0024)
(2000,4,5) 0.0697(0.0024) 0.1687(0.0021)
(4000,2,5) 0.0503(0.0026) 0.1340(0.0026)
(4000,4,5) 0.0583(0.0024) 0.1575(0.0018)

r = 60

(2000,2,5) 0.0497(0.0008) 0.1593(0.0024)
(2000,4,5) 0.0612(0.0008) 0.1936(0.0024)
(4000,2,5) 0.0443(0.0015) 0.1559(0.0023)
(4000,4,5) 0.0495(0.0013) 0.1957(0.0015)

r = 80

(2000,2,5) 0.0420(0.0008) 0.1830(0.0024)
(2000,4,5) 0.0539(0.0008) 0.2311(0.0013)
(4000,2,5) 0.0380(0.0012) 0.1766(0.0020)
(4000,4,5) 0.0427(0.0007) 0.2273(0.0015)

As shown in Table 3, the proposed method outperforms its baseline embed-
ding method under all settings, showing that our proposed method is capable
of enhancing the sentiment performance by incorporating covariate effect into
word embeddings. The advantage becomes more substantial when r gets larger
and wj ’s become more different, showing that employing a homogeneous word
embeddings may yield poor performance when embeddings varies with some
covariates.

To verify the efficiency of the proposed method, we examine the comput-
ing time of three sub-optimization tasks, where the sample size increases from
1,000 to 10,000, or the dictionary size increases from 100 to 500. The averaged
computing time over 50 replications of three sub-optimization tasks under all
settings are reported in Figure 3.

As shown in Figure 3, the averaged computing time of three optimizations
tasks are all linearly proportional to sample size. This is due to the fact that the
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Fig 3: The averaged computing time of 50 replications of three
sub-optimization tasks.

optimization tasks for β and W resemble linear SVM in nature except varying
intercepts, and hence can be solved efficiently by a dual coordinate descent
algorithm as in Liblinear [28]. Moreover, the computational time for updating
W also depends on the size of dictionary, whereas those for updating β and β0

appear to be less affected.

5. Summary

This article proposes a flexible framework for covariate-assisted sentiment anal-
ysis by incorporating covariates into word embeddings to improve prediction
accuracy. Specifically, the proposed method admits varying document represen-
tations over covariate information, such as gender, education level and so on.
This is also equivalent to admitting varying sentiment functions over levels of
covariates, and then endows the proposed method with the ability to capture
distinctions in wording and sentiment derived from covariate. Additionally, we
propose an scalable block-wise coordinate descent algorithm to solve the re-
sultant optimization task. We also establish the asymptotic properties of the
proposed method, which provides a theoretical guarantee of its convergence to
the ideal sentiment function. Note that even though our proposed method is
formulated under the ordinal regression framework, the key idea of integrating
covariates can be employed in other models.
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Appendix

Lemma 2. The solution to (7) remains the same as long as λ1λ
L
2 stays the

same.
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Proof of Lemma 2. Let

G(β,W ,β0;λ1, λ2) =
1

N

n∑
i=1

Ni∑
j=1

K−1∑
k=1

V
(
sgn(yij − k)fk(xij , tij)

)
+

λ1‖β‖2 + λ2‖W ‖2F ,

where ‖W ‖F =
∑L

l=1 ‖W (l)‖2F , and then

(β̂, Ŵ , β̂0) = argmin
β,W ,β0

G(β,W ,β0, λ1, λ2).

Consider another tuning parameter pair (λ̃1, λ̃2) satisfying λ1λ
L
2 = λ̃1λ̃

L
2 , and

denote (β̃, W̃ , β̃0) = argmin
β,W ,β0

G(β,W ,β0; λ̃1, λ̃2). Then we have

G(β̂, Ŵ , β̂0;λ1, λ2) = G(

√
λ1/λ̃1β̂,

√
λ2/λ̃2Ŵ , β̂0, λ̃1, λ̃2).

It hence follows that (β̃, W̃ , β̃0) = (
√
λ1/λ̃1β̂,

√
λ2/λ̃2Ŵ , β̂0), which leads to

β̃TE(B(t) ◦ w̃x)

=

√
λ1/λ̃1β̂

TE(B(t) ◦
√

λ2/λ̃2ŵ
(1)
x1

◦
√

λ2/λ̃2 ◦ · · · ◦
√
λ2/λ̃2ŵ

(L)
xL

)

=

√
λ1λL

2 /(λ̃1λ̃L
2 )β̂

TE(B(t) ◦ ŵx).

The desired result then follows immediately after the fact that λ1λ
L
2 = λ̃1λ̃

L
2 .

Lemma 3. Let C1(τ) = d
1
2 (τJ∗)

L
2 +1/L

L
2 ‖Et‖F , then for any β0,k(x) with

|β0,k(x)| ≥ C1(τ) + T + 1, we have

V T
(
sgn(y − k)(βTEtw̄x + β0,k(x))

)
=

{
TI(sgn(y − k) 
= 1), if β0,k(x) ≥ C1(τ) + T + 1;

TI(sgn(y − k) = 1), if β0,k(x) ≤ −C1(τ)− T − 1,
(5.1)

for any (β,W ) ∈ {(β,W ) : ‖β‖2 + ‖W ‖2F ≤ J∗τ}.
Proof of Lemma 3. We first show that |βTEtw̄x| ≤ C1(τ), for any (β,W ) ∈
{(β,W ) : ‖β‖2 + ‖W ‖2F ≤ J∗τ}. Particularly,

|βTEtw̄x| = |(βTEt,1,β
TEt,2, . . . ,β

TEt,d)w̄x|

≤‖βTEt‖2‖w̄x‖2 =

⎛⎝ d∑
j=1

(βTEt,j)
2

⎞⎠1/2

‖w̄x‖2

≤

⎛⎝ d∑
j=1

‖β‖22‖Et,j‖22

⎞⎠1/2

‖w̄x‖2 = ‖β‖2‖Et‖F ‖w(1)
x1

◦w(2)
x2

· · · ◦w(L)
xL

‖2
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=‖β‖2‖Et‖F

⎛⎝ d∑
j=1

(

L∏
i=1

w
(i)
xi,j

)2

⎞⎠ 1
2

≤ ‖β‖2‖Et‖F

⎛⎝ d∑
j=1

( L∑
i=1

(w
(i)
xi,j

)2

L

)L⎞⎠ 1
2

≤
(
‖β‖22 + ‖W ‖2F

)1/2 ‖Et‖F d
1
2

(
‖W ‖2F

L

)L
2

≤
(
‖β‖22 + ‖W ‖2F

)1/2 ‖Et‖F d
1
2

(
τJ∗

L

)L
2

≤ d
1
2
(τJ∗)

L
2 +1

L
L
2

‖Et‖F = C1(τ),

where Et,j is the j-th column of Et, the first inequality follows from the Cauchy-
Schwarz inequality, the third inequality follows from the inequality of arithmetic
and geometric means.

Next we verify only (5.1) for β0,k(x) ≥ C1(τ) + T + 1, and it can be verified
similarly for β0,k(x) ≤ −C1(τ)− T − 1. For any β0,k(x) ≥ C1(τ) + T + 1, when
sgn(y − k) = 1 we have

0 ≤ V T
(
βTEtw̄x + β0,k(x)

)
≤ V T

(
− |βTEtw̄x|+ C1(τ) + T + 1

)
≤ 0,

where both inequalities follow from the non-increasing property of V T (·). When
sgn(y − k) = −1, we have

T ≥ V T
(
− βTEtw̄x − β0,k(x)

)
≥ V T (|βTEtw̄x| − C1(τ)− T − 1) ≥ T.

The desirable result then follows.

Lemma 4. Let C2(τ) = ‖Et‖F
∑L

k=0 M(
√
J∗τ)k. For any fk, f̃k ∈ Fk(τ), we

have

|fk(x, t)− f̃k(x, t)| ≤ C2(τ)
(
‖β − β̃‖2 + ‖W − W̃ ‖F

)
+ |β0,k(x)− β̃0,k(x)|.

Proof of Lemma 4. Let fk, f̃k ∈ Fk(τ), then we have

|fk(x, t)− f̃k(x, t)|
=|βTEtw̄x + β0,k(x)− βTEt

¯̃wx − β̃0,k(x)|
=|βTEtw̄x + β0,k(x)− β̃TEt

¯̃wx + β̃TEtw̄x − β̃TEt
¯̃wx − β̃0,k(x)|

≤|(β − β′)TEtw̄x + β̃Et(w̄x − ¯̃wx)|+ |β0,k(x)− β̃0,k(x)|
≤‖β − β̃‖2‖Et‖F ‖w̄x‖2 + ‖β̃‖2‖Et‖F ‖w̄x − ¯̃wx‖2 + |β0,k(x)− β̃0,k(x)|

By the definition of Fk(τ), β is bounded by J∗τ . It suffices to bound ‖w̄x‖2
and ‖w̄x− ¯̃wx‖2 respectively. For w̄x, by inequality of arithmetic and geometric
means, we have

‖w(1)
x1

◦w(2)
x2

· · · ◦w(L)
xL

‖22 =

d∑
j=1

(

L∏
i=1

w
(i)
xi,j

)2 ≤
d∑

j=1

(
L∑

i=1

(w
(i)
xi,j

)2

L

)L
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≤ d

(
J(W )

L

)L

≤ d

(
J∗τ

L

)L

≡ M

Similarly for ‖w̄x − ¯̃wx‖2, for any integer 1 ≤ m ≤ L, we have

‖w(1)
x1

◦w(2)
x2

· · · ◦w(m)
xm

− w̃(1)
x1

◦ w̃(2)
x2

· · · ◦ w̃(m)
xm

‖2
≤‖w(1)

x1
◦w(2)

x2
· · · ◦w(m)

xm
− w̃(1)

x1
◦w(2)

x2
· · · ◦w(m)

xm
+

w̃(1)
x1

◦w(2)
x2

· · · ◦w(m)
xm

− w̃x1

(1) ◦ w̃(2)
x2

· · · ◦ w̃(m)
xm

‖
=‖(w(1)

x1
− w̃(1)

x1
) ◦w(2)

x2
· · · ◦w(m)

xm
+

w̃(1)
x1

◦ (w(2)
x2

· · · ◦w(m)
xm

− w̃(2)
x2

· · · ◦ w̃(m)
xm

)‖
≤‖w(1)

x1
− w̃(1)

x1
‖2‖w(2)

x2
· · · ◦ w(m)

xm
‖2+

‖w̃(1)
x1

◦ (w(2)
x2

· · · ◦w(m)
xm

− w̃(2)
x2

· · · ◦ w̃(m)
xm

)‖

≤d‖W − W̃ ‖F
(
J∗τ

L

)L

+ ‖w̃(1)
x1

‖2‖w(2)
x2

· · · ◦w(m)
xm

− w̃(2)
x2

· · · ◦ w̃(m)
xm

)‖2

≤d‖W − W̃ ‖F
(
J∗τ

L

)L

+
√
J∗τ‖w(2)

x2
· · · ◦w(m)

xm
− w̃(2)

x2
· · · ◦ w̃(m)

xm
)‖2

≤
L∑

k=1

M(
√
J∗τ)k‖W − W̃ ‖F

where the last inequality follows by applying similar steps iteratively. This com-
pletes the proof.

Proof of Theorem 1. By Assumption B, we have {e(f̂ ,f0) ≥ a1δ
2α
n } ⊂

{eV T (f̂ ,f0) ≥ δ2n}, and thus it suffices to bound P (eV T (f̂ ,f0) ≥ δ2n). Since

f̂ is a global minimizer of (7) of the manuscript, it yields that

P (e(f̂ ,f0) ≥ a1δ
2α
n )

≤P

⎛⎝ sup
eV T (f ,f0)≥δ2n

∑
i,j

˜̄V T (yij ,f
∗(xij , tij))−

∑
i,j

˜̄V T (yij ,f(xij , tij)) ≥ 0

⎞⎠ ≡ I,

(5.2)

where ˜̄V T (y,f(x, t)) = V̄ T (y,f(x, t))+λJ(β)+λJ(W ). Next we define a scaled
empirical process as

En(
˜̄V T (y,f∗(x, t)))− ˜̄V T (y,f(x, t)))

=
1

n

∑
i,j

( ˜̄V T (yij ,f
∗(xij , tij)))− ˜̄V T (yij ,f(xij , tij)))

− E( ˜̄V T (y,f∗(x, t)))− ˜̄V T (y,f(x, t))).

Let Aij = {f ∈ F : 2i−1δ2n ≤ eV T (f ,f0) ≤ 2iδ2n, 2
j−1J∗ ≤ J(β) + J(W ) ≤

2jJ∗}, and Ai0 = {f ∈ F : 2i−1δ2n ≤ eV T (f ,f0) ≤ 2iδ2n, J(β) + J(W ) ≤ J∗}
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for i, j ≥ 1. Then we have

I ≤
∑
i,j≥1

P
(

sup
f∈Aij

∑
i,j

( ˜̄V T (yij ,f
∗(xij , tij))− ˜̄V (yij ,f(xij , tij))

)
≥ 0

)
+

∞∑
i=1

P
(

sup
f∈Ai0

∑
i,j

( ˜̄V T (yij ,f
∗(xij , tij))− ˜̄V T (yij ,f(xij , tij))

)
≥ 0

)
=

∑
i,j≥1

P
(

sup
f∈Aij

1

n

∑
i,j

( ˜̄V T (yij ,f
∗(xij , tij))− ˜̄V (yij ,f(xij , tij))

)
+

M(i, j) ≥ M(i, j)
)

+

∞∑
i=1

P
(

sup
f∈Ai0

1

n

∑
i,j

( ˜̄V T (yij ,f
∗(xij , tij))− ˜̄V T (yij ,f(xij , tij))

)
+

M(i, 0) ≥ M(i, 0)
)

≤
∑
i,j≥1

P
(

sup
f∈Aij

En

(
V̄ T (y,f∗(x))− V̄ T (y,f(x))

)
≥ M(i, j)

)
+

∞∑
i=1

P
(

sup
f∈Ai0

En

(
V̄ T (y,f∗(x))− V̄ T (y,f(x))

)
≥ M(i, 0)

)
≡ I1 + I2.

To bound I, we proceed to bound I1 and I2 respectively. By Assumption A,
we have

E
(
V̄ T (y,f(x, t))− EV̄ T (y,f∗(x, t))

)
=E

(
V̄ T (y,f(x, t))− EV̄ T (y,f0(x, t))

)
+ E

(
V̄ T (y,f0(x, t))− EV̄ T (y,f∗(x, t))

)
≥eV T (f ,f0)− δ2n/2,

where the last inequality follows from Assumption A. Then for any f ∈ Aij ; i ≥
1, j ≥ 1,

E( ˜̄V T (y,f(x, t))− ˜̄V T (y,f∗(x, t))
)
≥ (2i−1 − 1

2
)δ2n + λ(2j−1 − 1)J∗ ≡ M(i, j),

and for any f ∈ Ai0; i ≥ 1,

E( ˜̄V T (y,f(x, t))− ˜̄V T (y,f∗(x, t))
)
≥ (2i−1 − 1

2
)δ2n − λJ∗ ≥ 2i−3δ2n ≡ M(i, 0).

For the variance, by Assumptions A and B,

sup
f∈Aij

Var
(
˜̄V T (y,f(x, t))− ˜̄V T (y,f∗(x, t))

)
= sup

f∈Aij

Var
(
V̄ T (y,f(x, t))− V̄ (y,f0(x, t))
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+ V̄ (y,f0(x, t))− V̄ T (y,f∗(x, t))
)

= sup
f∈Aij

Var
(
V̄ T (y,f(x, t))− V̄ (y,f0(x, t))

)
+Var

(
V̄ (y,f0(x, t))− V̄ T (y,f∗(x, t))

)
+ 2Cov(V̄ T (y,f(x, t))− V̄ (y,f0(x, t)), V̄ (y,f0(x, t))− V̄ T (y,f∗(x, t)))

≤2 sup
f∈Aij

Var
(
V̄ T (y,f(x, t))− V̄ (y,f0(x, t))

)
+

2Var
(
V̄ (y,f0(x, t))− V̄ T (y,f∗(x, t))

)
≤2a2(M(i, j))γ + 2a2ξ

γ
n ≤ 4a2(M(i, j))γ ≡ v(i, j).

To bound I1 and I2, we first denote J∗ = J(β∗) + J(W ∗), and F(τ) = {f =
(f1, f2, . . . , fK−1) : fk ∈ Fk(τ)} with

Fk(τ) = {fk(x, t) = βTEtw̄x + β0,k(x) : J(β) + J(W ) ≤ τJ∗}.

Then the associated spaces of the loss function are

FV (τ) = {(K − 1)−1
K−1∑
k=1

V T (sgn(y − k)fk(x, t)) : f ∈ F(τ)},

FV
k (τ) = {V T (sgn(y − k)fk(x, τ )) : fk ∈ Fk(τ)}.

Next, we employ the L2-metric entropy to measure the cardinality of FV (τ),

denoted as H(ε,FV (τ)). For V̄ (y, f(x, t)), ˜̄V (y, f(x, t)) ∈ FV (τ), we have

‖V̄ (y, f(x, t))− ˜̄V (y, f(x, t))‖2

≤ 1

K − 1

K−1∑
k=1

‖V T (sgn(y − k)fk(x, t))− V T (sgn(y − k)f̃k(x, t))‖2. (5.3)

Therefore, it suffices to compute the metric entropy of FV
k (τ).

Let M =
∏L

k=1 mk, and then FV
k (τ) can be expressed as the union of 4M

subspaces

FV
k (τ) =

⋃
l,r≤2M

FV
k (τ,pl, qr), (5.4)

where FV
k (τ,pl, qr) is defined as

FV
k (τ,pl, qr) = {V T (sgn(y − k)fk(x, t)), fk ∈ Fk(τ),

plu|β0,k(x
(u))| ≤ plu(C1(τ) + T + 1), qruβ0,k(x

(u)) ≤ 0; u = 1, . . . ,M},

where pl, qr; l, r = 1, . . . , 2M taking all possible values in {−1, 1}M . Next,
we proceed to compute the entropy of FV

k (τ,pl, qr). For any two functions

V T (sgn(y − k)fk(x, t)), V
T (sgn(y − k)f̃k(x, t)) ∈ FV

k (τ,pl, qr), we have

|V T (sgn(y − k)fk(x, t))− V T (sgn(y − k)f̃k(x, t))|
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≤
M∑
u=1

I(x = x(u))(I(plu = −1) · (I(qru = 1) · 0 + I(qru = −1) · 0)

+ I(plu = 1)|fk(x, t)− f̃k(x, t)|)

≤
M∑
u=1

I(x = x(u))I(plu = 1)
(
C2(τ)

(
‖β − β̃‖2 + ‖W − W̃ ‖F

)
+ |β0,k(x)− β̃0,k(x)|

)
≤C2(τ)

√
2
(
‖β − β̃‖22 + ‖W − W̃ ‖2F

)
+

M∑
u=1

I(x = x(u))I(plu = 1)|β0,k(x)− β̃0,k(x)|,

where the first and second inequalities follow from Lemma 3 and Lemma 4
respectively. Combined with (5.3), we have

‖V̄ (y, f(x, t))− ˜̄V (y, f(x, t))‖2

≤C2(τ)
√

2
(
‖β − β̃‖22 + ‖W − W̃ ‖2F

)
+

1

K − 1

K−1∑
k=1

M∑
u=1

I{x=x(u)}I{plu=1}|β0,k(x)− β̃0,k(x)|.

Let B(τJ∗) = {(β,W ) : ‖β‖22 + ‖W ‖2F ≤ τJ∗}, and the corresponding

ε/(2
√
2C2(τ))-covering number with L2-norm is O

(
( 2C2(τ))

√
2τJ∗

ε )(p+d
∑L

l=1 ml)
)
.

For u = 1, . . . ,M we define the set

{(β0,1(x
(u)), β0,2(x

(u)), . . . , β0,K−1(x
u)) :

− (C1(τ) + T + 1) ≤ β0,1(x
(u)) ≤ . . . ≤ β0,K−1(x

u) ≤ C1(τ) + T + 1},

and its corresponding number of ε/2-covering balls with L1-norm is CK−1

Ñ+K−2
,

where Ñ = � 4(C1(τ)+T+1)
ε � with �·� being the ceiling function.

Finally, the metric entropy of FV (τ) can be upper-bounded as follows:

H(ε,FV (τ)) ≤max
{
O
(
(p+ d

L∑
l=1

ml) log
2C2(τ)(2τJ

∗)1/2

ε

+MK log(
4(C1(τ) + T + 1)

ε
+K)−M logK!

)
, 1
}

≤max
{
O
(
(p+ d

L∑
l=1

ml) log
2C2(τ)(2τJ

∗)1/2

ε

+MK log(
4(C1(τ) + T + 1)

Kε
+ 1)

)
, 1
}
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≤max{O(D1 log
D2(τ)

ε
+ 1), 1},

whereD1 = max{p+d
∑L

l=1 ml,MK},D2(τ) = max{2C2(τ)(2τJ
∗)1/2, 4(C1(τ)+

T + 1)K−1}, and the second inequality follows from the fact that logK! ≥
K logK −K − logK.

In the following, we proceed to verify (4.5) − (4.7) in [36]. We first notice

that
∫ v

1
2 (i,j)

ε
32M(i,j)

H
1
2 (u,FV (τ))du/M(i, j) is non-increasing in i and M(i, j), then

we have ∫ v
1
2 (i,j)

ε
32M(i,j)

H
1
2 (u,FV (2j))du/M(i, j)

≤
∫ v

1
2 (1,j)

ε
32M(1,j)

H
1
2 (u,FV (2j))du/M(1, j). (5.5)

Rearranging the right-hand side of (5.5) and let δ2n =
(
D1n

−1 log(n/D1)
)1/(2−γ)

,
yielding ∫ v

1
2 (1,j)

ε
32M(1,j)

H
1
2 (u,FV (2j))du/M(1, j) ≤ n

1
2 .

Then, it is easy to see that inff∈Aij E( ˜̄V T (y,f(x, t))− ˜̄V T (y,f∗(x, t))
)
is lower

bounded by

inf
f∈Aij

E(V̄ T (y,f(x, t))− V̄ T (y,f0(x, t))
)
+ λ(J(f)− J(f∗))

− eV T (f0 − f∗) ≥ M(i, j),

it then follows that M(i, j)/v(i, j) ≤ 1/(8max{T, 1}) and (4.7) directly implies
(4.5).

According to Theorem 3 in [36] with M = n1/2M(i, j) and v = v(i, j) yields
that

I1 ≤
∑

i,j:M(i,j)≤T

3 exp(− (1− ε)nM(i, j)2

2(4v(i, j) +M(1, j)T/3)
)

≤
∞∑
j=1

∞∑
i=1

3 exp(−C5nM
2−min(γ,1)(i, j))

=

∞∑
j=1

∞∑
i=1

3 exp
(
(−C5n

(
(2i−1 − 1

2
)δ2n + λ(2j−1 − 1)J∗)2−min(γ,1)

)
≤

∞∑
j=1

∞∑
i=1

3 exp
(
− C5n

(
(i− 1

2
)δ4−2min(γ,1)

n + (j − 1)(λJ∗)2−min(γ,1)
))

≤ 3 exp(−4C5n(λJ
∗)2−min(γ,1))(

1− exp(−4C5n(λJ∗)2−min(γ,1))
)2 . (5.6)
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Similarly, I2 can be bounded by

I2 ≤
∞∑
i=1

3 exp(− (1− ε)n(M(i, 0))2

2(4v(i, 0)) +M(i, 0)T/3
)

≤
∞∑
i=1

3 exp
(
−C5n(M(i, 0))2−min(γ,1)

)
≤

∞∑
i=1

3 exp
(
−C5n(2

i−3δ2n)
2−min(γ,1)

)
≤ 3

1− exp
(
−4C5n(λJ∗)2−min(γ,1)

) . (5.7)

Combining (5.6) and (5.7), we have I ≤ 6 exp(−4C5n(λJ
∗)2−min(γ,1))(

1−exp(−4C5n(λJ∗)2−min(γ,1))
)2 . To sim-

plify, let Q = exp(−4C5n(λJ
∗)2−min(γ,1)), by the fact that I ≤ I1/2 ≤ 1 and

I1/2(1 −
√
Q) ≤ I1/2(1 − Q) ≤

√
6Q ≤ 2.5

√
Q, we have I ≤ (I1/2 + 2.5)

√
Q ≤

3.5
√
Q. The desired result then follows immediately.

Supplementary Material

Supplement to “Sentiment analysis with covariate-assisted word em-
beddings”
(doi: 10.1214/21-EJS1854SUPP; .zip).
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