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Abstract: Motivated by the increasing popularity and the seemingly broad
applicability of pair-copula constructions underlined by numerous publica-
tions in the last decade, in this contribution we tackle the unavoidable
question on how flexible and simplifying the commonly used ‘simplifying
assumption’ is from an analytic perspective and provide answers to two
related open questions posed by Nagler and Czado in 2016. Aiming at a
simplest possible setup for deriving the main results we first focus on the
three-dimensional setting. We prove that the family of simplified copulas is
flexible in the sense that it is dense in the set of all three-dimensional co-
pulas with respect to the uniform metric d∞ – considering stronger notions
of convergence like the one induced by the metric D1, by weak conditional
convergence, by total variation, or by Kullback-Leibler divergence, however,
the family even turns out to be nowhere dense and hence insufficient for any
kind of flexible approximation. Furthermore, returning to d∞ we show that
the partial vine copula is never the optimal simplified copula approximation
of a given, non-simplified copula C, and derive examples illustrating that
the corresponding approximation error can be strikingly large and extend to
more than 28% of the diameter of the metric space. Moreover, the mapping
ψ assigning each three-dimensional copula its unique partial vine copula
turns out to be discontinuous with respect to d∞ (but continuous with
respect to D1 and to weak conditional convergence), implying a surpris-
ing sensitivity of partial vine copula approximations. The afore-mentioned
main results concerning d∞ are then extended to the general multivariate
setting.
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1. Introduction

Pair-copula constructions (most well-known in the context of vine copulas) are
a very popular bottom-up approach for constructing high-dimensional copulas
out of several bivariate ones; they have a handy graphical representation and can
be considered as an ordered sequence of trees. Aiming at a significant reduction
of complexity it is usually assumed that the so-called simplifying assumption,
saying that the copulas of the conditional distribution functions do not depend
on the conditioning variables, holds.

Considering the enormous number of scientific contributions working with
and applying simplified pair-copulas (see, e.g., [5, 6, 7, 32, 36, 38, 37]) it is
quite surprising that, apart from a few critical voices (see, e.g., [2, 8, 15]), no
analytic and systematic study on the approximation quality and flexibility of
these concepts seems to have been published so far.

After an extensive literature research it seems that the publication coming
closest to such a study was written by Spanhel and Kurz [34] who focus mainly
on partial vine copulas (special simplified pair-copulas whose conditional distri-
bution functions follow a certain intuitive construction principle) and show that
partial vine copulas are optimal w.r.t. Kullback-Leibler divergence if the mini-
mization is performed sequentially, but not necessarily if the estimation is done
jointly. As stated in [34], this “implies that it may not be optimal to specify the
true copulas in the first tree” of a simplified pair-copula approximation.

Motivated by the broad applicability of pair-copula constructions, in this
contribution we study flexibility and the extent of simplification imposed by
the simplifying assumption from an analytic perspective. For the sake of gen-
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erality of the construction we do not directly assume absolute continuity and
work with densities but build the analysis on conditional distributions (Markov
kernels). Although most results are established in the three-dimensional setting
we also sketch possible extensions to the general multivariate case. We first in-
troduce and discuss the somewhat more general concept of simplified copulas,
i.e., copulas satisfying the simplifying assumption but do not necessarily follow
the hierarchical bottom-up approach. We show that, on the one hand, simpli-
fied copulas are very flexible in the sense that they are dense in the family
of all three-dimensional copulas with respect to the uniform metric d∞ – this
flexibility, however, gets lost when finer topologies like the one induced by the
metric D1, by weak conditional convergence, by total variation metric or by the
Kullback-Leibler divergence are considered. In fact, we prove that the family
of simplified copulas is even nowhere dense with respect to either of these four
topologies, and, thereby provide an answer to one of the questions posed by
Nagler and Czado [27].

Returning to d∞ we then show that the partial vine copula of a given, non-
simplified copula C is never the best-possible simplified copula approximation
of C (with respect to d∞). More importantly, the error made by approximation
via partial simplified vines may be strikingly large: in the worst case scenario the
distance between a three-dimensional copula and its assigned partial vine copula
is at least 3/16 which corresponds to 28.125% of the diameter of the metric space.
An analogous result holds in arbitrary dimensions, in this case the worst case
distance is at least 1/8. With these results we answer the question on “how far off
can we be by assuming a simplified model?” also posed by Nagler and Czado [27].

Sticking to the analytic perspective we moreover focus on continuity proper-
ties of the mapping ψ assigning each three-dimensional copula its unique partial
vine copula and show (among other things) that this mapping is not continuous
with respect to d∞. In other words: if d∞(A,B) is small then in general we can
not infer that d∞(ψ(A), ψ(B)) is small too. As a direct consequence, although
simplified pair-copulas are “highly flexible” ([22]) and partial vine copulas “can
yield an approximation that is superior to competing approaches” ([34]), ap-
proximations in terms of partial vine copulas can be of very poor quality and
lead to wrong conclusions.

The rest of this paper is organized as follows: Section 2 gathers preliminaries
and notations that will be used in the sequel. In Section 3 we introduce simplified
copulas in dimension d = 3, prove that the family of these copulas is dense in
the metric space of all copulas with respect to d∞ (Corollary 3.7) and then show
that with respect to either of the afore-mentioned four notions of convergence
the family is very small in the sense that it is nowhere dense. In Section 4
we then focus on partial vine copulas and study the afore-mentioned mapping
ψ assigning each copula its simplified approximation. We discuss continuity of
ψ with respect to different notions of convergence (some lemmata and proofs
are moved to the Supplementary to facilitate reading) and provide the afore-
mentioned lower bound for the worst-case scenario (Sections 5 and 6). To avoid
unnecessary complexity, in the first few sections we proceed as [2, 17, 22, 30, 33]
and restrict ourselves to the three-dimensional setting. To underline generality
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of our findings, however, in Section 7 we extend some of our main results to
the general multivariate setting and discuss the notion of so-called universally
simplified copulas. Various examples and graphics illustrate both the obtained
results and the ideas underlying the proofs.

2. Notation and preliminaries

Throughout this paper we will write I := [0, 1] and let d ≥ 2 be an integer,
which will be kept fixed. Bold symbols will be used to denote vectors, e.g.,
x = (x1, . . . , xd) ∈ R

d. The d-dimensional Lebesgue measure will be denoted by
λd, in case of d = 1 we will also simply write λ. We will let Cd denote the family
of all d-dimensional copulas, M will denote the comonotonicity copula, Π the
independence copula and, for d = 2, W will denote the countermonotonicity
copula (we omit the index indicating the dimension since no confusion will
arise). For every C ∈ Cd the corresponding d-stochastic measure will be denoted
by μC , i.e. μC([0,u]) = C(u) for all u ∈ I

d, and PC will denote the family
of all d-stochastic measures. For more background on copulas and d-stochastic
measures we refer to [10, 29]. For every metric space (S, δ) the Borel σ-field on
S will be denoted by B(S).

In what follows Markov kernels will play a prominent role: A Markov kernel
from R to B(Rd−1) is a mapping K : R×B(Rd−1) → I such that for every fixed
E ∈ B(Rd−1) the mapping y �→ K(y,E) is (Borel-)measurable and for every
fixed y ∈ R the mapping E �→ K(y,E) is a probability measure.
Given a real-valued random variable Y and a real-valued (d − 1)-dimensional
random vector X on a probability space (Ω,A,P) we say that a Markov kernel
K is a regular conditional distribution of X given Y if

K
(
Y (ω), E

)
= E

(
1E ◦X |Y

)
(ω)

holds P-almost surely for every E ∈ B(Rd−1). It is well-known that for each
random vector (X, Y ) a regular conditional distribution K of X given Y always
exists and is unique for PY -a.e. y ∈ R. If (X, Y ) has distribution function H (in
which case we will also write (X, Y ) ∼ H and let μH denote the corresponding
probability measure on B(Rd)) we will let KH denote (a version of) the regular
conditional distribution of X given Y and simply refer to it as Markov kernel
of H. If C ∈ Cd is a copula then we will consider the Markov kernel of C
automatically as mapping KC : I × B(Id−1) → I. Defining the v-section of a
set G ∈ B(Id) as Gv := {u ∈ R

d−1 : (u, v) ∈ G} the so-called disintegration
theorem yields ∫

I

KC(v,Gv) dλ(v) = μC(G) (2.1)

so, in particular, in case of G = ×d−1
i=1Gi with Gi = I for all i 	= j we have∫

I

KC(v,G) dλ(v) = λ(Gj).
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For more background on conditional expectation and general disintegration we
refer to [19, 23].

We call a copula C ∈ Cd completely dependent (w.r.t. the last coordinate) if
there exist λ-preserving transformations h1, . . . , hd−1 : I → I (i.e., transforma-
tions fulfilling λ(h−1

i (F )) = λ(F ) for every F ∈ B(I)) such that

K(y,E) := 1E(h1(y), . . . , hd−1(y))

is a Markov kernel of C. Since the collection of all completely dependent copulas
contains all shuffles of Min, it is dense in (Cd, d∞) (also see [26]). For more
properties of complete dependence we refer to [25] as well as to [11] and the
references therein.

Markov kernels can be used to define metrics stronger than the standard
uniform metric d∞, defined by

d∞(C1, C2) := max
u∈Id

|C1(u)− C2(u)|

on Cd. It is well known that the metric space (Cd, d∞) is compact and that point-
wise and uniform convergence of a sequence of copulas (Cn)n∈N are equivalent
(see [10]). Following [11] and defining

D1(C1, C2) :=

∫
Id−1

∫
I

∣∣KC1(v, [0,u])−KC2(v, [0,u])
∣∣ dλ(v)dλd−1(u)

D2(C1, C2) :=

∫
Id−1

∫
I

(
KC1(v, [0,u])−KC2(v, [0,u])

)2
dλ(v)dλd−1(u)

D∞(C1, C2) := sup
u∈Id−1

∫
I

∣∣KC1(v, [0,u])−KC2(v, [0,u])
∣∣ dλ(v)

it can be shown that D1, D2 and D∞ are metrics generating the same topology
on Cd and that the family of completely dependent copulas is closed with respect
to these three metrics. In the sequel we will mainly work with D1 and refer to
[11] for more information on D2 and D∞. The metric space (Cd, D1) is complete
and separable but not compact.

Viewing copulas in terms of their conditional distributions and considering
weak convergence gives rise to what we refer to as weak conditional convergence
in the sequel: Consider a sequence of copulas (Cn)n∈N and a copula C and let
(KCn)n∈N and KC be (versions of) the corresponding Markov kernels. We will
say that (Cn)n∈N converges weakly conditional (w.r.t. the last coordinate) to C
if and only if for λ-almost every v ∈ I we have that the sequence (KCn(v, ·))n∈N

of probability measures on B(Id−1) converges weakly to the probability measure

KC(v, ·). In the latter case we will write Cn
wcc−−→ C (where ‘wcc’ stands for

‘weak conditional convergence’).
According to Lemma 5 in [11] weak conditional convergence of (Cn)n∈N to C

implies convergence w.r.t. D1 but not vice versa (see Example 2.1 below), and
convergence w.r.t. D1 implies convergence in d∞ but not vice versa.



1956 T. Mroz et al.

Example 2.1. For d ≥ 3, m ∈ N and k ∈ {1, . . . , 2m} define Jm,k

:=
(
(k− 1)2−m, k2−m

]
, set n = 2m + k− 2 and consider the sequence of gener-

alized EFGM copulas (Cn)n∈N given by

Cn(u, v) := v

d−1∏
i=1

ui + fn(v)

d−1∏
i=1

ui(1− ui)

where f2m+k−2(v) :=
∫
[0,v]

1Jm,k
(t) dλ(t). Then, for every n ∈ N, the identity

KCn(v, [0,u]) =
d−1∏
i=1

ui + f ′
n(v)

d−1∏
i=1

ui(1− ui)

holds for all u ∈ I
d−1 and almost all v ∈ I. Thus, the sequence (KCn(v, ·))n∈N

fails to converge weakly to KΠ(v, ·) for λ-almost all v ∈ I, and it follows that
(Cn)n∈N does not converge weakly conditional to Π. On the other hand, consid-
ering

lim
m→∞

sup
u∈Id−1

∫
I

∣∣KC2m+k−2
(v, [0,u])−KΠ(v, [0,u])

∣∣ dλ(v)
= lim

m→∞
sup

u∈Id−1

∫
I

∣∣∣∣∣f ′
2m+k−2(v)

d−1∏
i=1

ui(1− ui)

∣∣∣∣∣ dλ(v)

= lim
m→∞

λ(Jm,k) sup
u∈Id−1

d−1∏
i=1

ui(1− ui)

= 0

so limn→∞ D1(Cn,Π) = 0. For a counterexample in the case d = 2 we refer to
[20].

For any subset J = {j1, ..., j|J|} ⊆ {1, . . . , d} with 2 ≤ |J | ≤ d such that
jk < jl for all k, l ∈ {1, ..., |J |} with k < l we let CJ denote the marginal copula
of C with respect to the coordinates in J . If J only contains two indices i, j then
we will sometimes also write Cij instead of C{i,j} (no confusion will arise). Weak
conditional convergence of a sequence of copulas transfers to marginal copulas:

Theorem 2.2. Suppose that C,C1, C2, . . . are d-dimensional copulas. Then
Cn

wcc−−→ C implies
(Cn)J∪{d}

wcc−−→ CJ∪{d}

for every J ⊆ {1, . . . , d− 1} with 1 ≤ |J | ≤ d− 1.

Proof. Consider J ⊆ {1, . . . , d − 1} with 1 ≤ |J | ≤ d − 1 and w.l.o.g. assume
that J = {1, . . . , |J |}. Disintegration implies that for every copula C ∈ Cd there
exists some Markov kernel KC such that C can be expressed as

C(u, v) =

∫
[0,v]

KC(t, [0,u]) dλ(t)
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for all (u, v) ∈ I
d−1 × I and some Markov kernel KCJ∪{d} such that we have

CJ∪{d}(s, v) =

∫
[0,v]

KCJ∪{d}(t, [0, s]) dλ(t)

for all (s, v) ∈ I
|J| × I. Thus

KCJ∪{d}(t, [0, s]) = KC

(
t, [0, s]× I

d−1−|J|) (2.2)

holds for all s ∈ I
|J| and λ-almost all t ∈ I.

Suppose now that C,C1, C2, . . . are as in the theorem. Since projections are
continuous, the Continuous Mapping Theorem and the previous identity imply
that for λ-almost every v ∈ I weak convergence of the sequence (KCn(v, ·))n∈N

to KC(v, ·) implies weak convergence of the sequence (K(Cn)J∪{d}(v, ·))n∈N to
KCJ∪{d}(v, ·), which proves the assertion.

We complete this section with two additional notions of convergence consid-
ered, e.g., in Spanhel and Kurz [34], the Kullback-Leibler divergence (distance)
KL and the total variation metric TV, and describe their relationship with D1

and d∞. Defining TV on Cd by

TV (C1, C2) = sup
G∈B(Id)

|μC1(G)− μC2(G)|,

convergence with respect to TV implies convergence with respect to D1:

Theorem 2.3. The inequalities

D1(C1, C2) ≤ D∞(C1, C2) ≤ 2TV (C1, C2)

hold for all copulas C1, C2 ∈ Cd. In particular, convergence w.r.t. TV implies
convergence w.r.t. D1 and D∞.

Proof. Fix C1, C2 ∈ Cd. For every u ∈ I
d−1 setting

Λu := {v ∈ I : KC1(v, [0,u]) > KC2(v, [0,u])} ∈ B(I)

we get (Λc
u := I \ Λu)

0 ≤
∫
I

|KC1(v, [0,u])−KC2(v, [0,u])| dλ(v)

=

∫
Λu

KC1(v, [0,u])−KC2(v, [0,u]) dλ(v)

+

∫
Λc

u

KC2(v, [0,u])−KC1(v, [0,u]) dλ(v)

= μC1(Λu × [0,u])− μC2(Λu × [0,u])

+μC2(Λ
c
u × [0,u])− μC1(Λ

c
u × [0,u])
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= |μC1(Λu × [0,u])− μC2(Λu × [0,u])|
+|μC1(Λ

c
u × [0,u])− μC2(Λ

c
u × [0,u])|

≤ 2TV (C1, C2)

from which the desired inequalities follow immediately. The first inequality has
already been proved in [11, Lemma 3].

It is well-known that KL divergence (which is not a metric and only well-
defined for absolutely continuous copulas whose density is positive λd-almost
everywhere) is stronger than TV (see the generalized Pinsker inequality in, e.h.,
[31]). Altogether we have the following interrelation, where a =⇒ b indicates
the convergence with respect to a implies convergence with respect to b (and
the first implication is restricted to those copulas for which KL divergence is
well-defined):

KL =⇒ TV =⇒ D1 ⇐⇒ D∞ =⇒ d∞

3. Simplified copulas

In this section we introduce three-dimensional so-called simplified copulas, i.e.,
copulas for which the conditional copulas do not depend on the conditioning
variable. The enormous importance of this type of copulas is underlined by the
fact that every copula can be approximated arbitrarily well with respect to d∞
by simplified copulas (see Corollary 3.7). On the other hand, we will show that
simplified pair-copula constructions may fail to approximate a given dependence
structure w.r.t. d∞ reasonably well (see Example 3.8). Additionally, we will
see that the afore-mentioned denseness gets lost entirely when finer topologies
or stronger metrics are considered, and prove that for D1 (Theorem 3.9), for
the total variation metric TV (Theorem 3.10), and the Kullback-Leibler (KL)
divergence (Theorem 3.11) the family is even nowhere dense.

With very few exceptions, in literature pair-copula constructions are intro-
duced by working with copula densities, i.e., all copulas are assumed to be
absolutely continuous. Ensuring that no key idea of the underlying concept is
left out and aiming at a setting as general as possible we deviate from this
approach and work with Markov kernels instead.

In this and the subsequent three sections all conditioning will be done with
respect to the last coordinate, notice that this does not impose any restriction
(as can be seen from Theorem 3.10, Theorem 3.11, Remark 5.4 and Section 7).

According to disintegration for every copula C ∈ C3 there exists some Markov
kernel KC such that C can be expressed as

C(u, v) =

∫
[0,v]

KC(t, [0,u]) dλ(t)

for all (u, v) ∈ I
2×I. Since KC is a Markov kernel, for every u ∈ I

2 the mapping
t �→ KC(t, [0,u]) is measurable and for almost every t ∈ I the mapping u �→
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KC(t, [0,u]) is a bivariate distribution function with (conditional) univariate
marginal distribution functions F1|3(·|t) and F2|3(·|t) (conditional on t). Sklar’s
Theorem implies that for almost every t ∈ I there exists some (conditional)
bivariate copula Ct

12;3 (conditional on t) satisfying

KC(t, [0,u]) = Ct
12;3

(
F1|3(u1|t), F2|3(u2|t)

)
for all u ∈ I

2 such that the identity

C(u, v) =

∫
[0,v]

Ct
12;3

(
F1|3(u1|t), F2|3(u2|t)

)
dλ(t) (3.1)

holds for all (u, v) ∈ I
2 × I.

Remark 3.1.
(1) Since the (conditional) univariate marginal distribution functions satisfy

F1|3(1|t) = 1 = F2|3(1|t) for every t ∈ I the bivariate marginal copulas C13

and C23 of C satisfy

C13(u1, v) =

∫
[0,v]

Ct
12;3

(
F1|3(u1|t), F2|3(1|t)

)
dλ(t) =

∫
[0,v]

F1|3(u1|t) dλ(t)

as well as C23(u2, v) =
∫
[0,v]

F2|3(u2|t) dλ(t) for all (u, v) ∈ I
2 × I and their

corresponding Markov kernels fulfill

KC(t, [0, u1]× I) = KC13(t, [0, u1]) = F1|3(u1|t) (3.2)

KC(t, I× [0, u2]) = KC23(t, [0, u2]) = F2|3(u2|t) (3.3)

for all u ∈ I
2 and λ-almost all t ∈ I (compare with Equation (2.2)).

(2) Notice that we choose this different notation for the (conditional) univariate
distribution functions on purpose since this facilitates comprehending what
follows.

(3) For the copulas corresponding to the conditional bivariate distribution func-
tions KC(t, .) we write Ct

12;3 instead of Ct
12|3 and hence adopt the notation

used in the literature (see, e.g., [34]).

The following two observations concerning Equation (3.1) are key:
(O1) the (conditional) bivariate copulas Ct

12;3 may depend on t;
(O2) since the (conditional) univariate marginal distribution functions F1|3(.|t)

and F2|3(.|t) may fail to be continuous the (conditional) bivariate copulas
Ct

12;3 are not unique in general.
To the best of the authors’ knowledge, the second observation has not yet been
addressed in the literature which is somehow not surprising considering the
fact that pair-copula constructions are usually focused on absolutely continuous
copulas.

In the sequel we will study copulas C for which (O1) is not true, i.e., copulas
for which the (conditional) copulas Ct

12;3 do not depend on t. We will refer to a
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copula C ∈ C3 as generalized simplified (with respect to the third coordinate) if
there exists some bivariate copula A ∈ C2 such that the identity

C(u, v) =

∫
[0,v]

A
(
F1|3(u1|t), F2|3(u2|t)

)
dλ(t) (3.4)

holds for all (u, v) ∈ I
2 × I. In the sequel C3

GS will denote the family of all
three-dimensional generalized simplified copulas.

The following first results (Theorem 3.2 and Corollary 3.3) imply that the
family of generalized simplified copulas is very flexible.

Theorem 3.2. Every completely dependent three-dimensional copula is genera-
lized simplified.

Proof. Let C ∈ C3 be a completely dependent copula, i.e., assume that there ex-
ist λ–preserving functions h1, h2 : I → I such that KC(v,E) := 1E(h1(v), h2(v))
is a Markov kernel of C. Considering

KC(v, [0,u]) = 1[0,u1]×[0,u2](h1(v), h2(v)) = 1[h1(v),1](u1) 1[h2(v),1](u2)

as well as F1|3(u1|v) = 1[h1(v),1](u1), F2|3(u2|v) = 1[h2(v),1](u2) ∈ {0, 1} it follows
that for every copula A ∈ C2 the identity

C(u, v) =

∫
[0,v]

A
(
F1|3(u1|t), F2|3(u2|t)

)
dλ(t)

holds for all (u, v) ∈ I
2 × I. This yields C ∈ C3

GS.

Note that completely dependent copulas are generalized simplified in the
broadest sense since Equation (3.4) does not only hold for one or some copulas,
it holds for every A ∈ C2.

Since the collection of all completely dependent copulas is dense in (C3, d∞)
Theorem 3.2 has the following consequence:

Corollary 3.3. The collection of all generalized simplified copulas is dense in
(C3, d∞).

Returning to observation (O2) in what follows we will mainly restrict our-
selves to the family of copulas C ∈ C3 for which almost all (conditional) uni-
variate marginal distribution functions F1|3(.|t) and F2|3(.|t) are continuous and
let C3

c denote the family of all these copulas. According to Sklar’s theorem, for
every copula C ∈ C3

c the (conditional) bivariate copulas Ct
12;3 are unique for

almost all t ∈ I. Obviously the family of all absolutely continuous copulas C3
ac is

a subset of C3
c , so for absolutely continuous copulas the conditional copulas are

unique.
We will let C3

S := C3
GS ∩ C3

c denote the collection of all simplified copulas,
i.e., the class of all three-dimensional copulas C which are generalized simplified
and have continuous (conditional) univariate marginal distribution functions
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F1|3(.|t) and F2|3(.|t). In this case the copula A ∈ C2 in Equation 3.4 is unique
and equals Ct

12;3 for almost all t ∈ I.
Before proceeding we illustrate the above simplifying assumption in terms of

the (Fréchet) class of all three-dimensional copulas C fulfilling that coordinates
1&3 as well as 2&3 are independent:

Example 3.4. (Class F3
Π of three-dimensional copulas C satisfying C13 = Π =

C23)
For C ∈ F3

Π we have F1|3(u1|t) = u1 and F2|3(u2|t) = u2 for all u ∈ I
2 and

almost all t ∈ I implying F3
Π ⊆ C3

c . If D ∈ F3
Π is simplified then there exists

some unique bivariate copula A ∈ C2 such that

D(u, v) =

∫
[0,v]

A
(
F1|3(u1|t), F2|3(u2|t)

)
dλ(t) =

∫
[0,v]

A(u1, u2) dλ(t) = A(u) v

holds for all (u, v) ∈ I
2 × I.

(1) The independence copula Π ∈ F3
Π satisfies

Π(u, v) =

∫
[0,v]

Π
(
F1|3(u1|t), F2|3(u2|t)

)
dλ(t)

for all (u, v) ∈ I
2 × I. Thus, Π is simplified, obviously Π(u, v) = Π(u) v

holds for all (u, v) ∈ I
2 × I.

(2) The EFGM copula CEFGM ∈ F3
Π, given by

CEFGM(u, v) := Π(u, v) + u1(1− u1)u2(1− u2) v(1− v)

satisfies

CEFGM(u, v) =

∫
[0,v]

(CEFGM)t12;3
(
F1|3(u1|t), F2|3(u2|t)

)
dλ(t)

for all (u, v) ∈ I
2 × I, where

(CEFGM)t12;3(u) = u1u2 + (1− 2 t)u1(1− u1)u2(1− u2)

for all u ∈ I
2 and almost all t ∈ I. Thus, CEFGM is non-simplified.

(3) The copula CCube ∈ F3
Π which distributes mass uniformly within the four

cubes (
0, 1

2

)
×

(
0, 1

2

)
×

(
0, 1

2

) (
1
2 , 1

)
×

(
1
2 , 1

)
×

(
0, 1

2

)(
0, 1

2

)
×

(
1
2 , 1

)
×

(
1
2 , 1

) (
1
2 , 1

)
×

(
0, 1

2

)
×

(
1
2 , 1

)
and has no mass outside these cubes satisfies

CCube(u, v) =

∫
[0,v]

(CCube)t12;3
(
F1|3(u1|t), F2|3(u2|t)

)
dλ(t)
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for all (u, v) ∈ I
2 × I, where (CCube)t12;3 = A1 for almost all t ∈

(
0, 1

2

)
and (CCube)t12;3 = A2 for almost all t ∈

(
1
2 , 1

)
, and the copulas A1 and A2

are checkerboard copulas (see [10] for a general definition) whose density is
depicted in Figure 1. As a direct consequence CCube is non-simplified.

1

0 1

1

0 1

1

1

0 1

Fig 1. Mass distribution of the copulas A1, A2 and CCube from Example 3.4.

In contrast to the afore-mentioned class, some copula families only contain
simplified copulas:

Example 3.5. [17, 35]

(1) All three-dimensional Gaussian and Student t-copulas are simplified.
(2) The only three-dimensional Archimedean copulas that are simplified are

those of Clayton type.

We now focus on empirical copulas, show that they are simplified and then
conclude that C3

S is dense in (C3, d∞) (Corollary 3.7).

Consider a random vector (X, Y ) with continuous univariate marginals and
suppose that (X1, Y1), . . . , (Xn, Yn) is a sample from (X, Y ). Since the univariate
marginals are continuous w.l.o.g. we can assume that there are no ties. Let Ĉn

denote the empirical copula (by which we mean the unique copula determined
by trilinear interpolation of the empirical subcopula). Then there exist two
permutations σ1, σ2 of {1, . . . , n} such that the density ĉn of Ĉn is given by
(uniform distribution on n cubes of volume 1

n3 )

ĉn(u1, u2, v) = n2
n∑

i=1

1I1
i
(u1)1I2

i
(u2)1Vi(v)

where I1i = (σ1(i)−1
n , σ1(i)

n ], I2i = (σ2(i)−1
n , σ2(i)

n ] and Vi = ( i−1
n , i

n ], so the Markov

kernel of Ĉn fulfills

KĈn
(v, [0, u1]×[0, u2]) = n2

n∑
i=1

(∫
[0,u1]

1I1
i
(t) dλ(t)

∫
[0,u2]

1I2
i
(s) dλ(s)

)
1Vi(v).

(3.5)

Theorem 3.6. Every three-dimensional empirical copula is simplified.
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Proof. Considering that the (conditional) univariate marginal distribution func-
tions (F̂n)1|3(·|v), (F̂n)2|3(·|v) of Ĉn are continuous and given by

(F̂n)1|3(u1|v) = n

n∑
i=1

(∫
[0,u1]

1I1
i
(t) dλ(t)

)
1Vi(v)

(F̂n)2|3(u2|v) = n

n∑
i=1

(∫
[0,u2]

1I2
i
(t) dλ(t)

)
1Vi(v)

using Equation (3.5) it follows immediately that KĈn
(v, [0, u1]× [0, u2]) can be

expressed as

KĈn
(v, [0, u1]× [0, u2]) = Π

(
(F̂n)1|3(u1|v), (F̂n)2|3(u2|v)

)
from which it follows that Ĉn is simplified.

Since the collection of all empirical copulas is dense in (C3, d∞) (see [9, Propo-
sition 3.2]), Theorem 3.6 has the following consequence (for a stronger and more
general result see Corollary 7.2):

Corollary 3.7. The collection of all simplified copulas is dense in (C3, d∞).

Although every copula can be approximated arbitrarily well by simplified
copulas a reasonable approximation from the same Fréchet class might not be
possible as the following example illustrates:

Example 3.8. (Class F3
Π, cont.)

For the non–simplified copula CCube ∈ F3
Π introduced in Example 3.4 there

exists some ε > 0 such that for every simplified copula D ∈ F3
Π we have

d∞
(
CCube, D

)
> ε,

which can be shown as follows: Recall that every simplified copula D from this
class fulfills D(u, v) = A(u) v for all (u, v) ∈ I

2 × I, where A is some bivariate
copula. Furthermore recall that CCube fulfills

CCube(u, v) =

∫
[0,v]

(CCube)t12;3 (u) dλ(t)

for all (u, v) ∈ I
2 × I, where (CCube)t12;3 = A1 for almost all t ∈

(
0, 1

2

)
and

(CCube)t12;3 = A2 for almost all t ∈
(
1
2 , 1

)
, and A1 and A2 are bivariate copulas

with A1 	= A2 (see Example 3.4). Thus,

CCube(u, v) =

{
A1(u) v v ∈

[
0, 1

2

]
A1(u) 1

2 +A2(u)
(
v − 1

2

)
v ∈

(
1
2 , 1

]
and hence∣∣CCube(u, v)−D(u, v)

∣∣
=

{∣∣A1(u)−A(u)
∣∣ v v ∈

[
0, 1

2

]∣∣[A1(u)−A(u)
]

1
2 +

[
A2(u)−A(u)

] (
v − 1

2

)∣∣ v ∈
(
1
2 , 1

]
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for all (u, v) ∈ I
2 × I. If A = A1, then

d∞
(
CCube, D

)
≥

∣∣CCube
(
1
2 ,

3
4

)
−D

(
1
2 ,

3
4

)∣∣ = 1
4

∣∣A2
(
1
2

)
−A1

(
1
2

)∣∣ = 1
4

∣∣0− 1
2

∣∣ = 1
8 .

If A 	= A1 then there exists some u∗ ∈ I
2 and some ε > 0 with |A(u∗)−A1(u∗)| >

4 ε and hence

d∞
(
CCube, D

)
≥

∣∣CCube
(
u∗, 1

4

)
−D

(
u∗, 1

4

)∣∣ = 1
4

∣∣A1(u∗)−A(u∗)
∣∣ > ε

Thus CCube can not be approximated arbitrarily well by a simplified copula D
from the class F3

Π.

We now focus on the afore-mentioned stronger metrics or finer topologies on
C (or important subclasses). To simplify notation we will write C3

ac,>0 for the
collection of all absolutely continuous copulas with positive density.

Theorem 3.9.

1. The collection of all simplified copulas is nowhere dense in (C3, D1) and
(C3, D∞).

2. The collection of all simplified copulas is nowhere dense in C3 with respect
to the topology induced by weak conditional convergence.

3. The collection of all simplified copulas with positive density is nowhere
dense in (C3

ac,>0, D1) and (C3
ac,>0, D∞).

Proof. To prove the first assertion assume that theD1-closure of the family of all
simplified copulas contains an open ball OD1(C, r) = {A ∈ C3 : D1(A,C) < r}
with C ∈ C and r > 0. Since according to Lemma A.6 non-simplified checker-
board copulas are dense in (C3, D1) we can find a non-simplified checkerboard
copula C∗ ∈ OD1(C, r). Since, by assumption, the D1-closure of the family
of all simplified copulas contains OD1(C, r) there exists a sequence (Cn)n∈N of
simplified copulas with limn→∞ D1(Cn, C

∗) = 0, a contradiction to Lemma A.5.
Proceeding analogously yields the second and the third assertion.

Theorem 3.9 and Theorem 2.3 imply the following two striking results:

Theorem 3.10.

1. The collection of all simplified copulas is nowhere dense in (C3, TV ).
2. The collection of all simplified copulas with positive density is nowhere

dense in (C3
ac,>0, TV ).

Theorem 3.11. The collection of all simplified copulas with positive density is
nowhere dense in (C3

ac,>0,KL).

Theorems 3.9, 3.10 and 3.11 answer the question “How dense does the set of
simplified densities lie in the set of all densities?” posed by Nagler and Czado
[27] in a complete and definitive manner.

In the same article the authors also pose the question on “how far off can we
be by assuming a simplified model?” – one of the main objectives of the subse-
quent sections is to answer this very question. Notice that, for this purpose, we
can restrict ourselves to the metric d∞ since (according to the afore-mentioned
results) simplified copulas are nowhere dense w.r.t. D1, D∞, TV and KL.
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4. Simplified pair-copula constructions

Equation (3.1) suggests the construction of a three-dimensional copula in terms
of two families of (conditional) univariate marginal distribution functions char-
acterizing the dependence structure between coordinates 1&3 and coordinates
2&3, respectively, and (conditional) bivariate copulas representing the depen-
dence structure between coordinates 1&2 conditional on the third variable. This
just-mentioned construction principle is called vine decomposition or pair-copula
construction (see [1, 3]). In case the conditioning variable only enters indirectly
through the conditional marginals (as it is the case in Equation (3.4); see, e.g.,
[18] for an early reference), the pair-copula construction is said to be simplified
(see [17]).

4.1. Construction principle

Simplified pair-copula constructions are used to approximate the data gener-
ating copula (from C3

c ) by a simplified copula (from C3
S) using the following

hierarchical bottom-up algorithm based on Equation (3.4):
(1) Estimation of the (conditional) univariate marginal distribution functions

F1|3(.|t) and F2|3(.|t) conditional on t;
(2) Estimation of the (conditional) copula A of coordinates 1&2 conditional on

variable 3 assuming that the conditioning variable enters only through the
arguments of the conditional copula A (simplifying assumption).

The estimation is either done step-by-step or jointly, parametric or non-para-
metric, for more information we refer to [1, 2, 16, 17, 21, 27, 34] and the ref-
erences therein. For an additional discussion about estimating conditional cop-
ulas satisfying the simplifying assumption (step (2)), we additionally refer to
[8, 13, 14, 30].

The 3-dimensional copula resulting from this algorithm is simplified and is
said to be a simplified vine copula (SVC). Apparently, the above algorithm and
thus its output, the SVC, depend on the estimation method used and also on
the suitable family of copulas from which the estimators are selected. The above
algorithm may certainly provide a reasonable estimator if the (data generating)
copula is simplified. The natural question arising at this point, however, is how
well an SVC approximates the data generating copula if the latter fails to be
simplified. We start with the following example also discussed in [35, Section 5]:

Example 4.1. The EFGM copula CEFGM ∈ F3
Π introduced in Example 3.4 is

non-simplified. Minimizing the Kullback-Leibler divergence between the condi-
tional copula and its estimator selected from the family of all bivariate EFGM
copulas in step (2) yields the bivariate independence copula as the optimal ap-
proximation. The SVC selected by a step-by-step algorithm hence equals the
three-dimensional independence copula.

Comparing the data generating copula with its selected SVC yields a d∞-
distance of 1/64; this equals 6.25% of the maximal d∞-distance of two copulas
within the (Fréchet) class of all copulas having pairwise independent marginals



1966 T. Mroz et al.

(using the results in [28, Section 3.3] it is straightforward to verify that the
diameter of this class is 1/4).

We refer to [2, 17, 35] for more examples and comparisons of the data gener-
ating copula with its selected simplified vine copula whereby the quality of the
approximations is judged quite differently.

Aiming to obtain more general analytic results concerning the optimality of
simplified pair-copula constructions, in what follows we discuss the concept of
partial vine copulas.

4.2. Partial vine copulas (PVCs)

The basic idea behind a partial vine copula is that the conditional bivariate
copulas of the original three-dimensional copula are averaged (see [33, 34]):

Considering that for every C ∈ C3
c the copula Ct

12;3 is unique for almost every
t ∈ I it follows that the function Cp : I2 → I, given by

Cp(s) :=

∫
I

Ct
12;3(s) dλ(t)

is well–defined. In the sequel we will refer to Cp as the partial copula of C (also
see [4]). Coinciding with the expected conditional copula, the partial copula is
often used as an approximation of the conditional copula (see [33, 34] for more
information). Given Cp in the above setting the mapping ψ : C3

c → C3
c , given by

(
ψ(C)

)
(u, v) :=

∫
[0,v]

Cp

(
F1|3(u1|t), F2|3(u2|t)

)
dλ(t)

is well–defined and assigns to every copula C ∈ C3
c a simplified copula ψ(C).

The copula ψ(C) is referred to as the partial vine copula of C (with respect to
the third coordinate) in the sequel. It is obvious that every partial vine copula
is simplified.

The transformation ψ preserves the dependence structure between coordi-
nates 1&3 as well as between coordinates 2&3. The following lemma gathers
some additional properties of ψ:

Lemma 4.2. Suppose that C ∈ C3
c . Then the following assertions hold:

(1) The partial vine copula ψ(C) of C satisfies (ψ(C))13 = C13 as well as
(ψ(C))23 = C23.

(2) If C is simplified then ψ(C) = C holds.
(3) The mapping ψ : C3

c → C3
c is not injective.
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Proof. Since F1|3(1|t) = 1 = F2|3(1|t) for almost every t ∈ I we have

(ψ(C))13(u1, v) =

∫
[0,v]

Cp

(
F1|3(u1|t), F2|3(1|t)

)
dλ(t)

=

∫
[0,v]

F1|3(u1|t) dλ(t) = C13(u1, v)

for all (u1, v) ∈ I
2. The identity (ψ(C))23 = C23 follows in the same manner.

Assertion (2) is trivial and Assertion (3) follows from Example 4.4 below.

Example 4.3. (Class F3
Π, cont.)

For every C ∈ F3
Π the identity

(ψ(C))(u, v) = C12(u) v

holds for all (u, v) ∈ I
2 × I.

In fact, considering that F1|3(s1|t) = s1 and F2|3(s2|t) = s2 hold for all s ∈ I
2

and almost all t ∈ I we get

Cp(s) =

∫
I

Ct
12;3

(
F1|3(s1|t), F2|3(s2|t)

)
dλ(t) = C(s, 1) = C12(s)

for all s ∈ I
2. Having this, the fact that (ψ(C))(u, v) = Cp(u) v = C12(u) v

holds for all (u, v) ∈ I
2 × I follows immediately.

As a consequence of Example 4.3, if C13 = Π = C23 and, additionally, C12 =
Π, then

ψ(C) = Π

follows although, in general, C 	= Π. This fact applies in particular to the fol-
lowing copulas:

Example 4.4.
(1) The EFGM copula CEFGM ∈ F3

Π introduced in Example 3.4 is non-simplified,
satisfies

CEFGM
12 = CEFGM

13 = CEFGM
23 = Π and CEFGM

p = Π (also see [33]),

and hence ψ(CEFGM) = Π 	= CEFGM.
(2) The copula CCube ∈ F3

Π introduced in Example 3.4 is non-simplified, sat-
isfies

CCube
12 = CCube

13 = CCube
23 = Π and CCube

p = Π,

and hence ψ(CCube) = Π 	= CCube.
(3) The copula CRCube ∈ F3

Π whose mass is distributed uniformly within the
cubes (

0, 1
2

)
×

(
1
2 , 1

)
×

(
0, 1

2

) (
1
2 , 1

)
×

(
0, 1

2

)
×

(
0, 1

2

)(
0, 1

2

)
×

(
0, 1

2

)
×

(
1
2 , 1

) (
1
2 , 1

)
×

(
1
2 , 1

)
×

(
1
2 , 1

)
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and has no mass outside these cubes is non-simplified, satisfies

CRCube
12 = CRCube

13 = CRCube
23 = Π and CRCube

p = Π,

and hence ψ(CRCube) = Π 	= CRCube.
The copula in (3) is denoted as ‘RCube’ since it is a reflected version of the
copula in (2); both are related to each other via μCRCube = (μCCube)T where
T : I2 × I → I

2 × I is the mapping given by T (u, v) := (u, 1− v) and (μCCube)T

denotes the push-forward of μCCube via T .

PVCs have been used in [24] to test the simplifying assumption in vine cop-
ula models and in [27] to construct a non-parametric estimator for multivariate
distributions. In [34] the authors showed that “under regularity conditions, step-
wise estimators of pair-copula constructions converge to the PVC irrespective
of whether the simplifying assumption holds or not” (see [34, Corollary 6.1]).
Nevertheless, this does not need to be true if the estimation is done jointly in a
non-simplified setting (see [34, Corollary 6.1]). The authors further proved that
“if one sequentially minimizes the Kullback-Leibler divergence related to each
tree then the optimal SVC is the PVC” (see [34, Theorem 5.1]). Since, again,
this is not necessarily true if the estimation is done jointly in a non-simplified
setting (see [34, Theorem 5.2]) the authors conclude that PVCs “may not be
the best approximation in the space of SVCs” but are “often the best feasible
SVC approximation in practice.”

Motivated by these results in what follows we discuss analytic properties and
optimality of simplified pair-copula constructions and focus mainly on partial
vine copulas. In Section 5 we calculate the d∞-distance between non-simplified
copulas and their unique partial vine copulas for different dependence structures,
in Section 6 we discuss continuity of ψ with respect to different notions of
convergence.

5. Optimality of partial vine copulas

Main objective of this section is to provide an answer to the question “how far
off can we be by assuming a simplified model?” posed by Nagler and Czado [27].
We proceed as follows: We first show that partial vine copulas are never the best
simplified copula approximation (with respect to d∞) if the true copula is non-
simplified (Theorem 5.1). We then compare non-simplified copulas C with their
unique partial vine copulas ψ(C) in different settings and calculate their d∞-
distance. It turns out that the maximal distance within the family of all copulas
with pairwise independent marginals is 1/8 which corresponds to 50% of the
diameter of this class w.r.t. d∞. Going even further, we provide an example of
a copula C ∈ C3 fulfilling d∞(C,ψ(C)) = 3/16 which, in turn, corresponds to
28.125% of the diameter of (C3, d∞). In other words, ψ(C) can be far away from
C, so working with PVCs must be done with care.

Corollary 3.7 implies that if C does not fulfill the simplifying assumption
then the partial vine copula fails to be optimal with respect to d∞:
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Theorem 5.1. Suppose that C ∈ C3
c is non-simplified. Then there exists some

simplified copula D ∈ C3
S satisfying d∞(C,D) < d∞(C,ψ(C)).

Proof. Considering C ∈ C3
c \C3

S we have C 	= ψ(C), so setting 0 < d∞(C,ψ(C)) =:
ε and using Corollary 3.7 yields the desired result.

As next step we calculate

sup
C∈F3

Π

d∞(C,ψ(C)),

show that the supremum is attained and then characterize all elements in F3
Π

attaining the maximum. Afterwards we provide a lower bound for

sup
C∈C3

c

d∞(C,ψ(C)).

The (dis)continuity results in Section 6 will make it clear why we can not sim-
ply use compactness of (C3, d∞) to conclude that the supremum in the last
expression is attained.

5.1. Worst case scenario for the class F3
Π

The following theorem holds – notice that the set of maximizers includes the
two copulas CCube and CRCube introduced in Examples 3.4 and 4.4:

Theorem 5.2. For every copula C ∈ F3
Π the inequality d∞

(
C,ψ(C)

)
≤ 1

8 holds.
Moreover, for every C ∈ F3

Π the following two conditions are equivalent:
(a) d∞

(
C,ψ(C)

)
= 1

8 .
(b) C satisfies either

μC

[(
0, 1

2

)
×

(
0, 1

2

)
×

(
0, 1

2

)]
= 1

4 = μC

[(
0, 1

2

)
×

(
1
2 , 1

)
×

(
1
2 , 1

)]
μC

[(
1
2 , 1

)
×

(
1
2 , 1

)
×

(
0, 1

2

)]
= 1

4 = μC

[(
1
2 , 1

)
×

(
0, 1

2

)
×

(
1
2 , 1

)]
or

μC

[(
0, 1

2

)
×

(
0, 1

2

)
×

(
1
2 , 1

)]
= 1

4 = μC

[(
0, 1

2

)
×

(
1
2 , 1

)
×

(
0, 1

2

)]
μC

[(
1
2 , 1

)
×

(
1
2 , 1

)
×

(
1
2 , 1

)]
= 1

4 = μC

[(
1
2 , 1

)
×

(
0, 1

2

)
×

(
0, 1

2

)]
.

Proof. Consider C ∈ F3
Π, fix (u, v) ∈ I

2 × (0, 1) and set

k :=
1

v

∫
[0,v]

Ct
12;3(u) dλ(t) and l :=

1

1− v

∫
[v,1]

Ct
12;3(u) dλ(t).

Then

C12(u) =

∫
I

Ct
12;3(u) dλ(t) = k v + l (1− v)
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and

C(u, v) =

∫
[0,v]

Ct
12;3

(
F1|3(u1|t), F2|3(u2|t)

)
dλ(t) =

∫
[0,v]

Ct
12;3(u) dλ(t) = k v

Having this and using Example 4.3 yields

C(u, v)−(ψ(C))(u, v) = k v−C12(u) v = k v−
(
k v+l (1−v)

)
v = v (1−v) (k−l).

Since W (u) ≤ k ≤ M(u) as well as W (u) ≤ l ≤ M(u) we further have∣∣C(u, v)− (ψ(C))(u, v)
∣∣ = v (1− v) |k − l| ≤ v (1− v) d∞(M,W ) ≤ 1

8

Considering d∞
(
CCube, ψ(CCube)

)
= CCube

(
1
2

)
−Π

(
1
2

)
= 1

4 − 1
8 = 1

8 we finally
obtain

1

8
= d∞

(
CCube, ψ(CCube)

)
≤ sup

C∈FΠ

d∞
(
C,ψ(C)

)
≤ 1

8

which proves the first assertion.
For proving the stated equivalence we proceed as follows: First suppose that

(b) holds. Considering that for u = 1
2 and v = 1

2 we have

|k − l| =
∣∣2 μC

[(
0, 1

2

)
×

(
0, 1

2

)
×

(
0, 1

2

)]
− 2 μC

[(
0, 1

2

)
×

(
0, 1

2

)
×

(
1
2 , 1

)]∣∣ = 2

4

it follows that

1

8
≥ d∞

(
C,ψ(C)

)
≥

∣∣C(
1
2

)
− (ψ(C))

(
1
2

)∣∣ = 1

4

∣∣k − l
∣∣ = 1

4

2

4
=

1

8

so (a) holds and it remains to show that (a) implies (b). First of all notice that

1

8
= d∞

(
C,ψ(C)

)
= sup

(u,v)∈I2×I

∣∣v (1− v) (k − l)
∣∣

and that it is straightforward to show that |k − l| is at most 1/2 and that 1/2
can only be attained by choosing u1 = 1/2 = u2 (irrespective of the value of v).
In this case either k = 1/2 and l = 0 or k = 0 and l = 1/2. Thus,

1

8
= d∞

(
C,ψ(C)

)
≤ sup

v∈I

∣∣v (1− v)
∣∣ · sup

(u,v)∈I2×I

∣∣k − l
∣∣ = 1

2
sup
v∈I

∣∣v (1− v)
∣∣ = 1

8

and v = 1/2. From the first part of this proof we get

μC

[(
0, 1

2

)3]
= C

(
1
2 ,

1
2

)
= k 1

2 ∈
{
0, 1

4

}
as well as

μC

[(
0, 1

2

)3]
+ μC

[(
0, 1

2

)
×

(
0, 1

2

)
×

(
1
2 , 1

)]
= μC

[(
0, 1

2

)
×

(
0, 1

2

)
× I

]
= C12

(
1
2

)
= k v + l (1− v) = 1

4
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Since for every C ∈ F3
Π we have

μC

[(
0, 1

2

)
× I×

(
0, 1

2

)]
= 1

4 μC

[
I×

(
0, 1

2

)
×

(
0, 1

2

)]
= 1

4

μC

[(
0, 1

2

)
× I×

(
1
2 , 1

)]
= 1

4 μC

[
I×

(
0, 1

2

)
×

(
1
2 , 1

)]
= 1

4

μC

[(
1
2 , 1

)
× I×

(
0, 1

2

)]
= 1

4 μC

[
I×

(
1
2 , 1

)
×

(
0, 1

2

)]
= 1

4

μC

[(
1
2 , 1

)
× I×

(
1
2 , 1

)]
= 1

4 μC

[
I×

(
1
2 , 1

)
×

(
1
2 , 1

)]
= 1

4

it suffices to distinguish the following two situations:

(i) If μC

[(
0, 1

2

)3]
= 1

4 then μC

[(
0, 1

2

)
×

(
0, 1

2

)
×

(
1
2 , 1

)]
= 0 and C13 = Π = C23

yields

μC

[(
0, 1

2

)
×

(
1
2 , 1

)
×

(
0, 1

2

)]
= 0 μC

[(
0, 1

2

)
×

(
1
2 , 1

)
×

(
1
2 , 1

)]
= 1

4

μC

[(
1
2 , 1

)
×

(
0, 1

2

)
×

(
0, 1

2

)]
= 0 μC

[(
1
2 , 1

)
×

(
1
2 , 1

)
×

(
0, 1

2

)]
= 1

4

μC

[(
1
2 , 1

)
×

(
1
2 , 1

)
×

(
1
2 , 1

)]
= 0 μC

[(
1
2 , 1

)
×

(
0, 1

2

)
×

(
1
2 , 1

)]
= 1

4

(ii) If μC

[(
0, 1

2

)3]
= 0, then μC

[(
0, 1

2

)
×
(
0, 1

2

)
×
(
1
2 , 1

)]
= 1

4 and C13 = Π = C23

yields

μC

[(
0, 1

2

)
×

(
1
2 , 1

)
×

(
0, 1

2

)]
= 1

4 μC

[(
0, 1

2

)
×

(
1
2 , 1

)
×

(
1
2 , 1

)]
= 0

μC

[(
1
2 , 1

)
×

(
0, 1

2

)
×

(
0, 1

2

)]
= 1

4 μC

[(
1
2 , 1

)
×

(
1
2 , 1

)
×

(
0, 1

2

)]
= 0

μC

[(
1
2 , 1

)
×

(
1
2 , 1

)
×

(
1
2 , 1

)]
= 1

4 μC

[(
1
2 , 1

)
×

(
0, 1

2

)
×

(
1
2 , 1

)]
= 0,

which completes the proof.

Notice that Theorem 5.2 implies the following striking property: The maximal
distance of a copula C with pairwise independent marginals and its partial vine
copula ψ(C) corresponds to
– 50% of the diameter of the metric space of all copulas with pairwise inde-

pendent marginals w.r.t. d∞; the diameter of this class equals 1/4 which
can be calculated via [28, Section 3.3].

– 18.75% of the diameter of (C3, d∞), which is given by 2/3.

Remark 5.3. An equally striking result can be shown for the metric D1: Again
working with CCube it follows that

sup
C∈F3

Π

D1(C,ψ(C)) ≥ 15

64
= D1(C

Cube, ψ(CCube))

holds. Using the results in [11] we therefore get that the maximal D1-distance
of a copula C ∈ F3

Π and its partial vine copula ψ(C) is greater than or equal
to 42.1875% of the diameter of the metric space (C3, D1); the diameter of this
class is at most 5/9 which can be calculated via [11, Lemma 2].

Remark 5.4. At this point it is worth to mention that CCube is exchangeable
and hence approximating CCube by ψ(CCube) leads to equally poor results no
matter which coordinate is chosen for the conditioning.
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5.2. Worst case scenario for the full class C3
c

We are now going to show that the maximal d∞-distance of a copula C ∈ C3
c

and its assigned partial vine copula ψ(C) is at least 3/16 which corresponds to
28.125% of the diameter of the metric space (C3

c , d∞).

Example 5.5. Consider the intervals Ii :=
(
i−1
4 , i

4

)
for i ∈ {1, . . . , 4}. We use

Equation (3.1) in order to construct a three-dimensional non-simplified copula
C satisfying that its conditional copulas Ct

12;3, t ∈ I, are identical for all t within
each of the four subintervals. To this end, set

At :=

4∑
i=1

Di1Ii(t) + Π1{0, 14 , 12 , 34 ,1}(t)

where the bivariate copulas D1, . . . , D4 are the shuffles of W depicted in Figure
2 (for the definition of shuffles we refer to [9, Definition 2.1] and [12, Section 5]).
As next step we construct the (conditional) univariate marginal distribution

1

0 1

1

0 1

1

0 1

1

0 1

Fig 2. Shuffles D1, D2, D3, D4 of W as considered in Example 5.5.

Fig 3. Densities of the checkerboard copulas B∗ (left panel) and B∗∗ (right panel).

functions F1|3(.|t) and F2|3(.|t) (conditional on t ∈ I) and proceed as follows: Let
B∗, B∗∗ denote bivariate checkerboard copulas (see [11] for a definition) whose
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densities b∗, b∗∗ : I2 → R are given by

b∗(u1, t) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2 (u1, t) ∈

(
0, 1

2

)
× I1 ∪

(
1
2 , 1

)
× I4

1 (u1, t) ∈ I× I2 ∪ I× I3
3
2 (u1, t) ∈

(
1
2 , 1

)
× I1 ∪

(
0, 1

2

)
× I4

0 otherwise

and

b∗∗(u2, t) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2 (u2, t) ∈

(
0, 1

2

)
× I2 ∪

(
1
2 , 1

)
× I3

1 (u2, t) ∈ I× I1 ∪ I× I4
3
2 (u2, t) ∈

(
1
2 , 1

)
× I2 ∪

(
0, 1

2

)
× I3

0 otherwise

,

respectively (see Figure 3). Then the Markov kernels of B∗ and B∗∗ obviously
satisfy

KB∗(t, [0, 0.5]) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
4 t ∈ I1
2
4 t ∈ I2
2
4 t ∈ I3
3
4 t ∈ I4

and KB∗∗(t, [0, 0.5]) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2
4 t ∈ I1
1
4 t ∈ I2
3
4 t ∈ I3
2
4 t ∈ I4.

Completing the construction of C we use the copulas At, t ∈ I, as conditional
copulas and the Markov kernels KB∗ and KB∗∗ as (conditional) univariate
marginal distribution functions, and set

C(u, v) :=

∫
[0,v]

At
(
KB∗(t, [0, u1]),KB∗∗(t, [0, u2])

)
dλ(t). (5.1)

Then C ∈ C3
c is non-simplified, satisfies Ct

12;3 = At for all t ∈ I1 ∪ I2 ∪ I3 ∪ I4,
C13 = B∗, C23 = B∗∗, as well as

C
(
0.5, 0.5, 1

)
=

∫
I

At
(
KB∗(t, [0, 0.5]),KB∗∗(t, [0, 0.5])

)
dλ(t)

=
1

4
D1

(
1

4
,
2

4

)
+

1

4
D2

(
2

4
,
1

4

)
+

1

4
D3

(
2

4
,
3

4

)
+

1

4
D4

(
3

4
,
2

4

)
=

1

4

(
1

4
+

1

4
+

1

2
+

1

2

)
=

3

8

Considering that the partial copula Cp of C is given by Cp = 1
4

(
D1+D2+D3+

D4
)
the partial vine copula ψ(C) of C satisfies(
ψ(C)

)(
0.5, 0.5, 1

)
=

∫
I

Cp

(
KB∗(t, [0, 0.5]),KB∗∗(t, [0, 0.5])

)
dλ(t)
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=
1

4
Cp

(
1

4
,
2

4

)
+

1

4
Cp

(
2

4
,
1

4

)
+

1

4
Cp

(
2

4
,
3

4

)
+

1

4
Cp

(
3

4
,
2

4

)
=

1

16

(
D1

(
1

4
,
1

2

)
+D2

(
1

4
,
1

2

)
+D3

(
1

4
,
1

2

)
+D4

(
1

4
,
1

2

))
+

1

16

(
D1

(
1

2
,
1

4

)
+D2

(
1

2
,
1

4

)
+D3

(
1

2
,
1

4

)
+D4

(
1

2
,
1

4

))
+

1

16

(
D1

(
1

2
,
3

4

)
+D2

(
1

2
,
3

4

)
+D3

(
1

2
,
3

4

)
+D4

(
1

2
,
3

4

))
+

1

16

(
D1

(
3

4
,
1

2

)
+D2

(
3

4
,
1

2

)
+D3

(
3

4
,
1

2

)
+D4

(
3

4
,
1

2

))
=

1

16

(
1

4
+

1

4
+

5

4
+

5

4

)
=

3

16
,

from which we get d∞(C,ψ(C)) ≥ 3
16 .

We have therefore proved the following theorem:

Theorem 5.6. There exists a copula C ∈ C3
c fulfilling d∞(C,ψ(C)) ≥ 3

16 and
we have

sup
C∈C3

c

d∞
(
C,ψ(C)

)
≥ 3

16
.

6. Continuity of ψ

In this section we discuss continuity properties of the mapping ψ : C3
c → C3

c

assigning every C ∈ C3
c its partial vine copula. Having in mind Lemma 4.2

intuitively one might interpret ψ as projection and therefore think that ψ has to
be continuous with respect to d∞. It turns out, however, that this interpretation
is wrong, we will show that ψ is not continuous with respect to d∞. Considering
stronger topologies than the one induced by d∞ changes the picture – we will
prove that ψ is continuous with respect to weak conditional convergence and
with respect to the metric D1 (under some mild regularity conditions).

6.1. Uniform convergence

The mapping ψ is not continuous with respect to d∞ – the following result
holds:

Theorem 6.1. Suppose that C ∈ C3
c satisfies d∞(C,ψ(C)) 	= 0. Then C is

a discontinuity point of the the mapping ψ : C3
c → C3

c . In other words: Every
non-simplified C ∈ C3

c is a discontinuity point of ψ.

Proof. Let C be as in the theorem and set ε := d∞(C,ψ(C)) > 0. Suppose that

X1,X2, . . . is an i.i.d. sample from X ∼ C and let Ĉn denote the corresponding
empirical copula. With probability one we have that X1,X2, . . . has no ties and
that (Ĉn)n∈N converges to C with respect to d∞. Considering that empirical
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copulas are simplified according to Theorem 3.6 and using the triangle inequality
it follows immediately that

ε = d∞(C,ψ(C))

≤ d∞
(
C,ψ

(
Ĉn

))
+ d∞

(
ψ
(
Ĉn

)
, ψ(C)

)
= d∞

(
C, Ĉn

)
+ d∞

(
ψ
(
Ĉn

)
, ψ(C)

)
holds for every n ∈ N. Consequently, since limn→∞ d∞(Ĉn, C) = 0

lim inf
n→∞

d∞
(
ψ
(
Ĉn

)
, ψ(C)

)
≥ ε

follows, implying that ψ is not continuous at C.

Using convex combinations (of empirical copulas with a non-simplified co-
pula) it is straightforward to verify that the set of all C ∈ C3

c that are non-
simplified is dense in (C3

c , d∞) – Theorem 6.1 therefore has the following corol-
lary:

Corollary 6.2. The mapping ψ : C3
c → C3

c is discontinuous on a dense subset
of (C3

c , d∞).

6.2. Weak conditional convergence

Focusing on weak conditional convergence the mapping ψ behaves more nicely:

Theorem 6.3. Suppose that C,C1, C2, . . . are copulas in C3
c . Then the following

assertions hold:
(1) Cn

wcc−−→ C implies (Cn)13
wcc−−→ C13 and (Cn)23

wcc−−→ C23.

(2) Cn
wcc−−→ C implies (Cn)p

d∞−−→ Cp.

(3) Cn
wcc−−→ C implies ψ(Cn)

wcc−−→ ψ(C).

Proof. The first assertions follows from Theorem 2.2. To prove the second one we
proceed as follows: Since for almost all v ∈ I the marginal distribution functions
of KCn(v, .), n ∈ N, and of KC(v, .) are continuous, Lemma A.2 implies uniform
convergence of the sequence ((Cn)

v
12;3)n∈N to Cv

12;3. For s ∈ I
2 we get

∣∣(Cn)p(s)− Cp(s)
∣∣ =

∣∣∣∣∫
I

(Cn)
t
12;3(s)− Ct

12;3(s) dλ(t)

∣∣∣∣
≤

∫
I

∣∣(Cn)
t
12;3(s)− Ct

12;3(s)
∣∣ dλ(t)

≤
∫
I

d∞
(
(Cn)

t
12;3, C

t
12;3

)
dλ(t)

and dominated convergence yields

lim
n→∞

d∞
(
(Cn)p, Cp

)
= 0
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To prove the last assertion notice that for almost all t ∈ I we have (ψ(C))t12;3 =
Cp as well as (ψ(Cn))

t
12;3 = (Cn)p for every n ∈ N. Hence, using the second

assertion it follows that

lim
n→∞

d∞
(
(ψ(Cn))

t
12;3, (ψ(C))t12;3

)
= lim

n→∞
d∞

(
(Cn)p, Cp

)
= 0

holds for almost all t ∈ I. According to Lemma A.2 it now suffices to show
that the marginal distribution functions of the Markov kernels converge weakly,
which is, however, an immediate consequence of the fact that (ψ(C))i3 = Ci3

and (ψ(Cn))i3 = (Cn)i3, i ∈ {1, 2} holds for every n ∈ N (see Lemma 4.2).

6.3. Convergence with respect to D1

We finally discuss D1-continuity. Similar to the proof of Theorem 6.3, we first
relate D1-convergence of copulas to uniform convergence of the corresponding
partial copulas. The slightly technical (but straightforward) proof of the follow-
ing useful lemma is deferred to the appendix:

Lemma 6.4. Suppose that C,C1, C2, . . . are copulas in C3
c . Then the following

assertions hold:

(1) Cn
D1−−→ C implies (Cn)13

D1−−→ C13 and (Cn)23
D1−−→ C23.

(2) (Cn)p
d∞−−→ Cp, (Cn)13

D1−−→ C13 and (Cn)23
D1−−→ C23 imply ψ(Cn)

D1−−→ ψ(C).

We now show D1-continuity of the mapping ψ on the subclass of absolutely
continuous copulas satisfying some integrability condition. The following lemma
whose proof is deferred to the appendix will be key for proving this result:

Lemma 6.5. Suppose that C,C1, C2, . . . are copulas in C3
c , that C is absolutely

continuous and let c13, c23 denote the densities of the marginal copulas C13, C23

of C. If there exist some constants p13, p23, p123 ∈ (1,∞) such that

‖c13‖p13 < ∞, ‖c23‖p23 < ∞, ‖c13 c23‖p123 < ∞

holds then Cn
D1−−→ C implies (Cn)p

d∞−−→ Cp.

Combining the previous two lemmata yields continuity of ψ with respect to
D1 under some mild regularity conditions:

Theorem 6.6. Consider a sequence of copulas (Cn)n∈N in C3
c and an absolutely

continuous copula C ∈ C3
c , and let c13, c23 denote the densities of the marginal

copulas C13, C23 of C, respectively. If there exist some constants p13, p23, p123 ∈
(1,∞) such that

‖c13‖p13 < ∞, ‖c23‖p23 < ∞, ‖c13 c23‖p123 < ∞

holds then Cn
D1−−→ C implies ψ(Cn)

D1−−→ ψ(C).
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7. Results for arbitrary dimension

To confirm that the case of dimension three is similar to higher dimension in
this section we extend (slightly modified versions of) our main results (Theorem
3.6, Corollary 3.7, Theorem 5.1, Theorem 5.6, Theorem 6.1 and Corollary 6.2)
to arbitrary dimensions.

7.1. Simplified copulas.

Using disintegration for every copula C ∈ Cd, every J ⊆ {1, . . . , d} with 2 ≤
|J | ≤ d and every L ⊆ J with 1 ≤ |L| ≤ |J |−2, there exists some Markov kernel
KCJ

such that the lower dimensional marginal copula CJ of C corresponding
to the indices of the coordinates of C belonging to J can be expressed as

CJ(u) =

∫
[0,uL]

KCJ
(t, [0,uJ\L]) dμCL

(t)

for all u ∈ I
|J|. Thereby uL ∈ I

|L| denotes the vector of coordinates of u
belonging to L, and uJ\L ∈ I

|J\L| the vector of coordinates of u belonging

to J\L. Since KCJ
is a Markov kernel, for every uJ\L ∈ I

|J\L| the mapping

t �→ KCJ
(t, [0,uJ\L]) is measurable and, for μCL

-almost every t ∈ I
|L|, the

mapping uJ\L �→ KCJ
(t, [0,uJ\L]) is a multivariate distribution function with

(conditional) univariate marginal distribution functions Fj|L(.|t), j ∈ J\L, (con-
ditional on t). By Sklar’s theorem we get that for almost every t ∈ I

|L| there
exists some (conditional) copula Ct

J\L;L (conditional on t) satisfying

KCJ
(t, [0,uJ\L]) = Ct

J\L;L

(
Fj1|L(uj1 |t), . . . , Fj|J\L||L(uj|J\L| |t)

)
for all uJ\L = (uj1 , . . . , uj|J\L|) ∈ I

|J\L| such that the identity

CJ(u) =

∫
[0,uL]

Ct
J\L;L

(
Fj1|L(uj1 |t), . . . , Fj|J\L||L(uj|J\L| |t)

)
dμCL

(t)

holds for all u ∈ I
|J|.

We will refer to a copula C ∈ Cd as universally simplified if for every J ⊆
{1, . . . , d} with 2 ≤ |J | ≤ d and every L ⊆ J with 1 ≤ |L| ≤ |J |−2 the following
properties hold:
(U1) There exists some copula A ∈ C|J\L| such that the identity

CJ(u) =

∫
[0,uL]

A
(
Fj1|L(uj1 |t), . . . , Fj|J\L||L(uj|J\L| |t)

)
dμCL

(t) (7.1)

holds for all u ∈ I
|J|.
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(U2) The (conditional) univariate marginal distribution functions Fj|L(.|t), j ∈
J\L, are continuous for μCL

-almost all t ∈ I
|L|.

Notice that every universally simplified three-dimensional copula is simplified in
the sense studied in the last sections but not necessarily vice versa. If C ∈ Cd is
universally simplified then Sklar’s theorem implies that the (conditional) copulas
Ct

J\L;L are unique for μCL
-almost all t ∈ I

|L|. In what follows we will let Cd
c

denote the family of all d-dimensional copulas having continuous (conditional)
univariate marginal distribution functions, Cd

US will denote the family of all d-
dimensional universally simplified copulas. Notice that Π ∈ Cd

US and that the
collection of all absolutely continuous copulas Cd

ac is contained in Cd
c .

As first step we now prove a sharper version of Theorem 3.6 and show that all
d-variate empirical copulas (d-linear interpolations) are universally simplified.

Theorem 7.1. Every d-dimensional empirical copula is universally simplified.

Proof. Suppose that X is a d-dimensional random vector with continuous uni-
variate marginals and suppose that X1, . . . ,Xn is a sample from X. W.l.o.g.
assume that there are no ties. Letting Ĉn denote the (d-linear interpolation of
the) empirical copula there exists unique permutations σ1, . . . , σd−1 of {1, . . . , n}
such that the density ĉn of Ĉn is given by (uniform distribution on n d-dimen-
sional squares of volume 1

nd )

ĉn(u) = nd−1
n∑

i=1

⎛⎝ d∏
j=1

1Ij
i
(uj)

⎞⎠ , u = (u1, . . . , ud) ∈ I
d,

where Iji = (
σj(i)−1

n ,
σj(i)
n ], j ∈ {1, . . . , d − 1}, and Idi = ( i−1

n , i
n ] for every

i ∈ {1, . . . , n}. Since marginals of empirical copulas are empirical copulas too
it suffices to prove the result for J = {1, . . . , d} and for 1 ≤ l ≤ d − 2 with
L = {d − l + 1, . . . , d}. Considering that the l-dimensional marginal copula
(Ĉn)L of (Ĉn) assigns full mass to the set

n⋃
i=1

(
d×

j=d−l+1

Iji

)
︸ ︷︷ ︸

=:Ωi

it is enough to consider uL ∈ Ωi0 for some i0 ∈ {1, . . . , n}. For such uL the
Markov kernel (conditioning on the coordinates in L) is given by (straightfor-
ward consequence of first considering the conditional density)

KĈn
(uL, [0, u1]× · · · × [0, ud−l]) = nd−l

⎛⎝d−l∏
j=1

∫
[0,uj ]

1Ij
i0

(xj) dλ(xj)

⎞⎠
and the conditional univariate distribution functions Fj|L(uj |uL) for every j ∈
J \ L can be expressed as

Fj|L(uj |uL) = n

∫
[0,uj ]

1Ij
i0

(xj) dλ(xj).
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Having this we have shown

KĈn
(uL, [0, u1]× · · · × [0, ud−l]) = Πd−l

(
F1|L(u1|uL), . . . , Fd−l|L(ud−l|uL)

)
,

which completes the proof.

Since the collection of all empirical copulas is dense in (Cd, d∞) ([9, Proposi-
tion 3.2]) Theorem 7.1 has the following immediate consequence:

Corollary 7.2. The collection of all universally simplified d-dimensional co-
pulas is dense in (Cd, d∞).

Thus, every copula can be approximated arbitrarily well by universally sim-
plified ones. Given a d-dimensional, non universally simplified copula C, a good
uniform approximation by a universally simplified one from the same (Fréchet)
class might, however, not exist. The next example illustrates this fact:

Example 7.3. (Family Fd
Ind of all copulas C satisfying C(u,v) = B(u)Π(v)

for all (u,v) ∈ I
3 × I

d−3 and some B ∈ C3
c fulfilling B12 = B13 = B23 = Π.)

First, notice that for every universally simplified copula D in Fd
Ind there exists

some copula A ∈ C2 such that, according to Equation (7.1) (J = {1, . . . , d} and
L = {3, . . . , d}), the identity

D(u,v) =

∫
[0,v]

A
(
F1|L(u1|t), F2|L(u2|t)

)
dμCL

(t)

=

∫
[0,v]

A(u1, u2) dλ
d−2(t)

= A(u)Π(v)

holds for all (u,v) ∈ I
2 × I

d−2. Notice that the second equality holds since in
case of X ∼ D we have that (X1, X3) and (X4, . . . , Xd) are independent, hence

P (X1 ≤ u1, X3 ≤ u3, . . . , Xd ≤ ud) = P (X1 ≤ u1, X3 ≤ u3)

· P (X4 ≤ u4, . . . , Xd ≤ ud)

= P (X1 ≤ u1)P (X3 ≤ u3, . . . , Xd ≤ ud)

for all u ∈ (0, 1)d, so X1 and (X3, . . . , Xd) are independent and we get
F1|L(u1|t) = u1 (the same reasoning applies to F2|L).

Setting C(u,v) = CCube(u)Π(v) for all (u,v) ∈ I
3 × I

d−3 and considering
Example 3.8 it therefore follows that d∞(C,D) > ε (with ε as in Example 3.8),
i.e., it is not possible to approximate C by universally simplified copulas in Fd

Ind

with an error smaller than ε.

7.2. Partial vine copulas (PVC-D)

We finally introduce partial vine copulas (PVC) belonging to a D-vine struc-
ture, follow [34], and work with absolutely continuous copulas. The hierarchical
construction of a partial vine copula of D-vine structure then works as follows:

Consider some absolutely continuous copula C ∈ Cd
ac and set I := {(k, l) :
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l ∈ {1, . . . , d− 1}, k ∈ {1, . . . , d− l}}.
– In the first step, i.e. for (i, j) ∈ I with j = 1, we define the partial copulas

(Cp)i,i+j := Ci,i+j .
– In the second step, i.e. for (i, j) ∈ I with j = 2, we set Si,j := (i + 1) and

define the partial copulas (see [34, p. 1262])

(Cp)i,i+j;Si,j (ui, ui+j) :=

∫
I

C
wSi,j

i,i+j;Si,j
(ui, ui+j) dλ(wSi,j )

– In the next steps, i.e. for (i, j) ∈ I with j ≥ 3, we set Si,j := (i+1, . . . , i+
j − 1) and define the higher-order partial copulas (see [34, p. 1262])

(Cp)i,i+j;Si,j (ui, ui+j)

:=

∫
Ij−1

C
wSi,j

i,i+j;Si,j

(
G

wSi,j

i|Si,j
(ui), G

wSi,j

i+j|Si,j
(ui+j)

)
dμCSi,j

(wSi,j )

where G
wSi,j

k|Si,j
(uk) := Fk|Si,j

(
(F p

k|Si,j
)←(uk|wSi,j )|wSi,j

)
, k ∈ {i, i + j},

F p
i|Si,j

, F p
i+j|Si,j

are univariate distribution functions related to the (higher-

order) partial copulas (Cp)i,i+j−1;Si,j−1 and (Cp)i+1,i+j;Si+1,j−1 from the
previous step via [34, Eqn. (3.3), Eqn. (3.4)], and (F p

i|Si,j
)←, (F p

i+j|Si,j
)←

denote the quasi-inverses of F p
i|Si,j

, F p
i+j|Si,j

.

The copula CPVC having density

cPVC(u) :=
∏

(i,j)∈I,j=1

(cp)i,i+j(ui, ui+j)

×
∏

(i,j)∈I,j≥2

(cp)i,i+j;Si,j

(
F p
i|Si,j

(ui|uSi,j ), F
p
i+j|Si,j

(ui+j |uSi,j )
)

is referred to as the partial vine copula of D-vine structure corresponding to C
(see [34, p. 1262]. The mapping induced by the afore-mentioned procedure will
be denoted by ψ : Cd

ac → Cd
ac, i.e.,

ψ(C) = CPVC.

Notice that, by definition, CPVC is simplified with respect to the underlying
D-vine structure but may fail to be universally simplified.

Example 7.4. We calculate ψ(C) for the d-dimensional copula C ∈ Cd
ac given

by
C(u,v) := CCube(u)Π(v)

for all (u,v) ∈ I
3 × I

d−3 (see Example 7.3), show that ψ(C) = Π holds, proceed
in several steps, and start with the following observations:
– C satisfies CJ = Π for all J ⊆ {1, . . . , d} with 2 ≤ |J | ≤ d − 1 and

{1, 2, 3} 	⊆ J .
– the Markov kernel of C{1,...,1+j}, j ∈ {3, . . . , d − 1}, with respect to the

coordinates in S1,j satisfies
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KC{1,...,1+j}

(
wS1,j , [0, u1]× [0, u1+j ]

)
=

{
min (2u1, 1)u1+j if (w2, w3) ∈

(
0, 1

2

)2 ∪ (
1
2 , 1

)2
max (2u1 − 1, 0)u1+j if (w2, w3) ∈

(
0, 1

2

)
×

(
1
2 , 1

)
∪
(
1
2 , 1

)
×

(
0, 1

2

)
and hence C

wS1,j

1,1+j;S1,j
= Π for almost all wS1,j ∈ I

j−1; its univariate
marginal distribution function F1|S1,j

further satisfies

F1|S1,j
(u1|wS1,j )

=

{
min (2u1, 1) if (w2, w3) ∈

(
0, 1

2

)2 ∪ (
1
2 , 1

)2
max (2u1 − 1, 0) if (w2, w3) ∈

(
0, 1

2

)
×

(
1
2 , 1

)
∪
(
1
2 , 1

)
×

(
0, 1

2

)
= F1|S1,3

(u1|wS1,3)

We now calculate the partial vine copula ψ(C) step-by-step:
– If j = 1, then, for all i ∈ {1, . . . , d− 1}, (Cp)i,i+j = Ci,i+j = Π.
– If j = 2, then Si,j = (i+ 1) and (see Example 3.8)

(Cp)1,3;2(u1, u3) =

∫
I

Cw2
1,3;2(u1, u3) dλ(w2)

= 1
2A

1(u1, u3) +
1
2A

2(u1, u3) = Π(u1, u3)

and for every i ∈ {2, . . . , d− 2} we get

(Cp)i,i+j;Si,j (ui, ui+j) =

∫
I

C
wSi,j

i,i+j;Si,j
(ui, ui+j) dλ(wSi,j )

=

∫
I

Π(ui, ui+j) dλ(wSi,j ) = Π(ui, ui+j)

– If j ≥ 3, then F1|S1,j
(u1|wS1,j ) = F1|S1,3

(u1|wS1,3), Fi|Si,j
(ui|wSi,j ) = ui

whenever i ≥ 2, and Fi+j|Si,j
(ui+j |wSi,j ) = ui+j for all i ∈ {1, . . . , d−j}. By

iteration, we further obtain F p
i|Si,j

(ui|wSi,j ) = ui, F
p
i+j|Si,j

(ui+j |wSi,j ) =
ui+j ,

(Cp)1,1+j;S1,j (u1, u1+j)

=

∫
Ij−1

C
wS1,j

1,1+j;S1,j

(
G

wS1,j

1|S1,j
(u1), G

wS1,j

1+j|S1,j
(u1+j)

)
dμCS1,j

(wS1,j )

=

∫
Ij−1

Π
(
F1|S1,3

(u1|wS1,3), u1+j

)
dλj−1(wS1,j ) = Π(u1, u1+j)

and for every i ∈ {2, . . . , d− j} we get

(Cp)i,i+j;Si,j (ui, ui+j)

=

∫
Ij−1

C
wSi,j

i,i+j;Si,j

(
G

wSi,j

i|Si,j
(ui), G

wSi,j

i+j|Si,j
(ui+j)

)
dμCSi,j

(wSi,j )
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=

∫
Ij−1

Π(ui, ui+j) dλ
j−1(wSi,j ) = Π(ui, ui+j)

Since for every (i, j) ∈ I the (higher-order) partial copulas equal Π we have

cPVC(u) = 1

such that we finally arrive at ψ(C) = CPVC = Π.

7.3. Optimality of partial vine copulas and continuity of ψ

Example 7.4 allows to prove the following multivariate version of Theorem 5.6:

Theorem 7.5. For every d ≥ 3 there exists a copula C ∈ Cd
ac fulfilling

d∞(C,ψ(C)) ≥ 1
8 and we have

sup
C∈Cd

ac

d∞
(
C,ψ(C)

)
≥ 1

8
.

Proof. Again consider the d-dimensional copula C ∈ Cd
ac studied in Example

7.4. In this case we have ψ(C) = Π from which we get

d∞
(
C,ψ(C)

)
≥ C

(
1
2 ,

1
2 ,

1
2 ,1

)
−Π

(
1
2 ,

1
2 ,

1
2 ,1

)
= CCube

(
1
2 ,

1
2 ,

1
2

)
−Π

(
1
2 ,

1
2 ,

1
2

)
=

1

4
− 1

8
=

1

8
,

which implies the stated result.

We conclude the paper with the multivariate versions of Theorem 6.1 and
Corollary 6.2:

Theorem 7.6. Suppose that C ∈ Cd
ac satisfies d∞(C,ψ(C)) 	= 0. Then C is

a discontinuity point of the mapping ψ : Cd
ac → Cd

ac assigning every copula its
partial D-vine.

Proof. Proceeding analogous to the proof of Theorem 6.1 and using the fact
that empirical copulas are invariant under ψ and converge to the true copula
with respect to d∞ yields the result.

Again using convex combinations it is straightforward to verify that the set
of all C ∈ Cd

ac that are not universally simplified is dense in (Cd
ac, d∞) – Theorem

7.6 has the following consequence:

Corollary 7.7. The mapping ψ : Cd
ac → Cd

ac is discontinuous on a dense subset
of (Cd

ac, d∞).

Remark 7.8. It is worth mentioning that, although the construction principle
introduced in Subsection 7.2 (cf. Spanhel and Kurz [34]) sequentially minimizes
the Kullback-Leibler divergence related to each tree, according to Corollary 7.7
its outcome can be quite far away from the data generating copula, which,
however, is in line with Theorem 3.10 and Theorem 3.11.
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Appendix A: Supplementary material

Lemma A.1.
(1) Suppose that F, F1, F2, . . . are univariate distribution functions and suppose

that F is continuous. Then weak convergence Fn → F implies uniform
convergence.

(2) Suppose that F, F1, F2, . . . are d-dimensional distribution functions (d ≥ 2)
and suppose that F is continuous. Then weak convergence Fn → F implies
uniform convergence.

Proof. Since the first statement is well-known and straightforward to verify we
focus on the second assertion. Considering that F is continuous the sequence
(Fn)n∈N converges pointwise to F and the same holds true for all univariate
marginals. Using Sklar’s Theorem, Lipschitz continuity of copulas and statement
(1) we get ∣∣Fn(x)− F (x)

∣∣ ≤ d∑
i=1

∣∣(Fn)i(xi)− Fi(xi)
∣∣

for every x ∈ R
d, which completes the proof.

Lemma A.2. Suppose that F, F1, F2, . . . are d-dimensional distribution func-
tions with continuous marginals (F )i, (F1)i, (F2)i, . . . (i ∈ {1, . . . , d}) and copu-
las C,C1, C2, . . ., respectively. Then the following assertions hold:
(1) If Cn → C uniformly and (Fn)i → (F )i weakly then Fn → F uniformly.
(2) If Fn → F weakly then Cn → C uniformly.

Proof. Since the limits are continuous by assumption, according to Lemma A.1
weak and uniform convergence coincide. We start with proving the first assertion
and consider some x ∈ R

d. Then Lipschitz continuity of copulas and the triangle
inequality yield (we write Fn := ((Fn)1, (Fn)2, . . . , (Fn)d))∣∣Fn(x)− F (x)

∣∣ =
∣∣(Cn ◦ Fn)(x)− (C ◦ F)(x)

∣∣
≤

∣∣(Cn ◦ Fn)(x)− (C ◦ Fn)(x)
∣∣+ ∣∣(C ◦ Fn)(x)− (C ◦ F)(x)

∣∣
≤ d∞

(
Cn, C

)
+

d∑
i=1

∣∣(Fn)i(xi)− (F )i(xi)
∣∣,

from which the first assertion follows immediately.
To prove the second assertion fix u ∈ I

d. Letting (Fn)
←
i denote the quasi-

inverse of (Fn)i and letting F←
n accordingly denote the vector of quasi-inverses

of the univariate marginals yields∣∣Cn(u)− C(u)
∣∣

=
∣∣(Fn ◦ F←

n )(u)− (F ◦ F←)(u)
∣∣

≤
∣∣(Fn ◦ F←

n )(u)− (Fn ◦ F←)(u)
∣∣+ ∣∣(Fn ◦ F←)(u)− (F ◦ F←)(u)

∣∣
≤

d∑
i=1

∣∣((Fn)i ◦ (Fn)
←
i

)
(ui)−

(
(Fn)i ◦ (F )←i

)
(ui)

∣∣
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+
∣∣Fn

(
F←(u)

)
− F

(
F←(u)

)∣∣
=

d∑
i=1

∣∣ui −
(
(Fn)i ◦ (F )←i

)
(ui)

∣∣+ ∣∣Fn

(
F←(u)

)
− F

(
F←(u)

)∣∣
=

d∑
i=1

∣∣(F )i
(
(F )←i (ui)

)
− (Fn)i

(
(F )←i (ui)

)∣∣+ ∣∣Fn

(
F←(u)

)
− F

(
F←(u)

)∣∣
≤

d∑
i=1

d∞
(
(Fn)i, (F )i

)
+ sup

x∈Rd

|Fn(x)− F (x)|.

This completes the proof.

Lemma A.3. Suppose that C ∈ C3
ac is an absolutely continuous copula, and let

c13, c23 denote the densities of the marginal copulas C13, C23 of C, respectively.
Then the following inequality holds for every C̃ ∈ C3

c :∫
I2

∫
I

∣∣Ct
12;3(s)− C̃t

12;3(s)
∣∣ dλ(t)dλ2(s)

≤
∫
I

∫
I2

∣∣∣KC

(
t, [0, s]

)
−KC̃

(
t, [0, s]

)∣∣∣ (c13(s1, t) c23(s2, t)) dλ2(s)dλ(t)

+

∫
I

∫
I

∣∣F1|3(s1|t)− F̃1|3(s1|t)
∣∣ c13(s1, t) dλ(s1)dλ(t)

+

∫
I

∫
I

∣∣F2|3(s2|t)− F̃2|3(s2|t)
∣∣ c23(s2, t) dλ(s2)dλ(t)

Proof. For C̃ ∈ C3
c and C ∈ C3

ac we have∫
I2

∫
I

∣∣Ct
12;3(s)− C̃t

12;3(s)
∣∣ dλ(t)dλ2(s)

=

∫
I2

∫
I

∣∣∣KC

(
t,
[
0, F←

1|3(s1|t)
]
×

[
0, F←

2|3(s2|t)
])

−KC̃

(
t,
[
0, F̃←

1|3(s1|t)
]
×

[
0, F̃←

2|3(s2|t)
])∣∣∣ dλ(t)dλ2(s)

≤
∫
I2

∫
I

∣∣∣KC

(
t,
[
0, F←

1|3(s1|t)
]
×

[
0, F←

2|3(s2|t)
])

−KC̃

(
t,
[
0, F←

1|3(s1|t)
]
×

[
0, F←

2|3(s2|t)
])∣∣∣ dλ(t)dλ2(s)

+

∫
I2

∫
I

∣∣∣KC̃

(
t,
[
0, F←

1|3(s1|t)
]
×

[
0, F←

2|3(s2|t)
])

−KC̃

(
t,
[
0, F̃←

1|3(s1|t)
]
×

[
0, F̃←

2|3(s2|t)
])∣∣∣ dλ(t)dλ2(s)

=: I1 + I2.
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For every t ∈ I define T t : I2 → I
2 by

T t(s) :=
(
F←
1|3(s1|t), F←

2|3(s2|t)
)
.

Then T t is measurable, obviously satisfies (T t)−1(I2) = I
2, and

(λ2)T
t(
[0,u]

)
= λ2

({
s ∈ I

2 : T t(s) ∈ [0,u]
})

= λ2
({

s ∈ I
2 : s1 ≤ F1|3(u1|t), s2 ≤ F2|3(u2|t)

})
= F1|3(u1|t)F2|3(u2|t)

=

∫
[0,u]

c13(a1, t) c23(a2, t) dλ
2(a)

for every u ∈ I
2, implying that (λ2)T

t

is absolutely continuous with density
(a1, a2) �→ c13(a1, t) c23(a2, t). This yields

I1 =

∫
I

∫
I2

∣∣∣KC

(
t,
[
0, F←

1|3(s1|t)
]
×

[
0, F←

2|3(s2|t)
])

−KC̃

(
t,
[
0, F←

1|3(s1|t)
]
×

[
0, F←

2|3(s2|t)
])∣∣∣ dλ2(s)dλ(t)

=

∫
I

∫
I2

∣∣KC

(
t, [0, s]

)
−KC̃

(
t, [0, s]

)∣∣ d(λ2)T
t

(s)dλ(t)

=

∫
I

∫
I2

∣∣∣KC

(
t, [0, s]

)
−KC̃

(
t, [0, s]

)∣∣∣ (c13(s1, t) c23(s2, t)) dλ2(s)dλ(t).

Focusing on I2, using Sklar’s theorem, Lipschitz continuity, and a similar argu-
ment as before yields

I2 =

∫
I

∫
I2

∣∣∣KC̃

(
t,
[
0, F←

1|3(s1|t)
]
×

[
0, F←

2|3(s2|t)
])

−KC̃

(
t,
[
0, F̃←

1|3(s1|t)
]
×

[
0, F̃←

2|3(s2|t)
])∣∣∣ dλ2(s)dλ(t)

≤
∫
I

∫
I

∣∣F̃1|3
(
F←
1|3(s1|t)

∣∣t)− F̃1|3
(
F̃←
1|3(s1|t)

∣∣t)∣∣ dλ(s1)dλ(t)
+

∫
I

∫
I

∣∣F̃2|3
(
F←
2|3(s2|t)

∣∣t)− F̃2|3
(
F̃←
2|3(s2|t)

∣∣t)∣∣ dλ(s2)dλ(t)
=

∫
I

∫
I

∣∣F̃1|3
(
F←
1|3(s1|t)

∣∣t)− s1
∣∣ dλ(s1)dλ(t)

+

∫
I

∫
I

∣∣F̃2|3
(
F←
2|3(s2|t)

∣∣t)− s2
∣∣ dλ(s2)dλ(t)
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=

∫
I

∫
I

∣∣F̃1|3
(
F←
1|3(s1|t)

∣∣t)− F1|3
(
F←
1|3(s1|t)

∣∣t)∣∣ dλ(s1)dλ(t)
+

∫
I

∫
I

∣∣F̃2|3
(
F←
2|3(s2|t)

∣∣t)− F2|3
(
F←
2|3(s2|t)

∣∣t)∣∣ dλ(s2)dλ(t)
=

∫
I

∫
I

∣∣F̃1|3(s1|t)− F1|3(s1|t)
∣∣ c13(s1, t) dλ(s1)dλ(t)

+

∫
I

∫
I

∣∣F̃2|3(s2|t)− F2|3(s2|t)
∣∣ c23(s2, t) dλ(s2)dλ(t),

and the proof is complete.

As a direct consequence of Lemma A.3 we obtain the following result:

Lemma A.4. Suppose that C ∈ C3
ac is an absolutely continuous copula whose

density c fulfills c ≤ a ∈ [1,∞). Then the inequality

J(C, C̃) :=

∫
I3

|Ct
12;3(s)− C̃t

12;3(s)| dλ3(s, t) ≤ a(2 + a)D∞(C, C̃)

holds for every C̃ ∈ C3
c .

Proof. Applying Lemma A.3 and Theorem 2.3 yields∫
I3

|Ct
12;3(s)− C̃t

12;3(s)| dλ3(s, t)

≤
∫
I

∫
I2

∣∣∣KC

(
t, [0, s]

)
−KC̃

(
t, [0, s]

)∣∣∣ (c13(s1, t) c23(s2, t)) dλ2(s)dλ(t)

+

∫
I

∫
I

∣∣F1|3(s1|t)− F̃1|3(s1|t)
∣∣ c13(s1, t) dλ(s1)dλ(t)

+

∫
I

∫
I

∣∣F2|3(s2|t)− F̃2|3(s2|t)
∣∣ c23(s2, t) dλ(s2)dλ(t)

≤ a2 D1(C, C̃) + aD1(C13, C̃13) + aD1(C23, C̃23)

≤ a2 D∞(C, C̃) + aD∞(C13, C̃13) + aD∞(C23, C̃23)

≤ a2 D∞(C, C̃) + 2aD∞(C, C̃)

This proves the assertion.

Suppose that C ∈ C3 is a checkerboard copula. Then C ∈ C3
ac. We will say

that C has resolution N ≥ 2 if N is the smallest integer such that (there
is a version of) its density c of C is constant on each square of the form

( ix−1
N , ix

N )×(
iy−1
N ,

iy
N )×( iz−1

N , iz
N ) with ix, iy, iz ∈ {1, . . . , N}. Notice that if C is

a checkerboard copula with resolution N then its density c fulfills c(u, t) ≤ N2

for λ3-almost all (u, t) ∈ I
3. Given a checkerboard copula C with resolution N

w.l.o.g. we may assume that the mapping t �→ Ct
12;3 is constant on each interval
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of the form [ i−1
N , i

N ), i ∈ {1, . . . , N}, and define the quantity Δ = Δ(C) by

Δ(C) := max
i,j∈{1,...,N}

∫
I2

|Cti
12;3(u)− C

tj
12;3(u)| dλ2(u)

whereby ti =
i−1
N for every i ∈ {1, . . . , N}.

Lemma A.5. Suppose that C1, C2, C3, . . . ∈ C3
S are simplified copulas and that

C is a non-simplified checkerboard copula with resolution N ≥ 2. Then the
quantity J(Cn, C) from Lemma A.4 fulfills

J(Cn, C) ≥ Δ(C)/N > 0 (A.1)

for every n ∈ N. As a direct consequence, there is no sequence (Cn)n∈N in C3
S

that converges to C w.r.t. D∞ (D1) or weakly conditional.

Proof. Under the assumptions of the lemma we obviously have

J(Cn, C) =

N∑
i=1

1

N

∫
I2

|Cti
12;3(u)− (Cn)12;3(u)| dλ2(u)

≥ 1

N
max

i,j∈{1,...,N}

∫
I2

|Cti
12;3(u)− C

tj
12;3(u)| dλ2(u)

=
Δ(C)

N
> 0.

The second assertion now follows from Lemma A.4 and the fact that Δ(C) only
depends on C and not on n, the assertion concerning weak conditional con-
vergence from the fact that weak conditional convergence implies convergence
w.r.t. D1.

Lemma A.6.

1. The family of all non-simplified checkerboards is dense in (C3, D∞), in
(C3, D1), and dense in C3 endowed with the topology induced by weak con-
ditional convergence.

2. The family of all non-simplified checkerboards with positive density is dense
in the family of all absolutely continuous copulas with positive density
w.r.t. D∞, wr.t. D1, and w.r.t. the topology induced by weak conditional
convergence.

Proof. To prove the first assertion let C ∈ C3 be arbitrary but fixed. Since ac-
cording to [11] checkerboard copulas are dense in (C3, D1) we can find a sequence
(Bn)n∈N of checkerboard copulas with limn→∞ D1(Bn, C) = 0. For every n ∈ N

let En be a non-simplified checkerboard copula with the same resolution and
the same (1, 3)- and (2, 3)-marginals as Bn. Setting Cn := (1− 1

n )Bn + 1
nEn for

every n ∈ N yields a sequence (Cn)n∈N of non-simplified checkerboard copulas.
Considering

D1(Cn, C) ≤ (1− 1
n )D1(C,Bn) +

1
nD1(C,En)

it follows that limn→∞ D1(Cn, C) = 0, which completes the proof of the first
assertion concerning D1 and D∞. The assertion concerning weak conditional
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convergence can be shown analogously: in fact, it is straightforward to extend
the bivariate proof in [20, Theorem 3.2] to the three-dimensional setting, hence
reusing the convex combination idea and considering Cn := (1 − 1

n )Bn + 1
nEn

yields the desired result.
To prove the second assertion suppose that C ∈ C3

ac has positive density.
According to the first assertion we can find a sequence (Bn)n∈N of non-simplified
checkerboard copulas with limn→∞ D1(Bn, C) = 0. Setting Cn := (1− 1

n )Bn +
1
nΠ for every n ∈ N yields a sequence (Cn)n∈N of non-simplified checkerboard
copulas with positive density. Considering

D1(Cn, C) ≤ (1− 1
n )D1(C,Bn) +

1
nD1(C,Π)

we get limn→∞ D1(Cn, C) = 0. Since the assertion for weak conditional conver-
gence can be shown analogously, the proof is complete.

Appendix B: Proofs

Proof of Lemma 6.4: For every u ∈ I we have∫
I

∣∣K(Cn)13

(
v, [0, u]

)
−KC13

(
v, [0, u]

)∣∣ dλ(v)
=

∫
I

∣∣KCn

(
v, [0, u]× I

)
−KC

(
v, [0, u]× I

)∣∣ dλ(v)
≤ sup

u∈I2

∫
I

∣∣KCn

(
v, [0,u]

)
−KC

(
v, [0,u]

)∣∣ dλ(v)
and hence D∞

(
(Cn)13, C13) ≤ D∞(Cn, C). Since D1-convergence is equivalent

toD∞-convergence (see [11]) this proves (1). We now prove the second assertion.
Using Lipschitz continuity of copulas we obtain

D1

(
ψ(Cn), ψ(C)

)
=

∫
I2

∫
I

∣∣(Cn)p
(
(Fn)1|3(u1|v), (Fn)2|3(u2|v)

)
−Cp

(
F1|3(u1|v), F2|3(u2|v)

)∣∣ dλ(v)dλ2(u)

≤
∫
I2

∫
I

∣∣(Cn)p
(
(Fn)1|3(u1|v), (Fn)2|3(u2|v)

)
− (Cn)p

(
F1|3(u1|v), F2|3(u2|v)

)∣∣ dλ(v)dλ2(u)

+

∫
I2

∫
I

∣∣(Cn)p
(
F1|3(u1|v), F2|3(u2|v)

)
−Cp

(
F1|3(u1|v), F2|3(u2|v)

)∣∣ dλ(v)dλ2(u)

≤
∫
I2

∫
I

∣∣(Fn)1|3(u1|v)− F1|3(u1|v)
∣∣
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+
∣∣(Fn)2|3(u2|v)− F2|3(u2|v)

∣∣ dλ(v)dλ2(u)

+

∫
I2

∫
I

∣∣(Cn)p
(
F1|3(u1|v), F2|3(u2|v)

)
−Cp

(
F1|3(u1|v), F2|3(u2|v)

)∣∣ dλ(v)dλ2(u)

≤ D1

(
(Cn)13, C13

)
+D1

(
(Cn)23, C23

)
+ d∞

(
(Cn)p, Cp

)
from which the assertion follows. �

Proof of Lemma 6.5: We first have

d∞
(
(Cn)p, Cp

)
= sup

s∈I2

∣∣∣∣∣∣
∫
I

(Cn)
t
12;3(s) dλ(t)−

∫
I

Ct
12;3(s) dλ(t)

∣∣∣∣∣∣
≤ sup

s∈I2

∫
I

∣∣(Cn)
t
12;3(s)− Ct

12;3(s)
∣∣ dλ(t)

= D∞
(
Bn, B

)
where the copulas Bn, B are given by

Bn(u, v) :=

∫
[0,v]

(Cn)
t
12;3(u) dλ(t) and B(u, v) :=

∫
[0,v]

Ct
12;3(u) dλ(t).

Since D∞-convergence is equivalent to D1-convergence it suffices to prove that
(Bn)n∈N converges to B w.r.t. D1, which can be done as follows: Applying
Lemma A.3 and Hölder’s inequality yields

D1

(
Bn, B

)
=

∫
I2

∫
I

∣∣(Cn)
t
12;3(s)− Ct

12;3(s)
∣∣ dλ(t)dλ2(s)

≤
∫
I

∫
I2

∣∣∣KC

(
t, [0, s]

)
−KCn

(
t, [0, s]

)∣∣∣ (c13(s1, t) c23(s2, t)) dλ2(s)dλ(t)

+

∫
I

∫
I

∣∣F1|3(s1|t)− (Fn)1|3(s1|t)
∣∣ c13(s1, t) dλ(s1)dλ(t)

+

∫
I

∫
I

∣∣F2|3(s2|t)− (Fn)2|3(s2|t)
∣∣ c23(s2, t) dλ(s2)dλ(t)

≤

⎛⎝ ∫
I2×I

∣∣∣KC

(
t, [0, s]

)
−KCn

(
t, [0, s]

)∣∣∣p dλ3(s, t)

⎞⎠
1
p

·

⎛⎝ ∫
I2×I

(
c13(s1, t) c23(s2, t)

) p
p−1

dλ3(s, t)

⎞⎠
p−1
p
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+

⎛⎝ ∫
I×I

∣∣F1|3(s1|t)− (Fn)1|3(s1|t)
∣∣q dλ2(s1, t)

⎞⎠
1
q

·

⎛⎝ ∫
I×I

∣∣c13(s1, t)∣∣ q
q−1 dλ2(s1, t)

⎞⎠
q−1
q

+

⎛⎝ ∫
I×I

∣∣F2|3(s2|t)− (Fn)2|3(s2|t)
∣∣r dλ2(s2, t)

⎞⎠
1
r

·

⎛⎝ ∫
I×I

∣∣c23(s2, t)∣∣ r
r−1 dλ2(s2, t)

⎞⎠
r−1
r

for all p, q, r ∈ (1,∞). The latter expressions are finite by assumption, and the
former part is bounded by

⎛⎝ ∫
I2×I

∣∣∣KC

(
t, [0, s]

)
−KCn

(
t, [0, s]

)∣∣∣p dλ3(s, t)

⎞⎠
1
p

≤

⎛⎝ ∫
I2×I

∣∣∣KC

(
t, [0, s]

)
−KCn

(
t, [0, s]

)∣∣∣1 dλ3(s, t)

⎞⎠
1
p

= D1(Cn, C)
1
p

by D1((Cn)13, C13)
1/q and D1((Cn)23, C23)

1/r, respectively. Thus we conclude
that limn→∞ D1

(
Bn, B

)
= 0 and hence limn→∞ d∞

(
(Cn)p, Cp

)
= 0. This proves

the assertion. �
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[2] Acar, E., C. Genest, and J. Nešlehová (2012). Beyond simplified pair-copula
constructions. J. Multivariate Anal. 110 , 74–90. MR2927510

[3] Bedford, T. and R. Cooke (2002). Vines: A new graphical model for depen-
dent random variables. Ann. Stat. 30 (4), 1031–1068. MR1926167

[4] Bergsma, I. (2011). Nonparametric testing of conditional independence by
means of the partial copula. Available at https://arxiv.org/abs/1101.
4607v1.

[5] Biller, B. and C. G. Corlu (2011). Accounting for parameter uncertainty
in large-scale stochastic simulations with correlated inputs. Oper. Res. 59 ,
661–673. MR2848545

https://www.ams.org/mathscinet-getitem?mr=2517884
https://www.ams.org/mathscinet-getitem?mr=2927510
https://www.ams.org/mathscinet-getitem?mr=1926167
https://arxiv.org/abs/1101.4607v1
https://arxiv.org/abs/1101.4607v1
https://www.ams.org/mathscinet-getitem?mr=2848545


Analytic results on simplified pair-copula constructions 1991

[6] Chevallier, J., D. Nguyen, and J. C. Reboredo (2019). A conditional depen-
dence approach to CO2-energy price relationships. Energy Economics 81 ,
812–821.

[7] Dalla Valle, L., M. De Giuli, C. Tarantola, and C. Manelli (2016). De-
fault probability estimation via pair copula constructions. Eur. J. Oper.
Res. 249 , 198–311. MR3420453

[8] Derumigny, A. and J.-D. Fermanian (2017). About tests of the ‘simpli-
fying’ assumption for conditional copulas. Depend. Model. 5 , 154–197.
MR3694366

[9] Durante, F. and J. Fernández-Sánchez (2010). Multivariate shuffles and
approximation of copulas. Statist. Probab. Lett. 80 , 1827–1834. MR2734248

[10] Durante, F. and C. Sempi (2016). Principles of Copula Theory . CRC Press,
Boca Raton FL. MR3443023

[11] Fernández-Sánchez, J. and W. Trutschnig (2015). Conditioning based met-
rics on the space of multivariate copulas and their interrelation with uni-
form and levelwise convergence and iterated function systems. J. Theoret.
Probab. 28 , 1311–1336. MR3422932

[12] Fuchs, S., Y. McCord, and K. D. Schmidt (2018). Characterizations of cop-
ulas attaining the bounds of multivariate Kendall’s tau. J. Optim. Theory
Appl. 178 (2), 424–438. MR3825632

[13] Gijbels, I., M. Omelka, and N. Veraverbeke (2015a). Estimation of a copula
when a covariate affects only marginal distributions. Scand. J. Stat. 42 ,
1109–1126. MR3426313

[14] Gijbels, I., M. Omelka, and N. Veraverbeke (2015b). Partial and av-
erage copulas and association measures. Electr. J. Stat. 9 , 2420–2474.
MR3425363

[15] Gijbels, I., M. Omelka, and N. Veraverbeke (2017). Nonparametric test-
ing for no covariate effects in conditional copulas. Statistics 51 , 475–509.
MR3630461

[16] Hobæk Haff, I. (2013). Parameter estimation for pair-copula constructions.
Bernoulli 19 (2), 462–491. MR3037161

[17] Hobæk Haff, I., K. Aas, and A. Frigessi (2010). On the simplified pair-
copula construction – simply useful or too simplistic? J. Multivariate
Anal. 101 , 1296–1310. MR2595309

[18] Joe, H. (1996). Families of m-variate distributions with given margins and
m(m − 1)/2 bivariate dependence parameters. Lecture Notes-Monograph
Series 28 , 120–141. MR1485527

[19] Kallenberg, O. (1997). Foundations of Modern Probability. Springer, New
York. MR1464694

[20] Kasper, T., S. Fuchs, and W. Trutschnig (2020). On weak conditional
convergence of bivariate Archimedean and extreme value copulas, and con-
sequences to nonparametric estimation. to appear in Bernoulli , Available
at http://www.bernoulli-society.org/index.php/publications/

bernoulli-journal/bernoulli-journal-papers, https://arxiv.org/

abs/2006.07131.
[21] Kauermann, G. and C. Schellhase (2014). Flexible pair-copula estimation

https://www.ams.org/mathscinet-getitem?mr=3420453
https://www.ams.org/mathscinet-getitem?mr=3694366
https://www.ams.org/mathscinet-getitem?mr=2734248
https://www.ams.org/mathscinet-getitem?mr=3443023
https://www.ams.org/mathscinet-getitem?mr=3422932
https://www.ams.org/mathscinet-getitem?mr=3825632
https://www.ams.org/mathscinet-getitem?mr=3426313
https://www.ams.org/mathscinet-getitem?mr=3425363
https://www.ams.org/mathscinet-getitem?mr=3630461
https://www.ams.org/mathscinet-getitem?mr=3037161
https://www.ams.org/mathscinet-getitem?mr=2595309
https://www.ams.org/mathscinet-getitem?mr=1485527
https://www.ams.org/mathscinet-getitem?mr=1464694
http://www.bernoulli-society.org/index.php/publications/bernoulli-journal/bernoulli-journal-papers
http://www.bernoulli-society.org/index.php/publications/bernoulli-journal/bernoulli-journal-papers
https://arxiv.org/abs/2006.07131
https://arxiv.org/abs/2006.07131


1992 T. Mroz et al.

in D-vines using bivariate penalized splines. Stat. Comput. 24 , 1081–1100.
MR3253855

[22] Killiches, M., D. Kraus, and C. Czado (2017). Examination and visuali-
sation of the simplifying assumption for vine copulas in three dimensions.
Aust. N. Z. J. Stat. 59 (1), 95–117. MR3635169

[23] Klenke, A. (2007). Probability Theory. Springer, Berlin. MR4201399
[24] Kurz, M. and F. Spanhel (2017). Testing the simplifying assumption

in high-dimensional vine copulas. Available at https://arxiv.org/abs/

1706.02338. MR3935849
[25] Lancaster, H. O. (1963). Correlation and complete dependence of random

variables. Ann. Math. Statist. 34 (4), 1315–1321. MR0154376
[26] Mikusinski, P. and M.D. Taylor (2010). Some approximations of n-copulas.

Metrika 72 , 385–414. MR2746583
[27] Nagler, T. and C. Czado (2016). Evading the curse of dimensionality in non-

parametric density estimation with simplified vine copulas. J. Multivariate
Anal. 151 , 69–89. MR3545278
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