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Abstract: In this paper, we consider high-dimensional Gaussian graphi-
cal models where the true underlying graph is decomposable. A hierarchical
G-Wishart prior is proposed to conduct a Bayesian inference for the pre-
cision matrix and its graph structure. Although the posterior asymptotics
using the G-Wishart prior has received increasing attention in recent years,
most of the results assume moderate high-dimensional settings, where the
number of variables p is smaller than the sample size n. However, this as-
sumption might not hold in many real applications such as genomics, speech
recognition and climatology. Motivated by this gap, we investigate asymp-
totic properties of posteriors under the high-dimensional setting where p
can be much larger than n. The pairwise Bayes factor consistency, poste-
rior ratio consistency and graph selection consistency are obtained in this
high-dimensional setting. Furthermore, the posterior convergence rate for
precision matrices under the matrix �1-norm is derived, which is faster
than posterior convergence rates obtained in existing literature. A simu-
lation study confirms that the proposed Bayesian procedure outperforms
competitors.
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1. Introduction

Consider a sample of observations from a p-dimensional normal model

X1, . . . , Xn | Ω iid∼ Np(0,Ω
−1),

where Ω is a p× p precision matrix. The main focus of this paper is estimating
the (i) support of the precision matrix and (ii) precision matrix itself. The
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support recovery of the precision matrix (or equivalently, graph selection) means
estimating the locations of nonzero entries of the precision matrix. A statistical
inference on a precision matrix, or a covariance matrix Σ = Ω−1, is essential to
uncover the dependence structure of multivariate data. Especially, a precision
matrix reveals the conditional dependences between the variables. However,
especially when the number of variables p can be much larger than the sample
size n, it is a challenging task because a consistent estimation is impossible
without further assumptions (Lee and Lee, 2018).

Various restrictive matrix classes have been suggested to enable consistent
estimation in such high-dimensional settings. One of the most popular restric-
tive matrix classes is the set of sparse matrices. The sparsity assumption, which
means most of entries of a matrix are zero, can be imposed on covariance ma-
trices (Cai and Zhou, 2012; Cai, Ren and Zhou, 2016), precision matrices (Cai,
Liu and Zhou, 2016; Banerjee and Ghosal, 2015) or Cholesky factors (Lee and
Lee, 2017; Lee, Lee and Lin, 2019; Cao, Khare and Ghosh, 2019). In this paper,
we focus on sparse precision matrices. They lead to sparse Gaussian graphi-
cal models, which will be described in Section 2.2. Various statistical methods
have been proposed in the frequentist literature for estimating high-dimensional
sparse precision matrices using penalized likelihood estimators (Yuan and Lin,
2007; Rothman et al., 2008; Ravikumar et al., 2011) and neighborhood-based
methods (Meinshausen and Bühlmann, 2006; Cai, Liu and Luo, 2011). Ren et al.
(2015) and Cai, Liu and Zhou (2016) suggested a regression-based method and
an adaptive constrained �1-minimization method, respectively, and showed that
the proposed methods achieve the minimax rates and graph selection consis-
tency for sparse precision matrices.

On the Bayesian side, relatively few works have investigated asymptotic prop-
erties of posteriors for high-dimensional precision matrices. The main obstacle
is the difficulty of constructing a convenient prior for sparse precision matri-
ces. Because priors have to be defined on the space of sparse positive definite
matrices, calculating normalizing constants is a nontrivial issue. Banerjee and
Ghosal (2015) used a mixture of point mass at zero and Laplace priors for off-
diagonal entries and exponential priors for diagonal entries under the positive
definiteness constraint. They obtained the posterior convergence rate for sparse
precision matrices under the Frobenius norm, but their result requires the as-
sumption p= o(n). Furthermore, because the marginal posterior of the graph
is intractable, they used Laplace approximation. Wang (2015) proposed a simi-
lar method by using continuous spike-and-slab priors for off-diagonal entries of
precision matrices. However, theoretical properties of the induced posteriors are
unavailable, and a Gibbs sampling algorithm should be used due to the unknown
normalizing constant.

As an alternative, the G-Wishart prior (Atay-Kayis and Massam, 2005) has
been widely used to conduct a Bayesian inference for sparse precision matrices.
One of advantages of this prior is that the prior density has a closed form if
the underlying graph is decomposable, where the definition of a decomposable
graph will be given in Section 2.2. Based on the G-Wishart prior, Xiang, Khare
and Ghosh (2015) proved the posterior convergence rate for precision matrices
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under the matrix �∞-norm when the graph is decomposable. However, they
assumed that the graph is known, which is rarely true in real applications.
Banerjee and Ghosal (2014) also used the G-Wishart prior and derived the
posterior convergence rate for banded (or bandable) precision matrices, whose
entries farther than a certain distance from the diagonal are all zeros (or very
small). Since the underlying graph is always decomposable for banded precision
matrices, the posterior can be calculated in a closed form. However, in Xiang,
Khare and Ghosh (2015) and Banerjee and Ghosal (2014), the graph selection
consistency of posteriors has not been investigated.

Recently, Niu, Pati and Mallick (2019) and Liu and Martin (2019) investi-
gated asymptotic properties of posteriors using G-Wishart priors when the true
graph is decomposable and unknown. Niu, Pati and Mallick (2019) established
the posterior ratio consistency as well as the graph selection consistency, when p
grows to infinity as n → ∞. Liu and Martin (2019) obtained the posterior con-
vergence rate of precision matrices under the Frobenius norm. However, these
works assumed a moderate high-dimensional setting, where p = O(nδ) for some
0 < δ < 1. To the best of our knowledge, asymptotic properties of posteriors for
decomposable Gaussian graphical models in an ultra high-dimensional setting,
say p � n, have not been established yet.

In this paper, we consider high-dimensional decomposable Gaussian graphical
models. A hierarchicalG-Wishart prior is proposed for sparse precision matrices.
We fill the gap in the literature by showing that the proposed Bayesian method
achieves the graph selection consistency and the posterior convergence rate in
high-dimensional settings, even when p � n. Under mild conditions, we first
show the pairwise Bayes factor consistency (Theorem 3.1) and posterior ratio
consistency (Theorem 3.2). Furthermore, the graph selection consistency of pos-
teriors (Theorem 3.3) is shown under slightly stronger conditions. Based on these
results, we also show that our method attains the posterior convergence rate for
precision matrices (Theorem 3.4) under the matrix �1-norm, which is faster than
the posterior convergence rates obtained in existing literature. Furthermore, the
consistency of the posterior mean is established (Theorem 3.5). The practical
performance of the proposed method is investigated in simulation studies, which
shows that our method outperforms the other frequentist methods.

The rest of paper is organized as follows. In Section 2, we introduce notation,
Gaussian graphical models, the hierarchical G-Wishart prior and the resulting
posterior. In Section 3, we establish asymptotic properties of posteriors such
as the graph selection consistency and posterior convergence rate. Simulation
studies focusing on both the graph selection and covariance estimation are pro-
vided in Section 4, and a discussion is given in Section 5. The proofs of the main
results are provided in the Appendix.

2. Preliminaries

2.1. Notation

For any positive sequences an and bn, we denote an = o(bn), or equivalently,
an � bn, if an/bn −→ 0 as n → ∞, and an = O(bn), or equivalently, an � bn,
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if there exists a constant C > 0 such that an/bn ≤ C for all sufficiently large
n. We denote an 	 bn if there exist positive constants C1 and C2 such that
C1 ≤ an/bn ≤ C2. For any p×pmatrix A = (Aij), P ⊂ {1, . . . , p} and 1 ≤ j ≤ p,
let AP = (Aij)i,j∈P ∈ R|P |×|P | and APj = (Aij)i∈P ∈ R|P |×1 be submatrices of
A. For any p× p matrix A, we define the matrix �w-norm by

‖A‖w = sup
x∈Rp,‖x‖w=1

‖Ax‖w

for any integer 1 ≤ w ≤ ∞, where ‖a‖w is the vector �w-norm for any a ∈ Rp.
As special cases, we have

‖A‖1 = sup
x∈Rp,‖x‖1=1

‖Ax‖1 = max
1≤j≤p

p∑
i=1

|Aij |,

‖A‖ = ‖A‖2 = sup
x∈Rp,‖x‖2=1

‖Ax‖2 (1)

=
{
λmax(A

TA)
}1/2

,

where λmax(A) is the largest eigenvalue of A. The matrix �2-norm, (1), is called
the spectral norm.

2.2. Gaussian graphical models

Consider an undirected graph by G = (V,E), where V = {1, . . . , p} = [p] and
E ⊆ {(i, j) : i < j, (i, j) ∈ V ×V }. For simplicity, we denote the number of edges
in a graph G by |G|. Let PG be the set of all p × p positive definite matrices
Ω = (Ωij) with Ωij �= 0 if and only if (i, j) ∈ E. Suppose that we observe the
data from the p-dimensional Gaussian graphical model,

X1, . . . , Xn | Ω iid∼ Np(0,Ω
−1), (2)

where Ω ∈ PG is a precision matrix. Since the graph G is usually unknown,
both recovery of the graph G and estimation of the precision matrix Ω are the
main goals of this paper. We consider the high-dimensional setting where p = pn
grows to infinity as the sample size n gets larger.

We present here some necessary background on graph theory to be self-
contained. A graph is said to be complete if all vertices are joined by an edge,
and a complete subgraph that is maximal is called a clique. For given vertices
v and w in V , a path of length k from v to w is a sequence of distinct vertices
v0, v1, . . . , vk such that v0 = v, vk = w and (vi−1, vi) ∈ E for all i = 1, . . . , k. As
a special case, if v = w, then the path is called the cycle of length k. A chord is
an edge between two vertices in a cycle but itself is not a part of the cycle. An
undirected graph G is said to be decomposable if every cycle of length greater
than or equal to 4 possesses a chord (Lauritzen, 1996). One of the advantages of
working with a decomposable graph G is that, for any decomposable graph G,
there exist a perfect sequence of cliques P1, . . . , Ph and the separators S2, . . . , Sh
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defined as Sl = (∪l−1
j=1Pj) ∩ Pl for l = 2, . . . , h (Lauritzen (1996), Proposition

2.17). Here, a sequence is said to be perfect if every Sl is complete and, for all
j > 1, there exists a l < j such that Sj ⊆ Pl. In this paper, we will focus on
decomposable graphs mainly to exploit this property.

2.3. Hierarchical G-Wishart prior

We consider a hierarchical prior for the precision matrix Ω in (2). First, we
impose the following prior on the graph G,

π(G) ∝
(
p(p− 1)/2

|G|

)−1

exp
{
− |G|Cτ log p

}
I(G ∈ D, |G| ≤ R), (3)

for some constant Cτ > 0 and positive integer R, where D is a set of all decom-
posable graphs. The condition |G| ≤ R implies that we focus only on the graphs
not having too large number of edges. The prior (3) consists of two parts: priors
for the graph size and the locations of edges. By using the prior (3), the prior
mass decreases exponentially with respect to the graph size |G|, and given a
graph size, the locations of edges are sampled from a uniform distribution. Sim-
ilar priors have been commonly used in high-dimensional regression (Castillo,
Schmidt-Hieber and Van der Vaart, 2015; Yang, Wainwright and Jordan, 2016;
Martin, Mess and Walker, 2017) and covariance literature (Lee, Lee and Lin,
2019; Liu and Martin, 2019).

For a given graph G, we will work with the G-Wishart prior (Atay-Kayis and
Massam, 2005)

Ω | G ∼ WG(ν,A),

whose density function is given by

π(Ω | G) =
1

IG(ν,A)
det(Ω)(ν−2)/2 exp

{
− 1

2
tr(ΩA)

}
, Ω ∈ PG,

where ν > 2, A is a p × p positive definite matrix and IG(ν,A) is the normal-
izing constant. The normalizing constant can be calculated in a closed form if
the graph G is decomposable. The G-Wishart prior is one of the most popular
prior distributions for precision matrices in Gaussian graphical models. For ex-
amples, Banerjee and Ghosal (2014); Xiang, Khare and Ghosh (2015) and Liu
and Martin (2019) used the G-Wishart prior in high-dimensional settings.

There are four hyperparameters in the proposed hierarchicalG-Wishart prior:
Cτ , R, ν and A. To obtain desired asymptotic properties of posterior, appropri-
ate conditions for hyperparameters will be introduced in Section 3.

2.4. Posterior

For Bayesian inference on the graphG and precision matrix Ω, the joint posterior
π(Ω, G | Xn) should be calculated. Due to the conjugacy of the G-Wishart prior,
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we have

Ω | G,Xn
ind∼ WG(n+ ν, XT

nXn +A),

π(G | Xn) ∝ f(Xn | G)π(G)

∝ IG(n+ ν,XT
nXn +A)

IG(ν,A)
π(G),

where Xn = (X1, . . . , Xn)
T and f(Xn | G) is the marginal likelihood

f(Xn | G) =

∫
f(Xn | Ω)π(Ω | G)dΩ

= (2π)−np/2 IG(n+ ν,XT
nXn +A)

IG(ν,A)
.

The posterior samples of (G,Ω) can be obtained from π(G | Xn) and π(Ω |
G,Xn) in turn. Because the marginal posterior π(G | Xn) is only available up
to some unknown normalizing constant, Markov chain Monte Carlo (MCMC)
methods such as the Metropolis-Hastings (MH) algorithm should be adopted.

3. Main results

In this section, we show asymptotic properties of the proposed Bayesian pro-
cedure in high-dimensional settings. Let G0 = (V,E0) be the true graph, and
P0,1, . . . , P0,h0 and S0,2, . . . , S0,h0 be the corresponding cliques and separators
in a perfect ordering. Let Ω0 = (Ω0,ij) and Σ0 = (Σ0,ij) = Ω−1

0 be the true
precision and covariance matrices, respectively. We assume that the data were
generated from the p-dimensional Gaussian graphical model with the true pre-
cision matrix Ω0 ∈ PG0 , i.e.,

X1, . . . , Xn
iid∼ Np(0,Ω

−1
0 ).

For given a random vector Y = (Y1, . . . , Yp)
T ∼ Np(0,Σ0) and an index set

S ⊆ [p] \ {i, j}, we denote ρij|S as the partial correlation between Yi and Yj

given YS = (Yk)k∈S , i.e., ρij|S = Σ0,ij|S/(Σ0,ii|SΣ0,jj|S)
1/2, where Σ0,ij|S =

Σ0,ij − Σ0,iSΣ
−1
0,SΣ0,Sj for any i, j ∈ [p]. If S = φ, then ρij|S reduces to the

correlation between Yi and Yj , ρij = Σ0,ij/(Σ0,iiΣ0,jj)
1/2.

To obtain desired asymptotic properties of posteriors, we assume the following
conditions for the true graph and partial correlations.

(A1) |G0| ≤ R
(A2) max{|ρij|S\{i,j}| : (i, j) ∈ E0, S ⊆ [p], |S| ≤ 3R} ≤ 1− 1/

√
(n ∨ p)

(A3) min{ρ2ij|S\{i,j} : (i, j) ∈ E0, S ⊆ [p], |S| ≤ 3R} ≥ CβR
2 log(n ∨ p)/n for

some constant Cβ > 0

Condition (A1) says that the size of the true graph G0 is not too large so that
it resides in the prior support. In fact, the upper bound for |G0| does not need



Bayesian inference for high-dimensional decomposable graphs 1555

to be exactly equal to R, but just less than R. In the literature, Liu and Martin
(2019) and Niu, Pati and Mallick (2019) also introduced similar conditions to
control the number of true edges in G0. Condition (A2) implies that the ith and
jth variables have an imperfect linear relationship. It means that there is no set
of variables S with |S| ≤ 3R that makes i and j with (i, j) ∈ E0 have a perfectly
linear relationship when the effects of those variables are removed. Although
1− 1/

√
(n ∨ p) is used as an upper bound for simplicity, a more general upper

bound, 1−1/(n∨p)c for some constant c > 0, can be used with a proper change
in the lower bound of Cβ in Theorems 3.1 and 3.2. Let minS⊆[p],|S|≤p ρij|S\{i,j}
be the minimum partial correlation, then it is nonzero whenever (i, j) ∈ E0

in a decomposable graph G0 (Nie et al., 2017). Condition (A3) gives a lower
bound for the nonzero partial correlations ρij|S\{i,j} with |S| ≤ 3R rather than
|S| ≤ p. Note that the left-hand side of condition (A3) is nonzero whenever the
minimum partial correlation is nonzero. Thus, this is weaker than a condition
on the minimum partial correlation. In our theory, this condition corresponds
to the beta-min condition in the high-dimensional regression literature, which is
essential to obtain selection consistency results (Yang, Wainwright and Jordan,
2016; Martin, Mess and Walker, 2017; Cao, Khare and Ghosh, 2019). Note that
the above conditions are not easy to verify in practice except for some simple
situations. For example, they are easily satisfied when the number of variables
p is fixed.

(P1) Assume that ν and Cτ are fixed constants such that ν > 2 and Cτ > 0,
respectively. Further assume that R = Cr{n/ log(n ∨ p)}ξ/2 and A = gXT

nXn,
where g 	 (n ∨ p)−α for some constants Cr > 0, 0 ≤ ξ ≤ 1 and α > 0.

Here, “P” stands for “prior”. Condition (P1) is a sufficient condition for
hyperparameters to guarantee the desired asymptotic properties of posteriors.
Together with condition (A1), R = Cr{n/ log(n∨p)}ξ/2 implies that the number
of edges in the true graph G0 is at most of order {n/ log(n∨p)}ξ/2. By choosing
the scale matrix A = gXT

nXn, our prior can be seen as an inverse of the hyper-
inverse Wishart g-prior (Carvalho and Scott, 2009). Niu, Pati and Mallick (2019)
used a similar prior with g = n−1 as suggested by Carvalho and Scott (2009).
Note that the hyperparameter g serves as a penalty term for adding false edges
in graphs, thus we essentially use a stronger penalty than Carvalho and Scott
(2009) and Niu, Pati and Mallick (2019) if α > 1.

3.1. Graph selection properties of posteriors

The first property is consistency of pairwise Bayes factors using G-Wishart
priors. Consider the hypothesis testing problem H0 : G = G0 versus H1 : G =
G1, for some graph G1 �= G0. If we use priors Ω ∼ WG0(ν,A) and Ω ∼ WG1(ν,A)
under H0 and H1, respectively, we support either H0 or H1 based on the Bayes
factor B10(Xn) := f(Xn | G1)/f(Xn | G0). In general, for a given threshold
Cth > 0, we support H1 if logB10(Xn) > Cth, and support H0 otherwise.
Theorem 3.1 shows that we can consistently support the true hypothesis H0 :
G = G0 based on the pairwise Bayes factor B10(Xn) for any G1 �= G0.
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Theorem 3.1 (Pairwise Bayes factor consistency). Assume that conditions
(A1)–(A3) and (P1) hold with Cβ > 10 and α > 5/2. Then, we have

f(Xn | G)

f(Xn | G0)

p−→ 0

as n → ∞, for any decomposable graph G �= G0 such that |G| ≤ R.

Niu, Pati and Mallick (2019) showed the convergence rates of pairwise Bayes
factor (BF) (in their Theorem 4.1) on some “good” set Δa using g = n−1,
i.e., α = 1 in our notation, while we use α > 5/2 in Theorem 3.1. However,
their result neither guarantees the pairwise BF consistency nor P0(Δa) → 1 as
n → ∞. They showed the pairwise BF consistency (in their Corollary 4.1) under
the fixed p setting. In this setting, the proposed model in this paper also can
obtain the pairwise BF consistency using α = 1.

The above condition for the hyperparameter g, i.e., g 	 (n∨p)−α for α > 5/2,
is an upper bound to obtain the consistency result. In fact, one can use an
exponentially decreasing penalty to prove Theorems 3.1 and 3.2 under current

conditions, for example, g 	 (n ∨ p)−R̃α for some R̃ = R̃n → ∞ as n → ∞ as
long as R̃ = o(R).

For the rest, we consider the hierarchicalG-Wishart prior described in Section
2.3. Theorem 3.2 shows what we call as the posterior ratio consistency. Note that
the consistency of pairwise Bayes factors does not guarantee the posterior ratio
consistency, and vice versa. As a by-product of Theorem 3.2, it can be shown
that the posterior mode, Ĝ = argmaxG π(G | Xn), is a consistent estimator of
the true graph G0.

Theorem 3.2 (Posterior ratio consistency). Assume that conditions (A1)–(A3)
and (P1) hold with Cβ > 10 and α+ Cτ > 3. Then, we have

π(G | Xn)

π(G0 | Xn)

p−→ 0

as n → ∞, for any decomposable graph G �= G0.

To obtain the posterior ratio consistency, Niu, Pati and Mallick (2019) as-
sumed p = O(nα1) for some 0 < α1 < 1/2, whereas we do not have any
condition on the relationship between n and p as long as p → ∞ as n →
∞. They also assumed |G0| = O(nσ), 1 − max(i,j)∈E0

ρ2ij|V \{i,j} 	 n−k and

min(i,j)∈E0
ρ2ij|V \{i,j} 	 n−λ, for some constants 0 ≤ σ ≤ 2α1, k ≥ 0 and

0 ≤ λ < min(α1, 1/2 − α1), which correspond to conditions (A1), (A2) and
(A3) in this paper, respectively. However, the comparison with our result is not
straightforward because they imposed conditions on max(i,j)∈E0

ρ2ij|V \{i,j} and

min(i,j)∈E0
ρ2ij|V \{i,j}, while we impose conditions on max(i,j)∈E0,|S|≤R ρ2ij|S\{i,j}

and min(i,j)∈E0,|S|≤R ρ2ij|S\{i,j}.
Next we show the strong graph selection consistency, which is much stronger

than the posterior ratio consistency. To prove Theorem 3.3, we require the fol-
lowing conditions instead of conditions (A3) and (P1):
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(B3) min{ρ2ij|S\{i,j} : (i, j) ∈ E0, S ⊆ [p], |S| ≤ 3R} ≥ CβR
3 log(n ∨ p)/n for

some constant Cβ > 0
(P2) Assume that ν and Cτ are fixed constants such that ν > 2 and Cτ > 0,
respectively. Further assume that R = Cr{n/ log(n∨ p)}ξ/3 and g 	 (n∨ p)−Rα

for some constants Cr > 0, 0 ≤ ξ ≤ 1 and α > 0.

Condition (B3) gives a larger lower bound for the nonzero partial correlations
than condition (A3). Condition (P2) implies that we further restrict the size of
the true graph and use stronger penalty for adding false edges. Note that if we
assume that the size of the true graph is bounded above by a constant Cr, i.e.,
assuming ξ = 0 in condition (P2), then condition (B3) is essentially equivalent
to (A3) in terms of the rate.

Theorem 3.3 (Strong graph selection consistency). Assume that conditions
(A1), (A2), (B3) and (P2) hold with Cβ > 6 and α > 3. Then, we have

π
(
G = G0 | Xn

) p−→ 1

as n → ∞.

Niu, Pati and Mallick (2019) also obtained the strong graph selection con-
sistency under slightly stronger conditions than those they used to prove the
posterior ratio consistency. However, their result holds only when p = o(n1/3),
which does not include the ultra high-dimensional setting, p � n.

In Theorem 3.3, we use stronger penalty g 	 (n ∨ p)−Rα compared with
Theorems 3.1 and 3.2. Note that, in Theorems 3.1 and 3.2, we only need to
focus on f(Xn | G) or π(G | Xn) for a given graph G. However, to prove
Theorem 3.3, we should deal with multiple graphs simultaneously; for example,
it is required that π

(
G � G0 | Xn

)
converges to zero in probability as n → ∞,

where we need to control multiple graphs, {G : G � G0}, simultaneously. To
this end, a strong penalty g 	 (n∨p)−Rα is required to prove Theorem 3.3 using
current techniques.

3.2. Posterior convergence rate for precision matrices

In this section, we establish the posterior convergence rate for high-dimensional
precision matrices under the matrix �1-norm using the proposed hierarchical
G-Wishart prior. To obtain the posterior convergence rate, we further assume
the following condition:

(B4) There exists a constant ε0 > 0 such that ε0 ≤ λmin(Ω0) ≤ λmax(Ω0) ≤ ε−1
0 ,

where λmin(Ω0) is the smallest eigenvalue of Ω0.

Condition (B4) is the well-known bounded eigenvalue condition for Ω0, and
similar conditions can be found in Ren et al. (2015), Banerjee and Ghosal (2015)
and Liu and Martin (2019). Recently, Liu and Martin (2019) obtained the pos-
terior convergence rate for precision matrices under the Frobenius norm without
the beta-min condition like condition (B3). However, they assumed a moderate
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high-dimensional setting, p + |G0| = o(n/ log p). Theorem 3.4 shows the pos-
terior convergence rate of the hierarchical G-Wishart prior under the matrix
�1-norm in high-dimensional settings, including p � n.

Theorem 3.4 (Posterior convergence rate). Assume that conditions (A1), (A2),
(B3), (B4) and (P2) hold with Cβ > 6 and α > 3. Then, if log p = o(n),

E0

{
π
(
‖Ω− Ω0‖1 ≥ Ms̃20

√
log(n ∨ p)

n
| Xn

)}
−→ 0 (4)

as n → ∞ for some constant M > 0, where s̃0 := max1≤j≤p

∑p
i=1 I(Ω0,ij �= 0),

and E0 denotes the expectation corresponding to the model (2) with Ω = Ω0.

Using the G-Wishart prior, Xiang, Khare and Ghosh (2015) obtained a

larger posterior convergence rate, s̃
5/2
0 {log(n ∨ p)/n}1/2, for a precision matrix

Ω0 ∈ PG0 , where G0 is decomposable and known. Banerjee and Ghosal (2014)
derived the same posterior convergence rate for banded precision matrices. It

was unclear whether the posterior convergence rate s̃
5/2
0 {log(n∨ p)/n}1/2 using

the G-Wishart prior can be improved or not. Our result reveals that this rate
can be improved even when the true graph G0 is unknown.

When a point estimation of precision matrices is of interest, one might want
to use a consistent Bayes estimator. However, in general, a posterior convergence
rate result does not imply the consistency of the Bayes estimator without further
conditions. In the following theorem, we show the conditional posterior mean,
Eπ(Ω | Ĝ,Xn), is a consistent estimator, and its convergence rate under the
matrix �1-norm coincides with the posterior convergence rate in Theorem 3.4.
Note that the closed form of Eπ(Ω | Ĝ,Xn) is available because the posterior

mode Ĝ is decomposable.

Theorem 3.5 (Consistency of Bayes estimator). Under the same conditions in
Theorem 3.4, we have

P0

(∥∥Eπ(Ω | Ĝ,Xn)− Ω0

∥∥
1
≥ Ms̃20

√
log(n ∨ p)

n

)
−→ 0

as n → ∞ for some constant M > 0.

4. Simulation Studies

4.1. Simulation I: Illustration of posterior ratio consistency

In this section, we illustrate the posterior ratio consistency results in Theorem
3.2 using a simulation experiment. First note that for a complete graph G, the
explicit expression of the normalizing constant in the G-Wishart prior is given
by

IG(ν,A) =
2(ν+p−1)p/2πp(p−1)/4

∏p−1
i=0 Γ

(
ν+p−1−i

2

)
{det(A)}

ν+p−1
2

. (5)
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As shown in Roverato (2000) and Banerjee and Ghosal (2014), for any decom-
posable graph G with the set of cliques {C1, . . . , Ch} and the set of separators
{S2, . . . , Sh}, the following holds:

IG(ν,A) =

∏h
j=1 ICj

(
ν,ACj

)
∏h

j=2 ISj

(
ν,ASj

) , (6)

where ACj denotes the submatrix of A formed by its columns and rows of
indexed in Cj . Note that ICj (·, ·) and ISj (·, ·) can be computed using (5) because
Cj and Sj are complete for any decomposable graph G. Further note that the
explicit form of the marginal likelihood is given by

f(Xn | G) = (2π)−np/2 IG
(
n+ ν,XT

nXn +A
)

IG(ν,A)
.

It then follows from (6) that for any decomposable graph G, we have

f(Xn | G) = (2π)−
np
2

∏h
j=1 ICj

(
n+ ν, (XT

nXn +A)Cj

)
∏h

j=2 ISj

(
n+ ν, (XT

nXn +A)Sj

)
∏h

j=2 ISj

(
ν,ASj

)
∏h

j=1 ICj

(
ν,ACj

) . (7)

Therefore, we can use (7) and prior (3) to compute the posterior ratio between
any two decomposable graphs.

Next, we consider seven different values of p ranging from 50 to 350, and
fix n = 150. Then, for each fixed p, we construct a p × p covariance matrix
Σ0,ij = 0.5|i−j| for 1 ≤ i, j ≤ p such that the inverse covariance matrix Ω0 = Σ−1

0

will possess a banded structure, i.e., the so-called AR(1) model. The matrix Ω0

also gives us the structure of the true underlying graph G0. Next, we generate
n random samples from Np(0,Σ0) to construct our data matrix Xn, and set the
hyperparameters as A = 0.1δ−1p−2.5−δXT

nXn, δ = 0.01, ν = 3 and Cτ = 0.5.
The above process ensures all the assumptions in our Theorem 3.2 are satisfied.
We then examine the posterior ratio under four different cases by computing the
log of posterior ratio of a “non-true” decomposable graph G and G0, log{π(G |
Xn)/π(G0 | Xn)}, as follows.

1. Case 1: G is a supergraph of G0 and the number of total edges of G is
exactly twice of G0, i.e. |G| = 2|G0|.

2. Case 2: G is a subgraph of G0 and the number of total edges of G is exactly
half of G0, i.e. |G| = 1

2 |G0|.
3. Case 3: G is not necessarily a supergraph of G0, but the number of total

edges of G is twice of |G0|.
4. Case 4: G is not necessarily a subgraph of G0, but the number of total

edges of G is half of |G0|.
The logarithms of the posterior ratio for various cases are provided in Figure

1. As expected in all four cases, the logarithm of the posterior ratio decreases as p
becomes large. Based on the proof of Theorem 3.2, we can see that the posterior
ratio π(G | Xn)/π(G0 | Xn) converges in probability to zero as (n ∨ p) → ∞.
Thus, this result provides a numerical illustration of Theorem 3.2.
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Fig 1. Logarithm of posterior probability ratio for G and G0 for various choices of the “non-
true” graph G.

4.2. Simulation II: Illustration of graph selection

In this section, we perform the graph selection procedure under the proposed
hierarchical G-Wishart prior and evaluate its performance along with other
competing methods. Recall that the marginal posterior for G is given by

π(G | Xn) ∝ f(Xn | G)π(G)

∝ IG(n+ ν,XT
nXn +A)

IG(ν,A)
π(G)

and available up to some unknown normalizing constant. We thereby suggest
using the following MH algorithm for posterior inference:

1. Set the initial value G(1).
2. For each s = 2, . . . , S,

(a) sample Gnew ∼ q(· | G(s−1)) until Gnew is decomposable;

(b) set G(s) = Gnew with the probability

pacc = min

{
1,

π(Gnew | Xn)

π(G(s−1) | Xn)

q(G(s−1) | Gnew)

q(Gnew | G(s−1))

}
,

otherwise set G(s) = G(s−1).
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In the above Step 2(a), we verify whether the resulting graph from local pertur-
bations of the current graph is still decomposable by accepting only those moves
that satisfy two conditions outlined in Green and Thomas (2013) on the junc-
tion tree representation of the proposed graph. The proposal kernel q(· | G′) is
chosen such that a new graph Gnew is sampled by changing a randomly chosen
nonzero entry in the lower triangular part of the adjacency matrix for G′ to 0
with probability 0.5 or by changing a randomly chosen zero entry to 1 randomly
with probability 0.5. We will refer to our proposed method as the MCMC-based
graph selection with hierarchical G-Wishart distribution (HGW-M).

Following the simulation settings in Yuan and Lin (2007) and Friedman,
Hastie and Tibshirani (2007), we consider five different structures of the true
graph, which corresponds to the following sparsity patterns of the true inverse
covariance matrix with all the unit diagonals.

1. Setting 1: AR(1) model with Ωi,i−1 = Ωi−1,i = 0.5 for 1 ≤ i ≤ p− 1.
2. Setting 2: AR(2) model with Ωi,i−1 = Ωi−1,i = 0.5 for 1 ≤ i ≤ p − 1 and

Ωi,i−2 = Ωi−2,i = 0.25 for 1 ≤ i ≤ p− 2.
3. Setting 3: AR(4) model with Ωi,i−1 = Ωi−1,i = 0.4 for 1 ≤ i ≤ p − 1,

Ωi,i−2 = Ωi−2,i = 0.2 for 1 ≤ i ≤ p − 2, Ωi,i−3 = Ωi−3,i = 0.2 for
1 ≤ i ≤ p− 3, and Ωi,i−4 = Ωi−4,i = 0.1 for 1 ≤ i ≤ p− 4.

4. Setting 4: Star model where every node connects to the first node, with
Ω1,i = Ωi,1 = 0.2 for 2 ≤ i ≤ p, and the remaining entries except the
diagonals are set to 0.

5. Setting 5: Circle model with Ωi,i−1 = Ωi−1,i = 0.5 for 1 ≤ i ≤ p − 1,
Ω1,p = Ωp,1 = 0.4, and the remaining entries except the diagonals are set
to 0.

For each model, we consider two different values of p = 100 or 200, and fix
n = 100. Next, under each combination of the true precision matrix and the
dimension, we generate n observations from Np(0,Σ0). The hyperparameters
for HGW were set at as A = (0.1δ)−1p−2.5−δXT

nXn, δ = 0.001, ν = 3 and
Cτ = 0.5. The initial state for G was chosen using the graphical lasso (GLasso)
(Friedman, Hastie and Tibshirani, 2007). For posterior inference, we draw 3, 000
posterior samples with a burn-in period of 3, 000 and collect the indices with
posterior inclusion probability larger than 0.5. Therefore, the final estimate using
HGW-M can be regarded as the median probability model graph structure.

To compare the selection performance between the median probability model
and the posterior mode, we adopt the hybrid graph selection procedure in Cao,
Khare and Ghosh (2019) to navigate through the massive posterior space. For
all the penalized likelihood methods (Friedman, Hastie and Tibshirani, 2007;
Cai, Liu and Luo, 2011; Yuan and Lin, 2007), a user-specified penalty parame-
ter controls the level of sparsity of the resulting estimator. Varying values of the
penalty parameter provide a range of possible graphs to choose from. This set of
graphs is referred to as the solution path. The choice of the penalty parameter is
typically made by assigning a BIC-like score to each graph on the solution path,
and choosing the graph with the highest score (Cao, Khare and Ghosh, 2019).
For the Bayesian approach, the posterior probabilities naturally assign a score
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for all the decomposable graph, but the entire graph space is prohibitively large
to search in high-dimensional settings. To address this, in the context of Gaus-
sian directed acyclic graphical models, Ben-David et al. (2015) and Cao, Khare
and Ghosh (2019) develop a computationally feasible approach which searches
around the graphs on the penalized likelihood solution path, and demonstrate
that significant improvement in accuracy can be obtained by searching beyond
the penalized likelihood solution paths using posterior probabilities. Adapted to
our setting, we first vary the tuning parameter in GLasso on a grid from 0.01
to 1.5. For each fixed parameter, we further threshold the inverse covariance
matrix estimated by GLasso on a grid from 0 to 0.5 to get a sequence of 5, 000
graphs, and include them in the candidate set. We use the same technique in
Section 4.2 to ensure the candidate graphs are decomposable. The log poste-
rior probabilities are computed for all candidate graphs, and the one with the
highest probability is retained. The shotgun stochastic search is implemented
to search around the selected graph and to target the posterior mode Ĝ (Jones
et al., 2005). We refer to this hybrid graph selection approach as HGW-Ĝ.

The performance of HGW-M and HGW-Ĝ will be compared with other ex-
isting methods including the GLasso (Friedman, Hastie and Tibshirani, 2007),
the constrained �1-minimization for inverse matrix estimation (CLIME) (Cai,
Liu and Luo, 2011) and the tuning-insensitive approach for optimally estimat-
ing Gaussian graphical models (TIGER) (Liu and Wang, 2017). The tuning
parameters for GLasso and TIGER were chosen by the criterion of StARS, the
stability-based method for choosing the regularization parameter in high di-
mensional inference for undirected graphs (Liu, Roeder and Wasserman, 2010).
The penalty parameter for CLIME was selected by 10-fold cross-validation. For
GLasso and TIGER, the final model is determined by collecting the nonzero en-
tries in the estimated precision matrix. Since CLIME could not produce exact
zeros in our simulation settings, we constructed the final support by thresholding
the absolute values of the estimated precision matrix at 0.025.

To evaluate the performance of variable selection, the precision, sensitivity,
specificity and Matthews correlation coefficient (MCC) are reported at Tables
1 to 4, where each simulation setting is repeated for 20 times. The criteria are
defined as

Precision =
TP

TP + FP
,

Sensitivitiy =
TP

TP + FN
,

Specificity =
TN

TN+ FP
,

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TP + FN)
,

where TP, TN, FP and FN are true positive, true negative, false positive and
false negative, respectively. For a clear visualization, in Figure 2, we plot the
heatmaps for comparing the sparsity structure of the precision matrix estimated
by different methods under the AR(1) setting and p = 100.
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Fig 2. Heatmap comparison of the sparsity structure estimated by different methods under
the AR(1) setting. Left to right: HGW-M, HGW-Ĝ, GLasso, CLIME, TIGER.

Table 1

The summary statistics for graph selection under the AR(1) setting with various dimensions
are reported for each method.

Setting p Method Precision Sensitivity Specificity MCC

AR(1) 100

HGW-M 1 1 1 1

HGW-Ĝ 1 1 1 1
GLasso 0.15 1 0.89 0.37
CLIME 0.17 1 0.90 0.40
TIGER 0.14 1 0.88 0.36

AR(1) 200

HGW-M 1 1 1 1

HGW-Ĝ 0.99 1 1 0.99
GLasso 0.12 0.99 0.93 0.33
CLIME 0.14 1 0.94 0.37
TIGER 0.11 1 0.91 0.31

Table 2

The summary statistics for graph selection under the AR(2) setting with various dimensions
are reported for each method.

Setting p Method Precision Sensitivity Specificity MCC

AR(2) 100

HGW-M 0.94 0.57 1 0.73

HGW-Ĝ 0.98 0.57 1 0.74
GLasso 0.24 0.72 0.91 0.38
CLIME 0.27 0.86 0.91 0.45
TIGER 0.23 0.73 0.90 0.36

AR(2) 200

HGW-M 0.91 0.49 1 0.66

HGW-Ĝ 0.96 0.45 1 0.65
GLasso 0.19 0.72 0.94 0.35
CLIME 0.12 0.82 0.88 0.29
TIGER 0.16 0.75 0.92 0.32

Based on the simulation results, we notice that our methods overall work
better than the regularization methods across various settings. Our methods
perform particularly well in the sparse models under the AR(1), Star and Cir-
cle settings. This is because the consistency conditions of HGW are easier to
satisfy under sparse settings. Note that when the posterior probability is larger
than 1/2, the median probability model based on HGW-M coincides with the
posterior mode based on HGW-Ĝ (Barbieri and Berger, 2004). Because we have
proved the strong selection consistency (Theorem 3.3), the two models should be
asymptotically equivalent. This is indeed reflected in our simulations, as we no-
tice HGW-M and HGW-Ĝ perform comparably well in most settings. Generally
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Table 3

The summary statistics for graph selection under the AR(4) setting with various dimensions
are reported for each method.

Setting p Method Precision Sensitivity Specificity MCC

AR(4) 100

HGW-M 0.96 0.13 1 0.33

HGW-Ĝ 0.98 0.13 1 0.34
GLasso 0.32 0.29 0.95 0.25
CLIME 0.25 0.40 0.89 0.24
TIGER 0.27 0.31 0.93 0.23

AR(4) 200

HGW-M 0.81 0.12 1 0.30

HGW-Ĝ 0.85 0.12 1 0.31
GLasso 0.21 0.27 0.96 0.21
CLIME 0.11 0.35 0.88 0.13
TIGER 0.19 0.29 0.95 0.19

Table 4

The summary statistics for graph selection under Setting 4 and Setting 5 with various
dimensions are reported for each method.

Setting p Method Precision Sensitivity Specificity MCC

Star 100

HGW-M 1 1 1 1

HGW-Ĝ 0.99 1 1 0.99
GLasso 0.38 1 0.97 0.61
CLIME 0.13 0.79 0.90 0.30
TIGER 0.33 1 0.96 0.56

Circle 200

HGW-M 1 1 1 0.99

HGW-Ĝ 0.99 0.99 1 0.99
GLasso 0.31 1 0.98 0.55
CLIME 0.08 1 0.87 0.26
TIGER 0.28 1 0.97 0.52

speaking, the proposed methods are able to achieve better specificity and preci-
sion, while the regularization methods have better sensitivity. The poor speci-
ficity of the regularization methods is in accordance with previous work demon-
strating that selection of the regularization parameter using cross-validation is
optimal with respect to prediction but tends to include more noise predictors
compared with Bayesian methods (Meinshausen and Bühlmann, 2006). Over-
all, our simulation studies indicate that the proposed method can perform well
under a variety of configurations with different dimensions, sparsity levels and
correlation structures.

4.3. Simulation III: Illustration of inverse covariance estimation

In this section, we provide the performance comparison for the inverse covariance
estimation using different methods. For each fixed p, the true inverse covariance
matrix and the subsequent dataset, are generated by the same mechanism as in
Section 4.2. To use HGW-M for the estimation, within each iteration, we sample
Ω(s) ∼ WG(s)(n + ν, XT

nXn + A) after Step 2(b), and construct our final esti-
mate by taking the average of all the Ω(s) after a burn-in period. In terms of the
Bayes estimators based on the posterior mode, since the posterior mode is also
decomposable, the Bayes estimators can be explicitly derived for that graph un-
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Table 5

The summary statistics for inverse covariance estimation under the AR(1) setting with
various dimensions are reported for each method.

Setting p Method E1 E2 E3 E4

AR(1) 100

HGW-M 0.29 0.26 0.11 0.28

HGW-Ω̂�1 0.27 0.24 0.11 0.29

HGW-Ω̂�2 0.32 0.28 0.11 0.31
GLasso 0.92 0.88 0.85 0.83
CLIME 1.02 0.60 0.48 0.37
TIGER 0.86 0.80 0.76 0.75

AR(1) 200

HGW-M 0.37 0.34 0.15 0.38

HGW-Ω̂�1 0.32 0.27 0.13 0.35

HGW-Ω̂�2 0.35 0.31 0.15 0.40
GLasso 0.93 0.87 0.84 0.83
CLIME 1.16 0.64 0.55 0.43
TIGER 0.88 0.81 0.76 0.75

Table 6

The summary statistics for inverse covariance estimation under the AR(2) setting with
various dimensions are reported for each method.

Setting p Method E1 E2 E3 E4

AR(2) 100

HGW-M 0.68 0.54 0.41 0.49

HGW-Ω̂�1 0.80 0.57 0.39 0.50

HGW-Ω̂�2 0.78 0.56 0.39 0.50
GLasso 0.85 0.73 0.64 0.55
CLIME 1.23 0.65 0.58 1.15
TIGER 0.85 0.72 0.63 0.55

AR(2) 200

HGW-M 0.81 0.64 0.47 0.53

HGW-Ω̂�1 0.80 0.61 0.48 0.52

HGW-Ω̂�2 0.80 0.60 0.47 0.58
GLasso 0.91 0.74 0.66 0.58
CLIME 3.48 1.85 1.24 3.95
TIGER 0.93 0.73 0.64 0.56

der various loss functions (Rajaratnam, Massam and Carvalho, 2008; Banerjee
and Ghosal, 2014). Given the posterior mode, we consider two Bayes estimators
Ω̂�1 and Ω̂�2 corresponding to the �1 Stein’s loss and �2 squared-error loss, re-
spectively. The estimated inverse covariance matrices based on other frequentist
approaches are obtained as specified in Section 4.2. To evaluate the performance
of covariance estimation, different criteria for measuring the estimation loss are
reported at Tables 5 to 8, where each simulation setting is repeated for 20 times.
Relative errors are chosen as criteria. Specifically, for a matrix norm ‖ · ‖ and
an estimator Ω̂, the relative error is defined as ‖Ω0 − Ω̂‖/‖Ω0‖. In Tables 5–8,
E1, E2, E3 and E4 represent the relative errors based on the matrix �1-norm,
the matrix �2-norm (spectral norm), the vector �2-norm (Frobenius norm) and
the vector �∞-norm (entrywise maximum norm), respectively.

In terms of estimating the inverse covariance matrix, we can tell from the
simulation results that our methods overall work better than the regulariza-
tion methods across various settings. Similar to the performance for uncovering
the true sparsity pattern in Section 4.2, our methods can more accurately es-
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Table 7

The summary statistics for inverse covariance estimation under the AR(4) setting with
various dimensions are reported for each method.

Setting p Method E1 E2 E3 E4

AR(4) 100

HGW-M 0.85 0.68 0.53 0.44

HGW-Ω̂�1 0.85 0.65 0.52 0.43

HGW-Ω̂�2 0.84 0.64 0.51 0.42
GLasso 0.82 0.72 0.6 0.49
CLIME 1.17 0.48 0.54 0.90
TIGER 0.84 0.71 0.58 0.48

AR(4) 200

HGW-M 0.94 0.67 0.53 0.59

HGW-Ω̂�1 0.87 0.72 0.57 0.53

HGW-Ω̂�2 0.87 0.71 0.56 0.52
GLasso 0.88 0.74 0.61 0.50
CLIME 2.66 1.18 1.01 2.54
TIGER 0.91 0.73 0.60 0.48

Table 8

The summary statistics for inverse covariance estimation under Setting 4 and Setting 5
with various dimensions are reported for each method.

Setting p Method E1 E2 E3 E4

Star 100

HGW-M 0.13 0.19 0.14 0.36

HGW-Ω̂�1 0.13 0.20 0.15 0.36

HGW-Ω̂�2 0.14 0.21 0.15 0.39
GLasso 0.27 0.29 0.21 0.39
CLIME 0.83 0.50 0.21 0.42
TIGER 0.27 0.30 0.21 0.38

Circle 200

HGW-M 0.56 0.44 0.17 0.50

HGW-Ω̂�1 0.56 0.51 0.20 0.52

HGW-Ω̂�2 0.54 0.50 0.18 0.50
GLasso 0.83 0.76 0.71 0.66
CLIME 1.14 0.63 0.54 0.40
TIGER 0.80 0.67 0.61 0.62

timate the magnitudes of the true precision matrix in the sparse models under
the AR(1), Star and Circle settings. Different Bayes estimators including the
MCMC-based estimator, Ω̂�1 and Ω̂�2 perform comparably well, which again
shows the validity of our theoretical results. Overall, our simulation studies in-
dicate that the proposed method can accommodate a variety of configurations
with different dimensions and correlation structures for estimating the inverse
covariance matrix.

5. Discussion

In this paper, we assume that the true graph G0 is decomposable. Recently,
Niu, Pati and Mallick (2019) showed that, even when G0 is non-decomposable,
the marginal posterior of the graph G concentrates on the space of the minimal
triangulation of G0. Here, a triangulation of a graph G = (V,E) is a decom-
posable graph GΔ = (V,E ∪ F ), where F is called a set of fill-in edges, and a
triangulation is minimal if any only if the removal of any single edge in F leads
to a non-decomposable graph. It would be interesting to investigate whether
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similar properties hold in our setting using the hierarchical G-Wishart prior.
Another open problem is whether we can relax the decomposability condi-

tion. We assume that the support of the prior is a subset of all decomposable
graphs mainly due to technical reasons. By focusing on decomposable graphs,
the normalizing constants of posteriors are available in closed forms. This allows
us to calculate upper and lower bounds of a posterior ratio. It is unclear to us
whether this decomposability condition can be removed. Without this condi-
tion, general techniques for obtaining posterior convergence rate, for example,
Theorem 8.9 in Ghosal and Van der Vaart (2017), might be needed. Banerjee
and Ghosal (2015) used this technique to prove the posterior convergence rate
for sparse precision matrices under the Frobenius norm. However, it might be
difficult to obtain the posterior convergence rate under the matrix �1-norm using
similar arguments in Banerjee and Ghosal (2015). Let εn and ε̃n be the posterior
convergence rates for precision matrices under the matrix �1-norm and Frobe-
nius norm, respectively, where εn � ε̃n. Then, one can see that it is much more
difficult to prove the prior thickness (condition (i) of Theorem 8.9 in Ghosal
and Van der Vaart (2017)) using εn. Therefore, we suspect that the arguments
in Banerjee and Ghosal (2015) cannot be directly applied to our setting.

Appendix A: Proofs of main theorems

Proof of Theorem 3.1. If G �= G0, then G0 � G or G0 � G. We first focus on
the case G0 � G. By Lemma 2.22 in Lauritzen (1996), there exist a sequence of
decomposable graphs G0 ⊂ G1 ⊂ · · · ⊂ Gk−1 ⊂ Gk = G with k = |G| − |G0|,
where G0, G1, . . . , Gk−1, Gk differ from by exactly one edge. Then,

f(Xn | G)

f(Xn | G0)
=

f(Xn | G1)

f(Xn | G0)

f(Xn | G2)

f(Xn | G1)
× · · · × f(Xn | Gk)

f(Xn | Gk−1)
.

For a given constant C1 > 0, let Nl(C1) = {Xn : |ρ̂iljl|Sl
−ρiljl|Sl

|2 > C1 log(n∨
p)/n}, where (il, jl) is the added edge in the move from Gl−1 to Gl, and Sl is
the separator which separates two cliques including il and jl in Gl−1. Note that
ρiljl|Sl

= 0 for any l = 1, . . . , k by Lemma D.4 in Niu, Pati and Mallick (2019).
Thus, by the proof of Theorem A.3 and Corollary A.1 in Niu, Pati and Mallick
(2019), we have

P0(∪k
l=1Nl(C1))

≤
k∑

l=1

P0(Nl(C1))

≤
k∑

l=1

21 exp
{
− (n−R)

C1 log(n ∨ p)

2n

}( n

C1(n−R) log(n ∨ p)

)1/2

≤ 21(|G| − |G0|) exp
{
− (n−R)

C1 log(n ∨ p)

2n

}( n

C1(n−R) log(n ∨ p)

)1/2
≤ 21 exp

[
−
{C1

2

(
1− Cr

log(n ∨ p)

)
− 2
}
log(n ∨ p)

]
,
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which is of order o(1) for any constant C1 > 4 + ε′ and any sufficiently small
constant ε′ > 0. Therefore, we can restrict ourselves to event ∩k

l=1Nl(C1)
c.

Because ν > 2 and α > 5/2,

f(Xn | Gl)

f(Xn | Gl−1)
≤ g

( ν + n+ |Sl|
ν + |Sl| − 1/2

)1/2(
1− ρ̂2iljl|Sl

)−n/2

� (n ∨ p)−α
(
1 +

n+ 1/2

ν + |Sl| − 1/2

)1/2(
1− C1 log(n ∨ p)

n

)−n/2

≤ (n ∨ p)−αn1/2
(
1− C1 log(n ∨ p)

n

)−n/2

≤ exp
{
−
(
α− 1

2
− C1

2

)
log(n ∨ p)

}
on ∩k

l=1Nl(C1)
c, where the first inequality follows from Lemma C.1 in Niu, Pati

and Mallick (2019). The last expression is of order o(1) by choosing a constant
C1 arbitrarily close to 4. Thus, we have

f(Xn | G)

f(Xn | G0)

p−→ 0

for any G0 � G, as n → ∞.
Now we consider the case G0 � G. Let (G∪G0)m be a minimum triangulation

of G ∪G0. Note that

f(Xn | G)

f(Xn | G0)
=

f(Xn | (G ∪G0)m)

f(Xn | G0)

f(Xn | G)

f(Xn | (G ∪G0)m)
.

Again by Lemma 2.22 in Lauritzen (1996), there exist a sequence of decompos-
able graphs G0 ⊂ G1 ⊂ · · · ⊂ Gk = (G ∪ G0)m with k = |(G ∪ G0)m| − |G0|,
where G0, G1, . . . , Gk differ from by exactly one edge. For l = 1, . . . , k, let (il, jl)
be the added edge in the move from Gl−1 to Gl, and Sl is the separator which
separates two cliques including il and jl in Gl−1. Similar to G0 � G case, on
∩k
l=1Nl(C1)

c for any constant C1 > 4 + ε′ and any sufficiently small constant
ε′ > 0,

f(Xn | (G ∪G0)m)

f(Xn | G0)
≤

k∏
l=1

{ g

g + 1

( ν + n+ |Sl|
ν + |Sl| − 1/2

)1/2(
1− ρ̂2iljl|Sl

)−n/2
}

≤
( g

g + 1

)k( ν + n

ν − 1/2

)k/2
exp
{C1

2
k log(n ∨ p)

}
,

where the first inequality follows from Lemma C.1 in Niu, Pati and Mallick
(2019). On the other hand, let G = G′

0 ⊂ G′
1 ⊂ · · ·G′

k′ = (G ∪ G0)m be a
sequence of decomposable graphs with k′ = |(G∪G0)m|−|G|, where G′

0, . . . , G
′
k′

differ from by exactly one edge. For l = 1, . . . , k′, let (i′l, j
′
l) be the added edge in

the move from G′
l−1 to G′

l, and S′
l is the separator which separates two cliques

including i′l and j′l in G′
l−1. Because |G| ≤ R and |G0| ≤ R, we can choose a

minimum triangulation of G ∪G0 so that |S′
l | ≤ 3R for any l = 1, . . . , k′. For a
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given constant C ′
1 > 0, let N ′

l (C
′
1) = {Xn : |ρ̂i′lj′l|S′

l
−ρi′lj′l|S′

l
|2 > C ′

1 log(n∨p)/n}.
Note that, for some constant C ′

1 > 12+ ε′ and sufficiently small constant ε′ > 0,

P0(∪k
l=1N

′
l (C

′
1))

≤
k∑

l=1

P0(N
′
l (C

′
1))

≤
k∑

l=1

21 exp
{
− (n− |S′

l |)
C′

1 log(n∨p)
4n

}
(1− |ρi′lj′l |S′

l
|)2

{ n

C ′
1(n− |S′

l |) log(n ∨ p)

}1/2

≤ 21(1− max
1≤l≤k

|ρi′lj′l |S′
l
|)−2 exp

[
−
{C ′

1

4

(
1− 3R

n

)
− 2
}
log(n ∨ p)

]
≤ 21 exp

[
−
{C ′

1

4

(
1− 3Cr√

n log(n ∨ p)

)
− 3
}
log(n ∨ p)

]
= o(1),

by Corollary A.1 in Niu, Pati and Mallick (2019), where the last inequality
follows from Condition (A2). Note that there exists at least one true edge in
the move from G to (G ∪ G0)m, so let (i′l0 , j

′
l0
) be a true edge in G0 such that

ρi′l0 j
′
l0
|S′

l0
�= 0. On the set ∩k′

l=1N
′
l (C

′
1)

c, we have

f(Xn | G)

f(Xn | (G ∪G0)m)

≤
k′∏
l=1

{g + 1

g

( ν + |S′
l |

ν + n+ |S′
l | − 1/2

)1/2(
1− ρ̂2i′lj′l|S′

l

)n/2}

≤
(g + 1

g

)k′( ν + 3R

ν + n+ 3R− 1/2

)k′/2

×
{
1−
(
ρ2i′l0j

′
l0
|S′

l0

− C ′
1 log(n ∨ p)

n

)}n/2

≤
(g + 1

g

)k′( ν + 3R

ν + n+ 3R− 1/2

)k′/2

× exp
{
− n

2

(
ρ2i′l0j

′
l0
|S′

l0

− C ′
1 log(n ∨ p)

n

)}
≤

(g + 1

g

)k′( ν + 3R

ν + n+ 3R− 1/2

)k′/2
exp
{
−
(CβR

2 − C ′
1

2

)
log(n ∨ p)

}
,

by Lemma B.1 in Niu, Pati and Mallick (2019), Conditions (A1) and (A3).
By combining the above results, for any G0 � G, on the set {∩k

l=1Nl(C1)
c}∩

{∩k′

l=1N
′
l (C

′
1)

c}, we have

f(Xn | G)

f(Xn | G0)

≤
(g + 1

g

)|G0|−|G|
exp
{C1

2

(
|(G ∪G0)m| − |G0|

)
log(n ∨ p)

}( ν + n

ν − 1/2

)k/2
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×
( ν + 3R

ν + n+ 3R− 1/2

)k′/2
exp
{
−
(CβR

2 − C ′
1

2

)
log(n ∨ p)

}
≤ 2 exp

{
α(|G0| − |G|) log(n ∨ p)

}
× exp

{C1

2

(
|(G ∪G0)m| − |G0|

)
log(n ∨ p)

}
× n−(|G0|−|G|)/2

(1 + ν/n

ν − 1/2

)k/2( ν + 3R

1 + ν/n+ 3R/n− 1/(2n)

)k′/2

× exp
{
−
(CβR

2 − C ′
1

2

)
log(n ∨ p)

}
≤ 2 exp

{
α(|G0| − |G|) log(n ∨ p)

}
n−(|G0|−|G|)/2

× exp
{C1 + 1

2
|(G ∪G0)m| log(n ∨ p)

}
× exp

{
−
(CβR

2 − C ′
1

2

)
log(n ∨ p)

}
≤ 2 exp

{(
α(|G0| − |G|) + C ′

1

2

)
log(n ∨ p)

}
n−(|G0|−|G|)/2

× exp
{
−
(Cβ

2
− C1 − 1

)
R2 log(n ∨ p)

}
,

where the last inequality follows from |(G ∪ G0)m| ≤ |G ∪ G0|2/2 ≤ |G|2 +
|G0|2 ≤ 2R2 by condition (A1). The last expression is of order o(1) by choosing
a constant C1 arbitrarily close to 4, because Cβ > 10. Thus, we have

f(Xn | G)

f(Xn | G ∪G0)

p−→ 0

for any G0 � G as n → ∞, which completes the proof.

Proof of Theorem 3.2. Similar to the proof of Theorem 3.1, we consider two
cases: G0 � G and G0 � G. Compared to the ratio of marginal likelihoods in
Theorem 3.1, we only need to consider the additional prior ratio term.

If G0 � G, we focus on the event ∩k
l=1Nl(C1)

c defined in the proof of Theorem
3.1. Then, by the proof of Theorem 3.1, we have

π(G | Xn)

π(G0 | X)

≤ f(Xn | G)

f(Xn | G0)
exp{Cτ (|G0| − |G|) log(n ∨ p) }

(
p(p− 1)/2

|G|

)−1(
p(p− 1)/2

|G0|

)

≤ exp
{
−
(
α+ Cτ − 1

2
− C1

2

)
(|G| − |G0|) log(n ∨ p)

}

×
k∏

l=1

{(
p(p− 1)/2

|Gl|

)−1(
p(p− 1)/2

|Gl−1|

)}

≤ exp
{
−
(
α+ Cτ − 1

2
− C1

2

)
(|G| − |G0|) log(n ∨ p)

}
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×
k∏

l=1

{
|Gl−1|+ 1

p(p− 1)/2− |Gl−1|

}

≤ exp
{
−
(
α+ Cτ − 1

2
− C1

2

)
(|G| − |G0|) log(n ∨ p) + (|G| − |G0|) logR

}
≤ exp

{
−
(
α+ Cτ − 1− C1

2

)
(|G| − |G0|) log(n ∨ p)

}
which is of order o(1) by choosing C1 arbitrarily close to 4, because α+Cτ > 3.

If G0 � G, we focus on the event {∩k
l=1Nl(C1)

c} ∩ {∩k′

l=1N
′
l (C

′
1)

c} defined in
the proof of Theorem 3.1. Then, by the proof of Theorem 3.1, we have

π(G | Xn)

π(G0 | X)

=
f(Xn | G)

f(Xn | G0)
exp{Cτ (|G0| − |G|) log(n ∨ p) }

(
p(p− 1)/2

|G|

)−1(
p(p− 1)/2

|G0|

)

≤ 2 exp
{(

α(|G0| − |G|) + C ′
1

2

)
log(n ∨ p)

}
n−(|G0|−|G|)/2

× exp
{
−
(Cβ

2
− C1 − 1

)
R2 log(n ∨ p)

}
× exp

{(
Cτ |G0|+ 2|G0|

)
log(n ∨ p)

}
,

which is of order o(1) by choosing C1 arbitrarily close to 4, because Cβ > 10.

Proof of Theorem 3.3. Note that

π(G �= G0 | Xn) = π(G0 � G | Xn) + π(G0 � G | Xn)

≤
∑

G:G0�G

π(G | Xn)

π(G0 | Xn)
+

∑
G:G0�G

π(G | Xn)

π(G0 | Xn)
. (8)

For a given constant C1 > 0, we define

Id =
{
(i, j, S) : 1 ≤ i < j ≤ p, S ⊂ V \ {i, j}, |S| ≤ 3R

(i, j) ∈ E0 if and only if ρij|S = 0
}
,

NijS,1(C1) =
{
Xn : |ρ̂ij|S |2 >

C1R log(n ∨ p)

n

}
for all (i, j, S) such that ρij|S = 0 and

NijS,2(C1) =
{
Xn : |ρ̂ij|S − ρij|S |2 >

2C1R log(n ∨ p)

n

}
for all (i, j, S) such that ρij|S �= 0. Let NijS(C1) = NijS,1(C1) ∪ NijS,2(C1).
Then by Corollary A.1 in Niu, Pati and Mallick (2019),
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P0

( ⋃
(i,j,S)∈Id

NijS(C1)
)

≤
∑

(i,j,S)∈Id

{
P0(NijS,1(C1)) + P0(NijS,2(C1))

}

≤
∑

(i,j,S)∈Id

21

(1− |ρij|S |)2
exp
{
− (n− 3R)

C1R log(n ∨ p)

2n

}

×
{ n

C1R(n− 3R) log(n ∨ p)

}1/2

≤
3R∑

|S|=0

(
p

|S|

)(
p− |S|

2

)
21

(1−max(i,j,S)∈Id |ρij|S |)2

× exp
[
−
{C1R

2

(
1− 3R

n

)}
log(n ∨ p)

]

≤
3R∑
s=0

ps+221 exp
[
−
{C1R

2

(
1− 3R

n

)
− 1
}
log(n ∨ p)

]

≤ 21p3R+2 exp
[
−
{C1R

2

(
1− 3R

n

)
− 1
}
log(n ∨ p)

]
≤ 21 exp

[
−
{C1R

2

(
1− 3R

n

)
− 3R− 3

}
log(n ∨ p)

]
,

which is of order o(1) if we take the constant C1 such that C1 > 6 + ε′ for
any sufficiently small constant ε′ > 0. Therefore, we restrict ourselves to event
∩(i,j,S)∈IdNijS(C1)

c in the rest.

The first term in (8) is bounded above by

∑
G:G0�G

π(G | Xn)

π(G0 | Xn)

≤
∑

G:G0�G

π(G)

π(G0)

f(Xn | G)

f(Xn | G0)

�
∑

G:G0�G

π(G)

π(G0)
exp
{
− (|G| − |G0|)

(
α− 1

2R
− C1

2

)
R log(n ∨ p)

}

≤
∑

G:G0�G

(
p(p−1)/2

|G0|
)

(
p(p−1)/2

|G|
) exp{−Cτ log p (|G| − |G0|)}

× exp
{
− (|G| − |G0|)

(
α− 1

2R
− C1

2

)
R log(n ∨ p)

}

≤
p(p−1)/2∑
s=|G0|+1

(
p(p− 1)/2− |G0|

s− |G0|

)(p(p−1)/2
|G0|

)
(
p(p−1)/2

s

) exp{−Cτ (s− |G0|) log(n ∨ p)}

× exp
{
− (s− |G0|)

(
α− 1

2R
− C1

2

)
R log(n ∨ p)

}
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=

p(p−1)/2∑
s=|G0|+1

(
s

s− |G0|

)
exp{−Cτ (s− |G0|) log(n ∨ p)}

× exp
{
− (s− |G0|)

(
α− 1

2R
− C1

2

)
R log(n ∨ p)

}

≤
p(p−1)/2∑
s=|G0|+1

exp
[
−
{
R
(
α− 1

2R
− C1

2

)
+ Cτ − 2

}
(s− |G0|) log(n ∨ p)

]
= o(1)

by taking a constant C1 arbitrarily close to 6 because g = (n∨p)−Rα and α > 3.
Now we focus on the second term in (8). Note that∑

G:G0�G

π(G | Xn)

π(G0 | Xn)

≤
∑

G:G0�G

π(G)

π(G0)

f(Xn | G)

f(Xn | G0)

≤
∑

G:G0�G

(
p(p−1)/2

|G0|
)

(
p(p−1)/2

|G|
) exp{− Cτ (|G| − |G0|) log(n ∨ p)

}

× f(Xn | (G ∪G0)m)

f(Xn | G0)

f(Xn | G)

f(Xn | (G ∪G0)m)

≤
∑

G:G0�G

(
p(p−1)/2

|G0|
)

(
p(p−1)/2

|G|
) exp{− Cτ (|G| − |G0|) log(n ∨ p)

}

× n−(|G0|−|G|)/2
( ν + 3R

1 + ν/n+ 3R/n− 1/(2n)

)R2/2

× 2 exp
{
α(|G0| − |G|)R log(n ∨ p)

}
× exp

{C1

2
R
(
|(G ∪G0)m| − |G0|

)
log(n ∨ p)

}
× exp

{
−
(CβR

3 − 2C1R

2

)
log(n ∨ p)

}
and

∑
G:G0�G

(
p(p−1)/2

|G0|
)

(
p(p−1)/2

|G|
)

≤
p(p−1)/2∑

s=0

(|G0|−1)∧s∑
t=0

(
|G0|
t

)(
p(p− 1)/2− |G0|

s− t

)(p(p−1)/2
|G0|

)
(
p(p−1)/2

s

)
=

p(p−1)/2∑
s=0

(|G0|−1)∧s∑
t=0

(
s

t

)(
p(p− 1)/2− s

|G0| − t

)
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≤
p(p−1)/2∑

s=0

(|G0|−1)∧s∑
t=0

(p2s)|G0|−ts−(|G0|−s)

≤
p(p−1)/2∑

s=0

(|G0|−1)∧s∑
t=0

exp
{
4(|G0| − t) log(n ∨ p)− (|G0| − s) log s

}
.

Thus, we have

∑
G:G0�G

π(G | Xn)

π(G0 | Xn)

≤
|G0|−1∑
s=0

s∑
t=0

2 exp
[{

4(|G0| − t) + (Cτ + αR)(|G0| − s)
}
log(n ∨ p)

]

× exp
{
−
(Cβ − C1

2
+

1

2R
+

C1

R2

)
R3 log(n ∨ p)

}

+

p(p−1)/2∑
s=|G0|

|G0|−1∑
t=0

2 exp
[{

4(|G0| − t) +
(
Cτ + αR− 3

2

)
(|G0| − s)

}
log(n ∨ p)

]

× exp
{
−
(Cβ − C1

2
+

1

2R
+

C1

R2

)
R3 log(n ∨ p)

}
,

which is of order o(1) by taking a constant C1 arbitrarily close to 6 and Cβ > 6.
This completes the proof.

Proof of Theorem 3.4. Let εn = Ms̃20
√

log(n ∨ p)/n. Then,

E0

{
π
(
‖Ω− Ω0‖1 ≥ εn | Xn

)}
≤ E0

{
π
(
‖Ω− Ω0‖1 ≥ εn, G = G0 | Xn

)}
+ E0

{
π(G �= G0 | Xn)

}
.

Note that the last term in the right hand side goes to zero as n → ∞ by Theorem
3.3. Since

π
(
‖Ω− Ω0‖1 ≥ εn, G = G0 | Xn

)
= π

(
‖Ω− Ω0‖1 ≥ εn | G = G0,Xn

)
π(G = G0 | Xn),

it suffices to show that

π
(
‖Ω− Ω0‖1 ≥ εn | G = G0,Xn

) p−→ 0

as n → ∞.
Let P

(j)
0,1 , . . . , P

(j)
0,wj

and S
(j)
0,1, . . . , S

(j)
0,w′

j
be the cliques and separators, respec-

tively, containing the vertex j in G0, selected while maintaining the perfect
ordering. Note that wj ≤ s̃0 for any j, and

Ω =

h0∑
l=1

{(ΣP0,l
)−1}0 −

h0∑
l=2

{(ΣS0,l
)−1}0
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for any Ω = Σ−1 ∈ PG0 (Lauritzen (1996), page 145), where (AP )
0 = (A0

(i,j)) ∈
Rp×p with A0

(i,j) = A(i,j) for i, j ∈ P and A0
(i,j) = 0 otherwise for any matrix

A = (A(i,j)). Thus, we have

π
(
‖Ω− Ω0‖1 ≥ εn | G = G0,Xn

)
≤ π

(∥∥∥ h0∑
l=1

{(ΣP0,l
)−1 − (Σ0,P0,l

)−1}0
∥∥∥
1
≥ εn

2
| G = G0,Xn

)

+ π
(∥∥∥ h0∑

l=2

{(ΣS0,l
)−1 − (Σ0,S0,l

)−1}0
∥∥∥
1
≥ εn

2
| G = G0,Xn

)

≤π
(

max
1≤j≤p

∥∥∥[ h0∑
l=1

{(ΣP0,l
)−1 − (Σ0,P0,l

)−1}0
]
(·,j)

∥∥∥
1
≥ εn

2
| G = G0,Xn

)
(9)

+ π
(

max
1≤j≤p

∥∥∥[ h0∑
l=2

{(ΣS0,l
)−1 − (Σ0,S0,l

)−1}0
]
(·,j)

∥∥∥
1
≥ εn

2
| G = G0,Xn

)
,(10)

where A(·,j) is the j column of A for any matrix A. For any p× p matrix A, let
‖A‖ := supx∈Rp,‖x‖2=1 ‖Ax‖2 be the spectral norm of a matrix A. Then,

max
1≤j≤p

∥∥∥[ h0∑
l=1

{(ΣP0,l
)−1 − (Σ0,P0,l

)−1}0
]
(·,j)

∥∥∥
1

≤ max
1≤j≤p

wj∑
l=1

∥∥(Σ
P

(j)
0,l

)−1 − (Σ
0,P

(j)
0,l

)−1
∥∥
1

≤ max
1≤j≤p

max
1≤l≤wj

s̃0

√
|P (j)

0,l |
∥∥(Σ

P
(j)
0,l

)−1 − (Σ
0,P

(j)
0,l

)−1
∥∥.

Hence, (9) is bounded above by

ps̃0 · max
1≤j≤p

max
1≤l≤wj

π
(
s̃0

√
|P (j)

0,l |
∥∥(Σ

P
(j)
0,l

)−1 − (Σ
0,P

(j)
0,l

)−1
∥∥ ≥ εn

2
| G = G0,Xn

)
,

and similarly, (10) is bounded above by

ps̃0 · max
1≤j≤p

max
1≤l≤w′

j

π
(
s̃0

√
|S(j)

0,l |
∥∥(Σ

S
(j)
0,l

)−1 − (Σ
0,S

(j)
0,l

)−1
∥∥ ≥ εn

2
| G = G0,Xn

)
.

For a given index j ∈ [p], let

N1nj :=
⋃

1≤l≤wj

{
Ω : ‖(Σ

P
(j)
0,l

)−1 − (Σ
0,P

(j)
0,l

)−1‖2 ≥ M2

9
|P (j)

0,l |
log(n ∨ p)

n

}
,

N2nj :=
⋃

1≤l≤w′
j

{
Ω : ‖(Σ

S
(j)
0,l

)−1 − (Σ
0,S

(j)
0,l

)−1‖2 ≥ M2

9
|S(j)

0,l |
log(n ∨ p)

n

}
,
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and Nnj = N1nj ∪N2nj , then, on the event ∩1≤j≤pN
c
nj , for example,

s̃0

√
|P (j)

0,l |‖(ΣP
(j)
0,l

)−1 − (Σ
0,P

(j)
0,l

)−1‖ ≤ M

3
s̃0|P (j)

0,l |
{ log(n ∨ p)

n

}1/2

≤ M

3
s̃20

{ log(n ∨ p)

n

}1/2

.

Similar inequalities hold using S
(j)
0,l instead of P

(j)
0,l . Thus, we complete the proof

by showing that

π
( p⋃

j=1

N1nj | G = G0,Xn

)
≤ ps̃0 max

j
π
(
N1nj | G = G0,Xn

)
p−→ 0

as n → ∞ because N2nj can be dealt with using similar techniques.
For any j ∈ [p],

E0

{
π
(
N1nj | G = G0,Xn

)}
≤

∑
1≤l≤wj

E0

{
π
(
‖(Σ

P
(j)
0,l

)−1 − (Σ
0,P

(j)
0,l

)−1‖2 ≥

M2

9
|P (j)

0,l |
log(n ∨ p)

n

∣∣∣ G = G0,Xn

)}
≤
∑

1≤l≤wj

E0

{
π
(
‖(Σ

P
(j)
0,l

)−1 − Eπ((Σ
P

(j)
0,l

)−1 | Xn)‖2 ≥

M2

36
|P (j)

0,l |
log(n ∨ p)

n

∣∣∣ G = G0,Xn

)}
(11)

+
∑

1≤l≤wj

P0

{
‖Eπ((Σ

P
(j)
0,l

)−1 | Xn)− (Σ
0,P

(j)
0,l

)−1‖2 ≥

M2

36
|P (j)

0,l |
log(n ∨ p)

n

}
, (12)

where Eπ((Σ
P

(j)
0,l

)−1 | Xn) is the posterior mean of (Σ
P

(j)
0,l

)−1. By the property

of the G-Wishart distribution, for any complete subset P
(j)
0,l in G0, we have

(Σ
P

(j)
0,l

)−1 | Xn ∼ W|P (j)
0,l |

(n+ν, (1+g)(XT
nXn)P (j)

0,l

) (Roverato (2002), Corollary

2). Here Wq(ν,A) denotes the Wishart distribution for q×q positive definite ma-

trices B with the probability density proportional to det(B)
ν−2
2 exp{− tr(BA)

2 }.
Thus, we have Eπ((Σ

P
(j)
0,l

)−1 | Xn) = (n+ ν + |P (j)
0,l | − 1)(1 + g)−1(XT

nXn)
−1

P
(j)
0,l

,

where (XT
nXn)

−1

P
(j)
0,l

is the inverse of (XT
nXn)P (j)

0,l

. Note that

‖Eπ((Σ
P

(j)
0,l

)−1 | Xn)‖ = {1 + (ν + |P (j)
0,l | − 1)/n}(1 + g)−1‖(n−1XT

nXn)
−1

P
(j)
0,l

‖

≤ (2 + s̃0/n) max
1≤l≤wj

‖(n−1XT
nXn)

−1

P
(j)
0,l

‖
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≤ 3 max
1≤l≤wj

‖(n−1XT
nXn)

−1

P
(j)
0,l

‖.

For a given constant Cλ > 0, define the set

Ñnj(Cλ) :=
{
Xn : max

1≤l≤wj

‖(n−1XT
nXn)

−1

P
(j)
0,l

‖ > Cλ/3
}
,

then ‖Eπ((Σ
P

(j)
0,l

)−1 | Xn)‖ ≤ Cλ on the event Ñnj(Cλ)
c. By Lemma B.6 in

Lee and Lee (2018), the posterior probability inside the expectation in (11) is
bounded above by

5|P
(j)
0,l |
{
e−c1(n+ν)M2|P (j)

0,l | log(n∨p)/n + e−c2(n+ν)M
√

|P (j)
0,l | log(n∨p)/n}

on the event Ñnj(Cλ)
c, for some positive constants c1 and c2 depending only

on Cλ. We note here that we are using different parametrization for Wishart
and inverse Wishart distributions compared to Lee and Lee (2018). Moreover,
by Lemma B.7 in Lee and Lee (2018) and Condition (B4),

P0

(
Ñnj(Cλ)

)
= P0

(
max

1≤l≤wj

‖(n−1XT
nXn)

−1

P
(j)
0,l

‖ > Cλ/3
)

≤
∑

1≤l≤wj

P0

(
‖(n−1XT

nXn)
−1

P
(j)
0,l

‖ > Cλ/3
)

≤
∑

1≤l≤wj

P0

(
‖Σ

0,P
(j)
0,l

‖‖(Σ
0,P

(j)
0,l

)−
1
2 (n−1XT

nXn)
−1

P
(j)
0,l

(Σ
0,P

(j)
0,l

)−
1
2 ‖ > Cλ/3

)

≤
∑

1≤l≤wj

P0

(
ε−1
0 ‖(Σ

0,P
(j)
0,l

)−
1
2 (n−1XT

nXn)
−1

P
(j)
0,l

(Σ
0,P

(j)
0,l

)−
1
2 ‖ > Cλ/3

)

=
∑

1≤l≤wj

P0

(
λmin((Σ0,P

(j)
0,l

)−
1
2 (n−1XT

nXn)
−1

P
(j)
0,l

(Σ
0,P

(j)
0,l

)−
1
2 ) < 3/(ε0Cλ)

)

≤
∑

1≤l≤wj

2e−n(1−
√

|P (j)
0,l |/n)

2/8

≤ 2pe−n(1−
√

s̃0/n)
2/8 = o((ps̃0)

−1)

for some large Cλ because log p = o(n) and (n−1XT
nXn)P (j)

0,l

∼ W|P (j)
0,l |

(n −

|P (j)
0,l |+ 1, n(Σ

0,P
(j)
0,l

)−1),

(Σ
0,P

(j)
0,l

)−1/2(n−1XT
nXn)

−1

P
(j)
0,l

(Σ
0,P

(j)
0,l

)−1/2 ∼ W|P (j)
0,l |

(n− |P (j)
0,l |+ 1, nI|P (j)

0,l |
)

and s̃0 = o(n). Thus, it is easy to show that (11) is of order o((ps̃0)
−1).

Now we focus on (12) term to complete the proof. Note that

Eπ((Σ
P

(j)
0,l

)−1 | Xn) = (n+ ν + |P (j)
0,l | − 1)(1 + g)−1(XT

nXn)
−1

P
(j)
0,l
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and
(n−1XT

nXn)
−1

P
(j)
0,l

∼ IW|P (j)
0,l |

(n− |P (j)
0,l |+ 1, n(Σ

0,P
(j)
0,l

)−1).

Here, IWq(ν,A) denotes the inverse Wishart distribution for q× q positive def-
inite matrices B with the probability density proportional to

det(B)−(ν+2q)/2 exp{−tr(B−1A)/2}.
Also note that (12) is bounded above by∑

1≤l≤wj

P0

{
‖(n−1XT

nXn)
−1

P
(j)
0,l

− (Σ
0,P

(j)
0,l

)−1‖2 ≥ M2

144
|P (j)

0,l |
log(n ∨ p)

n

}
(13)

+
∑

1≤l≤wj

P0

{
‖
(ν + |P (j)

0,l | − 1)/n− g

1 + g
(n−1XT

nXn)
−1

P
(j)
0,l

‖2 ≥

M2

144
|P (j)

0,l |
log(n ∨ p)

n

}
. (14)

Note that (14) is bounded above by

∑
1≤l≤wj

P0

{
‖
ν + |P (j)

0,l |
n

(n−1XT
nXn)

−1

P
(j)
0,l

‖2 ≥ M2

144
|P (j)

0,l |
log(n ∨ p)

n

}

≤
∑

1≤l≤wj

P0

⎧⎨
⎩‖(n−1XT

nXn)
−1

P
(j)
0,l

‖ ≥ M

12

√
n|P (j)

0,l | log(n ∨ p)

ν + |P (j)
0,l |

⎫⎬
⎭

≤ pP0

{
max

1≤l≤wj

‖(n−1XT
nXn)

−1

P
(j)
0,l

‖ ≥ Cλ/3
}

≤ 2p2e−n(1−
√

s̃0/n)
2/8 = o((ps̃0)

−1)

for all sufficiently large n and some constant Cλ > 0, where the last inequality
follows from Lemma B.7 in Lee and Lee (2018). Also note that

‖(n−1XT
nXn)

−1

P
(j)
0,l

− (Σ
0,P

(j)
0,l

)−1‖

≤ ‖(n−1XT
nXn)

−1

P
(j)
0,l

‖ · ‖(Σ
0,P

(j)
0,l

)−1‖ · ‖n−1(XT
nXn)P (j)

0,l

− Σ
0,P

(j)
0,l

‖

≤ Cλ

3
· ε0 · ‖n−1(XT

nXn)P (j)
0,l

− Σ
0,P

(j)
0,l

‖

on the event Ñnj(Cλ)
c, where the last inequality follows from Condition (B4).

Since

n−1(XT
nXn)P (j)

0,l

∼ W|P (j)
0,l |

(n− |P (j)
0,l |+ 1, n(Σ

0,P
(j)
0,l

)−1)

with E0{n−1(XT
nXn)P (j)

0,l

} = Σ
0,P

(j)
0,l

and ‖Σ
0,P

(j)
0,l

‖ ≤ ε−1
0 , the upper bound of

(13) is given by

∑
1≤l≤wj

P0

{
‖n−1(XT

nXn)P (j)
0,l

− Σ
0,P

(j)
0,l

‖ ≥ M

4Cλε0

√
|P (j)

0,l |
log(n ∨ p)

n

}
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≤
∑

1≤l≤wj

5|P
(j)
0,l |
{
e−c1|P (j)

0,l | log(n∨p) + e−c2

√
n|P (j)

0,l | log(n∨p)
}

= o((ps̃0)
−1)

for some constants c1 and c2 depending on M and ε0, by Lemma B.6 in Lee and
Lee (2018). It completes the proof.

Proof of Theorem 3.5. Because

P0

(∥∥Eπ(Ω | Ĝ,Xn)− Ω0

∥∥
1
≥ Ms̃20

√
log(n ∨ p)

n

)

≤ P0

(∥∥Eπ(Ω | G0,Xn)− Ω0

∥∥
1
≥ Ms̃20

√
log(n ∨ p)

n

)
+ P0

(
Ĝ �= G0

)
and P0

(
Ĝ �= G0

)
−→ 0 as n → ∞ by Theorem 3.2, it suffices to show that

P0

(∥∥Eπ(Ω | G0,Xn)− Ω0

∥∥
1
≥ Ms̃20

√
log(n ∨ p)

n

)
−→ 0

as n → ∞.
By the decomposability of G0 and the posterior mean of G-Wishart distri-

bution (Banerjee and Ghosal (2014), page 2119), we have

Eπ(Ω | G0,Xn)

=

h0∑
l=1

n+ ν + |P0,l| − 1

1 + g

{
(XT

nXn)
−1
P0,l

}0

+

h0∑
l=2

n+ ν + |S0,l| − 1

1 + g

{
(XT

nXn)
−1
S0,l

}0

≡
h0∑
l=1

{
Eπ
(
(ΣP0,l

)−1 | Xn

)}0
+

h0∑
l=2

{
Eπ
(
(ΣS0,l

)−1 | Xn

)}0
.

Thus, ∥∥Eπ(Ω | G0,Xn)− Ω0

∥∥
1

≤
∥∥∥ h0∑

l=1

{
Eπ
(
(ΣP0,l

)−1 | Xn

)
− (Σ0,P0,l

)−1
}0∥∥∥

1

+
∥∥∥ h0∑

l=2

{
Eπ
(
(ΣS0,l

)−1 | Xn

)
− (Σ0,S0,l

)−1
}0∥∥∥

1

≤ max
1≤j≤p

max
1≤l≤wj

s̃0

√
|P (j)

0,l |
∥∥Eπ
(
(ΣP0,l

)−1 | Xn

)
− (Σ0,P0,l

)−1
∥∥

+ max
1≤j≤p

max
2≤l≤wj

s̃0

√
|S(j)

0,l |
∥∥Eπ
(
(ΣS0,l

)−1 | Xn

)
− (Σ0,S0,l

)−1
∥∥

by the similar arguments used in the proof of Theorem 3.4. Since we have shown
that (12) is of order o((ps̃0)

−1) in the proof of Theorem 3.4, this completes the
proof.
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