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Abstract: In many contemporary applications such as longitudinal stud-
ies, neuroimaging or civil engineering, a dataset can contain high dimen-
sional measurements on both matrix-valued and vector-valued variables.
Such structure demands statistical tools that can extract information from
both types of measurements. In this paper, we propose a double fused
Lasso regularized method to handle both matrix-valued and vector-valued
predictors under the context of linear regression and logistic regression. An
efficient and scalable sGS-ADMM (symmetric Gauss-Seidel based alter-
nating direction method of multipliers) algorithm is derived to obtain the
estimator. Global convergence and the Q-linear rate of convergence for the
algorithm is established. Consistency of the double fused Lasso estimators
holds under mild conditions. Numerical experiments and examples show
that the double fused Lasso estimators achieve efficient gains in estimation
and better prediction performance compared to existing estimators.
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1. Introduction

In the era of big data, many datasets with complex structures emerge, which may
contain matrix-valued and vector-valued variables simultaneously. For example,
bike sharing schemes have gained increasing popularity in the recent years and
become an integrated part of transportation network in many cities. Bike rental
demand depends on the weather conditions and social factors [13], and a method
to estimate or forecast the demand is important for bike sharing systems. The
two-year historical log from Capital Bike sharing system in Washington D.C.
contains daily bike rental counts from January 1st, 2011 to December 31th, 2012.
It also includes a 24× 6 matrix containing hourly weather information such as
temperature, humidity and wind speed for each day. Additional information
such as month, year, days of the week and holiday indicator is also recorded,
which constitutes a vector-valued predictor. The daily bike rental count is taken
to be the response. Multiple linear regression has been used to tackle such
data [15] with vector-valued predictors. Since we have both matrix-valued pre-
dictors (weather conditions) and vector-valued predictors, traditional regression
methods are not directly applicable. New regression tools that can be adapted
to such data structure are in need. [50] proposed a matrix regression model

y = 〈X,B〉+ 〈z, γ〉+ ε, (1.1)
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where y ∈ R is a continuous response, X ∈ R
m×q is a matrix-valued predictor

and z ∈ R
p is a vector-valued predictor. The matrix B ∈ R

m×q is a coefficient
matrix with the same size as X and γ ∈ R

p contains the coefficients for z. The
inner product 〈X,B〉 is defined as tr(XTB). The ε ∈ R is the noise. Without
the matrix-valued predictor X, (1.1) reduces to the standard linear regression
y = 〈z, γ〉+ε. Without the vector-valued predictor z, (1.1) reduces to the matrix
regression model with only a matrix-valued predictor y = 〈X,B〉+ ε.

In some applications, response variable can be binary. For example, the dia-
betes dataset contains physical exam information of 2476 staffs of Beijing Jiao-
tong University from 2016 to 2018. During each annual physical exam, 62 fea-
tures are measured including concentration and volume of erythrocytes, leuko-
cytes and platelets, blood sugar concentration, kidneys and liver function tests,
facial features and dietary preferences, giving a 62 by 3 matrix of physical exam
results. In addition, seven covariates including gender, education, occupation,
disability status are recorded for each patient. In 2018, 237 staffs are diagnosed
to have diabetes, and 2239 staffs do not have diabetes. The association between
diabetes and potential predictors is of special interest. In this case, we have a
logistic regression model with both matrix-valued predictor (physical exam re-
sults) and vector-valued predictor. The response is the diabetic indicator, which
takes value 1 if the patient has diabetes and 0 otherwise. The logistic regression
model is formulated as

logitP (y = 1) = log

(
P (y = 1)

1− P (y = 1)

)
= 〈X,B〉+ 〈z, γ〉, (1.2)

where X ∈ R
m×q is a matrix-valued predictor and z ∈ R

p is a vector-valued
predictor. The matrix B ∈ R

m×q contains the coefficients for the matrix-valued
predictor X and γ ∈ R

p contains the coefficients for vector-valued predictor z.
The regular logistic regression and matrix variate logistic regression are both
special cases of (1.2) without the X term or z term respectively.

Since the complex structure of models (1.1) and (1.2) and high-dimensionality
in many applications, it is common to assume that the coefficients in (1.1) and
(1.2) have sparse structure, or can be approximated by low-rank structure. To
induce such structure, a variety of regularization methods have recently been
proposed. Under the context of linear regression (1.1), if the regression model
only has vector-valued predictors, popular penalization methods include the
Lasso [44], the fused Lasso [45], the elastic net [53], and smooth clipped absolute
deviation (SCAD) [12] are proposed. Regularization methods for matrix-valued
parameters include, but not limit to, the nuclear norm regularization [8, 30, 34],
multivariate group Lasso [36], multivariate sparse group Lasso [28] and matrix
regression model based on singular values [50]. Under the logistic regression
context (1.2), if we only have the vector-valued predictor, [1], [38] and [43]
introduced the logistic regression model with sparse constraints. [31] dealt with
the group Lasso for logistic regression model. [22] proposed the matrix-variate
logistic regression for data only containing a matrix-valued variable.

In this paper, we propose a double fused Lasso regularized method which
imposes a nuclear norm and a fused Lasso norm on the rows of B. This induces
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a low rank structure in B as well as the sparsity in the difference of successive
rows, since in a longitudinal or imaging processing application, coefficients may
change smoothly over a particular period of time. An L1 norm and a fused Lasso
norm is imposed on γ, which encourages sparsity in γ as well as the difference
of successive elements. The formulation is then

min
B,γ

1

2

n∑
i=1

(yi − 〈Xi, B〉 − 〈zi, γ〉)2 + λ1‖B‖∗ + λ2

m∑
j=2

‖Bj· −B(j−1)·‖1

+λ3‖γ‖1 + λ4

p∑
k=2

|γk − γk−1|,
(1.3)

under the linear regression model (1.1). Under the logistic regression model (1.2),
it is

min
B,γ

n∑
i=1

log(1 + e〈Xi,B〉+〈zi,γ〉)− yi(〈Xi, B〉+ 〈zi, γ〉) + λ1‖B‖∗

+λ2

m∑
j=2

‖Bj· −B(j−1)·‖1 + λ3‖γ‖1 + λ4

p∑
k=2

|γk − γk−1|.
(1.4)

Here γk denotes the kth element in γ, Bj· denotes the jth row in B and n
denotes the sample size. We impose the L1 norm ‖γ‖1 and fused Lasso term∑p

k=2 |γk − γk−1| on the coefficients γ of the vector-valued predictors, and im-
pose the nuclear norm ‖B‖∗ and matrix-type fused Lasso term

∑m
j=2 ‖Bj· −

B(j−1)·‖1 on the coefficients B of the matrix-valued predictors. We call model
(1.3) as double fused Lasso regularized matrix regression, or DFMR for sim-
plicity. DFMR degenerates to the fused Lasso [45] when B = 0. It becomes the
matrix-type fused Lasso with γ = 0, which is an extension of the regularized
matrix regression [8, 10, 50]. We call model (1.4) as double fused Lasso regular-
ized matrix logistic regression, or DFMLR for simplicity. DFMLR degenerates
to the fused Lasso regularized logistic regression [29] when B = 0. It becomes
the matrix-type fused Lasso regularized logistic regression with γ = 0.

To solve similar optimization problem as in (1.3) or (1.4), first-order meth-
ods such as alternating direction method of multipliers (ADMM) and augmented
Lagrangian method (ALM) are widely used, see e.g., [17, 21]. Specifically, [26]
proposed linearized ADMM algorithm for sparse group Lasso and fused Lasso
model. [48] considered ALM as a solver for the fused Lasso signal approximator
problem. [49] developed an efficient ALM for large-scale non-overlapping sparse
group Lasso problems. [50] proposed the Nesterov optimal gradient method for
spectral regularized matrix regression. Due to coupled variables in the double
fused Lasso penalties, a natural choice for solving the (1.3) and (1.4) is the
ADMM algorithm. It is more efficient than ALM because ADMM solves B or
γ alternatively instead of solving B and γ simultaneously. However, in high
dimensional scenarios, the inversion of high dimensional matrices is the compu-
tation bottleneck for scalability. To reduce the computational cost, we consider
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the dual of (1.3) and (1.4), where the inversion of high dimensional matrices are
avoided in such scenarios.

We propose an efficient and scalable symmetric Gauss-Seidel based ADMM
(sGS-ADMM) algorithm to solve the dual of (1.3) and (1.4). In particular, every
subproblem for dual of (1.3) has a closed-form solution. The global convergence
and Q-linear rate of convergence of the algorithm is established. The result-
ing DFMR or DFMLR estimators show a superior estimation and prediction
performance compared with the matrix Lasso and Lasso methods [50]. We also
investigate the theoretical properties of the DFMR and DFMLR estimators.

The rest of the paper is organized as follows. Section 2 proposes an efficient
sGS-ADMM algorithm to obtain the DFMR and DFMLR estimators, and estab-
lishes the global convergence and Q-linear rate of convergence of the algorithm.
In Section 3, we investigate the consistency for the DFMR and DFMLR esti-
mators. Section 4 demonstrates the performance of the DFMR estimator and
the DFMLR estimator through simulations. Examples are included in Section
5. We conclude this paper and discuss future directions in Section 6. Proofs of
theorems and other technical details are deferred to the Appendix.

We first introduce some notations which are useful for further discussion.
Given a vector x ∈ R

n, its L1 norm, L2 norm and L∞ norm are defined as
‖x‖1 =

∑n
i=1 |xi|, ‖x‖ = ‖x‖2 =

√
〈x, x〉, ‖x‖∞ = max{|xi|, i = 1, 2, · · · , n}.

The closed balls centered at 0 with radius r ≥ 0 based on L2 norm and L∞ norm
are defined by B‖·‖2(0;r) = {x ∈ R

n | ‖x‖2 ≤ r} and B‖·‖∞(0;r) = {x ∈ R
n |

‖x‖∞ ≤ r}. Given a nonempty closed convex set Ω ⊂ R
n, define its indicator

function by δ(x; Ω) = 0 if x ∈ Ω, δ(x; Ω) = ∞ if x /∈ Ω. The distance function
from x to Ω is d(x; Ω) = inf{‖x − ω‖ | ω ∈ Ω}. The Euclidean projection of x
onto Ω is Π(x; Ω) = {ω ∈ Ω | ‖x − ω‖ = d(x; Ω)}. For random variable x, we
denote its sub-Gaussian norm as ‖x‖ψ2 = supp≥1(E|x|p)1/p/

√
p.

For any matrix A ∈ R
m×n, its singular value decomposition is denoted by

A = UΣV T, where U ∈ R
m×r and V ∈ R

n×r have orthonormal columns, r is the
rank of A, and Σ ∈ R

r×r is a diagonal matrix. The diagonal elements of Σ are
called the singular values of A, and we denote them by σi(A), i = 1, 2, · · · , r. The
sub-differential of ‖A‖∗ is ∂‖A‖∗ = {UV T +W |W ∈ R

m×n, UTW = 0,WV =
0, ‖W‖2 ≤ 1}. The Frobenius norm (F -norm), nuclear norm and spectral norm

of A are defined as ‖A‖F =
√∑m

i=1

∑n
j=1 a

2
ij , ‖A‖∗ =

∑r
i=1 σi(A), ‖A‖2 =

max{σi(A), i = 1, 2, · · · , r}. We use λmax(A) and λmin(A) to denote the largest
and smallest eigenvalues of A, respectively. The closed ball centered at 0 with
radius r ≥ 0 based on spectral norm is defined as B‖·‖2(0;r) = {A ∈ R

m×n |
‖A‖2 ≤ r}. For symmetric matrices A1 and A2, A1 � A2 means that A1 − A2

is positive semidefinite, and A1 
 A2 means that A1 −A2 is positive definite.

2. Estimation algorithm

In this section, we propose an efficient sGS-ADMM algorithm to obtain the
DFMR estimator, and then generalize the algorithm to solve for the DFMLR
estimator. Convergence of the algorithm is discussed.
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2.1. The sGS-ADMM algorithm for DFMR

2.1.1. Model reformulation and dual

We first reformulate the model (1.3) to find its dual. Let (yi, Xi, zi) be inde-
pendent and identical copies of (y,X, z), i = 1, . . . , n. For simplicity, we denote
y = (y1, y2, · · · , yn)T,X = (vec(X1), · · · , vec(Xn))

T and Z = (z1, · · · , zn)T,
where vec operator stacks a matrix into a vector columnwise. Let Ai be an
(i− 1)× i matrix that has the following structure

Ai =

⎛
⎜⎜⎜⎝

−1 1 0 · · · 0
0 −1 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · −1 1

⎞
⎟⎟⎟⎠ . (2.1)

We define matrix C ∈ R
(m−1)q×mq as

C =

⎛
⎜⎜⎜⎝

Am 0 · · · 0
0 Am · · · 0
...

...
. . .

...
0 0 · · · Am

⎞
⎟⎟⎟⎠ . (2.2)

Then (1.3) can be reformulated as

min
B,γ

1

2
‖y − Xvec(B)− Zγ‖22 + λ1‖B‖∗ + λ2‖Cvec(B)‖1

+λ3‖γ‖1 + λ4‖Apγ‖1. (2.3)

We introduce two slack variables ξ ∈ R
n, η ∈ R

(m−1)q with ξ = y−Xvec(B)−Zγ
and η = Cvec(B). Then (2.3) can be written as

min
B,γ,ξ,η

1

2
‖ξ‖22 + λ1‖B‖∗ + λ2‖η‖1 + λ3‖γ‖1 + λ4‖Apγ‖1

s.t. y − Zγ − Xvec(B) = ξ, (2.4)

Cvec(B) = η.

The objective function in (2.4) is convex with respect to every variable B, γ, ξ
and η, but it is a smooth function only with respect to ξ. The two constraints
are both linear. So (2.4) is a convex and nonsmooth optimization problem. Let
P (γ) = λ3‖γ‖1 + λ4‖Apγ‖1. The Lagrangian function of (2.4) is

L(B, γ, ξ, η;u, v) =
1

2
‖ξ‖22 + λ1‖B‖∗ + λ2‖η‖1 + P (γ)

− 〈u, ξ − (y − Xvec(B)− Zγ)〉 − 〈v, Cvec(B)− η〉,

where u ∈ R
n and v ∈ R

(m−1)q are Lagrange multipliers. Let P ∗(·) be the
Fenchel conjugate function of P (·). Then the dual of (2.4) is equivalent to

min
u,v,D,w,t

1

2
‖u‖22 − 〈u, y〉+ P ∗(w) + δ(t;B‖·‖∞(0;λ2)) + δ(D;B‖·‖2(0;λ1))
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s.t. X
Tu+ CTv − vec(D) = 0,

Z
Tu − w = 0, (2.5)

v + t = 0.

Based on the duality theorem, we can use the ADMM algorithm to get the
solutions of (2.4) and (2.5). The augmented Lagrangian function is given by

Lσ(B, γ, ξ, η;u, v) =
1

2
‖ξ‖22 + λ1‖B‖∗ + λ2‖η‖1 + P (γ)

− 〈u, ξ − (y − Xvec(B)− Zγ)〉 − 〈v, Cvec(B)− η〉

+
1

2
‖ξ − (y − Xvec(B)− Zγ)‖2 + 1

2
‖Cvec(B)− η‖2.

If we directly optimize Lσ(B, γ, ξ, η;u, v) using the ADMM algorithm, it involves
the computation of the inverses of XT

X and Z
T
Z, which can be computationally

expensive in high dimensional problems. Furthermore, note that (2.4) is a multi-
block convex composite optimization problem with linear equality constraints.
For such problems, convergence cannot be achieved by ADMM in general [4].
An augmented ADMM algorithm is proposed in [52]. However, its convergence
is guaranteed only for two-block optimization problems and it may not achieve
convergence for multi-block optimization problems. Therefore we consider the
optimization problem (2.5), and employ the sGS-ADMM algorithm to solve
(2.5). The sGS-ADMM algorithm is first proposed in [5], which combines the sGS
technique with ADMM algorithm. A brief introduction on the sGS technique
and sGS-ADMM algorithm for a general convex composite programming model
is included in Appendix A.2.

2.1.2. Algorithm analysis

Now we employ the sGS-ADMM algorithm to solve the optimization problem
(2.5). For convenience, let α = (vec(D)T, wT, tT)T. Although (2.5) contains five
variables u, v,D,w, t, it can be considered as a 3-block optimization problem
with u, v and α, and only contains a nonsmooth term involving the variable α.
The augmented Lagrangian function is

Lσ(u, v, α;x) =
1

2
‖u‖22 − 〈u, y〉+ P ∗(w) + δ(t;B‖·‖∞(0;λ2)) + δ(D;B‖·‖2(0;λ1))

− 〈x1,X
Tu+ CTv − vec(D)〉 − 〈x2,Z

Tu− w〉 − 〈x3, v + t〉

+
σ

2
‖XTu+ CTv − vec(D)‖2 + σ

2
‖ZTu− w‖2 + σ

2
‖v + t‖2,

where σ > 0, x1 ∈ R
mq, x2 ∈ R

p and x3 ∈ R
(m−1)q are Lagrange multipliers,

and x = (xT
1 , x

T
2 , x

T
3 )

T.
Note that the augmented Lagrangian function is strongly convex with re-

spect to every variable u, v and α. Hence, the majorization step given in [5] is
not necessary. Moreover, every subproblem in the sGS-ADMM algorithm has a
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Table 1

Iterative scheme of the sGS-ADMM algorithm for solving (2.5)

Algorithm 1:
Input: X,Z, y and tolerance level tol. Choose λ1 > 0, λ2 > 0, λ3 > 0, λ4 > 0 and σ > 0.

Let τ ∈ (0, (1 +
√
5)/2) be the step-length. Set the initial point (u0, v0, α0, x0).

For k = 0, 1, · · · , perform the following steps:

Step 1a. (Backward GS sweep) Compute uk+ 1
2 and vk+

1
2 ,

uk+ 1
2 = argmin

u
Lσ(u, vk, αk;xk),

vk+
1
2 = argmin

v
Lσ(u

k+ 1
2 , v, αk;xk).

Step 1b. (Forward GS sweep) Compute uk+1 , vk+1 and αk+1,

αk+1 = argmin
α

Lσ(u
k+ 1

2 , vk+
1
2 , α;xk),

vk+1 = argmin
v

Lσ(u
k+ 1

2 , v, αk+1;xk),

uk+1 = argmin
u

Lσ(u, vk+1, αk+1;xk).

Step 2. Update Lagrange multipliers xk+1
1 , xk+1

2 and xk+1
3 ,

xk+1
1 = xk

1 − τσ(XTuk+1 + CTvk+1 − vec(Dk+1)),

xk+1
2 = xk

2 − τσ(ZTuk+1 − wk+1),

xk+1
3 = xk

3 − τσ(vk+1 + tk+1).
If eta < tol = 10−3 stop

closed-form solution. Then given the values of u, v and α after the kth iteration
uk, vk, and αk, the iterative scheme of the sGS-ADMM algorithm for solving
(2.5) is summarized in Table 1.

Note that each subproblem in Table 1 has a closed-form solution, which is
due to the properties of the augmented Lagrangian function or the properties of
proximal mapping (see Appendix A.1 for properties of proximal mapping and
Appendix A.3 for derivation of the closed-form solution of each subproblem).
The updates of the Lagrange multipliers xk+1

1 , xk+1
2 and xk+1

3 are straightfor-
ward as given in Step 2 in Table 1. The stopping criterion eta is derived from
the KKT condition. See Appendix A.3 for details.

2.1.3. Convergence analysis

In this section, we establish the global convergence and Q-linear rate of con-
vergence of the sGS-ADMM algorithm in Table 1. While general results for the
convergence of sGS-ADMM algorithm are available in [5] and [20], we verify that
the assumptions for the global convergence and Q-linear rate of convergence are
satisfied in our context, see Appendix A.5 for details. Let θk = (uk, vk, αk, xk)
be the value of θ after the kth iteration.

Theorem 2.1. The sequence {uk, vk, αk, xk} converges to the optimal solution
(ū, v̄, ᾱ, x̄). Moreover, (ū, v̄, ᾱ) is an optimal solution of (2.5), and x̄ is an opti-
mal solution of (2.4).

To investigate the convergence rate, we first give a brief review on Q-linear
rate of convergence. Let {xk} be the sequence of iterates and x∗ the optimal
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solution. Suppose that

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖r = q, r ≥ 1,

we say that the Q-order of convergence of {xk} to x∗ is r. In particular, if r =
1 and 0 < q < 1, then the convergence is said to be Q-linear. If r = 1 and q = 0,
the convergence is Q-superlinear. The prefix “Q” means “quotient”. Another
type of linear convergence is R-linear convergence, where the prefix “R” is for
“root”. We say that {xk} converges to x∗ R-linearly if

‖xk − x∗‖ ≤ νk

for all k, and νk converges Q-linearly to zero. More details are included in [35].
Now we introduce some notations. For any self-adjoint positive semi-definite

linear operator M0 : X → X , let distM0(x,Ω) = inf
x′∈Ω

‖x′ − x‖M0 for any

x ∈ X and any set Ω ∈ X . Recall that α = (vec(D)T , wT , tT )T , we define
h(α) = P ∗(w)+δ(t;B‖·‖∞(0;λ2))+δ(D;B‖·‖2(0;λ1)). According to Theorem 12.17
in [41], there exists a self-adjoint and positive semi-definite linear operator Σα

such that for all α, α′, ζ ∈ ∂h(α) and ζ ′ ∈ ∂h(α′), 〈ζ ′− ζ, α′−α〉 ≥ ‖α′−α‖2Σα
.

Let Φ be a linear operator such that for all (u, v, α, x), its adjoint is

Φ∗(u, v, α, x) = (X,Z, 0)Tu+ (C, 0, I)Tv −Diag(Imq, Ip,−I(m−1)q)α.

For any τ ∈ (0, (1 +
√
5)/2), let sτ = 5−τ−3min{τ,τ−1}

4 , and define a self-adjoint
linear operator as follows M := Diag(I, σ(I + CCT), σΣI + Σα, (τσ)

−1Ix) +
sτσΦΦ

∗, where ΣI = Ix = Diag(Imq, Ip, I(m−1)q). Let Ω̄ be the optimal solution
set satisfying the KKT conditions.

Theorem 2.2. There exists 0 < μ < 1 such that for all k ≥ 1,

dist2M(θk+1, Ω̄) ≤ μdist2M(θk, Ω̄).

Theorem 2.2 establishes the Q-linear rate of convergence for the sGS-ADMM
algorithm, which guarantees that the sequence {uk, vk, αk, xk} generated by our
algorithm converges to the optimal solution.

2.2. The sGS-ADMM algorithm for DFMLR

2.2.1. Model reformulation and dual

To obtain the DFMLR estimator, we first reformulate the optimization problem
(1.4) as

min
B,γ

n∑
i=1

log(1 + e〈Xi,B〉+〈zi,γ〉)− yi(〈Xi, B〉+ 〈zi, γ〉) + λ1‖B‖∗

+λ2‖Cvec(B)‖1 + λ3‖γ‖1 + λ4‖Apγ‖1, (2.6)

where matrices C and Ap are defined in (2.1) and (2.2). Introduce two slack
variables ξ ∈ R

n, η ∈ R
(m−1)q with ξ = Xvec(B) + Zγ and η = Cvec(B). Then
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(2.6) can be written as

min
B,γ,ξ,η

n∑
i=1

log(1 + eξi)− yiξi + λ1‖B‖∗ + λ2‖η‖1 + P (γ)

s.t. Xvec(B) + Zγ = ξ, (2.7)

Cvec(B) = η.

The objective function in (2.7) is convex and nonsmooth. The dual of (2.7) is
equivalent to

min
u,v,D,w,s,t

n∑
i=1

(1− si) log(1− si) + si log si + P ∗(w) + δ(t;B‖·‖∞(0;λ2))

+δ(D;B‖·‖2(0;λ1))

s.t. X
Tu+ CTv − vec(D) = 0,

Z
Tu − w = 0, (2.8)

ui + si = yi,

v + t = 0.

2.2.2. Algorithm analysis

The optimization problem (2.8) can also be solved by the sGS-ADMM algo-
rithm. It contains six variables u, v,D,w, s, t. Let α = (vec(D)T, wT, sT, tT)T.
The augmented Lagrangian function is

Lσ(u, v, α;x) =

n∑
i=1

(1− si) log(1− si) + si log si + P ∗(w) + δ(t;B‖·‖∞(0;λ2))

+ δ(D;B‖·‖2(0;λ1))− 〈x1,X
Tu+ CTv − vec(D)〉−〈x2,Z

Tu−w〉

− 〈x3, u+ s− y〉 − 〈x4, v + t〉+ σ

2
‖XTu+ CTv − vec(D)‖2

+
σ

2
‖ZTu− w‖2 + σ

2
‖u+ s− y‖2 + σ

2
‖v + t‖2,

where σ > 0, x1 ∈ R
mq, x2 ∈ R

p, x3 ∈ R
n and x4 ∈ R

(m−1)q are Lagrange
multipliers, and x = (xT

1 , x
T
2 , x

T
3 , x

T
4 )

T. The iterative scheme of the sGS-ADMM
algorithm for solving (2.8) is similar to the scheme in the context of DFMR
as described in Table 1. The objective functions of the D,w, t subproblems
are the same as those for DFMR, so the D,w, t subproblems have the same
solutions as for the DFMR. Now we look at the remaining subproblems. The
objective functions are strongly convex and smooth for the u-subproblem and
v-subproblem. Their closed-form solutions can be obtained directly from the
derivative of the augmented Lagrangian function (see Appendix A.4).

Finally, after k iterations, the s-subproblem can be written as

sk+1 =argmin
s

{
n∑

i=1

(1−si) log(1−si)+si log si−〈xk
3 , s〉+

σ

2
‖uk+ 1

2 + s− y‖2}.
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Unfortunately, there is no closed-form solution to the s-subproblem. But its
objective function is smooth. We take the derivative of the objective function
with respect to each component of s. The derivative with respect to the i-th

component (i = 1, 2, · · · , n) is log si − log(1− si) + σsi + σu
k+ 1

2
i − σyi − (xk

3)i,
where (xk

3)i denotes the i-th component of xk
3 . Then we use the Bisection method

to find the solution. More details are included in Appendix A.4.

2.2.3. Convergence analysis

In order to explore the convergence result, we denote h(α) =
∑n

i=1(1−si) log(1−
si)+si log si+P ∗(w)+δ(t;B‖·‖∞(0;λ2))+δ(D;B‖·‖2(0;λ1)), then there exists a self-
adjoint and positive semi-definite linear operator Σα such that for all α, α′, ζ ∈
∂h(α) and ζ ′ ∈ ∂h(α′), 〈ζ ′ − ζ, α′ −α〉 ≥ ‖α′ −α‖2Σα

. We define Φ∗(u, v, α, x) =

(X,Z, I, 0)Tu+(C, 0, 0, I)Tv−Diag(Imq, Ip,−In,−I(m−1)q)α− (0, 0, y, 0)T and
M := Diag(I, σ(I + CCT), σΣI + Σα, (τσ)

−1Ix) + sτσΦΦ
∗, where the matrix

ΣI = Ix = Diag(Imq, Ip, In, I(m−1)q). Note that the operator M is different
from that in DFMR. Let Ω̄ denote the optimal solution set satisfying the KKT
condition.

Theorem 2.3. The sequence {uk, vk, αk, xk} converges to the optimal solution
(ū, v̄, ᾱ, x̄), where (ū, v̄, ᾱ) is an optimal solution of (2.8), and x̄ is an optimal
solution of (2.6). Moreover, there exists 0 < μ < 1 such that for all k ≥ 1,
dist2M(θk+1, Ω̄) ≤ μdist2M(θk, Ω̄).

3. Consistency

3.1. DFMR

In this section, we investigate the consistency of B̂ and γ̂. Let B∗ and γ∗ be the
true value of B and γ. We state the following conditions.
Condition 1. There exist two positive constants CX and CX such that

CX ||B||2F ≤ 1

n

n∑
i=1

〈Xi, B〉2 ≤ CX ||B||2F .

Condition 2. There exist two positive constants CZ and CZ that bound all
eigenvalues of n−1

Z
T
Z from below and above, respectively.

Condition 3. The error εi satisfies Eεi = 0 and follows the sub-Gaussian
distribution, i.e., there exist two constants k and σ0 such that k2[E(e|εi|

2/k2

)−
1] ≤ σ2

0 .
Condition 4. Denote r∗ = rank(B∗), s∗1 = ‖Cvec(B∗)‖0, s∗2 = ‖γ∗‖0 and
s∗3 = ‖Apγ

∗‖0. Take the tuning parameters as

λ1 ≤
√
n/(r∗‖B∗‖2), λ2 ≤

√
n/(s∗1‖Cvec(B∗)‖∞),

λ3 ≤
√
n/(s∗2‖γ∗||∞), λ4 ≤

√
n/(s∗3‖Apγ

∗||∞).
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Condition 1 is the matrix version of Restricted Isometry condition which was
suggested by [39]. It is widely used in the analysis for high-dimensional low-rank
matrices, for example [24, 25, 42]. It indicates that the smallest eigenvalue of
n−1

X
T
X is lower bounded by CX , and its largest eigenvalue is upper bounded by

CX . Conditions 2-3 are commonly used in variable selection in high-dimensional
linear regression, for example [2, 9, 54]. Theorem 3.1 establishes the consistency
of the estimator matrix B̂ and vector γ̂.

Theorem 3.1. Assume that Conditions 1-4 hold. Suppose that

|| 1
n

n∑
i=1

zi ⊗Xi||F ≤ 1

2
min{CX , CZ}, (3.1)

where the symbol ⊗ indicates Kronecker product. Then,

||B̂ −B∗||2F + ||γ̂ − γ∗||22 ≤ 16(k2 + σ2
0)

CXmq + CZp

nmin2{CX , CZ}

+
8(λ1r

∗‖B∗‖2 + λ2s
∗
1‖Cvec(B∗)‖∞ + λ3s

∗
2‖γ∗||∞ + λ4s

∗
3‖Apγ

∗||∞)

nmin{CX , CZ}

with probability at least 1−e−nσ2
0/k

2 −c1e
−c2mq−c3e

−c4p, where ci, i = 1, 2, 3, 4,
are positive constants. Further, if

max{mq, p}
n

→ 0 (3.2)

as n → ∞, it follows that ||B̂ − B∗||2F + ||γ̂ − γ∗||22 converges in probability to
zero.

The assumption (3.1) assumes that X and z are only weakly correlated.
Similar condition is used to study the consistency of bridge estimator for sparse
regression with quadratic measurements in [11]. From Theorem 3.1, we learn
that ||B̂ −B∗||2F + ||γ̂ − γ∗||22 converges at the rate of O(max{mq, p}/n).

3.2. DFMLR

Now we discuss the consistency of B̂ and γ̂ for DFMLR. Let B∗ and γ∗ be
the true value of B and γ. Let Ki = e〈Xi,B

∗〉+〈zi,γ∗〉/(1 + e〈Xi,B
∗〉+〈zi,γ∗〉)2,

i = 1, 2, . . . , n.
Condition 5. There exist two positive constants CX and CX such that

CX ||B||2F ≤ 1

n

n∑
i=1

Ki〈Xi, B〉2 ≤ CX ||B||2F .

Condition 6. There exist two positive constants CZ and CZ that bound all
eigenvalues of n−1

∑n
i=1 Kiziz

T
i from below and above, respectively.

Condition 7. Suppose that {vec(Xi)}ni=1 and {zi}ni=1 are i.i.d. sub-Gaussian

random vectors with mean 0, k2[E(e|vec(Xi)|2/k2

)−1] ≤ σ2
0 and k2[E(e|zi|

2/k2

)−
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1] ≤ σ2
0 , where k = max{||vec(Xi)||2ψ2

, ||zi||2ψ2
} < ∞.

Condition 8. Denote r∗ = rank(B∗), s∗1 = ‖Cvec(B∗)‖0, s∗2 = ‖γ∗‖0 and
s∗3 = ‖Apγ

∗‖0. Take the tuning parameters

λ1 ≤
√
n/(r∗‖B∗‖2), λ2 ≤

√
n/(s∗1‖Cvec(B∗)‖∞),

λ3 ≤
√
n/(s∗2‖γ∗||∞), λ4 ≤

√
n/(s∗3‖Apγ

∗||∞).

Condition 7 assumes that vec(X) and z both follow sub-Gaussian distributions,
which is also assumed by [10] in high-dimensional trace regression with a nuclear
norm penalty. Theorem 3.2 provides the convergence rate and consistency results
for B̂ and γ̂.

Theorem 3.2. Assume that Conditions 5-8 hold. Suppose that

|| 1
n

n∑
i=1

Kizi ⊗Xi||F ≤ 1

2
min{CX , CZ}, (3.3)

then

||B̂ −B∗||2F + ||γ̂ − γ∗||22 ≤ 16k2(mq + p)

nmin2{CX , CZ}

+
4(λ1r

∗‖B∗‖2 + λ2s
∗
1||Cvec(B∗)||∞ + λ3s

∗
2‖γ∗||∞ + λ4s

∗
3‖Apγ

∗||∞)

nmin{CX , CZ}

with probability at least 1−c1e
−c2mq−c3e

−c4p, where ci, i = 1, 2, 3, 4, are positive
constants. Further, if

max{mq, p}
n

→ 0

as n → ∞, it follows that ||B̂ − B∗||2F + ||γ̂ − γ∗||22 converges in probability to
zero.

Theorem 3.2 indicates that ||B̂−B∗||2F + ||γ̂−γ∗||22 also converges at the rate
of O(max{mq, p}/n) under the context of DFMLR.

4. Simulation

In this section, we demonstrate the performance of DFMR and DFMLR with
numerical experiments. To evaluate estimation performance, we computed the
average root mean squared errors (RMSEs) for each estimator of B and γ, de-
noted by RMSE(B) and RMSE(γ) based on 100 repetitions. To evaluate the
prediction performance, we use a testing dataset with the same sample size as
the training dataset. For the DFMR estimator, the prediction error is the root
mean squared error over the testing dataset, denoted by RMSE(y). Specifically,
RMSE(y) = [n−1

∑n
i=1(yi−ŷi)

2]1/2,where ŷi is the fitted value for the ith obser-
vation. For the DFMLR estimator, the prediction error is the misclassification
rate, denoted by MCR, since we consider the prediction as classification [23] on
the testing dataset. The experiments were implemented in MATLAB 2017b on
a desktop computer with i5-8250U, 1.80GHZ CPU and 8 GB of RAM.
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4.1. DFMR

We compare the following three estimators: the DFMR estimator obtained by
solving (2.5) and two estimators obtained by two regularization methods from
[50], i.e., matrix Lasso regression estimator (MLR) obtained from

min
B,γ

1

2

n∑
i=1

(yi − 〈Xi, B〉 − 〈zi, γ〉)2 + λ‖B‖∗,

and Lasso regression estimator (LR) from solving

min
B,γ

1

2

n∑
i=1

(yi − 〈Xi, B〉 − 〈zi, γ〉)2 + λ‖vec(B)‖1.

The MLR and LR estimators are computed by the MATLAB toolbox TensorReg
from [50]. For the DFMR estimator, we adopt the common choice for tuning
parameters as

λ1 = α1‖XT y‖∞, λ2 = α2λ1, λ3 = α3‖ZT y‖∞, λ4 = α4λ3,

where 0 < α1, α3 < 1, α2, α4 > 0.
We fixed m = 100, q = 50, p = 250 and varied n from 200 to 1600. Each

element in the matrix-valued predictor X and vector-valued predictor z was
drawn independently from the standard normal distribution. We generated B0 =
b1b

T
2 , where b1 ∈ R

m×1 and b2 ∈ R
q×1 are two vectors. The first m/4 elements

and last m/4 elements in b1 were 0 and the middle m/2 elements were 1, and b2
had similar structure. Then the elements in B0 were 0 except that the elements
in the center square were 1. Then rank of B0 is 1. Let R < min(m, q) denote
the rank of the matrix coefficient B. Then B was constructed by adding a
(R − 1) × (R − 1) identity matrix above the left corner of the center square
in B0. Let s denote the sparsity level of γ, 0 ≤ s ≤ 1, which means that the
proportion of the nonzero elements in γ is s. The nonzero elements in γ all
took value 1. We fixed R = 5 and s = 0.01. The error ε was drawn from a
standard normal distribution. The estimation and prediction performance of
each estimator is summarized in Table 2. The numbers in the parentheses are
the standard deviations computed from the 100 repetitions.

The DFMR estimator has the best estimation and prediction performance for
all sample sizes. For example, at sample size 400, the DFMR estimator reduces
RMSE(B) and RMSE(γ) by 92% and 96% compared to the MLR estimator;
and reduced RMSE(B) and RMSE(γ) by 93% and 97% compares to the LR
estimator. For prediction performance, the DFMR estimator reduces RMSE(y)
by 92% compared to the MLR estimator and 93% compared to the LR estimator.
The MLR estimator has very large RMSEs when the sample size is small, but
it performs much better when the sample size increases. The LR estimator
also has a large RMSE in estimation and prediction, but in contrast to the
MLR estimator, its performance does not improve much when the sample size
increases.
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Table 2

Comparison of the DFMR, MLR and LR estimators with different sample sizes

RMSE(B) RMSE(γ) RMSE(y)
n DFMR MLR LR DFMR MLR LR DFMR MLR LR

200
0.06 0.37 0.38 0.11 9.04 3.43 0.06 0.70 0.46

(0.0015) (0.0003) (0.0005) (0.0002) (0.1210) (0.0176) (0.0019) (0.0078) (0.0010)

400
0.03 0.36 0.42 0.07 1.96 2.41 0.03 0.38 0.44

(0.0007) (0.0004) (0.0007) (0.0042) (0.0115) (0.0129) (0.0009) (0.0007) (0.0015)

800
0.03 0.06 0.41 0.05 0.18 1.35 0.03 0.06 0.44

(0.0006) (0.0013) (0.0006) (0.0038) (0.0044) (0.0060) (0.0008) (0.0011) (0.0013)

1200
0.02 0.04 0.39 0.03 0.09 0.89 0.02 0.04 0.39

(0.0005) (0.0007) (0.0006) (0.0023) (0.0035) (0.0050) (0.0006) (0.0007) (0.0011)

1600
0.01 0.03 0.35 0.02 0.06 0.66 0.01 0.03 0.35

(0.0004) (0.0004) (0.0007) (0.0011) (0.0014) (0.0045) (0.0004) (0.0004) (0.0010)

Table 3

Comparison of the DFMR, MLR and LR estimators with different dimension of γ

RMSE(B) RMSE(γ) RMSE(y)
p DFMR MLR LR DFMR MLR LR DFMR MLR LR

100
0.03 0.33 0.37 0.07 1.46 2.04 0.03 0.34 0.42

(0.0007) (0.0007) (0.0006) (0.0072) (0.0120) (0.0161) (0.0008) (0.0010) (0.0018)

150
0.04 0.37 0.39 0.09 2.04 2.53 0.04 0.36 0.44

(0.0008) (0.0005) (0.0008) (0.0070) (0.0103) (0.0178) (0.0010) (0.0016) (0.0021)

200
0.04 0.38 0.40 0.10 2.57 2.82 0.05 0.40 0.45

(0.0011) (0.0003) (0.0006) (0.0002) (0.0128) (0.0184) (0.0012) (0.0016) (0.0017)

250
0.05 0.38 0.41 0.11 3.53 4.27 0.05 0.41 0.46

(0.0011) (0.0002) (0.0009) (0.0002) (0.0182) (0.0280) (0.0012) (0.0008) (0.0018)

Table 4

Comparison of the DFMR, MLR and LR estimators with different dimensions of B

RMSE(B) RMSE(γ) RMSE(y)
m q DFMR MLR LR DFMR MLR LR DFMR MLR LR

50 50
0.05 0.36 0.40 0.07 2.82 2.97 0.05 0.45 0.46

(0.0012) (0.0006) (0.0010) (0.0041) (0.0239) (0.0236) (0.0014) (0.0012) (0.0018)

100 50
0.05 0.38 0.41 0.11 3.53 4.27 0.05 0.41 0.46

(0.0011) (0.0002) (0.0009) (0.0002) (0.0182) (0.0280) (0.0012) (0.0008) (0.0018)

100 100
0.08 0.39 0.43 0.13 6.08 6.16 0.07 0.50 0.49

(0.0012) (0.0001) (0.0005) (0.0035) (0.0259) (0.0283) (0.0013) (0.0012) (0.0018)

200 100
0.10 0.42 0.45 0.15 6.23 7.29 0.09 0.52 0.57

(0.0008) (0.0006) (0.0003) (0.0015) (0.0146) (0.0258) (0.0006) (0.0007) (0.0015)

Then we fixed n = 300, m = 100, q = 50 and varied the dimension of γ under
the setting of Table 2. The results are summarized in Table 3. The DFMR
estimator still has the best estimation and prediction performance. Both MLR
and LR have very large RMSE in the estimation of γ, because their objective
functions do not consider the sparsity structure on γ.

We also fixed n = 300, p = 250 and varied the dimension of B under the
setting of Table 2. The results are presented in Table 4. DFMR again shows the
best estimation and prediction performance for different m and q.

4.2. DFMLR

In this section, we compared the numerical performance of three estimators:
the DFMLR estimator obtained by solving (2.8), and two estimators from two
regularization methods in [50], i.e., matrix Lasso penalized logistic estimator
(denoted by MLLR) from solving

min
B,γ

n∑
i=1

log(1 + e〈Xi,B〉+〈zi,γ〉)− yi(〈Xi, B〉+ 〈zi, γ〉) + λ‖B‖∗,
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Table 5

Comparison of the DFMLR, MLLR and LLR estimators with different sample sizes

RMSE(B) RMSE(γ) MCR
n DFMLR MLLR LLR DFMLR MLLR LLR DFMLR MLLR LLR

200
0.21 0.39 0.39 0.18 2.52 5.99 0.18 0.53 0.53

(0.0058) (0.0005) (0.0003) (0.0303) (0.1814) (0.4406) (0.0191) (0.0151) (0.0158)

400
0.18 0.39 0.39 0.16 2.15 2.06 0.15 0.44 0.51

(0.0038) (0.0002) (0.0001) (0.0239) (0.1132) (0.0161) (0.0105) (0.0169) (0.0147)

800
0.17 0.37 0.38 0.14 0.30 0.39 0.15 0.43 0.48

(0.0026) (0.0005) (0.0004) (0.0167) (0.0122) (0.0118) (0.0084) (0.0075) (0.0107)

1200
0.12 0.35 0.38 0.12 0.20 0.26 0.08 0.29 0.45

(0.0049) (0.0004) (0.0004) (0.0064) (0.0057) (0.0087) (0.0038) (0.0094) (0.0105)

1600
0.10 0.34 – 0.01 0.14 – 0.07 0.23 –

(0.0024) (0.0004) – (0.0112) (0.0052) – (0.0048) (0.0099) –

and Lasso penalized logistic estimator (denoted by LLR) from solving

min
B,γ

n∑
i=1

log(1 + e〈Xi,B〉+〈zi,γ〉)− yi(〈Xi, B〉+ 〈zi, γ〉) + λ‖vec(B)‖1.

The MLLR and LLR estimators are computed by the MATLAB toolbox Ten-
sorReg from [50]. For the DFMLR estimator, we choose λ1, λ2, λ3 and λ4 using
[18]:

λ1 = α1‖XT y0‖∞, λ2 = α2λ1, λ3 = α3‖ZT y0‖∞, λ4 = α4λ3,

where 0 < α1, α3 < 1, α2, α4 > 0, for i = 1, 2, · · · , n, y0(i) = −n−
n if yi = 1,

y0(i) = −n+

n if yi = 0, n+ is the number of yi’s that takes value 1, and n− =
n− n+ is the number of yi’s that takes value 0.

We fixed m = 100, q = 50, p = 250, R = 5 and s = 0.01 and varied n
from 200 to 1600. The coefficients B and γ, the matrix-valued predictor X and
the vector-valued predictor z were generated in the same way as in Section 4.1.
The measures of estimation performance RMSE(B) and RMSE(γ) as well as
the misclassification rate MCR of the DFMLR, MLLR and LLR estimators
are summarized in Table 5. The numbers in the parentheses are the standard
deviations computed from the 100 repetitions.

Based on the results in Table 5, the DFMLR estimator has the best estimation
and classification performance for all sample sizes. Take the sample size 400 as
an example, the DFMLR estimator reduces RMSE(B) and RMSE(γ) by 54%
and 93% compared to the MLLR estimator. It reduces RMSE(B) by 54% and
reduces RMSE(γ) by 92% compared to the LLR estimator. For the prediction
performance, the DFMLR reduces the misclassification rate by 66% compared
to the MLLR estimator and 71% compared to the LLR estimator. When the
sample size is 1600, the MATLAB program for computing the LLR estimator
fails, and thus no results are recorded.

We then fixed the sample size n at 300, and varied the dimension of γ under
the setting that produced Table 5. Finally we fixed n = 300 and p = 250, but
varied the dimension of B. The results are shown in Tables 6 and 7. In both
settings, the DFMLR estimator has the smallest RMSEs for estimation of B
and γ and smallest misclassification rate compared to other estimators.
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Table 6

Comparison of the DFMLR, MLLR and LLR estimators with different dimension of γ

RMSE(B) RMSE(γ) MCR
p DFMLR MLLR LLR DFMLR MLLR LLR DFMLR MLLR LLR

100
0.12 0.36 0.37 0.10 0.87 0.69 0.09 0.43 0.45

(0.0074) (0.0003) (0.0005) (0.0072) (0.0433) (0.0343) (0.0113) (0.0179) (0.0188)

150
0.14 0.37 0.38 0.12 1.40 2.73 0.10 0.43 0.48

(0.0103) (0.0008) (0.0013) (0.0056) (1.0570) (5.7965) (0.0140) (0.0156) (0.0174)

200
0.17 0.38 0.38 0.13 1.45 2.80 0.14 0.45 0.50

(0.0055) (0.0001) (0.0002) (0.0277) (0.0990) (0.1723) (0.0135) (0.0147) (0.0164)

250
0.21 0.39 0.39 0.17 1.52 2.84 0.18 0.47 0.53

(0.0036) (0.0002) (0.0004) (0.0261) (0.0507) (0.0560) (0.0118) (0.0150) (0.0144)

Table 7

Comparison of the DFMLR, MLLR and LLR estimators with different dimensions of B

RMSE(B) RMSE(γ) MCR
m q DFMLR MLLR LLR DFMLR MLLR LLR DFMLR MLLR LLR

50 50
0.17 0.38 0.38 0.12 1.36 2.65 0.13 0.45 0.52

(0.0093) (0.0006) (0.0003) (0.0104) (0.1335) (0.1172) (0.0154) (0.0160) (0.0167)

100 50
0.21 0.39 0.39 0.17 1.52 2.84 0.18 0.47 0.53

(0.0036) (0.0002) (0.0004) (0.0261) (0.0507) (0.0560) (0.0118) (0.0150) (0.0144)

100 100
0.25 0.41 0.41 0.17 1.60 2.90 0.21 0.51 0.55

(0.0025) (0.0001) (0.0005) (0.0312) (0.0624) (0.0802) (0.0123) (0.0126) (0.0154)

200 100
0.29 0.42 0.42 0.18 1.84 3.11 0.23 0.54 0.56

(0.0023) (0.0003) (0.0001) (0.0175) (0.0542) (0.0492) (0.0130) (0.0147) (0.0129)

4.3. Signal shapes

In this section, we illustrate the effect of the nuclear norm penalty in estimation.
For this purpose, we introduce a new estimator, called the fused matrix Lasso
regression estimator, denoted by FMR. The FMR estimator is obtained from
the following optimization problem, whose objective function is the same as that
in (1.3), but without the nuclear norm penalty:

min
B,γ

1

2

n∑
i=1

(yi − 〈Xi, B〉 − 〈zi, γ〉)2 + λ2

m∑
j=2

‖Bj· −B(j−1)·‖1 + λ3‖γ‖1

+λ4

p∑
k=2

|γk − γk−1|.

Thus the effect of the nuclear norm penalty can be illustrated by the comparison
between the DFMR estimator and the FMR estimator. We generated the data
from (1.1) without the vector-valued predictor z, i.e., y = 〈X,B〉 + ε, where ε
followed a standard normal distribution. The matrix predictor X was a 64× 64
matrix with entries independently drawn from the standard normal distribu-
tion. The elements in the coefficient matrix B were binary, which took value 1
according to a variety of signal shapes displayed in the first column of Figure 1.
The sample size n was fixed at 500. The DFMR, FMR, MLR, and LR estimators
were plotted in the second, third, fourth and fifth columns of Figure 1, and their
RMSE(B) are arranged in Table 8.

The rank of the true signals varies from 9 to 20. Regardless of the rank, the
DFMR estimator has the best visual recovery of the true signal, followed by
the FMR estimator (with only the fused Lasso penalty) and the MLR estimator
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Table 8

Comparison of DFMR, FMR, MLR and LR on RMSE(B)

Estimator Shape
Cross Star Hook Windwill Mickey

DFMR
0.07 0.09 0.09 0.06 0.07

(0.0010) (0.0011) (0.0016) (0.0014) (0.0009)

FMR
0.14 0.17 0.15 0.12 0.11

(0.0026) (0.0024) (0.0034) (0.0030) (0.0025)

MLR
0.13 0.15 0.18 0.12 0.11

(0.0007) (0.0005) (0.0005) (0.0004) (0.0006)

LR
0.21 0.24 0.24 0.10 0.14

(0.0013) (0.0010) (0.0010) (0.0020) (0.0015)

Fig 1. (a) True signal, (b) DFMR estimator, (c) FMR estimator, (d) MLR estimator, (e)
LR estimator.

(with only the nuclear norm penalty). The LR estimator (with the L1 penalty,
but no nuclear norm or fused Lasso penalties) has the worst visual recovery.
This trend is confirmed by the RMSEs in Table 8. The DFMR estimator has
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the smallest RMSE(B), followed by the FMR and MLR estimators, and with the
LR estimator trailing behind. Take the shape of Cross as an example, the DFMR
estimator reduces RMSE(B) by 50% compared to the FMR estimator, 46% com-
pared to MLR estimator and 67% compared to the LR estimator. Clearly, the nu-
clear norm penalty is helpful to explore the structure of the coefficient matrix B.

5. Examples

5.1. Bike sharing dataset

The bike sharing system plays a more and more important role in urban traffic,
due to its positive effects in energy consumption, environmental protection and
public health. Currently, there are nearly 900 bike-sharing programs worldwide
operating about 1,000,000 bicycles. The rental and return of bicycles has become
quite convenient for users. Through automated stations, users can rent a bike
from one position and return at a different position. Bike-sharing demand is
highly dependent on weather conditions and social factors such as temperature,
precipitation, and holidays. The bike sharing dataset [13] consists of bike rental
records from Capital Bikeshare, the metro Washington D.C.’s bike share system,
for a two-year period from January 1st, 2011 to December 31th, 2012. The
weather conditions, including weather type (sunny, mist or others), temperature,
apparent temperature, humidity and wind speed are measured every hour. We
took the measurements as a 24×6 matrix-valued predictor X. The vector-valued
predictor z contains indicators of months (January to December), days in a week
(Sunday to Saturday), year (2011 or 2012) and holiday (work day or not). The
response y is the daily aggregated count of rented bikes. The DFMR, MLR and
LR estimators were computed. Due to the Lasso and fused Lasso penalties on γ,
the DFMR estimator shows that Mondays have the least demand for bike rental;
then the demand increases on Tuesdays and Wednesdays, where Wednesdays
reach the same level of Sundays, the demand further increases on Thursdays
and reaches its peak on Fridays and Saturdays, then it falls on Sundays. The
MLR estimator and the LR estimator show the same weekly pattern but without
a sparse pattern. For example, the coefficients for Fridays and Saturdays are very
similar under the MLR and LR, while they are the same under the DFMR. Due
to the fused Lasso penalty on B, DFMR estimator reveals that the coefficients
for temperatures are very similar before 9am or after 7pm, indicating that the
time of the day has an effect on the rental demand. Without the fused Lasso
penalty, the MLR estimator ofB is variant and does not have an obvious pattern.
Without both the fused Lasso penalty and the nuclear norm penalty, the LR
estimator of B is zero.

The prediction performance measured by the average RMSE(y) was com-
puted by 5-fold or 10-fold cross-validation (CV) with 100 random splits. The
results are in Table 9. The numbers in the parentheses are standard deviations
of the RMSE(y). The DFMR estimator again has smallest prediction error. Take
5-fold CV as an example, it reduces the RMSE(y) by 36.5% and 28.1% compared
to the MLR estimator and LR estimator.
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Table 9

Comparison of the DFMR, MLR and LLR estimators

DFMR MLR LR

5-fold CV 7.62e+02 (7.50e+00) 1.20e+03 (2.65e+01) 1.06e+03 (6.26e+00)
10-fold CV 7.57e+02 (4.73e+00) 1.18e+03 (2.44e+01) 1.05e+03 (4.86e+00)

Table 10

Comparison of the DFMLR, MLLR and LLR estimators on misclassification rate

DFMLR MLLR LLR

5-fold CV 0.0812 (0.0043) 0.1657 (0.0064) 0.1648 (0.0059)
10-fold CV 0.0809 (0.0042) 0.1678 (0.0055) 0.1663 (0.0052)

5.2. Diabetes dataset

The physical examination information for 2476 staffs at the Beijing Jiaotong
University is collected by the university clinic from 2016 to 2018. Out of the
2476 staffs, 237 staffs were diagnosed to have diabetes in 2018. During the
physical exam each year, a total of 62 measurements are recorded for each pa-
tient including blood sugar concentration, dietary preferences, concentration
and volume of erythrocyte, leukocyte and platelets, and facial features, which
yields a 62×3 matrix. In addition, information on seven characteristics that are
relatively stable over the three-year period including gender, education, occupa-
tion, or disability status is available for each staff. We took the characteristics
as the vector-valued predictor and physical exam results as the matrix-valued
predictor. The response yi is a binary variable which takes value 1 if the patient
is diabetic.

The misclassification rates of the DFMLR, MLLR and LLR estimators were
computed by 5-fold or 10-fold CV with 100 random splits. The results are in-
cluded in Table 10. The numbers in the parentheses are standard deviations.
For both 5-fold and 10-fold CV, the DFMLR estimator is able to reduce the
misclassification rate by more than 50% compared to the LLR estimator or the
MLLR estimator.

5.3. COVID-19 dataset

The COVID-19 dataset [47] consists of daily measurements related to COVID-
19 for 138 countries around the world. We focus on the period June 13, 2020
to July 12, 2020. The response y is the total count of newly confirmed case in
this 30-day period for each country. The matrix predictor X is the COVID-19
related government policy every day. The policies include school-closing, restric-
tions on gathering, stay-at-home requirement, income support and so on. Each
of these policies may have several levels, for example, school closing includes
no closing, recommend closing, require some closing (e.g. just high school) or
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Table 11

Comparison of the DFMR, MLR and LLR estimators

DFMR MLR LR

5-fold CV 0.7445 (0.0741) 1.5592 (0.4240) 1.0713 (0.1760)
10-fold CV 0.6360 (0.0479) 1.1939 (0.2384) 0.8849 (0.0895)

require all closing, which varied during the 30-day period. There are a total of
38 measurements from government policies, thus the dimension of X is 30× 38.
The vector-valued predictor z contains 23 characteristics of each country that
remain constant or relatively steady during the 30-day period, for example, male
and female population, gross domestic product (GDP), diabetes prevalence (per-
centage of persons with diabetes in population), number of nurses and smoking
prevalence (percentage of smokers). The sample size is n = 138. The average
RMSE(y) for the DFMR, LMR and LR estimators computed from CV are sum-
marized in Table 11. The DFMR estimator has the smallest predictor error.
Take 5-fold CV as an example, it reduces RMSE(y) by 52.3% compared to the
MLR estimator and 30.5% compared to the LR estimator.

6. Concluding remarks

In this paper, we propose a regularized method in linear regression and logistic
regression which can incorporate high-dimensional matrix-valued predictor and
vector-valued predictor. The proposed method can be extended to models with
tensor-valued predictors, which has many applications in neuroimaging and sig-
nal processing fields. In addition, the proposed method can be adapted to other
generalized linear regression model such as Poisson regression, which is widely
used in medical insurance, business statistics and geography [6].
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Appendix A: Appendix

A.1. Moreau-envelope function and proximal mapping

We present Moreau envelope function and proximal mapping. In particular, we
list the explicit form of proximal mapping for specific functions, such as the
indictor function, L1-norm regularization function, fused Lasso regularization
function, nuclear norm regularization function and matrix indictor function.
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Let p : Rn → (−∞,+∞] be a closed proper convex function such that for a
given ν > 0, the Moreau envelope function ψp(·) of p [32] is defined by

ψp/ν(x) = min
z∈Rn

{
p(z) +

ν

2
‖z − x‖2

}
, ∀ x ∈ R

n, (A.1)

and the corresponding solution is called as the proximal mapping:

Proxp/ν(x) = argmin
z∈Rn

{
p(z) +

ν

2
‖z − x‖2

}
, ∀ x ∈ R

n.

Let p : Rn → (−∞,+∞] be a closed proper convex function, then the Fenchel
conjugate function of p is defined as p∗(x) := sup

x′∈Rn

{〈x, x′〉 − p(x′)} , ∀x ∈ R
n.

Proposition A.1. [33] Let p : R
n → (−∞,+∞] be a closed proper convex

function, and p∗(x) be its Fenchel conjugate function. Then for any t > 0,

Proxtp(x) + tProxp∗/t(x/t) = x, ∀x ∈ R
n. (A.2)

The equality (A.2) is often referred to as the Moreau identity.

Now we discuss the proximal mapping of problem (A.1) with ν = 1. We
can obtain the explicit form of proximal mapping for some special functions.
For example, if p(z) = δ(z; Ω), where Ω is a nonempty closed convex set. The
proximal mapping of the indicator function δΩ is the projection operator on the
set Ω:

ProxδΩ(x) = argmin
z∈Rn

{
δ(z; Ω) +

1

2
‖z − x‖2

}
= argmin

z∈Ω

{
‖z − x‖2

}
= Π(x; Ω).

If Ω = B‖·‖∞(0;r), the proximal mapping of δ(x; Ω) is

ProxδΩ(x) = Π(x; Ω) = x− sign(x) ·max{|x| − r, 0}. (A.3)

If p(z) = λ‖z‖1, the proximal mapping of p is Proxp(x) = shrink(x, λ) :=
sign(x) · max {|x| − λ, 0} , which is called as the soft-thresholding operator in
[16].

If p(z) = λ1‖z‖1 + λ2‖Apz‖1, where λ1, λ2 ≥ 0 are given parameters and
Ap ∈ R

(p−1)×p,

Ap =

⎛
⎜⎜⎜⎝

−1 1 0 · · · 0
0 −1 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · −1 1

⎞
⎟⎟⎟⎠ , (A.4)

then the proximal mapping of p is

Proxp(x) = argmin
z∈Rn

{
λ1‖z‖1 + λ2‖Apz‖1 +

1

2
‖z − x‖2

}
, ∀ x ∈ R

n. (A.5)
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If λ1 = 0 in (A.5), we denote the proximal mapping of p(z) = λ2‖Apz‖1 by
zλ2(x), and zλ2(x) is

zλ2(x) = argmin
z∈Rn

{
λ2‖Apz‖1 +

1

2
‖z − x‖2

}
, ∀x ∈ R

n.

Proposition A.2. [16] Let p(z) = λ1‖z‖1 + λ2‖Apz‖1, Ap ∈ R
(p−1)×p has the

form as in (A.4), then we have

Proxp(x) = Proxλ1‖·‖1
(zλ2(x)) = sign(zλ2(x)) ·max{|zλ2(x)| − λ1, 0}. (A.6)

Now we present the proximal mapping for the matrix-form function. Let
p(M) = ‖M‖∗, then

Proxp(D) = argmin
M∈Rm×q

{
‖M‖∗ +

ν

2
‖M −D‖2F

}
, ∀ D ∈ R

m×q,

and it has a closed-form solution, which is given by

Proxp(D) = UDDiag(ς̂)V T
D , ς̂ = shrink(ς,

1

ν
) = sign(ς) ·max{|ς| − 1

ν
, 0},

where UD, VD,ΣD are from the singular value decomposition of D, i.e., D =
UDΣDV T

D , and ς is a vector that contains the diagonal element of ΣD. The
proof can be found in [3].

Let ν > 0, and p(M) = δ(M ; Ω∗), then the proximal mapping of p is

Proxp(D) = argmin
M∈Rm×q

{
δ(M ; Ω∗) +

ν

2
‖M −D‖2F

}
, ∀ D ∈ R

m×q

with Ω∗ = B‖·‖2(0;λ) and it also has a closed-form solution, which is

Proxp(D) = UDDiag(ς̂)V T
D , ς̂ = Π(ς;B‖·‖∞(0;λ)). (A.7)

In special cases, the proximal mapping is a projection and plays an important
role in solving the problem. Based on it, we derive an efficient sGS-ADMM
algorithm to solve DFMR and DFMLR.

A.2. An introduction to sGS-ADMM algorithm

Now we give a brief introduction on sGS technique and sGS-ADMM algorithm
for a general convex composite programming model as discussed in [5].

The sGS means the symmetric Gauss Seidel method which is an extension
of Gauss Seidel (GS) method. The GS method has been applied in linear or
nonlinear systems, unconstrained or constrained optimization problems, see [19,
37, 46]. Chen et al. [5] designed the sGS method to solve convex composite conic
programming. We now illustrate the GS and sGS methods with an example.
Consider solving the linear system

Ax = b,
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where A ∈ Rm×n is the coefficient matrix and b ∈ Rm is the right-hand side.
GS: successively update the elements of x in a fixed order and turn to the

first one once the last one is updated.

x1 → x2 → · · · → xn → x1 → x2 → · · ·

sGS: successively update the elements of x in a fixed order and turn to the first
one in reverse order once the last one is updated.

x1 → x2 → · · · → xn → xn−1 → xn−2 → · · ·x2 → x1 → x2 → · · ·

Letm and n be two nonnegative integers, X ,Yi, 1 ≤ i ≤ m and Zj , 1 ≤ j ≤ n,
be finite dimensional Euclidean spaces. Define Y := Y1 × · · · × Ym and Z :=
Z1 × · · · × Zn. Consider the following general convex composite programming
model:

min
y∈Y,z∈Z

{p1(y1) + f(y1, · · · , ym) + q1(z1) + g(z1, · · · , zn) | A∗y + B∗z = c},(A.8)

where p1 : Y1 → (−∞,+∞] and q1 : Z1 → (−∞,+∞] are two closed proper
convex functions, f : Y → (−∞,+∞) and g : Z → (−∞,+∞) are continuously
differentiable convex functions whose gradients are Lipschitz continuous. The
linear mappings A : Y → X and B : Z → X are defined such that their adjoints

are given by A∗y =
m∑
i=1

A∗
i yi for y = (y1, · · · , ym) ∈ Y and B∗z =

n∑
j=1

B∗
j zj for

z = (z1, · · · , zn) ∈ Z, where A∗
i : Yi → X and B∗

j : Zj → X are the adjoints of
the linear mappings Ai : X → Yi and Bj : X → Zj , respectively.

The augmented Lagrangian function of problem (A.8) is defined as follows.

Lσ(y, z;x) := p1(y1) + f(y) + q1(z1) + g(z) + 〈x,A∗y + B∗z − c〉
+
σ

2
‖A∗y + B∗z − c‖2,

where σ > 0 is a penalty parameter, and x is the Lagrange multiplier. With
initial point (y0, z0, x0) ∈ domp1 × domq1 ×X , where domp1 and domq1 denote
the domain of p1 and q1, the iterative scheme of sGS-ADMM algorithm for (A.8)
in the (k + 1)th (k = 0, 1, 2, . . .) iteration is⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ỹk+1
i = argmin{Lσ(y

k
≤i−1, yi, ỹ

k+1
≥i+1, z

k;xk)}, i = m, · · · , 2,
yk+1
i = argmin{Lσ(y

k+1
≤i−1, yi, ỹ

k+1
≥i+1, z

k;xk)}, i = 1, · · · ,m,

z̃k+1
j = argmin{Lσ(y

k+1, zk≤j−1, zj , z̃
k+1
≥j+1;x

k)}, j = n, · · · , 2,
zk+1
j = argmin{Lσ(y

k+1, zk+1
≤j−1, zj , z̃

k+1
≥j+1;x

k)}, j = 1, · · · , n,
xk+1 = xk − τσ(A∗yk+1 + B∗zk+1 − c),

where y≤i−1 := (y1, . . . , yi−1), ỹ≥i+1 := (ỹi+1, . . . , ỹm), z≤j−1 := (z1, . . . , zj−1),
z̃≥j+1 := (z̃j+1, . . . , z̃n) and τ is the step length. Now we present the convergence
theorem of sGS-ADMM algorithm.
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Theorem A.3. Suppose that the solution set W̄ to the KKT system of problem
(A.8) is nonempty and the sequence {yk, zk, xk} is generated by the sGS-ADMM
in the kth iteration. Let Σf ,Σg, S and T be self-adjoint positive semidefinite
linear operators such that Σf + S + σAA∗ 
 0 and Σg + T + σBB∗ 
 0. Then
the sequence {yk, zk, xk} converges to a point in W̄ .

A.3. Iterative scheme sGS-ADMM algorithm for DFMR

The each subproblems in Table 1 have closed-form solutions, which are obtained
from the derivative of the augmented Lagrangian function or the properties of
proximal mapping. Now let us look at the resulting subproblems in Table 1 one
by one. The u−subproblem can be written as

uk+ 1
2 = argmin

u

{
1

2
‖u‖22−uTy−〈xk

1 ,X
Tu〉 − 〈xk

2 ,Z
Tu〉+ σ

2
‖ZTu−wk‖2

+
σ

2
‖XTu+CTvk−vec(Dk)‖2

}
.

It is a quadratic form of u and has a unique closed-form solution

uk+ 1
2 = (I+σXXT+σZZT)−1(y+Xxk

1 +Zxk
2 −σ(XCTvk −Xvec(Dk)−Zwk)).

Similarly, the unique closed-form solution of the v−subproblem is

vk+
1
2 =

1

σ
(I + CCT)−1(Cxk

1 + xk
3 − σ(CX

Tuk+ 1
2 − Cvec(Dk) + tk)).

The D−subproblem can be written as

Dk+1=argmin
D

{
δ(D;B‖·‖2(0;λ1)) +

σ

2
‖XTuk+ 1

2 + CTvk+
1
2 − vec(D)− xk

1

σ
‖22
}

=argmin
D

{
δ(D;B‖·‖2(0;λ1)) +

σ

2
‖D − E‖2F

}
,

where vec(E) = X
Tuk+ 1

2 +CTvk+
1
2 − xk

1/σ. By (A.7), the closed-form solution
is Dk+1 = UDiag(e∗)V T, where U, V, e satisfy the singular value decomposition
of E, i.e., E = UΣV T. The vector e contains the diagonal element of Σ, and
e∗ = Π(e;B‖·‖∞(0;λ1)).

The t−subproblem can be written as

tk+1 = argmin
t

{
δ(t;B‖·‖∞(0;λ2))− 〈xk

3 , v
k+ 1

2 + t〉+ σ

2
‖vk+ 1

2 + t‖22
}

= argmin
t

{
δ(t;B‖·‖∞(0;λ2)) +

σ

2
‖vk+ 1

2 + t− xk
3/σ‖22

}
.

By (A.3), the closed-form solution can be obtained from the soft-thresholding
operator

tk+1 = Π(xk
3/σ − vk+

1
2 ;B‖·‖∞(0;λ2))
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= (xk
3/σ − vk+

1
2 )− sign(xk

3/σ − vk+
1
2 ) ·max

{
|vk+ 1

2 − xk
3/σ| − λ2, 0

}
.

The w−subproblem can be written as

wk+1 = argmin
w

{
P ∗(w)− 〈xk

2 ,Z
Tuk+ 1

2 − w〉+ σ

2
‖ZTuk+ 1

2 − w‖22
}

= argmin
w

{
P ∗(w) +

σ

2
‖ZTuk+ 1

2 − w − xk
2/σ‖22

}
.

Applying the Moreau identity (A.2), we have

wk+1 = ProxP∗/σ(Z
Tuk+ 1

2 −xk
2

σ
) = (ZTuk+ 1

2 −xk
2

σ
)− 1

σ
ProxσP (σZ

Tuk+ 1
2 −xk

2).

The closed-form solution for ProxσP (σZ
Tuk+ 1

2 − xk
2) is given by

ProxσP (σZ
Tuk+ 1

2 − xk
2) =sign(xσλ4(σZ

Tuk+ 1
2 − xk

2))

·max
{
|xσλ4(σZ

Tuk+ 1
2 − xk

2)| − σλ3, 0
}
,

where xσλ4(σZ
Tuk+ 1

2 −xk
2) = argmin

x
{σλ4‖Apx‖1+ 1

2‖x− (σZTuk+ 1
2 −xk

2)‖22}.
Finally, the stopping criterion eta for DFMR estimator is derived from the

KKT condition.

ηP = max

{
‖uk+1 − y − Xxk+1

1 − Zxk+1
2 ‖

1 + ‖uk+1‖+ ‖xk+1
2 ‖

,
‖Cxk+1

1 + xk+1
3 ‖

1 + ‖xk+1
1 ‖+ ‖xk+1

3 ‖

}
,

ηD = max

{
‖vk+1 + tk+1‖

1 + ‖vk+1‖+ ‖tk+1‖ ,
‖XTuk+1 + CTvk+1 − vec(Dk+1)‖

1 + ‖vec(Dk+1)‖ ,

‖ZTuk+1 − wk+1‖
1 + ‖wk+1‖

}
,

eta = max {ηP , ηD} < tol.

The maximum number of iterations k is set to be 5000.

A.4. Iterative scheme of sGS-ADMM algorithm for DFMLR

The iterative scheme of sGS-ADMM algorithm for solving (2.8) is summarized
in Table 12.

The D,w, t subproblems have the same solutions as in the DFMR. Now
we give the closed-form solutions for u−subproblem and v−subproblem. The
solution of u−subproblem is

uk+ 1
2 =

1

σ
(I + XX

T + ZZ
T)−1

(
Xxk

1 + Zxk
2 + xk

3

− σ
(
XCTvk − Xvec(Dk)− Zwk

)
+sk − y

)
.
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Table 12

Iterative scheme of sGS-ADMM algorithm for solving (2.8)

Algorithm 2:
Input: X,Z, y and tolerance level tol. Choose λ1 > 0, λ2 > 0, λ3 > 0, λ4 > 0 and σ > 0.

Let τ ∈ (0, (1 +
√
5)/2) be the step-length. Set the initial point (u0, v0, α0, x0).

For k = 0, 1, · · · , perform the following steps:

Step 1a. (Backward GS sweep) Compute uk+ 1
2 and vk+

1
2 ,

uk+ 1
2 = argmin

u
Lσ(u, vk, αk;xk),

vk+
1
2 = argmin

v
Lσ(u

k+ 1
2 , v, αk;xk).

Step 1b. (Forward GS sweep) Compute uk+1 , vk+1 and αk+1,

αk+1 = argmin
α

Lσ(u
k+ 1

2 , vk+
1
2 , α;xk),

vk+1 = argmin
v

Lσ(u
k+ 1

2 , v, αk+1;xk),

uk+1 = argmin
u

Lσ(u, vk+1, αk+1;xk).

Step 2. Update Lagrange multipliers xk+1
1 , xk+1

2 , xk+1
3 and xk+1

4 ,

xk+1
1 = xk

1 − τσ(XTuk+1 + CTvk+1 − vec(Dk+1)),

xk+1
2 = xk

2 − τσ(ZTuk+1 − wk+1),

xk+1
3 = xk

3 − τσ(uk+1 + sk+1 − y),

xk+1
4 = xk

4 − τσ(vk+1 + tk+1).
If eta < tol stop

Similar to the u−subproblem, v−subproblem has a unique closed-form solution

vk+
1
2 =

1

σ
(I + CCT)−1(Cxk

1 + xk
4 − σ(CX

Tuk+ 1
2 − Cvec(Dk) + tk)).

The stopping criterion eta for DFMLR estimator is also derived from the
KKT condition.

ηP = max

{
‖Xxk+1

1 + Zxk+1
2 + xk+1

3 ‖
1 + ‖xk+1

1 ‖+ ‖xk+1
2 ‖+ ‖xk+1

3 ‖
,

‖Cxk+1
1 + xk+1

4 ‖
1 + ‖xk+1

1 ‖+ ‖xk+1
4 ‖

}
,

ηD = max

{
‖vk+1 + tk+1‖

1 + ‖vk+1‖+ ‖tk+1‖ ,
‖XTuk+1 + CTvk+1 − vec(Dk+1)‖

1 + ‖vec(Dk+1)‖ ,

‖ZTuk+1 − wk+1‖
1 + ‖wk+1‖ ,

‖uk+1 + sk+1 − y‖
1 + ‖uk+1‖+ ‖sk+1‖

}
,

eta = max {ηP , ηD} < tol.

The maximum number of iterations k was set to be 5000.

A.5. Proofs

Proof of Theorem 2.1. The global convergence of sGS-ADMM algorithm is es-
tablished by [5]. For the problem (2.5) in our paper is a convex optimization
problem which has better structures where I +σXXT+σZZT and I +CCT are
positive definite matrices. The global convergence of the sGS-ADMM algorithm
for solving problem (2.5) is easily satisfied. �

In order to prove the Theorem 2.2, we established two lemmas which give
the upper bound of the KKT system of the iterative point and investigate the
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distance between iterative points and the optimal solution, respectively. We give
the definition of metric subregularity from [7]. Let F : X → Y be a multi-valued
mapping. Denote its inverse by F−1. Define the graph of multi-valued functions
F as follows

graphF := {(x, y) ∈ X × Y|y ∈ F(x)}.

Definition A.4. A multi-valued mapping F : X → Y is said to be metric
subregular at x̄ ∈ X for ȳ ∈ Y with modulus κ > 0 if (x̄, ȳ) ∈ graghF and there
exist neighborhood U of x̄ and V of ȳ such that

dist(x,F−1(ȳ)) ≤ κdist(ȳ,F(x) ∩ V), ∀x ∈ U .

Let Θ := R
n×R

(m−1)q ×Y ×X , and define the KKT mapping R : Θ → Θ as

R(θ) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u− y − Xx1 − Zx2

−Cx1 − x3

w − ProxP∗(w − x2)
D − ProxδB‖·‖2≤λ1

(D − Ξ)

t− ProxδB‖·‖∞≤λ2
(t+ x3)

X
Tu+ CTv − vec(D)

Z
Tu− w
v + t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, ∀θ ∈ Θ,

where vec(Ξ) = x1. We know that R(θ) = 0 is equal to θ ∈ Ω̄. According to
Moreau identity (A.2) ProxδB‖·‖2≤λ1

(D−Ξ)+Proxλ1‖·‖∗(D−Ξ) = D−Ξ, we

have D−ProxδB‖·‖2≤λ1
(D−Ξ) = Ξ+Proxλ1‖·‖∗(D−Ξ). Thus we obtain that

R(θ) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u− y − Xx1 − Zx2

−Cx1 − x3

w − ProxP∗(w − x2)
D − ProxδB‖·‖2≤λ1

(D − Ξ)

t− ProxδB‖·‖∞≤λ2
(t+ x3)

X
Tu+ CTv − vec(D)

Z
Tu− w
v + t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u− y − Xx1 − Zx2

−Cx1 − x3

w − ProxP∗(w − x2)
Ξ + Proxλ1‖·‖∗(D − Ξ)

t− ProxδB‖·‖∞≤λ2
(t+ x3)

X
Tu+ CTv − vec(D)

Z
Tu− w
v + t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Define κ1 := (12σ + 4τ)λmax(X
T
X), κ2 := (8σ + 4τ)λmax(Z

T
Z), κ3 := (12σ +

4τ)λmax(C
TC) and κ4 := max{κ1+κ3+2σ+2τ+1/σ, κ2+2σ+2τ+1/σ, 14σ+

5τ + 1/σ}. Let H0 be the block-diagonal linear operator defined by H0 :=
κ4Diag(0, CCT,ΣI , (τ

2σ)−1Ix). We provide the following lemma which is useful
in proving Theorem 2.2.

Lemma A.5. Let {θk := (uk, vk, αk, xk)} is generated by the sGS-ADMM.
Then for any k ≥ 1,

‖θk+1 − θk‖2H0
≥ ‖R(θk+1)‖2. (A.9)
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Proof. The optimal condition for every subproblem in Table 1 is⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 = uk+1 − y − Xxk
1 − Zxk

2 + σX(XTuk+1 + CTvk − vec(Dk))
+σZ(ZTuk+1 − wk),

0 = −Cxk
1 − xk

3 + σC(Xuk+1 + CTvk+1 − vec(Dk)) + σ(vk+1 + tk),
0 ∈ ∂P ∗(wk+1) + xk

2 − σ(ZTuk+1 − wk+1),
0 ∈ ∂δB‖·‖2≤λ1

(Dk+1) + Ξk − σΛk+1,

0 ∈ ∂δB‖·‖∞≤λ2
(tk+1)− xk

3 + σ(vk+1 + tk+1),

where vec(Λk+1) = Xuk+1+CTvk+1−vec(Dk+1). We obtain from the definition
of R(·) that

‖R(θk+1)‖2 ≤‖uk+1 − y − Xxk+1
1 − Zxk+1

2 ‖2 + ‖Cxk+1
1 + xk+1

3 ‖2

+ ‖σ(ZTuk+1 − wk+1)− xk
2 + xk+1

2 ‖2 + ‖σΛk+1 − Ξk + Ξk+1‖2F
+ ‖σ(vk+1 + tk+1)− xk

3 + xk+1
3 ‖2 + ‖vk+1 + tk+1‖2

+ ‖XTuk+1 + CTvk+1 − vec(Dk+1)‖2 + ‖ZTuk+1 − wk+1‖2.

By schemes of Lagrange multipliers and the definition of Λk+1, we have

‖R(θk+1)‖2

≤12σ2λmax(X
T
X)‖vk − vk+1‖2CCT+8σ2λmax(Z

T
Z)‖wk+1−wk‖2

+(12σ2λmax(X
T
X) + 12σ2λmax(C

TC))‖vec(Dk+1)−vec(Dk)‖2

+ 12σ2‖tk − tk+1‖2 + ((12σ2 + 4τσ)λmax(X
T
X)

+ (12σ2 + 3τσ)λmax(C
TC) + 2σ2 + 2τσ + 1)‖(τσ)−1(xk

1 − xk+1
1 )‖2

+ ((8σ2 + 4τσ)λmax(Z
T
Z) + 2σ2 + 2τσ + 1)‖(τσ)−1(xk

2 − xk+1
2 )‖2

+ (14σ2 + 5τσ + 1)‖(τσ)−1(xk
3 − xk+1

3 )‖2

≤κ1‖vk − vk+1‖2CCT+κ2‖wk+1−wk‖2 + 12σ2‖tk − tk+1‖2

+ (κ1 + κ3 + 2σ2 + 2τσ + 1)‖(τσ)−1(xk
1 − xk+1

1 )‖2

+ (κ2 + 2σ2 + 2τσ + 1)‖(τσ)−1(xk
2 − xk+1

2 )‖2

+ (14σ2 + 5τσ + 1)‖(τσ)−1(xk
3 − xk+1

3 )‖2

+ (κ1 + κ3)‖vec(Dk+1)−vec(Dk)‖2.

Thus we can immediately imply (A.9).

Define tτ := 1
2 (1 − τ + min{τ, τ−1}) and the self-adjoint linear operator

H := Diag( 12I, 2tτ τσ(I + CCT), 2tτ τσΣI +
1
2Σα, tτ (τ

2σ)−1Ix) +
1
4 tτσΦΦ

∗. We
easily know that 1/4 ≤ sτ ≤ 5/4 and 0 ≤ tτ ≤ 1/2. We next give inequality
which plays a key role in deriving the Q-linear rate of convergence for the sGS-
ADMM algorithm of DFMR estimator.

Lemma A.6. Let {θk := (uk, vk, αk, xk)} be an infinite sequence generated by
the sGS-ADMM. Then for any θ̄ = (ū, v̄, ᾱ, x̄) ∈ Ω̄ and any k ≥ 1,

‖θk+1 − θ̄‖2M ≤ ‖θk − θ̄‖2M − ‖θk+1 − θk‖2H. (A.10)
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Consequently, we have

dist2M(θk+1, Ω̄) ≤ dist2M(θk, Ω̄)− ‖θk+1 − θk‖2H. (A.11)

Proof. For any θ and θ′, we define the function J(θ, θ′) := (τσ)−1‖x − x′‖2 +
σ‖v− v′‖2I+CCT +σ‖ΣI(α−α′)‖2. Let θ̄ = (ū, v̄, ᾱ, x̄) ∈ Ω̄. Following Appendix
B of [14], for any k ≥ 1 the inequality holds that

J(θk+1, θ̄) + (1−min{τ, τ−1})σ‖Φ∗(uk+1, vk+1, αk+1, 0)‖2

− [J(θk, θ̄) + (1−min{τ, τ−1})σ‖Φ∗(uk, vk, αk, 0)‖2]
≤− τ(1− τ +min{τ, τ−1})σ(‖vk+1 − vk‖2I+CCT + ‖ΣI(α

k+1 − αk)‖2)
− (1− τ +min{τ, τ−1})σ‖Φ∗(uk+1, vk+1, αk+1, 0)‖2

− 2‖uk+1 − ū‖2 − 2‖αk+1 − ᾱ‖2Σα
. (A.12)

By reorganizing the terms in (A.12), we obtain

(τσ)−1‖xk+1 − x̄‖2 + σ‖vk+1 − v̄‖2I+CCT + σ‖ΣI(α
k+1 − ᾱ)‖2

+ sτσ‖Φ∗(uk+1, vk+1, αk+1, 0)‖2 + ‖uk+1 − ū‖2 + ‖αk+1 − ᾱ‖2Σα

≤(τσ)−1‖xk − x̄‖2 + σ‖vk − v̄‖2I+CCT + σ‖ΣI(α
k − ᾱ)‖2

+ sτσ‖Φ∗(uk, vk, αk, 0)‖2 + ‖uk − ū‖2 + ‖αk − ᾱ‖2Σα

− {2tττσ[‖vk+1 − vk‖2I+CCT + ‖ΣI(α
k+1 − αk)‖2] + ‖uk+1 − ū‖2

+ ‖uk − ū‖2 + ‖αk+1 − ᾱ‖2Σα
+ ‖αk − ᾱ‖2Σα

+ tτσ‖Φ∗(uk+1, vk+1, αk+1, 0)‖2

+
1

2
tτσ[‖Φ∗(uk+1, vk+1, αk+1, 0)‖2 + ‖Φ∗(uk, vk, αk, 0)‖2]}.

Using equalities

Φ∗(uk+1, vk+1, αk+1, 0) = (τσ)−1(xk − xk+1),

‖Φ∗(uk+1, vk+1, αk+1, 0)‖2 = ‖θk+1 − θ̄‖2ΦΦ∗

and inequalities

‖uk+1 − ū‖2 + ‖uk − ū‖2 ≥ 1

2
‖uk+1 − uk‖2,

‖αk+1 − ᾱ‖2Σα
+ ‖αk − ᾱ‖2Σα

≥ 1

2
‖αk+1 − αk‖2Σα

,

‖Φ∗(uk+1, vk+1, αk+1, 0)‖2 + ‖Φ∗(uk, vk, αk, 0)‖2 ≥ 1

2
‖θk+1 − θk‖2ΦΦ∗ ,

we obtain

(τσ)−1‖xk+1 − x̄‖2 + σ‖vk+1 − v̄‖2I+CCT + σ‖αk+1 − ᾱ‖2

+ sτσ‖θk+1 − θ̄‖2ΦΦ∗ + ‖uk+1 − ū‖2 + ‖αk+1 − ᾱ‖2Σα

≤(τσ)−1‖xk − x̄‖2 + σ‖vk − v̄‖2I+CCT + σ‖αk − ᾱ‖2 + sτσ‖θk − θ̄‖2ΦΦ∗
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+ ‖uk − ū‖2 + ‖αk − ᾱ‖2Σα
− {2tττσ[‖vk+1 − vk‖2I+CCT

+ ‖αk+1 − αk‖2] + 1

2
‖uk+1 − uk‖2 + 1

2
‖αk+1 − αk‖2Σα

+ tτ (τ
2σ)−1‖xk − xk+1‖2 + 1

4
tτσ‖θk+1 − θk‖2ΦΦ∗}.

It shows that (A.10) holds. Note that Ω̄ is a nonempty closed convex set and
(A.10) holds for any θ̄ ∈ Ω̄, we immediately get (A.11).

Based on Lemma A.5 and Lemma A.6, we give a specific proof for the Q-
linear rate of convergence of the sGS-ADMM algorithm.
Proof of Theorem 2.2. We know that L1 norm and fused Lasso regularization are
polyhedral convex functions [27, 40], their Fenchel conjugate functions are also
polyhedral convex functions. According to [20], ProxP∗(·) and ProxδB‖·‖∞≤λ2

(·)
are piecewise polyhedral. The multi-valued mapping ∂‖ · ‖∗ : Rm×q → R

m×q is
metrically subregular at the KKT point for origin [51]. Thus the multi-valued
mapping R(θ) is metrically subregular at the KKT point for origin. There exist

positive constants η̂ > 0 and δ̂ > 0 such that dist(θk, Ω̄) ≤ η̂‖R(θk)‖, ∀θ ∈
{θ : ‖θ − θ̄‖ ≤ δ̂}. According to Lemma A.5, it holds that ‖R(θk+1)‖2 ≤
‖θk+1−θk‖2H0

. Thus, we get that for all k ≥ 1, dist2(θk+1, Ω̄) ≤ η̂2‖R(θk+1)‖2 ≤
η̂2‖θk+1 − θk‖2H0

. We have for all k ≥ 1, ‖θk+1 − θk‖2H ≥ 0 and

‖θk+1 − θk‖2H ≥ min{2τ, 1}tτκ−1
4 ‖θk+1 − θk‖2H0

≥ min{2τ, 1}tτκ−1
4 η̂−2dist2(θk+1, Ω̄)

≥ κdist2M(θk+1, Ω̄), (A.13)

where κ = min{2τ, 1}tτκ−1
4 η̂−2 > 0. According to (A.11) and (A.13), we have

dist2M(θk+1, Ω̄)− dist2M(θk, Ω̄) ≤ −‖θk+1 − θk‖2H ≤ −κdist2M(θk+1, Ω̄), it holds
that (1 + κ)dist2M(θk+1, Ω̄) ≤ dist2M(θk, Ω̄). Denote μ = (1 + κ)−1 < 1, The
proof of Theorem 2.2 has been completed. �

The proof of Theorem 2.3 is similar to Theorem 2.2, we will omit it.
Proof of Theorem 3.1. In our proof, we will divide the proof into two steps:
(1) prove that ||B̂ − B∗||2F + ||γ̂ − γ∗||22 has a upper bound; (2) prove that

||B̂ −B∗||2F + ||γ̂ − γ∗||22 converges in probability to zero.

Step 1. According to the definition of B̂, γ̂, we obtain that

1

2

n∑
i=1

(yi − 〈Xi, B̂〉 − 〈zi, γ̂〉)2 + λ1||B̂||∗ + λ2||Cvec(B̂)||1 + λ3||γ̂||1

+ λ4||Apγ̂||1

≤1

2

n∑
i=1

ε2i + λ1||B∗||∗ + λ2||Cvec(B∗)||1 + λ3||γ∗||1 + λ4||Apγ
∗||1,

which yields that

1

2

n∑
i=1

(
εi − 〈Xi, B̂ −B∗〉 − 〈zi, γ̂ − γ∗〉

)2
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≤1

2

n∑
i=1

ε2i + λ1||B∗||∗ + λ2||Cvec(B∗)||1 + λ3||γ∗||1 + λ4||Apγ
∗||1. (A.14)

By the formulation (a+ b)2 = a2 + b2 + 2ab, we have

1

2

n∑
i=1

(
〈Xi, B̂ −B∗〉+ 〈zi, γ̂ − γ∗〉

)2

+

n∑
i=1

εi

(
〈Xi, B̂ −B∗〉+ 〈zi, γ̂ − γ∗〉

)
≤λ1||B∗||∗ + λ2||Cvec(B∗)||1 + λ3||γ∗||1 + λ4||Apγ

∗||1. (A.15)

Therefore, we obtain

1

2

n∑
i=1

(
〈Xi, B̂ −B∗〉+ 〈zi, γ̂ − γ∗〉

)2

=
1

2

n∑
i=1

(
〈Xi, B̂ −B∗〉+ 〈zi, γ̂ − γ∗〉 − εi + εi

)2

≤
n∑

i=1

(
〈Xi, B̂ −B∗〉+ 〈zi, γ̂ − γ∗〉 − εi

)2
+

n∑
i=1

ε2i

≤2

n∑
i=1

ε2i + 2λ1||B∗||∗ + 2λ2||Cvec(B∗)||1 + 2λ3||γ∗||1 + 2λ4||Apγ
∗||1.

By Cauchy’s inequality and Condition 4, we have

λ1||B∗||∗ + λ2||Cvec(B∗)||1 + λ3||γ∗||1 + λ4||Apγ
∗||1

≤λ1(r
∗‖B∗‖2) + λ2(||Cvec(B∗)||∞s∗1) + λ3(s

∗
2‖γ∗||∞) + λ4(s

∗
3‖Apγ

∗||∞)

≤4
√
n.

According to the above two inequalities, we infer that

1

2

n∑
i=1

(
〈Xi, B̂ −B∗〉+ 〈zi, γ̂ − γ∗〉

)2 ≤ 2

n∑
i=1

ε2i + 8
√
n. (A.16)

By Chebyshev’s inequality and Condition 3, we obtain that

P
( n∑

i=1

ε2i ≥ 2nσ2
0/k

2
)
≤ e−2nσ2

0/k
2

Ee
∑n

i=1 ε2i /k
2

= e−2nσ2
0/k

2 · e
∑n

i=1 log E(eε
2
i /k2

)

≤ e−2nσ2
0/k

2+n log(1+σ2
0/k

2)

≤ e−2nσ2
0/k

2+nσ2
0/k

2

= e−nσ2
0/k

2

. (A.17)
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Notice that

〈Xi, B̂ −B∗〉〈zi, γ̂ − γ∗〉 =trace
((

(γ̂ − γ∗)T zi
)
⊗
(
(B̂ −B∗)TXi

))
=trace

((
(γ̂ − γ∗)T ⊗ (B̂ −B∗)T

)(
zi ⊗Xi

))
=trace

((
(γ̂ − γ∗)⊗ (B̂ −B∗)

)T (
zi ⊗Xi

))
=〈zi ⊗Xi, (γ̂ − γ∗)⊗ (B̂ −B∗)〉
≤‖zi ⊗Xi‖F ‖(γ̂ − γ∗)⊗ (B̂ −B∗)‖F
≤‖zi ⊗Xi‖F ‖γ̂ − γ∗‖2‖B̂ −B∗‖F .

From the above inequality, Conditions 1-2 and the condition (3.1), we conclude
that

1

2

n∑
i=1

(
〈Xi, B̂ −B∗〉+ 〈zi, γ̂ − γ∗〉

)2

=
1

2

n∑
i=1

〈Xi, B̂ −B∗〉2 + 1

2

n∑
i=1

〈zi, γ̂ − γ∗〉2 +
n∑

i=1

〈Xi, B̂ −B∗〉〈zi, γ̂ − γ∗〉

≥n

2
CX ||B̂ −B∗||2F +

n

2
CZ ||γ̂ − γ∗||2

− n|| 1
n

n∑
i=1

(zi ⊗Xi)||F · ||B̂ −B∗||F · ||γ̂ − γ∗||

≥n

2
min{CX , CZ}(||B̂ −B∗||2F + ||γ̂ − γ∗||2)

− n

2
min{CX , CZ} ·

1

2
(||B̂ −B∗||2F + ||γ̂ − γ∗||2)

≥n

4
min{CX , CZ}(||B̂ −B∗||2F + ||γ̂ − γ∗||2). (A.18)

Combing (A.16), (A.17) and (A.18) yields

||B̂ −B∗||2F + ||γ̂ − γ∗||22 ≤ 8

min{CX , CZ}
·
(
3/

√
n+

1

n

n∑
i=1

ε2i

)
≤ c2 (A.19)

with probability at least 1− e−nσ2
0/k

2

.
Step 2. According to (A.19), we have already seen that ||B̂−B∗||2F+||γ̂−γ∗||22

has a upper bound. Now we prove that ||B̂ − B∗||2F + ||γ̂ − γ∗||22 converges in
probability to zero.

By (A.15) and and (A.18), we know

1

4
min{CX , CZ}(||B̂ −B∗||2F + ||γ̂ − γ∗||2)

≤ 1

n
|

n∑
i=1

εi

(
〈Xi, B̂ −B∗〉+ 〈zi, γ̂ − γ∗〉

)
|
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+
λ1||B∗||∗ + λ2||Cvec(B∗)||1 + λ3||γ∗||1 + λ4||Apγ

∗||1
n

. (A.20)

For simplicity, we denote U = B̂−B∗, v = γ̂−γ∗. We estimate the upper bound
1
n |

∑n
i=1 εi

(
〈Xi, B̂ −B∗〉+ 〈zi, γ̂ − γ∗〉

)
|.

sup
‖U‖2

F+‖v‖2≤c

1

n
|

n∑
i=1

εi

(
〈Xi, B̂ −B∗〉+ 〈zi, γ̂ − γ∗〉

)
|

= sup
‖U‖2

F+‖v‖2≤c

1

n
|

n∑
i=1

εi

(
〈Xi, U〉+ 〈zi, v〉

)
|

≤ sup
‖U‖2

F+‖v‖2≤c

| 1
n

n∑
i=1

εi〈Xi, U〉|+ sup
‖U‖2

F+‖v‖2≤c

| 1
n

n∑
i=1

εi〈zi, v〉|.

Condition 3 shows that the ε obeys the sub-Guassian distribution. Applying
Hoeffding inequality for every τ ≥ 0 yields

P (| 1
n

n∑
i=1

εi〈Xi, U〉| > τ) ≤ e
− nτ2

8(k2+σ2
0)C̄X‖U‖2

F .

By taking τ =

√
(k2+σ2

0)‖U‖2
FCXmq

n , we have

P

(
sup

‖U‖2
F+‖v‖2≤c

| 1
n

n∑
i=1

εi〈Xi, U〉| ≥

√
(k2 + σ2

0)‖U‖2FCXmq

n

)
≤ c1e

−c2mq.(A.21)

Similarly,

P

(
sup

‖U‖2
F+‖v‖2≤c

| 1
n

n∑
i=1

εi〈zi, v〉| ≥

√
(k2 + σ2

0)‖v‖22CZp

n

)
≤ c3e

−c4p, (A.22)

where {ci}4i=1 are positive constants.
Combing (A.20), (A.21) and (A.22) leads to

1

4
min{CX , CZ}(||B̂ −B∗||2F + ||γ̂ − γ∗||2)

≤ 1

n
|

n∑
i=1

εi〈Xi, B̂ −B∗〉+ 〈zi, γ̂ − γ∗〉|

+
λ1||B∗||∗ + λ2||Cvec(B∗)||1 + λ3||γ∗||1 + λ4||Apγ

∗||1
n

≤ sup
‖U‖2

F+‖v‖2≤c2

1

n
|

n∑
i=1

εi〈Xi, B̂ −B∗〉|+ sup
‖U‖2

F+‖v‖2≤c2

1

n
|

n∑
i=1

εi〈zi, γ̂ − γ∗〉|

+
λ1||B∗||∗ + λ2||Cvec(B∗)||1 + λ3||γ∗||1 + λ4||Apγ

∗||1
n
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≤

√
(k2 + σ2

0)CXmq

n
‖U‖F +

√
(k2 + σ2

0)CXp

n
‖v‖2

+
λ1||B∗||∗ + λ2||Cvec(B∗)||1 + λ3||γ∗||1 + λ4||Apγ

∗||1
n

.

Due to√
(k2 + σ2

0)CXmq

n
‖U‖F = 2

√
2

√
(k2 + σ2

0)CXmq

nmin{CX , CZ}
·
√
min{CX , CZ}

2
√
2

‖U‖F

≤ 2(k2 + σ2
0)CXmq

nmin{CX , CZ}
+

1

8
min{CX , CZ}‖U‖2F

and √
(k2 + σ2

0)CZp

n
‖v‖2 = 2

√
2

√
(k2 + σ2

0)CZp

nmin{CX , CZ}
·
√

min{CX , CZ}
2
√
2

‖v‖2

≤ 2(k2 + σ2
0)CZp

nmin{CX , CZ}
+

1

8
min{CX , CZ}‖v‖22,

we obtain that

||B̂ −B∗||2F + ||γ̂ − γ∗||22 ≤ 16(k2 + σ2
0)

min2{CX , CZ}
CXmq + CZp

n

+
8(λ1r

∗‖B∗‖2 + λ2||Cvec(B∗)||∞s∗1 + λ3s
∗
2‖γ∗||∞ + λ4s

∗
3‖Apγ

∗||∞)

nmin{CX , CZ}

with probability at least 1 − e−nσ2
0/k

2 − c1e
−c2mq − c3e

−c4p, where {ci}4i=1 are
positive constants. Then, we get the inequality in Theorem 3.1. As a direct
consequence, it follows that ||B̂−B∗||2F + ||γ̂− γ∗||22 converges in probability to
zero under the Condition 4 and assumption. �
Proof of Theorem 3.2. For simplicity, denote

H(B, γ) =

n∑
i=1

log(1 + e〈Xi,B〉+〈zi,γ〉)− yi(〈Xi, B〉+ 〈zi, γ〉).

According to Conditions 5-6, we obtain

n∑
i=1

K〈Xi, B̂ −B∗〉2 + (γ̂ − γ∗)T
n∑

i=1

Kziz
T
i (γ̂ − γ∗)

+ 2

n∑
i=1

〈Xi, B̂ −B∗〉〈Kzi, γ̂ − γ∗〉

≥nCX ||B̂ −B∗||2F + nCZ ||γ̂ − γ∗||2

− 2n|| 1
n

n∑
i=1

(Kzi ⊗Xi)||F · ||B̂ −B∗||F · ||γ̂ − γ∗||
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≥nmin{CX , CZ}(||B̂ −B∗||2F + ||γ̂ − γ∗||2)

− nmin{CX , CZ} ·
1

2
(||B̂ −B∗||2F + ||γ̂ − γ∗||2)

≥n

2
min{CX , CZ}(||B̂ −B∗||2F + ||γ̂ − γ∗||2). (A.23)

From the condition (3.3), the loss H(B, γ) is strong convex. Hence we have

H(B̂, γ̂) ≥ H(B∗, γ∗) + 〈∇HB(B
∗, γ∗), B̂ −B∗〉+ 〈∇Hγ(B

∗, γ∗), γ̂ − γ∗〉

+

n∑
i=1

K〈Xi, B̂ −B∗〉2 + (γ̂ − γ∗)T
n∑

i=1

Kziz
T
i (γ̂ − γ∗)

+ 2

n∑
i=1

〈Xi, B̂ −B∗〉〈Kzi, γ̂ − γ∗〉

≥ H(B∗, γ∗) + 〈∇HB(B
∗, γ∗), B̂ −B∗〉+ 〈∇Hγ(B

∗, γ∗), γ̂ − γ∗〉

+
n

2
min{CX , CZ}(||B̂ −B∗||2F + ||γ̂ − γ∗||2). (A.24)

The definition of B̂, γ̂ gives us

H(β̂, γ̂) + λ1||B̂||∗ + λ2||Cvec(B̂)||1 + λ3||γ̂||1 + λ4||Apγ̂||1
≤H(β∗, γ∗) + λ1||B∗||∗ + λ2||Cvec(B∗)||1 + λ3||γ∗||1 + λ4||Apγ

∗||1. (A.25)

By Cauchy’s inequality and Condition 8, we have

λ1||B∗||∗ + λ2||Cvec(B∗)||1 + λ3||γ∗||1 + λ4||Apγ
∗||1

≤λ1(r
∗‖B∗‖2) + λ2(||Cvec(B∗)||∞s∗1) + λ3(s

∗
2‖γ∗||∞) + λ4(s

∗
3‖Apγ

∗||∞)

≤4
√
n.

Combing (A.23), (A.24) and (A.25) yields

n

2
min{CX , CZ}(||B̂ −B∗||2F + ||γ̂ − γ∗||2)

≤|〈∇HB(B
∗, γ∗), B̂ −B∗〉|+ |〈∇Hγ(B

∗, γ∗), γ̂ − γ∗〉|+ λ1||B∗||∗
+ λ2||Cvec(B∗)||1 + λ3||γ∗||1 + λ4||Apγ

∗||1
≤|〈∇HB(B

∗, γ∗), B̂ −B∗〉|+ |〈∇Hγ(B
∗, γ∗), γ̂ − γ∗〉|+ 4

√
n. (A.26)

Let ϕ(B∗, γ∗) = e〈Xi,B
∗〉+〈zi,γ∗〉

1+e〈Xi,B
∗〉+〈zi,γ∗〉 − yi. The first-order gradient of loss function

is given as

∇HB(B
∗, γ∗) =

n∑
i=1

Xiϕ(B
∗, γ∗), ∇Hγ(B

∗, γ∗) =
n∑

i=1

ziϕ(B
∗, γ∗).

Note that |ϕ(B∗, γ∗)| ≤ 1, we obtain

|〈∇HB(B
∗, γ∗), B̂ −B∗〉|+ |〈∇Hγ(B

∗, γ∗), γ̂ − γ∗〉|
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≤|〈
n∑

i=1

Xi, B̂ −B∗〉|+ |〈
n∑

i=1

zi, γ̂ − γ∗〉|

≤
√
nC̄X‖B̂ −B∗‖F +

√
nC̄Z‖γ̂ − γ∗‖2.

(A.26) leads to

n

2
min{CX , CZ}(||B̂ −B∗||2F + ||γ̂ − γ∗||2)

≤ C̄X

min{CX , CZ}
+

C̄Z

min{CX , CZ}
+ 4

√
n.

We obtain

||B̂ −B∗||2F + ||γ̂ − γ∗||22 ≤ 1

n

( 4C̄X

min2{CX , CZ}
+

4C̄Z

min2{CX , CZ}

)
+ 4/

√
n

≤ c2.

We have proved that ||B̂ −B∗||2F + ||γ̂ − γ∗||2 has a upper bound. Next we will
prove that the estimation error tends to zero. By (A.24) we know

1

2
min{CX , CZ}(||B̂ −B∗||2F + ||γ̂ − γ∗||2)

≤ 1

n
|〈∇HB(B

∗, γ∗), B̂ −B∗〉+ 〈∇Hγ(B
∗, γ∗), γ̂ − γ∗〉|

+
λ1||B∗||∗ + λ2||Cvec(B∗)||1 + λ3||γ∗||1 + λ4||Apγ

∗||1
n

. (A.27)

For simplicity, denote U = B̂ − B∗, v = γ̂ − γ∗. We estimate the upper bound
1
n |〈∇HB(B

∗, γ∗), B̂ −B∗〉+ 〈∇Hγ(B
∗, γ∗), γ̂ − γ∗〉|.

sup
‖U‖2

F+‖v‖2≤c

1

n
|〈∇HB(B

∗, γ∗), B̂ −B∗〉+ 〈∇Hγ(B
∗, γ∗), γ̂ − γ∗〉|

= sup
‖U‖2

F+‖v‖2≤c

1

n
|〈∇HB(B

∗, γ∗), U〉+ 〈∇Hγ(B
∗, γ∗), v〉|

≤ 2

n
sup

‖U‖2
F+‖v‖2≤c

(〈
n∑

i=1

Xiϕ(B
∗, γ∗), U〉)2

+
2

n
sup

‖U‖2
F+‖v‖2≤c

(〈
n∑

i=1

ziϕ(B
∗, γ∗), v〉)2

≤ sup
‖U‖2

F+‖v‖2≤c

2

n

n∑
i=1

vec(U)T vec(Xi)vec(Xi)
T vec(U)

+ sup
‖U‖2

F+‖v‖2≤c

2

n

n∑
i=1

vT ziz
T
i v.
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Condition 7 shows that the vec(Xi) and zi obey the sub-Guassian distributions.
Hence the vec(Xi)vec(Xi)

T and ziz
T
i satisfy the sub-exponential distributions.

Applying Bernstein inequality for every t ≥ 0 yields

P
( 1

n
|

n∑
i=1

vec(U)T vec(Xi)vec(Xi)
T vec(U)| > t

)

≤ 2exp
(
− dmin{ nt2

‖Xi‖4ψ2
‖U‖2F

,
nt

‖Xi‖2ψ2
‖U‖F

}
)
.

Taking t =

√
k2‖U‖2

Fmq

n implies

P
(

sup
‖U‖2

F+‖v‖2≤c

1

n
|

n∑
i=1

vec(U)T vec(Xi)vec(Xi)
T vec(U)| >

√
k2‖U‖2Fmq

n

)
≤ c1exp(−c2mq),

where k = max{‖Xi‖2ψ2
, ‖zi‖2ψ2

}, c1, c2 are positive constants. Similarly,

P
(

sup
‖U‖2

F+‖v‖2≤c

1

n
|

n∑
i=1

vT ziz
T
i v| >

√
k2‖v‖22p

n

)
≤ c3exp(−c4p),

where c3, c4 are positive constants. The (A.27) follows that

1

2
min{CX , CZ}(||B̂ −B∗||2F + ||γ̂ − γ∗||2)

≤ 1

n
|〈∇HB(B

∗, γ∗), B̂ −B∗〉+ 〈∇Hγ(B
∗, γ∗), γ̂ − γ∗〉|

+
λ1||B∗||∗ + λ2||Cvec(B∗)||1 + λ3||γ∗||1 + λ4||Apγ

∗||1
n

≤ 1

n
|〈∇HB(B

∗, γ∗), B̂ −B∗〉+ 〈∇Hγ(B
∗, γ∗), γ̂ − γ∗〉|

+
λ1r

∗‖B∗‖2 + λ2s
∗
1||Cvec(B∗)||∞ + λ3s

∗
2‖γ∗||∞ + λ4s

∗
3‖Apγ

∗||∞
n

≤2

√
k2mq

n
‖B̂ −B∗‖F + 2

√
k2p

n
‖γ̂ − γ∗‖2

+
λ1r

∗‖B∗‖2 + λ2s
∗
1||Cvec(B∗)||∞ + λ3s

∗
2‖γ∗||∞ + λ4s

∗
3‖Apγ

∗||∞
n

.

Due to

2

√
k2mq

n
‖B̂ −B∗‖F = 2 · 2

√
k2mq

nmin{CX , CZ}

√
min{CX , CZ}

2
‖B̂ −B∗‖F

≤ 4k2mq

nmin{CX , CZ}
+

1

4
min{CX , CZ}‖B̂ −B∗‖2F
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and

2

√
k2p

n
‖γ̂ − γ∗‖2 = 2 · 2

√
k2p

nmin{CX , CZ}

√
min{CX , CZ}

2
‖γ̂ − γ∗‖2

≤ 4k2p

nmin{CX , CZ}
+

1

4
min{CX , CZ}‖γ̂ − γ∗‖22,

we have

||B̂ −B∗||2F + ||γ̂ − γ∗||22 ≤ 16k2(mp+ q)

nmin2{CX , CZ}

+
4(λ1r

∗‖B∗‖2 + λ2s
∗
1||Cvec(B∗)||∞ + λ3s

∗
2‖γ∗||∞ + λ4s

∗
3‖Apγ

∗||∞)

nmin{CX , CZ}

with probability at least 1− c1e
−c2mq − c3e

−c4p. Further, under the Condition 8
and assumption for max{mq, p}/n → 0 as n → ∞, it follows that ||B̂−B∗||2F +
||γ̂ − γ∗||22 converges in probability to zero. �
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lasso for logistic regression. Journal of the Royal Statistical Society: Series
B (Statistical Methodology) 70 53–71. MR2412631

[32] Moreau, J. J. (1962). Fonctions convexes duales et points proximaux
dans un espace hilbertien. Comptes Rendus Hebdomadaires Des Sances De
Lacadmie Des Sciences 255 2897–2899. MR0144188
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