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Abstract: Inference on vertex-aligned graphs is of wide theoretical and
practical importance. There are, however, few flexible and tractable statisti-
cal models for correlated graphs, and even fewer comprehensive approaches
to parametric inference on data arising from such graphs. In this paper, we
consider the correlated Bernoulli random graph model (allowing different
Bernoulli coefficients and edge correlations for different pairs of vertices),
and we introduce a new variance-reducing technique—called balancing—
that can refine estimators for model parameters. Specifically, we construct
a disagreement statistic and show that it is complete and sufficient; bal-
ancing can be interpreted as Rao-Blackwellization with this disagreement
statistic. We show that for unbiased estimators of functions of model pa-
rameters, balancing generates uniformly minimum variance unbiased es-
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timators (UMVUEs). However, even when unbiased estimators for model
parameters do not exist—which, as we prove, is the case with both the
heterogeneity correlation and the total correlation parameters—balancing
is still useful, and lowers mean squared error. In particular, we demonstrate
how balancing can improve the efficiency of the alignment strength estima-
tor for the total correlation, a parameter that plays a critical role in graph
matchability and graph matching runtime complexity.

MSC2020 subject classifications: Primary 62F10, 62B05.
Keywords and phrases: Rao-Blackwell, Lehmann-Scheffé, total correla-
tion (graph), alignment strength, graph matching.

Received March 2020.

1. Overview

Paired random graphs with a natural alignment between their vertex sets arise in
a wide variety of application domains; for example, the interaction dynamics of
the same set of users across two social media platforms, or a pair of connectomes
(brain graphs) as imaged from two different subjects of the same species. Given a
pair of such graphs, the problem of graph matching—that is, optimally aligning
the two vertex sets in order to minimize edge disagreements, usually with the
purpose of obtaining the natural alignment—has a rich mathematical history,
and graph matching now plays a fundamental role in algorithms for machine
learning and pattern recognition; see the excellent surveys in [2, 5, 13].

The correlated Bernoulli random graph model, described in Section 2, is the
focus of our work in this paper. It is a versatile model used to describe two
graphs that are correlated with each other across a natural alignment between
their vertex sets. The model allows for different probabilities of adjacency for
different pairs of vertices, and allows for different edge correlations between
different pairs of vertices across the natural alignment. This model is simple
enough to be theoretically and computationally tractable, yet it is rich enough
to successfully describe real data, and it has been profitably employed in this
capacity; see, for example, [3, 10, 11].

The contributions of this paper fall into two groups, the second
group utilizing the machinery of the first group.

Our first group of contributions: In the context of a correlated Bernoulli
random graph model, we introduce a “smoothing” procedure, called balancing,
which reduces the mean-squared error for any estimator of a function of model
parameters; specifically, for any estimator S of a function of model parameters
g(θ), the balanced estimator S has the same bias as S, but has lower variance.
Indeed, under a nondegeneracy condition, we prove in Theorem 4 that if S
is an unbiased estimator of g(θ) then S is the UMVU estimator of g(θ); this
is because S is a Rao-Blackwellization of S via the disagreement statistic H,
and we prove in our main result Theorem 2 that H is complete and sufficient,
under the nondegeneracy condition. We also prove in Theorem 3, under the
nondegeneracy condition, that if S is an unbiased estimator of g(θ) then any
statistic T is also an unbiased estimator of g(θ) if and only if S = T .

https://mathscinet.ams.org/mathscinet/msc/msc2020.html
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These results should not be taken for granted; in Example 4 we illustrate
that even knowing, hence fixing, the mean of the adjacency probabilities creates
a violation of the nondegeneracy condition, and the conclusions of the above
theorems then will indeed fail, in general.

Our second group of contributions of this paper focuses on very recent ad-
vances in [4] regarding the correlated Bernoulli random graph model. Specif-
ically, the paper [4] introduced and showed the importance of a novel model
parameter called total correlation, which combines inter- and intra-graph con-
tributions to a unified measure of the correlation between the pair of graphs.
The authors empirically demonstrated—in broad families within the model—
that graph matching complexity and matchability are each functions of total
correlation. They also proved that the statistic called alignment strength is a
strongly consistent estimator of total correlation.

Our second group of contributions: In the context of a correlated Ber-
noulli random graph model, the alignment strength statistic str was shown in
[4] to be a strongly consistent estimator of total correlation �T between the pair
of graphs; however, we point out here that str is not a balanced statistic,
hence, as noted above, the mean squared error in estimating �T is reduced by
using str instead. We then prove (in Theorems 7, 8, 9) that there do not exist
unbiased estimators for several correlation parameters, including �T . Empirical
experiments in Section 5 suggest that balancing the numerator and denominator
of str separately, which we call the modified alignment strength str′, often has
less bias than str as an estimator of �T , always has less variance than str, and we
conjecture that str′ always has less mean square error than str in estimating �T .

The organization of this paper is as follows. The correlated Bernoulli random
graph model, important functions of the parameters, and important statistics
are described in Section 2. Our main results are stated in Section 3 and proved
in Section 4. Empirical demonstrations are in Section 5.

2. Correlated Bernoulli random graphs

We begin by describing the correlated Bernoulli random graph model. It consists
of a pair of random graphs; without loss of generality these graphs are on the
same vertex set. (Indeed, the natural alignment between their vertex sets is a
bijection, and the associated one-to-one correspondence can be thought of as an
identification.) For simplicity of further notation, let us suppose that the N (=
number-of-vertices-choose-two) pairs of vertices are arbitrarily ordered.

Define the set R :={(p1, p2, . . . , pN , �1, �2, . . . , �N ) : p1, p2, . . . , pN , �1, �2, . . . ,
�N ∈ [0, 1]}.
Definition 1 (Correlated Bernoulli Random Graph Model). The parameter
space for the correlated Bernoulli random graph model, denoted Θ, is any par-
ticular subset of R, possibly a proper subset. For each (p1, p2, . . . , pN , �1, �2, . . . ,
�N ) ∈ Θ, the pair of random graphs are described as follows. For each i =
1, 2, . . . , N , the indicator random variable Xi for adjacency of the ith pair of
vertices in the first graph and the indicator random variable Yi for adjacency
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of the ith pair of vertices in the second graph are each marginally distributed
Bernoulli(pi), and the Pearson correlation coefficient of Xi, Yi is �i (assuming
that pi is not 0 or 1, in which case the value of �i is irrelevant). Other than these
dependencies, the random variables X1, X2, . . . , XN , Y1, Y2, . . . , YN are indepen-
dent.

It is not hard to see that that the choice of these parameters uniquely specifies
the joint distribution of the two graphs (see Appendix A of [4]). Indeed, we can
sample from the distribution in the following manner. For each i = 1, 2, . . . , N
independently, sample Xi ∼ Bernoulli(pi), then conditioned on the value xi of
Xi, sample Yi ∼ Bernoulli(�ixi + (1− �i)pi). For all i = 1, 2, . . . , N , define

qi,1 := p2i + �ipi(1− pi),

qi,0 := (1− pi)
2 + �ipi(1− pi),

qi,� := (1− �i)pi(1− pi);

these are, respectively, the probability that Xi = Yi = 1, the probability that
Xi = Yi = 0, and the probability that [Xi = 1 and Yi = 0].

Let X and Y denote the random vectors whose ith components are respec-
tively Xi and Yi, for all i = 1, 2, . . . , N ; thus, in effect, X and Y are like the
adjacency matrices representing the respective graphs. Let X := {(x, y) : x, y ∈
{0, 1}N} denote the sample space for the correlated Bernoulli random graph
model; in particular, x and y respectively are possible realizations of the adja-
cency vectors X and Y .

Note that if �1 = �2 = · · · = �N = 1 then almost surely the two graphs are
isomorphic, and if �1 = �2 = · · · = �N = 0 then the two graphs are independent,
meaning that the collection of random variables X1, X2, . . . , XN , Y1, Y2, . . . , YN

is independent.

Define Ro := {(p1, p2, . . . , pN , 0, 0, . . . , 0) : p1, p2, . . . , pN ∈ R}. The parame-
ter space Θ will be called nondegenerate if Θ∩Ro has an interior point, relative
to Ro; i.e. there exists z ∈ Θ ∩ Ro and real number ε > 0 such that Θ ∩ Ro

contains all points in Ro that are less than ε distant from z. Nondegeneracy of
Θ will play a critical role here; it is an assumption explicitly required for most
of the theorems in this paper. Furthermore, when this condition is assumed, it
is not merely for ease of exposition or analysis; indeed, we will demonstrate that
absence of this condition, when it is assumed, can falsify the conclusions of the
theorems that assume this condition.

Remark 1. The results in this paper provide machinery for improved estima-
tion in the context of the correlated Bernoulli random graph model, which is
a versatile and currently popular random graph model utilized heavily in the
study of graph matching and similar disciplines. Nonetheless, the way the cor-
related Bernoulli random graph model is defined here—and the nature of the
results in this paper and their proofs—render these results also expressible more
broadly in terms of random correlated Bernoulli vectors X, Y , for the pair of
random vectors X, Y defined above, without underlying graph structure. Thus,
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in particular, with this broader perspective, we do not need to restrict the num-
ber of components N (for X and Y ) to be

(
n
2

)
, where n is the number of vertices

in an underlying graph. Indeed, we can consider N as any positive integer.

2.1. Important statistics and functions of the parameters

The most important statistic in this paper, the disagreement vector statistic H,
is defined first. This statistic is foundational for the first group of our results; in
Theorem 2 we will show, under the nondegeneracy condition, that H is complete
and sufficient.

Definition 2. The (vector-valued) disagreement vector statistic H : X →
{0, �, 1}N is defined as follows: For all (x, y) ∈ X , the vector H(x, y) ∈ {0, �, 1}N
is such that, for each i = 1, 2, . . . , N , the ith component of H(x, y) is equal to
1 if xi = yi = 1, is equal to 0 if xi = yi = 0, and is equal to � if xi �= yi. For
all h ∈ {0, �, 1}N , the preimage of h, which is the set H−1(h), is denoted as Xh,
and is called a disagreement class. Note that X is partitioned into the disjoint
union X =

⋃
h∈{0,�,1}N Xh.

The following definitions are key for the second group of our results.
The Bernoulli parameter mean μ and the Bernoulli parameter variance σ2

are defined as

μ :=
1

N

N∑
i=1

pi, σ2 :=
1

N

N∑
i=1

(pi − μ)2.

The empirical density of X, denoted dX , the empirical density of Y , denoted
dY , and the combined empirical density, denoted dX,Y , are statistics X → R

that are respectively defined as

dX :=
1

N

N∑
i=1

Xi, dY :=
1

N

N∑
i=1

Yi, dX,Y :=
1

2
(dX + dY ).

Clearly, all three of these statistics are unbiased estimators of the parameter μ.
Then, we define the statistics dX∩Y , dX∪Y : X → R as

dX∩Y :=
1

N

N∑
i=1

XiYi, dX∪Y := dX + dY − dX∩Y .

Note that for all (x, y) ∈ X , we have that dX∩Y (x, y) := |{i :xi=1 and yi=1}|
N ,

and we also have that dX∪Y (x, y) :=
|{i :xi=1 or yi=1}|

N .
Next, the disagreement enumeration statistic Δ : X → R is

Δ :=
N∑
i=1

(Xi − Yi)
2;
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in particular, for all (x, y) ∈ X , Δ(x, y) is the number of components at which x

and y disagree. Clearly, we have, for all θ ∈ Θ, E(Δ) = 2
∑N

i=1(1−�i)pi(1−pi).
For all h ∈ {0, �, 1}N and (x, y) ∈ Xh, we have 2Δ(x,y) = |Xh|.

The heterogeneity correlation �H is a parameter defined by

�H :=
σ2

μ(1− μ)
.

In the case where μ is 0 or 1 then any convention may be adopted for defining
�H (but it must be a value between 0 and 1). It is not hard to show that a) it
holds that 0 ≤ �H ≤ 1, and b) it holds that �H = 1 if and only if each of the
pi’s are either 0 or 1, and c) it holds that �H = 0 if and only if all of the pi’s
are equal to each other (of course, statements b) and c) aren’t to be applied to
the case where μ is 0 or 1).

Define the total correlation parameter �T as

�T := 1−
∑N

i=1(1− �i)pi(1− pi)

Nμ(1− μ)
.

In the case where μ is 0 or 1 then any convention may be adopted for defining
�T (but it must be a value between 0 and 1). Note that in the case where all �i
are equal, say to the value �E , then (1−�T ) = (1−�E)(1−�H). It is always the
case that 0 ≤ �T ≤ 1. In [4] it was empirically demonstrated—for the correlated
graphs in broad families within our model—that graph matching complexity
as well as graph matchability are each functions of total correlation, hence the
importance of total correlation.

The alignment strength str : X → R is an important statistic defined as

str := 1− Δ/N

dX (1− dY ) + (1− dX) dY
. (1)

In the case that x and y are both all zeros or both all ones then any convention
may be adopted for defining str (but it should be a value between 0 and 1). The
definition of alignment strength str arose in [4] in a natural way. Specifically,
1 minus the alignment strength is the ratio of disagreements between the two
graphs —through the natural alignment— divided by the average number of
disagreements over all vertex bijections between the two graphs; see there for
more details. In [4] it is proven under mild conditions that str is a strongly
consistent estimator of �T .

An equivalent formula for alignment strength is

str =
dX∩Y − dXdY

dX,Y − dXdY
; (2)

it follows immediately using the easily-derived identities mentioned later in
Equations (8) through (12).
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3. The results

As mentioned in Section 1, our main results, which will be listed in this section,
can be divided into two groups.

The first group of our results: In the context of correlated Bernoulli ran-
dom graphs, we begin with Theorem 2, which asserts, under a nondegeneracy
condition, that the disagreement vector statistic H is complete and sufficient;
using this, given any estimator of a function of model parameters, we describe
a way to refine (“balance”) the estimator, reducing the mean squared error.
Indeed, under the nondegeneracy condition, given any unbiased estimator of a
function of model parameters, we characterize all unbiased estimators (Theo-
rem 3) and the UMVU estimator (Theorem 4). The second group of our results:
Theorems 7, 8, and 9 show that there are no unbiased estimators of various
graph correlation measures, including total correlation �T ; however, not only
does balancing alignment strength improve alignment strength’s mean squared
error in estimating �T , but balancing numerator and denominator separately is
seen empirically to be a further improvement.

Our first result is the following theorem.

Theorem 2. If the parameter space Θ is nondegenerate, then the disagreement
vector H is a complete and sufficient statistic.

Theorem 2 is proved in Section 4.2.4.

Given any statistic S : X → R, define the statistic S : X → R as follows.
For all (x, y) ∈ X and h ∈ {0, �, 1}N such that (x, y) ∈ Xh, define S(x, y) :=
1

|Xh|
∑

(x′,y′)∈Xh
S(x′, y′); in particular, S is a constant function on Xh. We say

that S is the balanced variant of S; the balancing of S means the substituting
of S in place of S when performing an estimation or inference task. If S = S
then we say S is a balanced statistic. Of course, S is balanced if and only if S is
a constant function on Xh for each h ∈ {0, �, 1}N . The following are our main
results.

Theorem 3. Suppose the parameter space Θ is nondegenerate, and a statistic
S : X → R is an unbiased estimator of g(θ), where g : Θ → R. Then a statistic
T : X → R is an unbiased estimator of g(θ) if and only if T = S. In particular,
S is an unbiased estimator of g(θ).

Theorem 4. Suppose the parameter space Θ is nondegenerate, and a statistic
S : X → R is an unbiased estimator of g(θ), where g : Θ → R. Then there exists
a UMVU estimator of g(θ) and, in fact, S is the UMVU estimator of g(θ).

We prove Theorem 3 in Sections 4.1 and 4.2, and we prove Theorem 4 in Sec-
tion 4.3; it is essentially a consequence of Theorem 2. The key idea in proving
Theorem 4 is that S is the composition of some function with H —a complete
and sufficient statistic by Theorem 2—and thus the Lehmann-Scheffe Theorem
dictates that S is UMVU. Indeed, S is the Rao-Blackwellization of S condition-
ing on H. Section 4.3 spells out the details.
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(An excellent reference for Rao-Blackwell theory are the original papers
[12, 1], and an excellent reference for the Lehmann-Scheffe Theorem are the
original papers [8, 9].)

Remark 5. Fundamentally, since balancing is Rao-Blackwellization, it is a reg-
ularization technique that reduces an estimator’s variance without changing its
mean. Indeed, suppose the parameter space Θ is nondegenerate, and a statistic
S : X → R is any estimator, whether biased or unbiased, of g(θ). Then S has
the minimum possible variance among all estimators with the same expected
value as S. (This, in turn, implies that S has the minimum mean squared error
among all such estimators.) To see this, define �(θ) := E(S) for all θ ∈ Θ, and
then consider S, S, and � in Theorems 3 and 4.

Example 1. The disagreement enumeration statistic Δ : X → R is clearly a
balanced statistic, since it is a constant function on each Xh. Hence, by The-
orem 4, when Θ is nondegenerate, Δ is the UMVU estimator of its expected
value E(Δ) = 2

∑N
i=1(1− �i)pi(1− pi).

Example 2. When N > 1, the statistic dX (1− dY ) + (1− dX) dY is NOT a
balanced statistic; indeed, consider h = [�, �, . . . , �]T , and consider (x′, y′) ∈ Xh

such that x′ is all zeros and y′ is all ones, and consider (x′′, y′′) ∈ Xh such that the
first �N

2 	 entries of x′′ are all zeros and of y′′ are all ones, and the last 
N
2 � entries

of x′′ are all ones and of y′′ are all zeros—the statistic dX (1− dY )+(1− dX) dY
at (x′, y′) has the value 1, and at (x′′, y′′) has a value approaching 1

2 , hence the
statistic is not constant on Xh, hence is not balanced.

Example 3. When N > 1, the alignment strength statistic str is NOT a
balanced statistic. This is because in Example 1 we have that the numerator of
str in Equation (1) is balanced, and in Example 2 we have that the denominator
of str in Equation (1) is not balanced; hence str is not a constant function on
all Xh, and is thus not balanced.

It is important to note that the claims in Theorems 3 and 4 may fail without
the assumption of nondegeneracy for the parameter space Θ, as highlighted in
the next example. (In particular, this points to the non-triviality of Theorems 3
and 4.)

Example 4. If the value of μ is known, hence fixed, then Θ is contained in
a particular hyperplane intersecting Ro, and Θ is degenerate; in this scenario,
we will show in Section 4.8 that unbiasedness of estimators is not characterized
as described in Theorem 3 and, often, there do not exist UMVU estimators for
functions of the model parameters, even when there exist unbiased estimators.

The following corollary is an immediate consequence of Theorem 4 and the
fact that sums and products of constant functions (on respective Xh) are con-
stant (on respective Xh).

Corollary 6. Suppose the parameter space Θ is nondegenerate, and a statistic
S : X → R is an unbiased estimator of g(θ), where g : Θ → R, and a statistic
S′ : X → R is an unbiased estimator of g′(θ), where g′ : Θ → R. Then, for any
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a, b ∈ R, aS + bS
′
is UMVUE for ag(θ) + bg′(θ). Indeed, aS + bS

′
is balanced,

S · S′
is balanced, and (if S

′
is nonzero) S/S

′
is balanced.

The next set of theorems are applications of the above theorems—and the
methodologies of their proofs—to unbiasedness and efficiency of statistics for
estimating various graph correlation parameters, particularly total correlation.

Theorem 7. Suppose the parameter space Θ is nondegenerate, and N > 1.
There does not exist an unbiased estimator of the heterogeneity correlation �H .

Theorem 8. Suppose the parameter space Θ is nondegenerate, and N > 1.
There does not exist an unbiased estimator of the total correlation �T .

We prove Theorems 7 and 8 in Section 4.5.
In the following negative result on estimating edge correlation, besides the

assumption of a nondegenerate parameter space, we have additional assumptions
that all pairs of vertices share the same edge correlation parameter (ie. Θ is
restricted so that, for all θ ∈ Θ, it holds that �1 = �2 · · · = �N ), and we also
assume that this edge correlation parameter is not always zero. Specifically:

Theorem 9. Suppose that the following three conditions hold:

a) The parameter space Θ is nondegenerate.
b) The parameter space Θ is such that edge correlations are component-

uniform, meaning that there exists a function �E : Θ → R such that,
for all θ ∈ Θ and all i = 1, 2, . . . , N , �i(θ) = �E(θ).

c) The parameter space Θ is not a subset of Ro, i.e. there exists θ ∈ Θ such
that �E(θ) �= 0.

Then there does not exist an unbiased estimator of �E.

We prove Theorem 9 in Section 4.4.

Remark 10. Suppose the parameter space Θ is nondegenerate. As mentioned in
Example 3, alignment strength str = dX∩Y −dXdY

dX,Y −dXdY
isNOT balanced whenN > 1.

(So, the bias in estimating �T is the same for str as for str, but the variance of str
is less than the variance of str.) Next, define the modified alignment strength

str′ := dX∩Y −dXdY

dX,Y −dXdY
; by Corollary 6, str′ is balanced. We will empirically

show in Section 5 that str′ is often superior to str as an estimator of �T . Also,
in Section 4.6 we will prove the following clean formulas:

str′ =
dX∩Y − dXdY + 1

4

[
Δ
N2 − (dX − dY )

2
]

dX,Y − dXdY + 1
4

[
Δ
N2 − (dX − dY )2

] =
dX∩Y − d2X,Y + Δ

4N2

dX,Y (1− dX,Y ) +
Δ

4N2

. (3)

When x and y are both all zeros or all ones then any convention for defining
str′ is acceptable, provided that it is between 0 and 1. Note that str′ can have
less variance than str (and in general it does) without violating Theorem 4, since
the expected values of str′ and str can be different.

Sometimes balancing a statistic—even at one sample space point—requires
averaging an exponential number of values. Remark 10 is notable for its simple
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expressions for the balanced statistics comprising str′, and in Section 5 a linear
time algorithm is given for computing str.

The following result is proved in Section 4.7; it follows from Corollary 6 and
Remark 10.

Corollary 11. Suppose the parameter space Θ is nondegenerate and also sup-
pose that Θ ⊆ Ro. Then the statistic dX,Y (1− dX,Y ) − 1

2N

(
1− 1

2N

)
Δ is

UMVUE for σ2.

These are the results in this paper, and they will be proven next in Section 4.

4. Proof of the results in Section 3

We begin by proving Theorem 3 and Theorem 4; the proofs of Theorem 2 and
Theorem 9 will be built on the methodology of the forward direction of the
proof of Theorem 3. The rest of the results in Section 3 will also be shown.

4.1. Proof of the reverse direction of Theorem 3

The reverse direction of Theorem 3 can be equivalently formulated in the fol-
lowing way. Suppose the parameter space Θ is nondegenerate, and a statistic
S : X → R is an unbiased estimator of g(θ), where g : Θ → R. If the statistic T :
X → R satisfies the condition that for all h ∈ {0, �, 1}N

∑
(x,y)∈Xh

T (x, y) =∑
(x,y)∈Xh

S(x, y) then T is an unbiased estimator of g(θ).
Proving the reverse direction of Theorem 3 is quite straightforward. For each

h ∈ {0, �, 1}N , the elements of Xh are equiprobable. In particular, for all θ ∈ Θ
it holds that

E(T ) =
∑

(x,y)∈X
P(x, y)T (x, y) =

∑
h∈{0,�,1}N

∑
(x,y)∈Xh

P(x, y)T (x, y)

=
∑

h∈{0,�,1}N

⎡
⎣( ∏

i:hi=1

qi,1

)( ∏
i:hi=0

qi,0

)( ∏
i:hi=�

qi,�

) ∑
(x,y)∈Xh

T (x, y)

⎤
⎦

=
∑

h∈{0,�,1}N

⎡
⎣( ∏

i:hi=1

qi,1

)( ∏
i:hi=0

qi,0

)( ∏
i:hi=�

qi,�

) ∑
(x,y)∈Xh

S(x, y)

⎤
⎦

= E(S) = g(θ).

Thus T is an unbiased estimator of g(θ).

4.2. Proof of the forward direction of Theorem 3 and of Theorem 2

The proof of the forward direction of Theorem 3 involves notation that is com-
plex at first glance, and the core ideas may be challenging to follow when pre-
sented all at once in full generality. Our expositional strategy is as follows. After
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proving the basic preliminary Lemma 12 in Section 4.2.1, we proceed to first
prove the forward direction of Theorem 3 in the special cases where N = 1, 2
in Section 4.2.2, so that the notation, reasoning, and strategy are crystal clear,
and then in Section 4.2.3 we prove the forward direction of Theorem 3 in full
and clear generality. Then we will show in Section 4.2.4 that the machinery of
Section 4.2.3 proves Theorem 2 (Completeness of H).

4.2.1. Preliminaries

We begin with a technical lemma, Lemma 12. Two polynomials in a single vari-
able that are equal as functions at infinitely many points are, by interpolation
theory, equal algebraically (meaning that the two polynomials have the same
coefficients as each other). However, for two polynomials in more than one vari-
able, this may fail. For example, consider the polynomial p21 − p2 and the zero
polynomial, in the two variables p1 and p2. These two polynomials agree as
functions on a parabola, but they are not equal algebraically. However, if two
polynomials of any degree agree as functions on an open neighborhood then
they are equal algebraically. Formally:

Lemma 12. Suppose that Θ is nondegenerate, and g, g̃ : Θ ∩ Ro → R are two
polynomials in the variables p1, p2, . . . , pN such that for all θ ∈ Θ ∩Ro it holds
that g(θ) = g̃(θ). Then the coefficients of the polynomial g are identical to the
respective coefficients of the polynomial g̃.

The proof of Lemma 12 is a straightforward induction on the maximum
degree of the polynomials g and g̃, considering sequential partial derivatives.
An equivalent formulation of Lemma 12 can be found in the classical textbook
Algebra of Serge Lang [7], Chapter IV, Corollary 1.6.

4.2.2. Proof of the forward direction of Theorem 3 for the particular cases
where N = 1, 2, by way of illustration for the general case

The forward direction of Theorem 3 can be formulated as follows. Suppose the
parameter space Θ is nondegenerate, and the two statistics S, T : X → R are
each unbiased estimators of g(θ), where g : Θ → R. Then for all h ∈ {0, �, 1}N
it holds that

∑
(x,y)∈Xh

T (x, y) =
∑

(x,y)∈Xh
S(x, y).

To best illustrate, we begin with a proof for the case where N = 1. Taking
the expectation for parameters θ ∈ Θ∩Ro, we see that E(S) = (1−p1)

2S(0, 0)+
p1(1−p1)

(
S(0, 1)+S(1, 0)

)
+p21S(1, 1). In particular, g needs to be a quadratic

polynomial in the single variable p1 on Θ ∩ Ro, say g(p1) := g(0)p01 + g(1)p11 +
g(2)p21 where g(0), g(1), and g(2) are fixed coefficients. By the nondegeneracy
of Θ and Lemma 12, we can uniquely represent polynomials as vectors with
respective entries being the coefficients of p01, p11, and p21, respectively. Thus

(1− p1)
2 is represented as

[ 1
−2
1

]
, and p1(1− p1) is represented as

[ 0
1
−1

]
, and p21
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is represented as
[ 0
0
1

]
, and g is represented as

[ g(0)

g(1)

g(2)

]
. In particular, S being an

unbiased estimator for g on Θ ∩Ro means that⎡
⎣ 1 0 0

−2 1 0
1 −1 1

⎤
⎦
⎡
⎣ S(0, 0)

S(0, 1) + S(1, 0)
S(1, 1)

⎤
⎦ =

⎡
⎣ g(0)

g(1)

g(2)

⎤
⎦

Denote the left hand side matrix as A, that is A =
[ 1 0 0
−2 1 0
1 −1 1

]
; since A is invert-

ible, and T has to satisfy the above equation as well, we therefore have that[ S(0,0)
S(0,1)+S(1,0)

S(1,1)

]
=
[ T (0,0)
T (0,1)+T (1,0)

T (1,1)

]
, which precisely says that for all h ∈ {0, �, 1}N

it holds that
∑

(x,y)∈Xh
T (x, y) =

∑
(x,y)∈Xh

S(x, y), and the case where N = 1
is proven.

By further way of illustration, we next prove the case where N = 2. Taking
the expectation for parameters θ ∈ Θ ∩Ro, we have

E(S) = (1− p1)
2(1− p2)

2 [S([ 0
0

]
,
[
0
0

]
)
]

+ (1− p1)
2p2(1− p2)

[
S(
[
0
0

]
,
[
0
1

]
) + S(

[
0
1

]
,
[
0
0

]
)
]

+ p1(1− p1)p2(1− p2)
[
S(
[
0
0

]
,
[
1
1

]
) + S(

[
0
1

]
,
[
1
0

]
)

+ S(
[
1
0

]
,
[
0
1

]
) + S(

[
1
1

]
,
[
0
0

]
)
]

+ · · · + · · ·

= (1− p1)
2(1− p2)

2
∑

(x,y)∈X[
0
0

] S(x, y) + (1− p1)
2p2(1− p2)

∑
(x,y)∈X[

0
�

] S(x, y)

+ (1− p1)
2p22

∑
(x,y)∈X[

0
1

] S(x, y) + p1(1− p1)(1− p2)
2

∑
(x,y)∈X[ �

0

] S(x, y)

+ p1(1− p1)p2(1− p2)
∑

(x,y)∈X[ �
�

] S(x, y) + p1(1− p1)p
2
2

∑
(x,y)∈X[ �

1

] S(x, y)

+ p21(1− p2)
2

∑
(x,y)∈X[

1
0

] S(x, y) + p21p2(1− p2)
∑

(x,y)∈X[
1
�

] S(x, y)

+ p21p
2
2

∑
(x,y)∈X[

1
1

] S(x, y).

Note in particular that g would have to be a polynomial in the two variables
p1, p2, with its monomials each consisting of a constant, denoted g(k1,k2), times
pk1
1 pk2

2 , where k1, k2 ∈ {0, 1, 2}. By the nondegeneracy of Θ and Lemma 12, g can
be uniquely represented by the vector of coefficients ordered lexicographically
(i.e. dictionary order) by superscript:
[g(0,0), g(0,1), g(0,2), g(1,0), g(1,1), g(1,2), g(2,0), g(2,1), g(2,2)]T . Indeed, all other poly-
nomials with monomials each consisting of a constant times pk1

1 pk2
2 , where

k1, k2 ∈ {0, 1, 2}, will also be similarly represented (uniquely) by the vector
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of coefficients ordered lexicographically by superscript. For example, in the
matrix on the left hand side below, the columns respectively are the vectors
(of lexicographically ordered monomial coefficients) representing the respective
polynomials (1 − p1)

2(1 − p2)
2, (1 − p1)

2p2(1 − p2), (1 − p1)
2p22, . . . , which

are the respective probabilities of (x, y) ∈ Xh for h’s lexicographically ordered
(“�” has the value 1

2 ) as:
[
0
0

]
,
[
0
�

]
,
[
0
1

]
,
[
�
0

]
,
[
�
�

]
,
[
�
1

]
,
[
1
0

]
,
[
1
�

]
,
[
1
1

]
. Now, S

being an unbiased estimator of g on Θ ∩Ro means precisely that the following
linear system holds:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0
−2 1 0 0 0 0 0 0 0
1 −1 1 0 0 0 0 0 0

−2 0 0 1 0 0 0 0 0
4 −2 0 −2 1 0 0 0 0

−2 2 −2 1 −1 1 0 0 0
1 0 0 −1 0 0 1 0 0

−2 1 0 2 −1 0 −2 1 0
1 −1 1 −1 1 −1 1 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
(x,y)∈X[0,0]T

S(x, y)∑
(x,y)∈X[0,�]T

S(x, y)∑
(x,y)∈X[0,1]T

S(x, y)∑
(x,y)∈X[�,0]T

S(x, y)∑
(x,y)∈X[�,�]T

S(x, y)∑
(x,y)∈X[�,1]T

S(x, y)∑
(x,y)∈X[1,0]T

S(x, y)∑
(x,y)∈X[1,�]T

S(x, y)∑
(x,y)∈X[1,1]T

S(x, y)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g(0,0)

g(0,1)

g(0,2)

g(1,0)

g(1,1)

g(1,2)

g(2,0)

g(2,1)

g(2,2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

Observe that the left-hand-side matrix above is the Kronecker product A⊗ A,
where A is the lower triangular matrix with diagonals all ones mentioned in
the proof of the case where N = 1. Note that A ⊗ A is thus lower triangular
with diagonals all ones, thus has nonzero determinant and is invertible. Since
T solves the same linear system (above, Equation (4)) as S does, we conclude
—by multiplying both sides of the equation above by the inverse of A ⊗ A—
that for all h ∈ {0, �, 1}N it holds that

∑
(x,y)∈Xh

T (x, y) =
∑

(x,y)∈Xh
S(x, y),

and the case where N = 2 is now also proven.

4.2.3. Proof of the forward direction of Theorem 3, the general case

With the proofs of the cases N = 1, 2 as illustration, we now prove the re-
sult for arbitrary N . Let ⊗NA denote the N -fold Kronecker product A ⊗ A ⊗
· · · ⊗ A. Next, let

−−→
S/H denote the vector whose components are respectively
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∑
(x,y)∈Xh

S(x, y) for each of the h ∈ {0, �, 1}N , ordered lexicographically ac-
cording to h. Restricting to parameters θ ∈ Θ ∩ Ro, g is a polynomial in the
variables p1, p2, . . . , pN , with its monomials each consisting of a constant, de-
noted g(k1,k2,...,kN ), times pk1

1 pk2
2 · · · pkN

N , where k1, k2, . . . , kN ∈ {0, 1, 2}. By the
nondegeneracy of Θ and Lemma 12, we have that g can be uniquely represented
by the column vector of monomial coefficients ordered lexicographically by the
powers of p1, p2, . . . , pN ; denote this vector �g.

We claim that S being an unbiased estimator for g(θ) on Θ ∩ Ro means
precisely that S satisfies the linear system

[⊗NA] ·
−−→
S/H = �g. (5)

This can be verified directly by noting that for each h ∈ {0, �, 1}N and (x, y) ∈
Xh, the probability of (x, y) is given by (and is simplified with elementary alge-
bra)

N∏
i=1

⎧⎨
⎩

(1− pi)
2 if hi = 0

pi(1− pi) if hi = �
p2i if hi = 1

⎫⎬
⎭

=
∑

(k1,k2,...,kN )∈{0,1,2}N

⎛
⎝ N∏

j=1

Akj+1 , 2·hj+1

⎞
⎠ ·

⎛
⎝ N∏

j=1

p
kj

j

⎞
⎠ (6)

where, in the subscript of Akj+1 , 2·hj+1, “�” has the value 1
2 , meaning that when

hj is � then 2·“�”+1 is defined to be 2. With nondegeneracy of Θ and Lemma 12,
we have uniqueness of polynomial coefficients, and Equation (6) directly yields
Equation (5).

Since ⊗NA is a lower triangular matrix with all diagonals being ones, it is
an invertible matrix. Now, T has to satisfy Equation (5) as well; multiplying

both sides of the equation by the inverse of ⊗NA yields that
−−→
S/H =

−−→
T/H,

which precisely says that for all h ∈ {0, �, 1}N it holds that
∑

(x,y)∈Xh
T (x, y) =∑

(x,y)∈Xh
S(x, y), and the forward direction of Theorem 3 is now proved.

4.2.4. Proof of Theorem 2

Theorem 2 states that if the parameter space Θ is nondegenerate, then H is a
complete and sufficient statistic. Sufficiency of H is immediate, since, condition-
ing on H being any h ∈ {0, �, 1}N , we have that (X,Y ) is distributed discrete
uniform on Xh (its support). Also note that the probability of any sample point
is a function of H and the model parameters, which implies that H is sufficient.

We now use the machinery of the previous Section 4.2.3 to prove the rest of
Theorem 2; that if the parameter space Θ is nondegenerate, thenH is a complete
statistic. Completeness of H here means that, for any f : {0, �, 1}N → R, if
E(f(H)) = 0 for all θ ∈ Θ then f is the zero function.

For any f : {0, �, 1}N → R, let �f denote a column vector whose respective
entries are |Xh| · f(h) for the respective h ∈ {0, �, 1}N ordered lexicographically.
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(I.e., the first component of�f is |Xh| · f(h) for the h that is all zeros, the second

component of �f is |Xh| · f(h) for the h that is all zeros except last entry is �,
etc.) By the nondegeneracy of Θ and Equation (5), we have that E(f(H)) = 0

for all θ ∈ Θ ∩ Ro would mean that [⊗NA] · �f = �0; by the invertibility of

[⊗NA], we would have that �f = �0, hence f is the zero function. This proves the
completeness of H.

Note that proof of the forward direction of Theorem 3 is based on the injec-
tivity of [⊗NA] as a function, and proof of the completeness of H in Theorem 2
is based on [⊗NA] having a trivial nullspace, so these two results are equivalent.

4.3. Proof of Theorem 4

Theorem 4 states that if the parameter space Θ is nondegenerate, and a statistic
S : X → R is an unbiased estimator of g(θ), for g : Θ → R, then there exists
a UMVU estimator of g(θ) and, in fact, the balanced statistic S is the UMVU
estimator of g(θ).

We prove this as follows, under the assumption that Θ is nondegenerate.
Recall first that S is an unbiased estimator of g(θ) by Theorem 3. Now, note
that S is a constant function on Xh for each h ∈ {0, �, 1}N ; thus there exists
a function Φ : {0, �, 1}N → R such that S is the function composition Φ ◦ H.
SinceH is a complete and sufficient statistic by Theorem 2, the Lehmann-Scheffe
Theorem asserts that the composition S = Φ ◦ H is UMVUE for g(θ).

It is structurally interesting to note that S is the Rao-Blackwellization of S
when conditioning on the complete and sufficient statistic H. Indeed, for any
h ∈ {0, �, 1}N , the Rao Blackwellization E(S|H = h) is precisely the mean of
the values of S on Xh, which is precisely the statistic S.

4.3.1. Another proof of Theorem 4, by first-principles

In this section, we mention a “first-principles” proof of Theorem 4, besides the
Lehmann-Scheffe proof methodology in the previous Section 4.3.

For any statistic T : X → R which is an unbiased estimator of g(θ), we
compute the variance of T , for any particular θ ∈ Θ, as:

Var(T )

=
∑

(x,y)∈X
P(x, y)

(
T (x, y)− g(θ)

)2
=

∑
h∈{0,�,1}N

∑
(x,y)∈Xh

P(x, y)
(
T (x, y)− g(θ)

)2

=
∑

h∈{0,�,1}N

⎡
⎣( ∏

i:hi=1

qi,1

)( ∏
i:hi=0

qi,0

)( ∏
i:hi=�

qi,�

) ∑
(x,y)∈Xh

(
T (x, y)− g(θ)

)2⎤⎦.
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In particular, Var(T ) can be minimized over such unbiased T by, for all h ∈
{0, �, 1}N , minimizing

∑
(x,y)∈Xh

(
T (x, y)−g(θ)

)2
subject to the constraint that∑

(x,y)∈Xh
T (x, y) =

∑
(x,y)∈Xh

S(x, y); this is because of Theorem 3. Treating

the T (x, y) as variables, this convex optimization problem has a global mini-
mizer, when the objective gradient is equivalued (by the KKT conditions) hence
the minimum variance is achieved when T = S, independent of θ ∈ Θ, and The-
orem 4 is shown.

4.4. Proof of Theorem 9

Theorem 9 states that if the following three conditions hold:

a) The parameter space Θ is nondegenerate.
b) The parameter space Θ is such that the edge correlations are component-

uniform, meaning that there exist a function �E : Θ → R such that, for
all θ ∈ Θ and all i = 1, 2, . . . , N , �i(θ) = �E(θ).

c) The parameter space Θ is not a subset of Ro, i.e. there exists θ ∈ Θ such
that �E(θ) �= 0.

Then there does not exist an unbiased estimator of �E(θ).
Suppose, by way of contradiction, that statistic S : X → R is an unbiased

estimator of �E(θ). For θ ∈ Θ ∩ Ro, where �E ≡ 0, we have by Equation (5)

that [⊗NA] ·
−−→
S/H = �0, since Θ is nondegenerate. By the invertibility of ⊗NA

we thus have that
−−→
S/H = �0, which, by the reasoning in Section 4.1, implies

that E(S) = 0 for all θ ∈ Θ, which is a contradiction because there exists θ ∈ Θ
where E(S) = �E(θ) �= 0.

4.5. Proof of Theorems 7 and 8

Theorems 7 and 8 state that if the parameter space Θ is nondegenerate and
N > 1 then there does not exist an unbiased estimator of the heterogeneity
correlation �H nor of the total correlation �T .

We will just focus on Θ ∩ Ro; on this set it is easy to see that �T = �H .
Thus, by the development in Section 4.2 and the nondegeneracy of Θ, we will

have proved Theorems 7 and 8 if we show that, on Θ∩Ro, �H := σ2

μ(1−μ) is not

a polynomial in the variables p1, p2, . . . , pN . By way of contradiction, suppose
that, on Θ ∩Ro, �H is a polynomial in the variables p1, p2, . . . , pN .

Let (p̃1, p̃2, . . . , p̃N , 0, 0, . . . , 0) be an interior point of Θ∩Ro, relative to Ro;
such a point exists by the nondegeneracy of Θ. Consider fixing the values of pi
to be p̃i for each i = 2, 3, . . . , N , and varying only p1. This results in �H , σ2, and
μ being polynomials in a single variable. Denote this variable by t instead of p1
for ease of notation, and these respective polynomials are thus denoted �H(t),
σ2(t), and μ(t). Let I be a real, open interval containing p̃1, such that for all
t ∈ I we have (t, p̃2, . . . , p̃N , 0, 0, . . . , 0) ∈ Θ ∩ Ro; a nontrivial such I exists by
the nondegeneracy of Θ.
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Using basic algebra, σ2(t) is quadratic in t, and the coefficient of t2 in σ2(t)
is
(

1
N − 1

N2

)
, and μ(t)(1 − μ(t)) is quadratic in t, and the coefficient of t2 in

μ(t)(1− μ(t)) is − 1
N2 . Now, by definition, σ2(t) = μ(t)(1− μ(t))�H(t), and the

coefficients of the respective powers of t on the left hand side are respectively
equal to the coefficients of the powers of t on the right hand side, since I is
an interval (and invoking polynomial interpolation theory). This implies that
polynomial �H(t) can’t have positive degree, and thus is constant. However,
this constant is nonnegative (indeed, it has been pointed out in Section 2.1 that
0 ≤ �H ≤ 1), which means that the coefficient of t2 in (the left hand side) σ2(t)
is positive, but the coefficient of t2 in (the right hand side) μ(t)(1− μ(t))�H(t)
is nonnegative times negative, which is nonpositive. By the contradiction, we
have thus proved Theorems 7 and 8.

4.6. Proof of Equation (3) in Remark 10

Recall that str = dX∩Y −dXdY

dX,Y −dXdY
, and also recall the definition of the modified

alignment strength str′ := dX∩Y −dXdY

dX,Y −dXdY
. The main goal of this section is to

prove Equation (3) in Remark 10; namely, we show that

str′ =
dX∩Y − dXdY + 1

4

[
Δ
N2 − (dX − dY )

2
]

dX,Y − dXdY + 1
4

[
Δ
N2 − (dX − dY )2

] =
dX∩Y − d2X,Y + Δ

4N2

dX,Y (1− dX,Y ) +
Δ

4N2

. (7)

In order to do this, we will appeal to the following identities:

dX + dY = dX∩Y + dX∪Y (8)

dX,Y =
dX∩Y + dX∪Y

2
(9)

N · dX∩Y +Δ = N · dX∪Y (10)

dX∩Y = dX,Y − Δ

2N
(11)

dX∪Y = dX,Y +
Δ

2N
(12)

Equation (8) holds by simple inclusion-exclusion, Equation (9) follows directly
from Equation (8), Equation (10) is combinatorially trivial, and Equations (11)
and (12) follow from Equations (9) and (10).

It is trivial to see that dX∩Y and dX,Y are balanced, so we need only compute
dXdY . Indeed, for any h ∈ {0, �, 1}N and and any (x, y) ∈ Xh, we have the
following (using the identities in Equations (8) through (12), and combinatorial
symmetry, and well-known identities involving binomial coefficients):

dXdY (x, y)

=
1

2Δ(x,y)

∑
(x′,y′)∈Xh

dX(x′)dY (y
′)
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=
1

2Δ(x,y)

Δ(x,y)∑
i=0

(
Δ(x, y)

i

)
NdX∩Y (x, y) + i

N

NdX∩Y (x, y) + Δ(x, y)− i

N

=
dX∩Y (x, y)dX∪Y (x, y)

2Δ(x,y)

Δ(x,y)∑
i=0

(
Δ(x, y)

i

)

+
Δ(x, y)

2Δ(x,y)N2

Δ(x,y)∑
i=0

(
Δ(x, y)

i

)
i − 1

2Δ(x,y)N2

Δ(x,y)∑
i=0

(
Δ(x, y)

i

)
i2

= dX∩Y (x, y)dX∪Y (x, y) +
Δ(x, y)

2Δ(x,y)N2

(
Δ(x, y)2Δ(x,y)−1

)
− 1

2Δ(x,y)N2

(
Δ(x, y) + Δ2(x, y)

)
2Δ(x,y)−2

=

(
dX,Y (x, y)−

Δ(x, y)

2N

)(
dX,Y (x, y) +

Δ(x, y)

2N

)

+
Δ2(x, y)

2N2
− Δ(x, y) + Δ2(x, y)

4N2

= d2X,Y (x, y)−
Δ(x, y)

4N2
. (13)

Thus, by Equation (13) and the definition dX,Y = dX+dY

2 we obtain that

dX∩Y − dXdY = dX∩Y − dXdY = dX∩Y − d2X,Y +
Δ

4N2

= dX∩Y − dXdY +
1

4

[
Δ

N2
− (dX − dY )

2

]
and

dX,Y − dXdY = dX,Y − dXdY = dX,Y (1− dX,Y ) +
Δ

4N2

= dX,Y − dXdY +
1

4

[
Δ

N2
− (dX − dY )

2

]
;

(14)

from this we have that Equation (7), i.e. Equation (3), is proven, as desired.

4.7. Proof of Corollary 11

Corollary 11 states that if the parameter space Θ is nondegenerate and also
Θ ⊆ Ro then the statistic dX,Y (1− dX,Y )− 1

2N

(
1− 1

2N

)
Δ is UMVUE for σ2.

We prove this now.
Because Θ is nondegenerate, we pointed out in Example 1 that Δ : X → R

is the UMVU estimator of 2
∑N

i=1(1 − �i)pi(1 − pi); here where Θ ⊆ Ro, we

thus have that Δ
2N : X → R is the UMVU estimator for 1

N

∑N
i=1 pi(1 − pi) =

μ(1− μ)− σ2.
From Equation (14) and Theorem 4 we have that dX,Y (1 − dX,Y ) +

Δ
4N2 is

the UMVU estimator of E (dX,Y − dXdY ), which is equal to μ(1 − μ) since by
hypothesis dX and dY are independent.
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Finally, by Corollary 6, we have that dX,Y (1−dX,Y )+
Δ

4N2 − Δ
2N is the UMVU

estimator for μ(1− μ)− [μ(1− μ)− σ2], and the result is shown.

4.8. Necessity of Θ nondegeneracy assumption in Theorems 3, 4

In the statement of Theorems 3 and 4 we assume that the parameter space Θ
is nondegenerate. In this section we show that the claims of these theorems can
fail if this condition is not satisfied.

Specifically, we will focus on a scenario in which the value of μ is known, in
which case the parameter space is reduced to parameter tuples that have the
prescribed value μ. This restricts the parameter space Θ to a particular hyper-
plane, which makes Θ degenerate; we will show that the claims of Theorems 3
and 4 then fail, in general.

For simplicity, in this entire section, let us take N = 2, set �1 = �2 = 0, and
suppose that μ : 0 < μ < 1 is known; other than this, we allow 0 < p1 < 1 and
0 < p2 < 1. Here, p1+p2

2 = μ yields p2 = 2μ − p1. Denote δ := min{μ, 1 − μ},
and denote p := p1; the parameter space is reduced to single variable p on the
interval (μ − δ, μ + δ). There are 24 = 16 points in X ; for each (x, y) ∈ X , the
probability of (x, y) is given by

φ(x,y)(p) :=

{
p if x1 = 1

1− p if x1 = 0

}
×
{

p if y1 = 1
1− p if y1 = 0

}

×
{

2μ− p if x2 = 1
1− 2μ+ p if x2 = 0

}
×
{

2μ− p if y2 = 1
1− 2μ+ p if y2 = 0

}
,

which is a polynomial of degree 4.
In Section 4.2, consider the linear system in Equation (4); that 9-by-9 linear

system—describing statistic S being an unbiased estimator of g—now becomes
a 5-by-9 linear system over here. This is because the columns of the left hand
side matrix A⊗A and also the right hand side of the linear system, which there
were each 9-vectors consisting of the coefficients of particular polynomials in
two variables, can each now—in the reduced parameter space—be expressed as
polynomials of degree 4 in a single variable, thus with five coefficients instead of 9
coefficients. As a 5-by-9 linear system, there is a nontrivial nullspace, and linear
system solutions describing unbiasedness are no longer unique, which implies
that there will exist a statistic T also an unbiased estimator of g such that it
does not hold for all h ∈ {0, �, 1}N that

∑
(x,y)∈Xh

T (x, y) =
∑

(x,y)∈Xh
S(x, y).

This completes our demonstration that the claim of Theorem 3 may fail in the
absence of the nondegeneracy assumption for Θ.

Next, we illustrate that the claim of Theorem 4 may fail without the non-
degeneracy assumption for Θ. The disagreement enumeration statistic Δ is, by
definition, unbiased for its expected value E(Δ) = 2

∑N
i=1(1 − �i)pi(1 − pi),

and we pointed out in Example 1 that Δ is the UMVU estimator of E(Δ) =

2
∑N

i=1(1− �i)pi(1− pi) if Θ is nondegenerate. Nonetheless, in general, we will

see that there is no UMVU estimator of E(Δ) = 2
∑N

i=1(1− �i)pi(1− pi) when
μ is fixed.
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Indeed, consider N = 2, any fixed value of μ, and let the parameter space
be parameterized by p exactly as we did above in this section. We will next
formulate a quadratic program to find an unbiased estimator for E(Δ) which,
for any given value of p, has least variance among the unbiased estimators. It
will turn out that there is a unique solution to this quadratic program. Then,
if the solution differs for two different values of p then there does not exists
a UMVU estimator. Indeed, we performed computations, and found that this
occurred when μ = .25, as one example of many.

We now describe how to compute (in the scenario of this section) the unbi-
ased estimator which, for any given p, has least variance among the unbiased
estimators.

Let the points in X be ordered in any specified way, say z1, z2, . . . , z16. Define
the matrix M ∈ R

5×16 wherein, for all i, j, the entry Mij is the coefficient of
pi−1 in the polynomial φzj (p) (where φzj (p) is as defined earlier in this section).

For any statistic S : X → R, let S be expressed as a vector �S ∈ R
16 wherein, for

all i = 1, 2, . . . , 16, we define �Si := S(zi). A function on the reduced parameter
space g : (μ − δ, μ + δ) → R can only have an unbiased estimator if g is a
polynomial in the variable p of degree at most 4; this is because g would need to
be a linear combination of the φ’s. Say that �g ∈ R

5 is the vector wherein for all
i = 1, 2, . . . , 5, we define �gi to be the coefficient of pi−1 in g. Because (μ− δ, μ+
δ) is a nontrivial interval (indeed, we just need at least 5 points) and by the
uniqueness of interpolating polynomials, we have that the unbiased estimators
S of any particular g are precisely the solutions �S of the linear system M�S = �g.

Suppose that there exists an unbiased estimator of g. Among unbiased es-
timators of g, to find one of minimum variance for any specific value of
p ∈ (μ− δ, μ+ δ), we proceed as follows. Let the vector of sample point proba-
bilities for the respective 16 sample space points be denoted �� ∈ R

16; we have
��T = [p0, p1, p2, p3, p4]·M , which is a positive vector since p ∈ (μ−δ, μ+δ); find-
ing a (globally) unbiased estimator with (specifically for p) minimum variance is

equivalent to the quadratic, convex optimization problem min
∑16

i=1 ��i
�S2
i such

that �S satisfies M�S = �g (we minimize the second moment for the estimator,
since the first moment is fixed). Define a bijective change of variables where new

variables �S′ ∈ R
16 are such that for all i = 1, 2, . . . , 16 we have �S′

i :=
√
��i

�Si,
and define M ′ ∈ R

5×16 such that, for all i, j, we have M ′
ij = 1√

��j

Mij . Now

this minimum variance problem is equivalent to min ‖�S′‖2 such that �S′ satis-

fies M ′�S′ = �g. Classical generalized inverse theory guarantees a unique solution
�S′ = M ′ †�g (the symbol † denotes the Moore-Penrose Generalized Inverse of

the matrix), which corresponds to statistic S wherein S(zi) =
(M ′ †�g)i√

��i
for each

i = 1, 2, . . . , 16, which is unique as having minimum variance (for the particular
value of p) among the (globally) unbiased estimators.

This concludes the description of the way we computed, in the scenario of this
section, the unbiased estimator which, for a fixed value of p, has least variance.
(An excellent reference for matrix analysis in general, with theory of generalized
inverses, is [6].)
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5. Simulation experiments: comparing str, str, and str′

As we mentioned earlier, in [4] it was empirically demonstrated—for correlated
graphs in broad families within our model—that graph matching complexity as
well as graph matchability are each functions of total correlation, and it was
also proved in [4] that alignment strength str is a strongly consistent estimator
of ρT . The specific formulation/definition of alignment strength str arose in a
very natural way; see [4]. Nonetheless, str suffers from a deficiency; in Example 3
we pointed out that str is not balanced. The balanced statistic str reduces the
variance, keeping the expected value unchanged. In this section we will empiri-
cally demonstrate that another balanced statistic, denoted str′, is often superior
to str in estimating ρT . Note that there is no contradiction to Theorem 4, which
asserts that, assuming the parameter space is nondegenerate, str is UMVUE for
E(str); indeed, str′ can be biased as an estimator of E(str). Which can be a good
thing; we will see that str′ frequently has less bias than str in the estimation of
ρT , and in all of these experiments here str′ has less variance than str.

But we first make a computationally helpful observation about computing
the value of str.

In general, when given an arbitrary statistic S : X → R, the computation
of the value of S, even for just one particular sample space point (x, y) ∈ X ,
can require exponential time; indeed, there are 2Δ(x,y) values to average. In the
case of computing str, this computation can be greatly simplified as follows.
Given any particular h ∈ {0, �, 1}N and any particular (x, y) ∈ Xh (such that
not both x and y are all zeros, and not both x and y are all ones), we have by
Equation (2) and Equation (10), that

str(x, y)

:=
1

2Δ(x,y)

∑
(x′,y′)∈Xh

str(x′, y′)

=
1

2Δ(x,y)

Δ(x,y)∑
i=0

(
Δ(x, y)

i

)
dX∩Y (x, y)−

(
dX∩Y (x, y)+ i

N

)(
dX∩Y (x, y)+Δ(x,y)

N
− i

N

)
dX,Y (x, y)−

(
dX∩Y (x, y)+ i

N

)(
dX∩Y (x, y)+Δ(x,y)

N
− i

N

)

The above provides a linear time algorithm for computing str for any (x, y) ∈ X ,
although this computation is much more involved then the very simple formula
for str′ as given in Remark 10.

Now we are prepared to do a simulation experiment to compare the variances
of str, and str, and str′. The expected values of str and str are of course the
same, so there is no difference between their biases in estimating �T . However,
the expected values of str and str′ are not the same, so we want to also compare
their biases in estimating �T .

In the first set of experiments, we did 200 independent replicates of the fol-
lowing experiment. We realized p1, p2, p3, p4, p5, p6, �1, �2, �3, �4, �5, �6 (which
correspond to the six pairs of vertices in a vertex set with four vertices) in-
dependently from a Uniform(0, 1) distribution; the first five such experiments’
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values were:

p1 p2 p3 p4 p5 p6 �1 �2 �3 �4 �5 �6
0.6892 0.7224 0.4795 0.8985 0.4022 0.7043 0.8429 0.9852 0.8006 0.3118 0.5768 0.5751
0.7482 0.1499 0.6393 0.1182 0.6207 0.7295 0.8988 0.6088 0.7388 0.0553 0.9440 0.0100
0.4505 0.6596 0.5447 0.9884 0.1544 0.2243 0.9390 0.2537 0.1417 0.7538 0.8715 0.8094
0.0838 0.5186 0.6473 0.5400 0.3813 0.2691 0.8154 0.1326 0.4379 0.1319 0.5076 0.6088
0.2290 0.9730 0.5439 0.7069 0.1611 0.6730 0.0014 0.5450 0.3504 0.3559 0.7888 0.4799

Then, for these realized parameters, we computed (exactly, by enumerating
the sample space and sample point probabilities) the values of E(str), E(str′),
�T , Var(str), Var(str), and Var(str′). Of course, E(str) = E(str). The first five
experiments’ outcomes were:

E(str) E(str′) �T Var(str) Var(str) Var(str′)
0.6851 0.6857 0.7516 0.1219 0.1214 0.1206
0.6835 0.6843 0.7093 0.0885 0.0879 0.0870
0.6827 0.6833 0.7011 0.0745 0.0740 0.0734
0.4310 0.4339 0.4697 0.1345 0.1318 0.1291
0.5619 0.5635 0.5789 0.1073 0.1059 0.1043

In every one of these 200 experiments, we had that Var(str) > Var(str) >
Var(str′). In 199 of these 200 experiments we had E(str) < E(str′) < �T .

We then repeated the 200 experiments, except that �i = 0 for all i =
1, 2, 3, 4, 5, 6. The first five experiments’ outcomes were:

E(str) E(str′) �T Var(str) Var(str) Var(str′)
0.3278 0.3320 0.3234 0.1222 0.1182 0.1149
0.4965 0.4986 0.4918 0.1052 0.1033 0.1014
0.4240 0.4269 0.4169 0.1098 0.1072 0.1048
0.1260 0.1335 0.1333 0.1433 0.1354 0.1307
0.5204 0.5225 0.5177 0.1094 0.1076 0.1056

Again, in every one of these 200 experiments, we had that Var(str) > Var(str) >
Var(str′). However, in only 41 of the 200 experiments was the bias of str′ less
than that of str, meaning that |E(str′)− �T | < |E(str)− �T |.

We then repeated the first 200 experiments, except that pi =
1
2 for all i =

1, 2, 3, 4, 5, 6. The first five experiments’ outcomes were:

E(str) E(str′) �T Var(str) Var(str) Var(str′)
0.6866 0.6872 0.7392 0.0989 0.0983 0.0976
0.3062 0.3108 0.3496 0.1375 0.1330 0.1293
0.3776 0.3812 0.4257 0.1367 0.1333 0.1301
0.3745 0.3781 0.4221 0.1384 0.1349 0.1316
0.6384 0.6393 0.6919 0.1095 0.1086 0.1075

Again, in every one of these 200 experiments, we had that Var(str) > Var(str) >
Var(str′). In all these 200 experiments we had E(str) < E(str′) < �T . (In all of
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the above 600 experiments, we adopted the convention that the statistics have
the value 0 at the two sample points (x, y) where x and y are all zeros and where
they are all ones. Indeed, we saw empirically that this choice had a negligible
numerical impact on the experiments here.)

Remarkably, in all of the many tens of thousands of experiments that we
conducted, for many different parameter values, we always found that the mean
squared error in estimating �T , denote itMSE(·, �T ), was lower for the modified
alignment strength str′ than for the balanced alignment strength str. Based on
these computations, we conjecture the following.

Conjecture 13. For all N and θ ∈ R, it holds that MSE(str′, �T ) ≤
MSE(str, �T ).

6. Summary and future directions

Our setting is the correlated Bernoulli random graph model for the production
of a pair of correlated random graphs, wherein different pairs of vertices are
allowed different probabilities of adjacency, and inter-graph edge correlations
are allowed to be different for different pairs of vertices. This is a broad and
useful model. Our main results come in two groups.

The first group of results: We introduce a “balancing” procedure to lower
the mean squared error for any statistic used to estimate any function of the
model parameters; it is essentially a Rao-Blackwellization procedure utilizing
the disagreement vector statistic, which we prove is complete and sufficient.
Indeed, given any unbiased estimator of any function of the model parameters,
we neatly characterize all unbiased estimators, as well as the UMVUE estimator
for this function of the model parameters. With these tools, we obtain the second
group of results, which involve estimating the total correlation parameter, which
is of current interest in the theory of Graph Matching, and has been recently
shown to play a critical role in matchability and also in graph matching runtime
complexity (when graph matching is solved exactly via integer programming) [4].

Future steps would be to extend our results in this paper to broader random
graph models and to settle Conjecture 13.
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