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6 Numerical studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2892

6.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2892
6.2 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2894

7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2895
A Proofs of auxiliary lemmas . . . . . . . . . . . . . . . . . . . . . . . . 2896
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2902
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2903

1. Introduction

Biased sampling problems have long been an important issue in a wide array of
scientific studies. One of the most popular types of biased sampling is length-
biased sampling which has been recognized in statistics for almost half a century
in the studies of ecology [20, 21], fiber length [5] and economic duration data [15,
13]. This kind of biased sampling arises when a positive-valued outcome variable
is sampled with selection probability proportional to its size/survival time, which
occurs usually in cross-sectional studies. Another example of biased sampling
is discussed in [22] who considered a generalized version of length-bias in a
melanoma study. [23] and [4] considered observed blood alcohol concentration
of drivers in traffic accidents as bias samples of the blood alcohol concentration of
all drivers, with different biasing functions for various age groups. [7] considered
the distribution of amino acid strain distance in vaccine studies as a multisample
biased sampling problem.

A general formulation of s-sample (s ≥ 2) biased sampling problem is given
as follows. Let G0 be an unknown distribution function on R and there are
s positive known weight functions wi (i = 1, . . . , s). Suppose s independent
samples Xi1, . . . , Xini (i = 1, . . . , s) are observed, where each Xij independently
follows the biased distribution Fi (i = 1, . . . , s, j = 1, . . . , ni) given by:

Fi(x) �
∫ x

−∞ wi(y)dG0(y)∫ ∞
−∞ wi(y)dG0(y)

,

where 0 < Wi �
∫ ∞
−∞ wi(y)dG0(y) < ∞ for i = 1, . . . , s. In the absence of the

assumption on the shape of the distribution function or its underlying density,
[28] established the unique existence of the nonparametric maximum likelihood
estimator (NPMLE) Gn of the unbiased distribution function G0 in s-sample
biased sampling models. Large sample theory of this NPMLE was investigated
in [8]. Recently, [3] established the unique existence of the decreasing NPMLE
ĝn in s-sample biased sampling models and also gave its asymptotic distribu-
tion at a fixed interior point where the underlying density has a strictly nega-
tive derivative; such a problem has been open in the literature due to certain
non-standard structures of the likelihood function, such as non-separability and
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a lack of strictly positive second order derivatives of the negative of the log-
likelihood function. Formally, denote G to be the set of all decreasing densities.
For any g ∈ G, the likelihood evaluated at this g of the s-sample is proportional
to

Ln(g) �
s∏

i=1

∏ni

j=1 g(Xij)

[
∫ b

a
wi(x)g(x)dx]ni

.

The decreasing NPMLE ĝn ∈ G is defined such that Ln(ĝn) ≥ Ln(g) for all
g ∈ G.

From an alternative perspective, another natural estimator for such a de-
creasing density is a Grenander-type estimator, which is the left-continuous
slope, denoted by g̃n, of the least concave majorant of Gn, i.e., the NPMLE
of G0 without the monotonicity assumption. In general, suppose that r is the
underlying function of interest, for example, a density, hazard rate function or
regressor, and R̂(t) is an estimator of

∫ t

−∞ r(s)ds. A Grenander-type estima-
tor is an estimator of r being monotone decreasing (resp. increasing), which is
the left-continuous (resp. right-continuous) slope of the least concave majorant
(resp. greatest convex minorant) of R̂ when r is decreasing (resp. increasing).
There have been ongoing works related to Grenander-type estimators; see also
[11] and the references therein. In the case when there is only one unbiased
sample under the decreasing density assumption, [9] already showed that the
NPMLE is exactly the left-continuous slope of the least concave majorant of the
empirical distribution function, i.e., the usual NPMLE of the distribution func-
tion without constraint. Generally speaking, one may not expect this kind of
correspondence to hold exactly, but perhaps just asymptotically; for instance, in
the random right censorship model, [14] showed that the NPMLE of a decreas-
ing density function is asymptotically equivalent to the left-continuous slope
of the Kaplan-Meier estimator, the NPMLE of the distribution function in the
absence of the monotonicity assumption. A similar result was also shown in
[14] to hold for the NPMLE of a decreasing hazard rate, where the NPMLE is
asymptotically equivalent to the estimator obtained as the left-continuous slope
of the least concave majorant of the Nelson-Aalen estimator, i.e., the NPMLE
of the cumulative hazard function without the monotonicity assumption. More
recently, [18] showed that similar results are true in the Cox model; the NPMLE
of an increasing baseline hazard and the left-hand slope of the greatest convex
minorant of the Breslow estimator are asymptotically equivalent.

It would be of both theoretical and practical interests to see if this asymptotic
equivalence also holds in other models such as that in [3]. Practically, for the
s-sample biased modeling models, the computation of the NPMLE is done itera-
tively based on a self-characterization given in [3], where an initial consistent es-
timator is required since the corresponding optimization problem is non-convex.
In [3], we suggested to use the Grenander-type estimator as an initial estimator,
where a numerically efficient method of finding Gn has already been discussed
in [28]. The asymptotic equivalence of the two estimators implies that that this
initial estimator is already as good as the NPMLE asymptotically. The main
goal in the present article is to show that g̃n and ĝn in s-sample biased sam-
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pling models are asymptotically equivalent in the sense that n1/3[g̃n(t0)−ĝn(t0)]
converges to 0 in probability as n → ∞. The rate n1/3 is sought here because
n1/3[ĝn(t0) − g0(t0)] converges in distribution to a nondegenerate limiting dis-
tribution (Theorem 1.1 in [3]), where g0 is the true underlying density. To study
the asymptotic equivalence of the estimators, one needs to consider the two es-
timators jointly. The Grenander-type estimator favors a geometric method by
considering a switching relation and an inverse process, which is similar to [14].
On the other hand, the approach we took in [3] for the NPMLE made use of the
continuous mapping argument for slopes of least concave majorant as illustrated
by [1]. To establish the asymptotic equivalence of the estimators using a unified
approach of making use of the switching relation and inverse process, we develop
additional results for both estimators. In particular, we show the tightness of
the corresponding inverse process of the NPMLE, by a pure analytic argument
instead of a commonly-employed geometric argument.

The organization of our work is as follows. In Section 2, we describe the
setting and notation. Consistency of g̃n will be established in Section 3. The
main results on asymptotic equivalence of g̃n and ĝn will be proven in Section 4.
The main results depend on the tightness of two inverse processes which will be
shown in Section 5. In Section 6, numerical studies including simulation and an
analysis of a real data set are performed to compare the effectiveness of the two
estimators. Some concluding remarks are given in Section 7.

2. Setting and notation

Assume that the distribution function G0 has a density function g0 with respect
to the Lebesgue measure which is known to be decreasing. Denote fi to be the
density of the biased distribution Fi with respect to the Lebesgue measure. The
total sample size is n � n1 + . . . + ns. To study the asymptotic behavior of
the estimators g̃n and ĝn for a nondegenerate model, we shall also assume that
λni � ni/n → λi > 0 as n → ∞, corresponding to Assumptions 2.1 (A) in [3].
Let Fn �

∑s
i=1 λniFi,ni , where Fi,ni is the empirical distribution function from

the i-th sample, that is, Fi,ni(x) � 1
ni

∑ni

j=1 1(Xij ≤ x). Equality in distribution

and convergence in distribution will be denoted by
d
= and

d→ respectively; con-

vergence in probability will be denoted by
P→; almost sure convergence will be

denoted by
a.s.−→. For any function K on [a, b] with K(a) = 0, the least concave

majorant K̃ of K is defined to be the smallest concave function that dominates
K, i.e., K̃ ≥ K, over [a, b] with K̃(a) = 0.

Let V0 � (V01, . . . , V0,s−1, 1)
T and V0i � Wi/Ws. For i = 1, . . . , s− 1, define

Hni(u1, . . . , us) � 1

ui

∫ ∞

−∞

wi(y)∑s
k=1 λnkwk(y)u

−1
k

dFn(y)

over the domain so that u1, . . . , us > 0. Without imposing the decreasing as-
sumption on the unbiased density, [28] showed that the NPMLE Gn can be
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written as

Gn(x) =

∫ x

−∞[
∑s

k=1 λnkwk(y)V
−1
nk ]

−1dFn(y)∫ ∞
−∞[

∑s
k=1 λnkwk(y)V

−1
nk ]

−1dFn(y)
, (2.1)

where Vn � (Vn1, . . . ,Vn,s−1, 1)
T solves

1 = Hni(Vn1, . . . ,Vn,s−1, 1), for i = 1, . . . , s− 1.

Let G̃n be the least concave majorant of Gn. Then the Grenander-type estimator
g̃n is the left-continuous slope of G̃n. An important condition for the asymptotic
properties ofGn is the connectedness of the graphG on the s vertices i = 1, . . . , s
formed by defining an edge between i and j if and only if

∫
1(wi > 0)1(wj >

0)dG0 > 0.

3. Consistency of Grenander-type estimator g̃n

The consistency of the NPMLE ĝn has been shown in [3]. Before we proceed
to the main results on asymptotic distribution in the next section, we show
the consistency of the Grenander-type estimator g̃n. Define || · ||∞ to be the

supremum norm. Theorem 2.1 of [8] implies that ||Gn−G0||∞ a.s.−→ 0 when G is
connected. The same result is true for G̃n according to Marshall’s Lemma ([19])
as stated in Lemma 3.1.

Lemma 3.1. Suppose that G is connected. There is a contraction property such
that

||G̃n −G0||∞ ≤ ||Gn −G0||∞ a.s.−→ 0, as n → ∞.

To connect the consistency of G̃n with that of g̃n, recall the following ele-
mentary convex analysis result (see e.g., p.330 in [25]):

Lemma 3.2. Let H and Hn, n = 1, 2, . . ., be concave functions defined on an
open interval I. If

lim
n→∞

Hn(x) = H(x)

uniformly in x ∈ I, then

H−(x) ≥ lim sup
n→∞

H−
n (x) ≥ lim inf

n→∞
H+

n (x) ≥ H+(x),

for all x ∈ I, where H− and H+ denote the left and right derivatives of H
respectively.

The following proposition is an immediate consequence of Lemma 3.1 and
Lemma 3.2.

Proposition 3.3. Suppose that G is connect. For any closed interval [σ, τ ]
contained in the interior of the support of G0,

sup
x∈[σ,τ ]

|g̃n(x)− g0(x)| a.s.−→ 0 as n → ∞.
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Proof. By considering an open interval, a subset of the interior of the support of
G0, slightly larger than [σ, τ ], the pointwise result follows from Lemma 3.1 and
Lemma 3.2. The uniform result holds as {g̃n} is a sequence of decreasing func-
tions converging to the continuous decreasing density function g0, for example,
see the auxiliary results as found in [2] or [24].

4. Asymptotic equivalence of g̃n and ĝn

In the rest of this article, we assume that the support of g0 is [a, b], where
−∞ < a < b < ∞, and t0 will be a fixed interior point of [a, b]. The following
regularity conditions are assumed for establishing the asymptotic equivalence of
g̃n and ĝn.

Assumption 1.

(i) The unbiased decreasing density g0 is differentiable on the interior of its
support (a, b), with 0 < inft∈(a,b) |g′0(t)| ≤ supt∈(a,b) |g′0(t)| < ∞;

(ii) There exist constant m,M with 0 < m < M < ∞ such that for all i =
1, . . . , s, m ≤ g0, wi ≤ M ;

(iii) For each i = 1, . . . , s, wi, wi ◦ g−1
0 are Lipschitz continuous.

Assumptions (i)–(iii) correspond to Assumption 2.1 (B)–(D) in [3] for estab-
lishing the asymptotic distribution of ĝn. A direct consequence of Assumption
(ii) warrants that G is a complete graph and hence connected. As a result,
the s-sample biased sampling model without the monotonicity assumption is
identifiable (Proposition 1.1 in [8]) and

√
n(Vn − V0) follows asymptotically a

multivariate normal distribution (Proposition 2.3 in [8]). In this section we will
show the following main result of this paper.

Theorem 4.1. Under Assumption 1, we have

n1/3[g̃n(t0)− ĝn(t0)]
P→ 0.

Furthermore,

n1/3

[ s∑
i=1

λi
wi(t0)

Wi

]1/3∣∣∣∣12g′0(t0)g0(t0)
∣∣∣∣
−1/3

[g̃n(t0)− g0(t0)]
d→ 2Y, (4.1)

where Y � argmaxt{W (t)−t2}, {W (t), t ∈ R} is a standard two-sided Brownian
motion with W (0) = 0.

We first provide a roadmap on how Theorem 4.1 will be proven. One of the
main difficulties is that both ĝn and g̃n are implicitly defined without explicit
simple analytic forms to analyse the difference between them directly. For exam-
ple, it is not clear if some terms will cancel when we consider n1/3(ĝn(t0)−g̃n(t0))
directly. Our strategy, on the other hand, is to first show that the joint distribu-
tion (n1/3{ĝn(t0) − g0(t0)}, n1/3{g̃n(t0) − g0(t0)}) converges to the same limit,
serving as a proxy, so that the difference of them converges to 0 in probability.
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Since g̃n is defined as the slope of the least concave majorant of Gn, to study
its asymptotic distribution, we define, for t ∈ R, the local processes

G̃n(t) � t;

Ũn(t) � n2/3[Gn(t0 + tn−1/3)−Gn(t0)− g0(t0)tn
−1/3]. (4.2)

Define λ � λ(t0) =

(
g0(t0)∑ s

i=1 λi
wi(t0)

Wi

)−1

. The corresponding local processes for ĝn

were defined in [3] and are given by:

Ĝn,ĝn(t) � n1/3

λ

1

n

n∑
j=1

1

ĝ2n(Tj)
[1(Tj ≤ t0 + tn−1/3)− 1(Tj ≤ t0)];

Ûn,ĝn(t) � n2/3

λ

1

n

n∑
j=1

(
ĝn(Tj)− g0(t0)

ĝ2n(Tj)
+

1

ĝn(Tj)
−

s∑
i=1

nicij∑n
k=1 ĝn(Tk)cik

)

×[1(Tj ≤ t0 + tn−1/3)− 1(Tj ≤ t0)], (4.3)

where T1, . . . , Tn are the order statistics of all the samples Xij ’s and cik �∫ Tk

Tk−1
wi(x)dx. Furthermore, for (t, a) ∈ R

2, define

Z̃n(t, a) � Ũn(t)− aG̃n(t) = Ũn(t)− at,

Ẑn(t, a) � Ûn,ĝn(t)− aĜn,ĝn(t),

where G̃n, Ũn, Ûn,ĝn and Ĝn,ĝn are defined in (4.2) and (4.3). The proof of
Theorem 4.1 will further depend on the following facts which will be proven:{

argmax
t

Z̃n(t, a) ≤ 0

}
= {n1/3(S̃n(n

−1/3a+ g(t0))− t0) ≤ 0} (4.4)

and {
argmax

t
Ẑn(t, a)} ≤ 0

}
= {n1/3(Ŝn(n

−1/3a+ g0(t0))− t0) ≤ 0} , (4.5)

where for a > 0,

S̃n(a) � argmax
t≥0

{Gn(t)− at} ,

Ŝn(a) � argmax
t≥0

{Un,ĝn(t)− aGn,ĝn(t)} ,

Gn,ĝn(t) � 1

n

n∑
j=1

1

ĝ2n(Tj)
1(Tj ≤ t),

Un,ĝn(t) � 1

n

n∑
j=1

(
2

ĝn(Tj)
−

s∑
i=1

nicij∑n
k=1 ĝn(Tk)cik

)
1(Tj ≤ t).
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Then by the definition of g̃n and Proposition 3.2 in [3], with probability one,
we have the following switch relations [see [10]]:

g̃n(t0) ≤ a ⇔ S̃n(a) ≤ t0; (4.6)

ĝn(t0) ≤ a ⇔ Ŝn(a) ≤ t0. (4.7)

By (4.6) and (4.7), the convergence of (g̃n, ĝn) and (S̃n, Ŝn) can be related by
the following argmax continuous mapping theorem. Let Bloc be the space of
all locally bounded real functions on R endowed with the topology of uniform
convergence on compacta. That is, for hn, h ∈ Bloc(R), hn converges to h if
for every M > 0, supt∈[−M,M ] |hn(t) − h(t)| → 0 as n → ∞. Let Cmax(R)
denote the (separable) subset of continuous function x in Bloc(R) which satisfies
x(t) → −∞ as |t| → ∞, and x achieves its maximum at a unique point in R.

Proposition 4.2 (Theorem 6.1 in [14]). Let (J1n, J2n) be a sequence of a pair of
random mappings valued in Bloc(R)×Bloc(R) and (T1n, T2n) be another sequence
of random mappings into R× R such that:

(i) (J1n, J2n)
d→ (J1, J2), P((J1, J2) ∈ Cmax(R)× Cmax(R)) = 1;

(ii) T1n, T2n = Op(1);
(iii) J1n(T1n) ≥ supt J1n(t) − αn, and J2n(T2n) ≥ supt J2n(t) − βn where

αn, βn = op(1).

Then (T1n, T2n)
d→ (T1, T2) � (argmax(J1), argmax(J2)).

The remaining gap is to show the weak convergence of (Z̃n(t, a), Ẑn(t, b)),
which is closely related to that weak convergence of Ũn and Ûn,ĝn which is
given in the following proposition:

Proposition 4.3. Under Assumption 1, supt∈[−K,K] |Ũn(t)−Ûn,ĝn(t)|
P→ 0 and

both Ũn and Ûn,ĝn converge weakly in Bloc(R) to the process U defined by

U(t) � 1

λ1/2
W (t) +

g′(t0)

2
t2.

The proof of Proposition 4.3 will require an additional lemma:

Lemma 4.4. Under Assumption 1 (ii), for any measurable set A, we have

Gn(A) =

∫
A

[ s∑
k=1

λnk
wk(y)

Wk

]−1

dFn(y) +Op(n
−1/2)

∫
A

dFn(y),

where Op(n
−1/2) is independent of the choice of A.

and the proof of Lemma 4.4 will require an additional result:

Lemma 4.5. Under Assumption 1 (ii), we have∫ b

a

[ s∑
k=1

λnkwk(y)V
−1
nk

]−1

dFn(y) =
1

Ws
+Op(n

−1/2).
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An interpretation of these lemmas are as follows. From Proposition 2.3 in [8],
we know that

√
n(Vn − V0) = Op(1). Using this result, in Lemma 4.5, we shall

show that the denominator of Gn is essentially W−1
s . As a result, we can write

Gn as a sum of two terms, where the first involves only the weighted empirical
distribution Fn and the true quantity Wk instead of the estimator Vn, and the
second term is an error term (see Lemma 4.4). This more convenient expression
of Gn will facilitate the proof of Proposition 4.3. In addition to Proposition 4.3,
the proof of Theorem 4.1 will require the tightness of the inverse processes S̃n

and Ŝn which will be given in Section 5 and further results on the process
Sα,β(x) � argmaxt{αW (t) + βt2 − xt} for any α ∈ R and β < 0:

Lemma 4.6. Sα,β(x)
d
= Sα,β(0) +

x

2β
.

Lemma 4.7. Sα,β(0) = α2/3|β|−2/3
Y.

The results in Lemmas 4.6 and 4.7 are known but proofs of them are given
in the Appendix for completeness.

Since the results are nested, we will show the proofs in the following order:
Lemma 4.5, Lemma 4.4, Proposition 4.3, then finally Theorem 4.1. Denote Fn �∑s

i=1 λniFi.

Proof of Lemma 4.5. By telescoping the terms,

∫ b

a

[ s∑
k=1

λnkwk(y)V
−1
nk

]−1

dFn(y) = C1 + C2 + C3,

where

C1 �
∫ b

a

[ s∑
k=1

λnkwk(y)V
−1
0k

]−1

dFn(y),

C2 �
∫ b

a

[ s∑
k=1

λnkwk(y)V
−1
0k

]−1

d(Fn(y)− Fn(y)),

C3 �
∫ b

a

{[ s∑
k=1

λnkwk(y)V
−1
nk

]−1

−
[ s∑
k=1

λnkwk(y)V
−1
0k

]−1}
dFn(y).

Simple algebra gives that

C1 =

s∑
i=1

ni

n

∫ b

a

fi(y)dy∑s
k=1

nk

n
wk(y)
Wk

Ws

=

∫ b

a

g0(y)
∑s

i=1
ni

n
wi(y)
Wi

dy∑s
k=1

nk

n
wk(y)
Wk

Ws

=
1

Ws
.

Note the class of functions involved in C2 is, for large n, a subset of

H �
{[ s∑

k=1

hk(y)wk(y)V
−1
0k

]−1

: hk(y) ≡ rk, rk ∈
[
λk

2
, 2λk

]}
.
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Define also

H−1 �
{ s∑

k=1

hk(y)wk(y)V
−1
0k : hk(y) ≡ rk, rk ∈

[
λk

2
, 2λk

]}
.

Note that H−1 is a Donsker class as each function in H−1 is a finite sum of
products of bounded functions from Donsker classes. That H is also a Donsker
class follows as the functions in H−1 are bounded away from zero. Therefore,
we have C2 = Op(n

−1/2). For C3, using the bounds on wi and the fact that√
n(Vn − V0) = Op(1),

|C3| ≤
∫ b

a

∑s
k=1 λnkwk(y)|V −1

0k − V
−1
nk |

[
∑s

k=1 λnkwk(y)V
−1
nk ][

∑s
k=1 λnkwk(y)V

−1
0k ]

dFn(y)

≤
∑s

k=1 λnkM |V −1
0k − V

−1
nk |

[
∑s

k=1 λnkmV
−1
nk ][

∑s
k=1 λnkmV −1

0k ]

∫ b

a

dFn(y) = Op(n
−1/2).

Proof of Lemma 4.4. By telescoping the terms, we can write

Gn(A) = Ws

∫
A

[ s∑
k=1

λnkwk(y)V
−1
0k

]−1

dFn(y) +A1 +A2,

where

A1 �
∫
A
[
∑s

k=1 λnkwk(y)V
−1
0k ]−1dFn(y)∫ b

a
[
∑s

k=1 λnkwk(y)V
−1
nk ]

−1dFn(y)
−Ws

∫
A

[ s∑
k=1

λnkwk(y)V
−1
0k

]−1

dFn(y),

A2 �
∫
A
[
∑s

k=1 λnkwk(y)V
−1
nk ]

−1dFn(y)∫ b

a
[
∑s

k=1 λnkwk(y)V
−1
nk ]

−1dFn(y)
−

∫
A
[
∑s

k=1 λnkwk(y)V
−1
0k ]−1dFn(y)∫ b

a
[
∑s

k=1 λnkwk(y)V
−1
nk ]

−1dFn(y)
.

Clearly,

Ws

∫
A

[ s∑
k=1

λnkwk(y)V
−1
0k

]−1

dFn(y) =

∫
A

[ s∑
k=1

λnk
wk(y)

Wk

]−1

dFn(y).

For A1, by Lemma 4.5,

|A1| =

∫
A

[ s∑
k=1

λnkwk(y)V
−1
0k

]−1

dFn(y) ·
∣∣∣∣Ws −

1
1

Ws
+Op(n−1/2)

∣∣∣∣
≤ Op(n

−1/2)

∫
A
dFn(y)

m
∑s

k=1 λnkV
−1
0k

= Op(n
−1/2)

∫
A

dFn(y).

For A2, by using the same argument and similar calculation leading to bounding
C3 in Lemma 4.5, we also have A2 = Op(n

−1/2)
∫
A
dFn(y).
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Proof of Proposition 4.3. FixK > 0. It suffices to show that supt∈[−K,K]|Ũn(t)−
Ûn,ĝn(t)|

P→ 0. The second statement follows from the first statement and the

fact that Ûn,ĝn converges weakly in Bloc(R) to U as shown in Lemma 6.5 in [3].
Consider t ∈ [−K,K]. Using Lemma 4.4, we have

Gn(t0 + tn−1/3)−Gn(t0)

=

∫ t0+tn−1/3

t0

[ s∑
k=1

λnk
wk(y)

Wk

]−1

dFn(y) +Op(n
−1/2)

∫ t0+tn−1/3

t0

dFn(y)

=

∫ t0+tn−1/3

t0

[ s∑
k=1

λnk
wk(y)

Wk

]−1

dFn(y) +Op(n
−5/6), (4.8)

where the Op term is independent of t since
∫ t0+tn−1/3

t0
dFn(y) = Op(n

−1/3) is

independent of t in [−K,K]; indeed,

∫ t0+tn−1/3

t0

dFn(y) =

∫ t0+tn−1/3

t0

d(Fn − Fn)(y) +

∫ t0+tn−1/3

t0

dFn(y)

=

s∑
i=1

ni

n

∫ t0+tn−1/3

t0

d(Fi,ni − Fi)(y)

+

s∑
i=1

ni

n
[Fi(t0 + tn−1/3)− Fi(t0)].

The first term is Op(n
−1/2) independent of t as {1(x ≤ t0 + tn−1/3) − 1(x ≤

t0) : n ∈ N, t ∈ [−K,K]} is a subset of a Donsker class. The second term is
O(n−1/3), independent of t, as

|Fi(t0 + tn−1/3)− Fi(t0)| = |fi(tn)n−1/3t| ≤
∣∣∣∣M2

m
n−1/3K

∣∣∣∣ = O(n−1/3),

where tn is between t0 + tn−1/3 and t0 after applying mean value theorem.
Hence, by (4.8),

Ũn(t) = n2/3

{∫ t0+tn−1/3

t0

[ s∑
k=1

λnk
wk(y)

Wk

]−1

dFn(y)− g0(t0)tn
−1/3

}

+Op(n
−1/6)

= B1(t) +B2(t) +Op(n
−1/6),

where

B1(t) � n2/3

{ ∫ t0+tn−1/3

t0

[ s∑
k=1

λnk
wk(y)

Wk

]−1

d(Fn − Fn)(y)

}
; (4.9)
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B2(t) � n2/3

{∫ t0+tn−1/3

t0

[ s∑
k=1

λnk
wk(y)

Wk

]−1

dFn(y)− g0(t0)tn
−1/3

}
. (4.10)

We first rewrite B1(t) as

B1(t) =

s∑
i=1

ni

n
n1/2

∫
pn,t(y)d(Fi,ni − Fi)(y),

where

pn,t(y) � n1/6

[ s∑
k=1

λnk
wk(y)

Wk

]−1

[1(y ≤ t0 + tn−1/3)− 1(y ≤ t0)].

On the other hand, from the proof of Lemma 6.5 in [3], we have

Ûn,ĝn(t) = A1(t) +A2(t) +A3(t),

where

A1(t) �
s∑

i=1

ni

n
n1/2

∫
qn,t(y)d(Fi,ni − Fi)(y),

A2(t) � 1

λ

s∑
i=1

ni

n
n2/3

∫ t0+tn−1/3

t0

g0(y)− g0(t0)

g20(y)
dFi(y),

A3(t) �
s∑

i=1

ni

n
n2/3

∫
1

g0(y)
[1(y ≤ t0 + tn−1/3)− 1(y ≤ t0)]dFi(y)

−n2/3
s∑

i=1

ni

n

∑n
j=1 cij [1(y ≤ t0 + tn−1/3)− 1(y ≤ t0)]∑n

k=1 cikg0(Tk)
,

qn,t(y) � n1/6 1

λ

[
2g0(y)− g0(t0)

g20(y)

]
[1(y ≤ t0 + tn−1/3)− 1(y ≤ t0)],

and A3(t) = op(1) which is independent of t.

(i) Since B1(t)−A1(t) =
∑s

i=1
ni

n n1/2
∫
(pn,t(y)− qn,t(y))d(Fi,ni −Fi)(y), we

shall show that, for each i = 1, . . . , s, n1/2
∫
(pn,t − qn,t)(y)d(Fi,ni −Fi)(y)

converges to a Gaussian process with covariance function Ki(u, t) = 0 on
l∞([−K,K]), where l∞(T̃ ) denotes the space of all real-valued bounded
functions on T̃ equipped with the uniform norm. To this end, it suffices to
show the validity of the three items in Condition (2.11.21) and the entropy
integral condition in Theorem 2.11.22 in [26]. These can be checked in the
same way as in the proof of Lemma 6.4 in [3] and are therefore omitted.
We then see that, n1/2

∫
{pn,t(y)− qn,t(y)}d(Fi,ni −Fi)(y) for i = 1, . . . , s

is asymptotically tight in l∞([−K,K]) and converges in distribution to a
Gaussian process with covariance function

Ki(u, t) = lim
n→∞

{EFi [(pn,u − qn,u)(pn,t − qn,t)]
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− EFi(pn,u − qn,u)EFi(pn,t − qn,t)}.

For u > 0, t > 0,

lim
n→∞

EFi [(pn,u − qn,u)(pn,t − qn,t)]

= lim
n→∞

n1/3

∫ t0+(u∧t)n−1/3

t0

(pn,u − qn,u)(pn,t − qn,t)fi(y)dy

= (u ∧ t)×
{( s∑

k=1

λk
wk(t0)

Wk

)−2

fi(t0) +
fi(t0)

λ2g20(t0)

− 2

( s∑
k=1

λk
wk(t0)

Wk

)−1
fi(t0)

λg0(t0)

}
= 0,

as λg0(t0) =
∑s

k=1 λk
wk(t0)
Wk

. Similarly, it is also straightforward to see that

limn→∞ EFi(pu,n − qu,n)EFi(pn,t − qn,t) = 0. Similarly, when u < 0 and
t < 0,Ki(u, t) = 0. When u and t are of opposite signs,Ki(u, t) is also 0. In
summary, n1/2

∫
(pn,t − qn,t)(y)d(Fi,ni − Fi)(y) converges in l∞([−K,K])

to 0. By the independence of different samples, as an independent sum,
B1 −A1 also converges in l∞([−K,K]) to 0.

(ii) Note that B2 converges uniformly to 1
2g

′
0(t0)t

2 on [−K,K] as

B2(t) = n2/3

[ ∫ t0+tn−1/3

t0

∑s
i=1 λnifi(y)∑s
k=1 λnk

wk(y)
Wk

dy − g0(t0)tn
−1/3

]

= n2/3

[ ∫ t0+tn−1/3

t0

g0(y)dy − g0(t0)tn
−1/3

]
.

From the proof of Lemma 6.5 in [3], we know A2 also converges uniformly
to 1

2g
′
0(t0)t

2. Therefore, B2 −A2 converges uniformly to 0 on [−K,K].

Combining (i) and (ii), we have shown that supt∈[−K,K] |Ũn(t) − Ûn,ĝn(t)|
P→

0.

Proof of Theorem 4.1. We first show (4.4) and (4.5). Using the definition of S̃n,
the fact that adding or multiplying a constant will not affect the maximum of
a process and the definition of Z̃n, we obtain

{n1/3(S̃n(n
−1/3a+ g(t0))− t0) ≤ 0}

=

{
argmax

t
{Gn(t0 + tn−1/3)− n−2/3at− g0(t0)tn

−1/3} ≤ 0

}

=

{
argmax

t
{n2/3[Gn(t0 + tn−1/3)−Gn(t0)− g0(t0)tn

−1/3]− at} ≤ 0

}

=

{
argmax

t
{Z̃n(t, a)} ≤ 0

}
.
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Similarly,

{n1/3(Ŝn(n
−1/3a+ g0(t0))− t0) ≤ 0}

=
{
argmax

t
{Un,ĝn(t0 + tn−1/3)− g0(t0)Gn,ĝn(t0 + tn−1/3)

−n−1/3aGn,ĝn(t0 + tn−1/3)} ≤ 0
}

=
{
argmax

t
{Un,ĝn(t0 + tn−1/3)− Un,ĝn(t0)−

g0(t0)(Gn,ĝn(t0 + tn−1/3)−Gn,ĝn(t0))

−n−1/3a(Gn,ĝn(t0 + tn−1/3)−Gn,ĝn(t0))} ≤ 0
}

=
{
argmax

t
{Ûn,ĝn(t)− aĜn,ĝn(t)} ≤ 0

}
=

{
argmax

t
{Ẑn(t, a)} ≤ 0

}
.

Proposition 4.3 gives that (Ũn(t), Ûn,ĝn(t)) converges to (U(t), U(t)) in Bloc(R)×
Bloc(R). Lemma 6.1 and Lemma 6.3 in [3] imply that supt∈[−K,K] |Ĝn,ĝn(t)−t| P→
0. These together imply that (Z̃n(t, a), Ẑn(t, b)) converges to (U(t)−at, U(t)−bt)
in Bloc(R)×Bloc(R). We can then apply Proposition 4.2 with (J1n(t), J2n(t)) =
(Z̃n(t, a), Ẑn(t, b)), J1(t) = U(t)− at, J2(t) = U(t)− bt and

T1n(a) = n1/3(S̃n(n
−1/3a+ g0(t0))− t0),

T2n(b) = n1/3(Ŝn(n
−1/3b+ g0(t0))− t0),

where T1n(a) = Op(1) and T2n(b) = Op(1) to be shown in Lemmas 5.1 and 5.2,
respectively. This gives

(T1n(a), T2n(b))
d→ (Sα,β(a),Sα,β(b)), (4.11)

with α = 1
λ1/2 and β =

g′
0(t0)
2 in the definition of Sα,β . Using (4.6), (4.7), (4.11)

and Lemma 4.6,

P(n1/3(g̃n(t0)− g0(t0)) ≤ a, n1/3(ĝn(t0)− g0(t0)) ≤ b)

= P(n1/3(S̃n(n
−1/3a+ g0(t0))− t0) ≤ 0, (4.12)

n1/3(Ŝn(n
−1/3b+ g0(t0))− t0) ≤ 0)

→ P(Sα,β(a) ≤ 0,Sα,β(b) ≤ 0)

= P(−2βSα,β(0) ≤ a,−2βSα,β(0) ≤ b), for any a, b. (4.13)

Hence,

(n1/3(g̃n(t0)− g0(t0), n
1/3(ĝn(t0)− g0(t0))

d→ 2|β|(Sα,β(0),Sα,β(0)).

Therefore,

n1/3(g̃n(t0)− ĝn(t0))
d→ 0,
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which implies that n1/3(g̃n(t0)− ĝn(t0))
P→ 0. Finally, using Lemma 4.7, we have

n1/3(g̃n(t0)− g0(t0))
d→ 2|β|Sα,β(0) = 2α2/3|β|1/3Y = λ−1/3

∣∣∣∣g′0(t0)2

∣∣∣∣
1/3

2Y,

which is equivalent to (4.1).

5. Tightness of the inverse processes S̃n and Ŝn

To close the final gap in the proof of Theorem 4.1, we show in this section the
tightness of the inverse processes S̃n and Ŝn in Lemmas 5.1 and 5.2.

Lemma 5.1. Under Assumption 1 (i)–(ii), for all ε > 0 and M1 > 0, there is
an M2 > 0 such that

P

(
max

|a|≤M1

n1/3

∣∣∣∣S̃n(n
−1/3a+ g0(t0))− t0

∣∣∣∣ > M2

)
< ε.

Lemma 5.2. Under Assumption 1, for all ε > 0 and M1 > 0, there is an
M2 > 0 such that

P

(
max

|a|≤M1

n1/3

∣∣∣∣Ŝn(n
−1/3a+ g0(t0))− t0

∣∣∣∣ ≥ M2

)
< ε.

The proof of Lemma 5.1 is similar to the proof of Lemma 5.3 in [12] (see
also Lemma 7.1 in [14]), we therefore put it in the Appendix. The proof of
Lemma 5.2, however, employs a different argument than those in the literature,
by making the direct uses of the switch relation and the analytic properties of ĝn
through its accompanied Karush-Kuhn-Tucker condition, without the need to
study the geometric relationship between the points {Gn,ĝn(Ti), Un,ĝn(t)} and
its least concave majorant. In particular, we will first show the following result:

Lemma 5.3. Under Assumption 1, for any ε > 0, there exists C0 > 0 such that
for all C ≥ C0 and all large n,

P(ĝn(t0 + 2Cn−1/3) ≤ g0(t0 + Cn−1/3)) ≥ 1− ε.

To prove Lemma 5.3, we make use of Lemma 5.4 which assures that a cer-
tain event related to the Karush-Kuhn-Tucker condition happens with a small
probability.

Lemma 5.4. Under Assumption 1, for any ε > 0, there exists C0 > 0 and
R0 > 0 such that for any C ≥ C0 and 0 < R ≤ R0, we have for all sufficiently
large n,

P

(
inf
t∈In

∑
j:t0+Cn−1/3≤Tj<t

(
− 1

ng0(t0 + Cn−1/3n)
+

s∑
i=1

ni

n

cij∫
wiĝn

)
≤ 0

)
≤ ε,

where In � [t0 + 2Cn−1/3, t0 +R).
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Lemma 5.4 is similar to Lemma 5.11 and Lemma 5.12 in [3], but now on a
different shifted interval. The proofs of Lemmas 5.3 and 5.4 will be given in the
appendix.

Proof of Lemma 5.2. Fix ε > 0 and M1 > 0. We shall show only that there
exists M2 > 0 such that

P

(
max

|a|≤M1

n1/3

(
Ŝn(n

−1/3a+ g0(t0))− t0

)
≥ M2

)
< ε,

as another case can be established similarly. By observing that Ŝn(a) is decreas-
ing in a, we have

P

(
max

|a|≤M1

n1/3

(
Ŝn(n

−1/3a+ g0(t0))− t0

)
≥ M2

)
= P(n1/3(Ŝn(−n−1/3M1 + g0(t0))− t0) ≥ M2).

Simple algebra and the switch relation (4.7) give that

P(n1/3(Ŝn(−n−1/3M1 + g0(t0))− t0) ≥ M2)

= P(Ŝn(−n−1/3M1 + g0(t0)) ≥ n−1/3M2 + t0)

= P(ĝn(n
−1/3M2 + t0) ≥ −n1/3M1 + g0(t0))

= P(n1/3(g0(t0)− ĝn(n
−1/3M2 + t0)) ≤ M1).

We claim in Lemma 5.3 that exists C0 > 0 such that for all C ≥ C0 and all
large n,

P(ĝn(t0 + 2Cn−1/3) ≤ g0(t0 + Cn−1/3)) ≥ 1− ε.

By definition of g′0(t0), there exists δ > 0 such that for all 0 < u < δ,∣∣∣∣g0(t0 + u)− g0(t0)

u
− g′0(t0)

∣∣∣∣ < −1

2
g′0(t0).

This implies that
g0(t0 + u)− g0(t0)

u
<

1

2
g′0(t0).

Now, we choose M2 = 2C, where C ≥ max{C0,− 2M1

g′
0(t0)

}.

P(n1/3(g0(t0)− ĝn(2Cn−1/3 + t0)) ≤ M1)

≤ P(n1/3(g0(t0)− ĝn(2Cn−1/3 + t0)) ≤ M1,

ĝn(t0 + 2Cn−1/3) ≤ g0(t0 + Cn−1/3))

+P(ĝn(t0 + 2Cn−1/3) > g0(t0 + Cn−1/3))

≤ P(n1/3(g0(t0)− g0(t0 + Cn−1/3)) ≤ M1) + ε.

Note that for all large enough n, we have Cn−1/3 < δ and so

n1/3(g0(t0)− g0(t0 + Cn−1/3)) = −C
g0(t0 + Cn−1/3)− g0(t0)

Cn−1/3
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> −C

2
g′0(t0) ≥ M1,

by the choice of C. Therefore, P(n1/3(g0(t0)− g0(t0 + Cn−1/3)) ≤ M1) = 0 for
all large enough n and so the result of the lemma follows.

6. Numerical studies

6.1. Simulations

In this section, we illustrate the finite sample performance of the proposed
monotone MLE and compare it with the Grenander-type estimator. For the
Grenander-type estimator, we first obtained the NPMLE Gn for the unbiased
distribution function G0 [27, 28]. The Grenander-type estimator g̃n is then ob-
tained as the slope of the least concave majorant of Gn. To obtain the monotone
MLE via the self-characterization introduced in [3], a set of initial guesses for

pointwise density values is required. Given the initial guesses, say ẑ(0), an up-
dated set of estimates, denoted as ẑ(1), is defined as the solution of the right
hand side of (3.5) of [3]. These updated values ẑ(1) will then serve as the initial
values for the next iteration and the procedure will continue iteratively until
convergence.

Our simulation studies analyzed the performance of (i) g̃n, (ii) ĝn,V , the
monotone MLE based on g̃n as the initial guess, and (iii) ĝn,R, the monotone
MLE based on the density estimated from randomly drawn samples as the initial

value, denoted by ĝ
(0)
n,R. For the two-sample setting considered, we simulated

n1 exponentially-distributed samples with rate 0.5, which represented the true
unbiased distribution, i.e. w1(t) = 1. In addition, we also generated n2 = n1

samples from the length-biased variation of the unbiased distribution, i.e. the
weight function is set to be w2(t) = t. Define n � n1+n2, we generated samples
with n = 100, 200, 500 and 1000 with a balanced design. 500 iterations were
carried out for each of the simulation exercises.

As we can see from the Table 1, the MLE procedure, regardless of which
initial values chosen, produces virtually unbiased estimates whose standard
errors are smaller than its counterpart estimated via the Grenander-type ap-
proach. This is sensible as the maximum likelihood procedure should give the
most efficient estimates. Our numerical experience also suggests that the con-
vergence of the self-characterization can be achieved after three to five iter-
ations. Figure 1 demonstrates the initial values, the maximum likelihood es-
timator obtained after four iterations and the true density in one simulation
scenario.

We also conducted simulation results to examine the validity of Theorem 4.1.
We simulated samples from each of the following two distributions, namely
(a) an unbiased exponential distribution (f1 = g) with mean η = 2 and (b)
a length biased exponential distribution f2 whose density can be written as

f2(x) = {xg(x; η)}
{∫ ∞

0
ξg(ξ; η)dξ

}−1
. In such a setting, n1 = n2 (i.e. λ1 =

λ2 = 0.5). Different sample sizes were generated to examine the corresponding
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Table 1

Biases and standard errors of the unbiased density estimates g̃n, ĝn,R and ĝn,V

n = 100 x = 0.25 x = 0.50 x = 0.75 x = 1.00 x = 1.25 x = 1.50
g̃n(x) −0.046 −0.014 −0.010 −0.002 0.000 0.005

(0.222) (0.149) (0.105) (0.067) (0.046) (0.034)
ĝn,R(x) −0.015 0.003 −0.001 0.005 0.004 0.007

(0.198) (0.134) (0.095) (0.062) (0.043) (0.032)
ĝn,V (x) 0.010 0.007 −0.001 0.004 0.003 0.006

(0.199) (0.135) (0.096) (0.062) (0.043) (0.032)

n = 250 x = 0.25 x = 0.50 x = 0.75 x = 1.00 x = 1.25 x = 1.50
g̃n(x) −0.035 −0.014 −0.005 0.003 0.001 0.002

(0.159) (0.109) (0.076) (0.050) (0.034) (0.023)
ĝn,R(x) −0.020 −0.006 −0.001 0.006 0.003 0.004

(0.144) (0.100) (0.071) (0.048) (0.032) (0.022)
ĝn,V (x) −0.014 −0.005 −0.002 0.005 0.002 0.003

(0.144) (0.101) (0.071) (0.048) (0.032) (0.022)

n = 500 x = 0.25 x = 0.50 x = 0.75 x = 1.00 x = 1.25 x = 1.50
g̃n(x) −0.026 −0.004 −0.005 0.001 −0.002 0.001

(0.128) (0.082) (0.057) (0.037) (0.025) (0.018)
ĝn,R(x) −0.019 0.000 −0.003 0.002 −0.001 0.001

(0.120) (0.078) (0.054) (0.036) (0.025) (0.017)
ĝn,V (x) −0.014 0.000 −0.004 0.001 −0.002 0.001

(0.120) (0.078) (0.054) (0.036) (0.025) (0.017)

n = 1000 x = 0.25 x = 0.50 x = 0.75 x = 1.00 x = 1.25 x = 1.50
g̃n(x) −0.001 −0.006 −0.005 −0.001 −0.001 0.000

(0.097) (0.067) (0.046) (0.032) (0.020) (0.014)
ĝn,R(x) 0.005 −0.003 −0.003 0.000 −0.001 0.000

(0.093) (0.064) (0.045) (0.032) (0.020) (0.013)
ĝn,V (x) 0.007 −0.003 −0.004 −0.001 −0.001 0.000

(0.093) (0.064) (0.045) (0.031) (0.020) (0.013)

finite sample performances. To verify the convergence properties of Theorem 4.1,
namely (4.1), we also calculated the Kolmogorov-Smirnov (KS) test statistics
for two-sided tests between the distribution of Δn evaluated at t0 = 0.5 and 2Y
based on 500 repetitions with different sample sizes, where Δn denotes the LHS
of (4.1); see Table 2. All the KS tests are not rejected at α = 0.05.

Table 2

p-value of two-sided KS test between Δn and 2Y for t0 = 0.5, n = {100, 250, 500, 1000}

n p-value
100 0.062
250 0.536
500 0.181
1000 0.263



2894 K. C. G. Chan et al.

Fig 1. Estimation of the proposed monotone MLE after three iterations ĝ
(3)
n,R(·).

6.2. Data analysis

We apply our methodology to a real-life application. As discussed in [23] and [4],
the blood alcohol concentration (BAC) of drivers involved in fatal car accidents
in the US demonstrate size bias between younger (< 30 years old) and older
(≥ 30 years old) population. Drivers with higher BACs usually incur higher
chances of being involved in fatal traffic accidents.

We illustrate using a dataset obtained from the National Highway Traffic
Safety Administration Department of Transportation (NHTSA) in the United
States. In particular, the Fatality Analysis Reporting System (FARS) provides
a collection of raw statistics recording all the qualifying fatal car crashes that
occurred with the 50 states and the District of Colubmia. The FARS database
(https://www.nhtsa.gov/crash-data-systems/fatality-analysis-reporting-system)
stores three sections of incidents including the accident, the vehicle and person
files in which our variable of interest, namely the BAC, measured in grams
/deciltre (g/dL) and the ages of the associated drivers can be found. We fo-
cus our analysis to whole blood test results valued at or above 0.08 g/dL, the
legal limit to define driving under influence after 2004, using drivers involved
in accidents in all 50 states during 2009. The total number of samples consid-
ered in this analysis is 5,385 in which 3,086 (57.3%) of them were aged 30 or
above.

Since the drivers with a higher BAC are more likely to be involved in an
accident, the observed BAC in FARS data are biased towards larger values.
To study the distribution of BAC among all drivers, [4] and [23] showed that
it is reasonable to use the biasing functions w1(x) =

√
x for younger drivers

(age < 30) and w2(x) = x for older drivers (age ≥ 30). It is also reasonable
to assume that BAC density is decreasing past the legal limit (BAC ≥ 0.08)
since a high BAC is potentially lethal. The estimates for the population density

https://www.nhtsa.gov/crash-data-systems/fatality-analysis-reporting-system
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Fig 2. Estimated density of blood alcohol concentration via the Grenander-type estimator and
the MLE.

of BAC conditional on BAC ≥ 0.08 is given in Figure 2. The Grenander-type
estimator and the MLE gave almost identical results.

7. Discussion

This paper establishes the asymptotic equivalence between the nonparametric
maximum likelihood estimate (NPMLE) of the decreasing density function and
the Grenander-type estimator without any shape constraint under the s-sample
biased sampling models considered in [3]. In particular, we show that g̃n and ĝn
in s-sample biased sampling models are asymptotically equivalent in the sense

that n1/3[g̃n(t0) − ĝn(t0)]
P→ 0 as n → ∞. Instead of adopting the traditional

approach of showing the tightness of the corresponding inverse processes, we
develop a new technique of direct use of the switch relation for the NPMLE case.
One possible extension is to investigate the corresponding inference procedure
when the biasing functions wi(·), i = 1, . . . , s contain unknown parameters. We
shall explore this matter in the future.

A reviewer suggested to consider the absolute difference between ĝn and g̃n.
While the absolute difference between the Grenander estimator and true den-
sity is studied in [6], such results are not readily extendable to study the ab-
solute difference between ĝn and g̃n. Moreover, as the Grenander estimator is
known to be inconsistent at the boundaries of the support, it is impossible for
supt∈[a,b] |ĝn(t) − g0(t)| = op(1). However, it is possible that supt∈[a,b] |ĝn(t) −
g̃n(t)| = op(1). To obtain a rate of convergence of 0 of |ĝn(t) − g̃n(t)| for t in a
neighborhood of 0 and 1, additional analysis on ĝn and g̃n near the boundaries
are required. This is possibly related to [17], where they have established some
results for the Grenander estimator near the boundaries of the support. We
expect that the technique of proofs developed in [17] and [6] together with the
results in this paper and [3] are required to tackle this problem.
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Appendix A: Proofs of auxiliary lemmas

Proof of Lemma 4.6. Using the fact that adding a constant will not affect the
location of the maximum of a process and the stationarity of Brownian motion,

Sα,β(x)−
x

2β
= argmax

t

{
αW

(
t+

x

2β

)
+ β

(
t+

x

2β

)2

− x

(
t+

x

2β

)}

= argmax
t

{
αW

(
t+

x

2β

)
− αW

(
x

2β

)
+ βt2

}
d
= argmax

t
{αW (t) + βt2} = Sα,β(0).

Proof of Lemma 4.7. Let δ and γ be real constants. Using the scaling property
of Brownian motion, we have

Sα,β(0) = α−δ|β|−γ argmax
t

{
W (α2−δ|β|−γt) + β(α−δ|β|−γt)2

}
d
= α−δ|β|−γ argmax

t

{
α1−δ/2|β|−γ/2W (t)− α−2δ|β|1−2γt2

}
.

Therefore, if 1−δ/2 = −2δ and −γ/2 = 1−2γ, we have Sα,β(0)
d
= α−δ|β|−γ

Y as
multiplying a constant will not affect the location of the maximum of a process.
Finally, the two equations imply that δ = −2/3 and γ = 2/3.

Proof of Lemma 5.1. Fix ε > 0. We shall show only that

P

(
max

|a|≤M1

n1/3

(
S̃n(n

−1/3a+ g0(t0))− t0

)
> M2

)
< ε,

as the other case can be proved similarly. By observing that S̃n(a) is decreasing
in a, the fact that n1/3(S̃n(−n−1/3M1 + g0(t0)) − t0) = argmaxt{Z̃n(t,−M1)}
and Z̃n(0,−M1) = 0, we have

P

(
max

|a|≤M1

n1/3

(
S̃n(n

−1/3a+ g0(t0))− t0

)
> M2

)
= P(n1/3(S̃n(−n−1/3M1 + g0(t0))− t0) > M2)

≤ P(Z̃n(t,−M1) ≥ 0 for some t ≥ M2).

Note that there exists u0 > 0 such that for any |y − t0| < u0, | g0(y)−g0(t0)
y−t0

−
g′0(t0)| < −g′0(t0)/4 and so g0(y)−g0(t0)

y−t0
< 3

4g
′
0(t0). Using Lemma 4.4, we have

Z̃n(t,−M1)

= n2/3(Gn(t0 + tn−1/3)−Gn(t0)− g0(t0)tn
−1/3) +M1t

= n2/3

∫ t0+tn−1/3

t0

[ s∑
k=1

λnk
wk(y)

Wk

]−1

dFn(y)
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+Op(n
1/6)

∫ t0+tn−1/3

t0

dFn(y)− g0(t0)tn
1/3 +M1t

= B1(t) +B2(t) +Op(n
1/6)

∫ t0+tn−1/3

t0

dFn(y)

+Op(n
1/6)

∫ t0+tn−1/3

t0

d(Fn − Fn)(y) +M1t,

where B1(t) and B2(t) were defined in (4.9) and (4.10). Consider n−1/3t ≤ u0.

Then B2(t) <
3
4g

′
0(t0)n

2/3
∫ t0+tn−1/3

t0
(y− t0)dy = 3

8g
′
0(t0)t

2. There exists K > 0
such that for any t > K,

3

8
g′0(t0)t

2 +M1t <
1

4
g′0(t0)t

2.

Using Lemma 4.1 in [16] for α = − 1
8sg

′
0(t0) > 0 and n−1/3t ≤ u0, there exist s

tight sequences of random variables {Ai,n}∞n=1, i = 1, . . . , s such that for each
i = 1, . . . , s,

∣∣∣∣
∫ t0+tn−1/3

t0

ni

n

[ s∑
k=1

λnk
wk(y)

Wk

]−1

d(Fi,ni − Fi)(y)

∣∣∣∣ ≤ αn−2/3t2 + n−2/3A2
i,n.

Hence,

|B1(t)| ≤ −1

8
g′0(t0)t

2 +

s∑
i=1

A2
i,n.

Finally, it is easy to see that
∫ t0+tn−1/3

t0
dFn(y) = O(n1/3)t and

∫ t0+tn−1/3

t0
d(Fn−

Fn)(y) = Op(n
−1/2) (see also the proof of Lemma 4.3). Therefore, for t > K,

we have

Z̃n(t,−M1) <
1

4
g′0(t0)t

2 +Op(n
−1/6)t+Op(n

−1/3)− 1

8
g′0(t0)t

2 +

s∑
i=1

A2
i,n

=
1

8
g′0(t0)t

2 +Op(n
−1/6)t+Op(n

−1/3) +

s∑
i=1

A2
i,n,

where in the last line the Op terms does not depend on t. Since
∑s

j=1 A
2
j,n =

Op(1), there exists M2 > K such that for t > M2 and all sufficiently large n,

P

(
1

8
g′0(t0)t

2 +Op(n
−1/6)t+Op(n

−1/3) +

s∑
j=1

A2
j,n ≥ 0

)
≤ ε/3.

Now, for this choice of M2 and all sufficiently large n,

P(Z̃n(t,−M1) ≥ 0 for some M2 ≤ t ≤ n1/3u0)
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≤ ε/3. (A.1)

For n−1/3t > u0, we claim that for all sufficiently large n, we have

P

(
Z̃n(t,−M1) ≤ Z̃n

(
n1/3u0

2
,−M1

))
= 1− ε/3, (A.2)

see the proof below. Then, for all sufficiently large n,

P(Z̃n(t,−M1) ≥ 0 for some t > n1/3u0) (A.3)

≤ P(Z̃n(n
1/3u0

2
,−M1) ≥ 0) + ε/3

≤ P(Z̃n(t,−M1) ≥ 0 for some M2 ≤ t ≤ n1/3u0) + ε/3

≤ 2ε/3.

Combining (A.1) and (A.3), we have

P(Z̃n(t,−M1) ≥ 0 for some t ≥ M2) ≤ ε.

To show (A.2), recall that Lemma 3.1 implies that |G̃n(t0+
u0

2 )−Gn(t0+
u0

2 )| a.s.−→
0 and Lemma 3.3 gives |g̃n(t0+ u0

2 )− g0(t0+
u0

2 )| a.s.−→ 0. Hence, for each sample
point ω,

Gn

(
t0 +

u0

2

)
= G̃n

(
t0 +

u0

2

)
+ oω(1)

and

g̃n

(
t0 +

u0

2

)
= g0

(
t0 +

u0

2

)
+ oω(1).

Thus, by the definition of the least concave majorant and the concavity of G̃n,

Gn

(
t0 + n−1/3t

)
−Gn

(
t0 +

u0

2

)

≤ G̃n

(
t0 + n−1/3t

)
− G̃n

(
t0 +

u0

2

)
+ oω(1)

≤ g̃n

(
t0 +

u0

2

)(
n−1/3t− u0

2

)
+ oω(1)

=

[
g0

(
t0 +

u0

2

)
+ oω(1)

](
n−1/3t− u0

2

)
+ oω(1). (A.4)

For all sufficiently large n, using the definition of Z̃n(t, a),

Z̃n(t,−M1)− Z̃n(n
1/3u0,−M1)

= n2/3

[
Gn(t0 + n−1/3t)−Gn

(
t0 +

u0

2

)
− g0(t0)tn

−1/3 + g0(t0)
u0

2

]

+M1t−M1n
1/3u0

2
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= n2/3

[
Gn(t0 + n−1/3t)−Gn

(
t0 +

u0

2

)
− g0(t0)

(
tn−1/3 − u0

2

)

+M1n
−1/3

(
tn−1/3 − u0

2

)]

= n2/3

[
Gn(t0 + n−1/3t)−Gn

(
t0 +

u0

2

)

− (g0(t0)−M1n
−1/3)

(
tn−1/3 − u0

2

)]

≤ n2/3

[(
g0(t0 + u0)− g0(t0) + oω(1) +M1n

−1/3

)

×
(
n−1/3t− u0

2

)
+ oω(1)

]
≤ 0,

where the second last inequality follows from (A.4) and the last inequality follows
from the fact that g0 is strictly decreasing at t0. This implies that (A.2) holds.

Proof of Lemma 5.4. Let

Ji(t) �
∑

j:t0+Cn−1/3≤Xij<t

(
− 1

nig0(t0 + Cn−1/3n)

)
+

∑
j:t0+Cn−1/3≤Tj<t cij∫

wiĝn
.

Then

∑
j:t0+Cn−1/3≤Tj<t

(
− 1

ng0(t0 + Cn−1/3n)
+

s∑
i=1

ni

n

cij∫
wiĝn

)
=

s∑
i=1

ni

n
Ji(t).

We first claim that P(inft∈In Ji(t) ≤ 0) ≤ ε for all i = 1, . . . , s. The claim of our
present lemma will then follow because

P

(
inf
t∈In

s∑
i=1

ni

n
Ji(t) ≤ 0

)
≤ P

( s∑
i=1

ni

n
inf
t∈In

Ji(t) ≤ 0

)

≤
s∑

i=1

P

(
inf
t∈In

Ji(t) ≤ 0

)
≤ sε.

Now, we verify the first claim. Define

A(t) � −
∫

1

g0(t0 + Cn−1/3)
I(t0 + Cn−1/3 ≤ x < t)dFi(x)

+

∫ t

t0+Cn−1/3 wi(x)dx

Wi
,

B(t) � −
∫

1

g0(t0 + Cn−1/3)
I(t0 + Cn−1/3 ≤ x < t)d(Fi,ni − Fi)(x),
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C(t) �
∫ t

TL
wi(x)dx∫
wiĝn

−
∫ t0+Cn−1/3

TU
wi(x)dx∫

wiĝn
,

D(t) �
∫ t

t0+Cn−1/3 wi(x)dx∫
wiĝn

−
∫ t

t0+Cn−1/3 wi(x)dx

Wi
,

where TL and TU denote the maxima of Xij less than t and t0+Cn−1/3 respec-
tively. Clearly, Ji(t) = A(t) + B(t) + C(t) +D(t).

(i) Note that there exists R1 > 0 such that for all 0 < t− t0 < R1,∣∣∣∣g0(t)− g0(t0)

t− t0
− g′0(t0)

∣∣∣∣ < −1

2
g′0(t0).

Now, for R < R1 and all sufficiently large n such that t0 + Cn−1/3 < R1,

A(t)

≥ − m

M3

∫ t

t0+Cn−1/3

g0(x)− g0(t0 + Cn−1/3)

x− (t0 + Cn−1/3)
[x− (t0 + Cn−1/3)]dx

> − m

M3

g′0(t0)

2

∫ t

t0+Cn−1/3

[x− (t0 + Cn−1/3)]dx

= α[t− (t0 + Cn−1/3)]2,

where α � m
M3

|g′
0(t0)|
4 , the first inequality follows from the bounds on wi

and g0 and the second inequality follows as for t0 +Cn−1/3 ≤ x < t0 +R,

g0(x)− g0(t0 + Cn−1/3)

x− (t0 + Cn−1/3)
=

g0(x)− g0(t0) + g0(t0)− g0(t0 + Cn−1/3)

x− (t0 + Cn−1/3)

>
1
2g

′
0(t0)(x− t0)− 1

2g
′
0(t0)Cn−1/3

x− (t0 + Cn−1/3)

=
1

2
g′0(t0).

(ii) For B(t), by the same argument as used in the proof of Lemma 4.1 of [16],
for any δ > 0, there exists a tight sequence of random variables {Mn} such
that for any t ∈ In,

|B(t)| ≤ δ[t− (t0 + Cn−1/3)]2 + n−2/3M2
n.

(iii) For C(t), it is clear that

∫ t
TL

wi(x)dx∫
wiĝn

and

∫ t0+Cn−1/3

TU
wi(x)dx

wiĝn
are of order

Op(n
−1), which are also independent of choice of t ∈ In; see also the proof

of Lemma 5.11 in [3].
(iv) For D(t), by Proposition 5.8 in [3],∫ t

t0+Cn−1/3 wi(x)dx∫
wiĝn

−
∫ t

t0−Cn−1/3 wi(x)dx

Wi
= Op(n

−1/2)[t− (t0+Cn−1/3)].
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Combining (i)–(iv) and choosing δ = α/2 in (ii), we have for t ∈ In = [t0 +
2Cn−1/3, t0 +R),

Ji(t) ≥ α

2
[t− (t0 + Cn−1/3)]2 + n−2/3M2

n +Op(n
−1)

+Op(n
−1/2)[t− (t0 + Cn−1/3)]

=

(
α

2
+Op(n

−1/2)[t− (t0 + Cn−1/3)]−1

)
[t− (t0 + Cn−1/3)]2

+Op(n
−2/3).

With probability more than 1−ε/2, there exists some constant D > 0 such that
for all large n,

Ji(t) ≥
(
α

2
−Dn−1/2[t− (t0 + Cn−1/3)]−1

)
[t− (t0 + Cn−1/3)]2

+Op(n
−2/3).

Hence, for any t ∈ In,

Ji(t) ≥
(
α

2
−DCn−1/6

)
C2n−2/3 +Op(n

−2/3).

Hence, there exists C0 > 0 such that for all C ≥ C0, we have for all large n,

P

(
inf
t∈In

Ji(t) > 0

)
≥ 1− ε.

Proof of Lemma 5.3. Take C ≥ C0 and R ≤ R0 as specified in Lemma 5.4.
Define En � {ĝn(t0+2Cn−1/3) > g0(t0+Cn−1/3)}. Note that for large enough
n, g0(t0 + 2Cn−1/3) > g0(t0 + R) as g′0(t0) is strictly negative. By Proposition
4.1 (iv) in [3], we see that with a probability more than 1− ε, for large enough
n, ĝn(t0 + 2Cn−1/3) > ĝn(t0 + R), implying that ĝn has a jump in In = [t0 +
2Cn−1/3, t0 + R). Define Un to be the event that ĝn has a jump in In. Thus,
P(Un) ≥ 1− ε for large enough n. Now, fix a sample point ω ∈ En ∩Un. Denote
τn = τn(ω) the first jump point of ĝn in In. Denote the negative log-likelihood
function to be ψn. This can be written as

ψn(z1, . . . , zn) = −
n∑

j=1

log zj +

s∑
i=1

ni log

( n∑
k=1

zkcik

)
.

Define ẑ = (ĝn(T1), . . . , ĝn(Tn)); see Section 3 in [3] for the conversion from ĝn
to a finite number of auxiliary variables ẑ in the likelihood function. From the
Karush-Kuhn-Tucker condition,

0 =
∑

j:a<Tj<τn

∂ψn

∂zj
(ẑ) =

∑
j:a<Tj :t0+2Cn−1/3

∂ψn

∂zj
(ẑ) +

∑
j:t0+2Cn−1/3≤Tj<τn

∂ψn

∂zj
(ẑ)
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and ∑
j:a<Tj<t0+2Cn−1/3

∂ψn

∂zj
(ẑ) ≥ 0.

Therefore, ∑
j:t0+2Cn−1/3≤Tj<τn

∂ψn

∂zj
(ẑ) ≤ 0.

For t ∈ [t0 + 2Cn−1/3, τn), by the monotonicity of ĝn, the fact that τn is the
first jump point and ω ∈ En ∩ Un, we have

ĝn(t) = ĝn(τn−) = ĝn(t0 + 2Cn−1/3) > g0(t0 + Cn−1/3).

Therefore,

∑
j:t0+Cn−1/3≤Tj<τn

(
− 1

g0(t0 + Cn−1/3)
+

s∑
i=1

nicij∫
wiĝn

)

≤
∑

j:t0+Cn−1/3≤Tj<τn

(
− 1

ĝn(Tj)
+

s∑
i=1

nicij∫
wiĝn

)

=
∑

j:t0+2Cn−1/3≤Tj<τn

∂ψn

∂zj
(ẑ) ≤ 0.

Since τn ∈ In, we have

inf
t∈In

∑
j:t0+Cn−1/3≤Tj<t

(
− 1

g0(t0 + Cn−1/3)
+

s∑
i=1

nicij∫
wiĝn

)
≤ 0. (A.5)

However, from Lemma 5.4, for large enough n, we know that (A.5) happens
with a probability at most ε, implying that P(En) = P(En∩Un)+P(En∩Uc

n) ≤
ε+ P(Uc

n) ≤ 2ε.
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