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Abstract: In this paper, we consider a framework adapting the notion
of cointegration when two asset prices are generated by a driftless Itô-
semimartingale featuring jumps with infinite activity, observed regularly
and synchronously at high frequency. We develop a regression based estima-
tion of the cointegrated relations method and show the related consistency
and central limit theory when there is cointegration within that framework.
We also provide a Dickey-Fuller type residual based test for the null of no
cointegration against the alternative of cointegration, along with its limit
theory. Under no cointegration, the asymptotic limit is the same as that of
the original Dickey-Fuller residual based test, so that critical values can be
easily tabulated in the same way. Finite sample indicates adequate size and
good power properties in a variety of realistic configurations, outperforming
original Dickey-Fuller and Phillips-Perron type residual based tests, whose
sizes are distorted by non ergodic time-varying variance and power is al-
tered by price jumps. Two empirical examples consolidate the Monte-Carlo
evidence that the adapted tests can be rejected while the original tests are
not, and vice versa.
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Itô-semimartingale, residual based test, truncation, unit root test.

Received June 2020.

1. Introduction

It is often the case that time series cruise componentwise, but that a linear
combination of the components does not drift apart. Since the seminal papers
of [23] and [22], cointegration has spread across and way beyond the field of
econometrics. The authors bring forward a residual based two-step strategy to
test for the presence of cointegration. The first step corresponds to estimation of

∗We would like to thank an anonymous referee for helpful comments and advice. The
research of Yoann Potiron is supported by Japanese Society for the Promotion of Science
Grant-in-Aid for Young Scientists (B) No. 60781119 and a special grant from Keio University.
The research of Simon Clinet is supported by Japanese Society for the Promotion of Science
Grant-in-Aid for Young Scientists No. 19K13671.

1263

https://imstat.org/journals-and-publications/electronic-journal-of-statistics/
https://doi.org/10.1214/21-EJS1805
mailto:clinet@keio.jp
mailto:potiron@fbc.keio.ac.jp
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


1264 S. Clinet and Y. Potiron

cointegrating relations via regression. The second step is closely related to test of
unit roots. More specifically, residual based tests are designed to test the null of
no cointegration by relying on a unit root test on the residuals. If the null of unit
root test is not rejected, then the null of no cointegration is also not rejected.
Among the class of unit root tests, standard Dickey-Fuller (DF) tests originally
from [19] and augmented procedure from [53], and Phillips-Perron tests from
[52], are among the most popular. [49] shows that this type of unit root tests
is typically robust to many weakly dependent and heterogeneously distributed
time series. As for cointegration tests, a large sample limit theory for the residual
based tests is investigated in [50]. In particular, the critical values tabulated for
the pure unit root tests are altered due to the error made in the first step. In
the cited paper, and to the best of our knowledge in the rest of the literature on
cointegration, the asymptotics is low frequency in the sense that the time gap
between two observations Δ is fixed while the horizon time T → ∞.

There is a solid body of empirical work employing cointegration in financial
economics. In that field, the most common specification of cointegration defi-
nition is that all the components of the observed vector xt are unit roots (e.g.
random walks) and that there exists a vector α so that α′xt is stationary. Exam-
ples of application include and are not limited to nominal dollar spot exchange
rates, e.g. [4] and [20], price discovery, e.g. [25], and pairs trading, e.g. [10] and
the review of [36]. Although the major part of earlier empirical studies was con-
fined to data observed on a daily basis, nowadays they frequently incorporate
data observed on the intraday basis, see e.g. [21], [26], [43] or [56] among others.
This increasing use of high frequency data is perfectly natural, and should even
be encouraged given the basic statistical principle that one shall not throw away
data. As a matter of fact, it echoes similar changes in other areas of the liter-
ature, the best example being the diversification and sophistication of efficient
variance estimation measures over the past two decades.

Our concern in this paper is to back up the empirical use of high frequency
data by theoretically validated high frequency robust estimation of cointegrating
relations and tests. More specifically, the difference between the classical time
series framework and the high frequency framework we consider is that in the
latter Δ → 0 while keeping T → ∞, and the observed time series xt will be
generated by a driftless Itô-semimartingale. This environment, quite standard
in high frequency financial econometrics, typically accommodates for a variety
of stylized facts, such as time-varying variance featuring jumps, leverage effect
and price jumps, all of which are salient in high frequency data. Price jumps
can happen at deterministic times (e.g. macroeconomic news announcements)
or not, are usually of random size, and quite frequent, at least ten a year on
average according to Table 8 (p. 484) in [28]. For the purpose of simplicity, we
restrict ourselves to the two dimensional case.

The question of testing for no cointegration with high frequency data is of
practical relevance since some of its stylized facts can lead to significant distor-
tions of the power of the usual tests. In an extensive Monte Carlo experiment,
[37] implement ten leading cointegration tests in a variety of set-up tailored
with high-frequency features. They use an AR(1) with normal innovations as
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benchmark, but also look at non-normality effects employing t-distributed in-
novations, GARCH effects, nonlinearities and price jumps. They typically find
that among a cohort of high frequency stylized facts, price jumps deteriorate
the power the most.

In fact, the current theoretical framework to test for no cointegration is quite
restricted and only accommodates for ergodic time-varying variance. Spurious
cointegration can occur in the presence of a mere jump in long term equilibrium
variance, as documented by [42]. In other words, this means that non ergodic
time-varying variance can distort the size of the tests. Obviously, time-varying
variance is not solely a high frequency stylized fact, as [54] report that most of
the real and price variables in the dataset from [55] reject the null hypothesis
of constant variance against one regime shift alternative. As far as we know,
the only attempt to accommodate for time-varying variance in a more flexible
cointegration model is [34], but unfortunately in that paper the authors test the
reverse null of cointegration.

Our aim is to adapt the residual based DF procedure developed in [50] to
test for the null hypothesis of no cointegration in high frequency data. More
specifically, the residual based tests of the cited paper are not theoretically
robust to the two aforementioned high frequency stylized facts pointed by the
literature as distorting size and power -time-varying variance and price jumps-.
Accordingly, we develop two separate adaptations, one for each feature, that we
eventually combine with each other, as the two problems are not of the same
nature and cannot simply be tackled with a unique straightforward adaptation.
As far as we know, no cointegration test has been tuned to those two high
frequency stylized facts, yet there are accordingly two very related fields from
the literature.

The first active field is about testing for the presence of a unit root incorpo-
rating time-varying variance. [12] apply a time transformation to the data prior
to use the standard unit root tests and retrieve the same asymptotics. [13] em-
ploy the time deformation to simulate valid critical values for standard unit root
tests. [14] and [15] consider a related method involving the wild bootstrap. Wild
bootstrap tests formed from a feasible generalized least squares are developed in
[9]. Finally, [7] preestimate volatility and exploit it to deflate the returns prior
the use of the standard tests. Unfortunately, we were not able to find track of the
use of those nice methods in the context of residual based cointegration test. In
addition, the theoretical framework of all those papers is restricted to determin-
istic volatility and no price jumps, except for [15] who allow for random variance.

Another very dynamic field is about residual based cointegration tests with
regime changes, which is related to price jumps in the Itô-semimartingale setup.
In a univariate context, unit root tests were designed in [44], [45], [6], [47] and
[57]. [24] extend the tests in a cointegration framework. In all those papers, the
number of shifts is at most equal to unity. Moreover, [27] allows for two possible
breaks. Finally, [39] proposes tests which permits an arbitrary number of breaks
in principle, although the method is seldom used with more than five breaks
in practice. The strong limitation of the regime change approach is that jumps
are required to happen at deterministic times, with deterministic size, known
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number of jumps, and not very often, all of which are not consistent with the
aforementioned high-frequency stylized facts.

To obtain the robustness of the residual based test to time-varying vari-
ance, the most natural candidate consists in a residual based test based on the
aforementioned time-varying variance robust unit root tests. Unfortunately, a
transformation of data solely at the unit root test step entails hybrid-behaved
tests to the extent that the limit distribution is unidentifiable, at least to us. To
circumvent this difficulty, we deflate the returns prior to the two steps. As for
that to price jumps, we simply consider a truncation method as in [40], which is
commonly used in the literature on high frequency econometrics when dealing
with jumps with random size and times.

Our theoretical contribution is divided into two parts. First, we provide a
regression procedure based on deflated and truncated asset price returns in
order to estimate the cointegrated system and establish the related consistency
and central limit theory when there is cointegration. This is related to Theorem
3.1 in Section 3.3. Second, we develop a DF type residual-based cointegration
test, also based on deflated and truncated observations, along with its central
limit theory in the absence of cointegration and under local alternatives. We also
provide with an equivalent of the expression in the presence of cointegration (see
Theorem 4.1 and Proposition 4.2). In particular we show that under the null
hypothesis of no cointegration the limit distribution of the statistic is that of a
classical DF test, and that no local power is lost due to the truncation and the
deflation.

The finite sample from this paper corroborates that from cited papers and
our theoretical findings. On the one hand, a typical environment of cointegrated
assets observed at high frequency distorts badly size and power of the DF or
Phillips-Perron type residual based unit root tests, and as expected we can
isolate the effect of time-varying variance as impacting the former, and that of
price jumps as altering the latter. On the other hand, the proposed test size is
appropriate and its power is good in the simultaneous presence of both stylized
facts. Two empirical examples illustrate the fact that the proposed test can be in
disagreement with the original tests, indicating the practical relevance of asset
prices truncation and deflation.

One big limitation of our technique is that we have no drift. Such a sim-
ple assumption is quite restrictive since the concept of cointegration is mainly
used to analyze the long run comovements of multiple time series and the role
of stochastic drift can be very important in the long run relationship. Corre-
spondingly, we examine the case of linear drifting Itô-semimartingales and show
that, even though theoretical derivations are possible, the limit distribution of
the statistic is quite complex, indicating that combining drift and deflation is a
difficult task. We are well aware that linear drift is rather a strong assumption,
but overall there is a lack of literature on drift. Some exceptions include [46],
which deals with optimal methods for unit-root and cointegration tests when
a trend is present (but no time-varying volatility), and [7] (Section 4.3), which
gives a general detrending method for time-linear trends in the presence of time-
varying variance for the unit-root test. Theorem 4.3 from the latter work gives
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the related theoretical asymptotic results. In particular, the author already no-
ticed that the modified limit distribution under the null strongly depends on the
shape of volatility and so has to be computed numerically every time the method
is used. Our own method detailed in Section 4.2 uses a similar detrending de-
vice (adapted to our own high-frequency scheme). Our Theorem 4.5 essentially
generalizes the result of [7] to the case of cointegration and presents the same
feature, i.e that the detrended data yields limit distribution under the null which
explicitly depends on the volatility curve. To our knowledge, there is no method
(even in unit root literature) which deals with time linear trends in the presence
of time-varying volatility and which yields a limit distribution independent of
the volatility process. In addition, finite sample sheds light on the fact that drift
does not seem to affect both size and power of all the considered residual based
tests, at least in a range of realistic configurations.

Another obvious limitation of our approach is that the framework considered
rules out market microstructure noise. This is mitigated by the fact that the vast
majority of empirical studies related to cointegration operating with financial
time series does not sample with a frequency higher than five minutes so that if
the asset is liquid enough the data are reasonably free of market microstructure
noise (see, e.g., [1]). To temper as much as possible the effect of microstructure
noise, we do not sample faster than every ten minutes in both our numerical
and empirical studies.

The remaining of this paper is structured as follows. The framework which
is a natural adaptation to high frequency data is given in Section 2. Estima-
tion of cointegrated relations, based on regression on the truncated and deflated
price, and its related limit theory under cointegration is provided in Section 3.
A DF-type test of the null hypothesis that there is no cointegration against the
alternative that there is cointegration, together with its limit theory, is devel-
oped in Section 4. In particular, this test’s robustness to time-varying variance
and price jumps, which is based respectively on deflation and truncation, is es-
tablished. Section 5 is devoted to a Monte Carlo experiment, to shed light on
the size and power twist of the original DF and Phillips-Perron based cointegra-
tion tests and the good behavior of the adapted DF test in a variety of realistic
configurations. In Section 6, a brief empirical study, which corroborates the fact
that the proposed test is not always in accordance with the original tests, is
conducted. We conclude in Section 7. Proofs and part of the numerical results
have been relegated to the Appendix for the sake of clarity.

2. The framework: a natural adaptation to high frequency data

In this section, we introduce our general framework, which in particular accom-
modates the definition of no cointegration ([22]) when two driftless Itô-processes
including jumps with infinite activity are observed synchronously and regularly.
Our introduced framework also specifies the notion of cointegration and weak
cointegration.

We introduce a few key concepts from the aforementioned paper and the
existing literature on cointegration for time series that will help motivate the
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framework of our own study. For the sake of clarity, we restrict ourselves to
the case of a pair of processes, but all the definitions can be extended to the
multivariate case with no major difficulty. Let us consider two unit root time
series xt and yt (i.e. with explosive variance and with stationary increment pro-
cesses Δxt and Δyt). As pointed out in [22], in general, any linear combination
yt − αxt will be again a unit root process drifting away from zero. In that case,
xt and yt are said not to be cointegrated. However, it may also happen that for
some α, the time series yt−αxt does not wander far from zero, and not only its
increments but also the series itself is stationary. The couple (xt, yt) is then said
to be cointegrated with cointegration vector (1,−α)T . When conducting tests,
and for the sake of tractability, both notions are often naturally embedded (see
e.g. model (4.7) of [22]) in an AR(1) model specification as follows. We assume
that xt is a unit root process, and that

yt = αxt + εt, with εt = ρεt−1 + ut, (2.1)

where ut is a non-trivial stationary process possibly correlated with Δxt. Then,
0 < ρ < 1 yields a cointegrated system, whereas ρ = 1 implies that εt is
a unit root process, hence no cointegration. Moreover, the regime 0 < ρ <
1 with ρ → 1, yields a process εt which is a nearly integrated process (as
first introduced in [41]), and accordingly the system (2.1) can be said weakly
cointegrated. Residual based tests for the null of no cointegration usually pre-
estimate α by, for instance, an ordinary least squares (OLS) regression, and
then run a unit root test (i.e ρ = 1 versus ρ < 1) on the estimated residual
ε̂t = yt − α̂xt. As detailed in [50], it is of importance to mention that such
a two-step procedure affects the limit distribution of the test statistic so that
testing for cointegration does not amount to directly testing for a unit root in
ε̂t. In particular and of practical relevance, the critical values are altered. This
deviation from the unit root case stems from the inconsistency of α̂ (hence ε̂t)
under the null of no cointegration.

In view of the above discussion, our first goal consists in introducing a model
similar to (2.1) where now Δxt and ut are replaced by increments of driftless
Itô-semimartingales. We return to the case of drifting processes in a detailed
discussion at the end of Section 4.2. We assume that we observe regularly (i.e.
at times t0 := 0, t1 := Δ, · · · , tn := nΔ with Δ := T/n) between 0 and the
horizon time T (depending on n) two càdlàg (right continuous with left limits)
processes X and Y .1 For any process A, we use the following conventions for
i ∈ {0, · · · , n}:

Ai := Ati , (2.2)

ΔAi := Ai −Ai−1 for i �= 0, (2.3)

ΔA0 := 0. (2.4)

1A full specification of the model actually involves the stochastic basis B = (Ω,P,F ,F),
where F = (Ft)t≥0 is a filtration satisfying the usual conditions and F = ∨t≥0Ft. We as-
sume that all the processes are F-adapted. Also, when referring to Itô-semimartingale, we
automatically mean that the statement is relative to F.
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In what follows, we assume that X and Y may be further decomposed as

Xt = Xc
t + JX

t and Yt = Y c
t + JY

t , t ∈ [0, T ] (2.5)

where Xc and Y c are the continuous parts of X and Y , and JX and JY are
pure jump processes such that, for U ∈ {X,Y }, t ∈ [0, T ],

JU
t =

∫
[0,t]×E

δU (s, z)μU (ds, dz),

where μU is a Poisson random measure on R+ ×E for E some auxiliary Polish
space, νU is the compensator of μU of the form νU (ds, dz) = ds⊗λU (dz) where
λU is a σ-finite measure, and where δU is a predictable function on Ω×R+×E.
Moreover, we assume that there exists r ∈ [0, 1) such that

sup
t∈R+

E
∫
E

(|δU (t, z)|r ∨ |δU (t, z)|8)λU (dz) < +∞. (2.6)

In particular, although the jump processes may feature an infinite number of
jumps on bounded time intervals, (2.6) ensures that the jumps are summable
on [0, T ] and of order at most T , since it implies that

E
∑

0<s≤T

|ΔJU
s | ≤ E

∑
0<s≤T

|ΔJU
s |r ∨ |ΔJU

s |8 ≤ KT (2.7)

for some constant K ≥ 0. The summability property of the jumps is used ex-
tensively in our proofs (see e.g Lemma B.1 in the Appendix) in order to control
most deviations involving jumps. Unfortunately, results such as those in Lemma
B.1 may not hold when the jump processes are not of finite variation. As far
as we know, it is not clear whether relaxing (2.6) to the case of non-summable
jumps (for instance assuming r ∈ [0, 2) only) is possible in the present frame-
work, which is why we leave it for future research. In particular, note that it
is well-known that when the jumps are not summable, slower rates of conver-
gence for even simple quantities such as threshold realized volatility should be
expected ([30]), indicating that this case is non-standard.

We now assume that X and Y satisfy a relation of the same nature as (2.1).
Assuming first that JX = JY = 0, we naturally adapt (2.1) as follows. We
assume that there exist c0, α0 ∈ R such that for any i ∈ {1, · · · , n}, we have

Y c
i = c0 + α0X

c
i + εi, with εi = ρεi−1 +ΔZi, ε0 = Z0 = 0 (2.8)

where ρ ∈ [0, 1], and may depend on n, and where Xc and Z are two continuous
Itô-martingales of the form

Xc
t = X0 +

∫ t

0

σM
s/Tσ

X
s dWX

s and Zt =

∫ t

0

σM
s/Tσ

Z
s dW

Z
s , t ∈ [0, T ], (2.9)

where σX and σZ are càdlàg adapted processes, and WX and WZ are Brownian
motions featuring possibly non-trivial high frequency correlation d〈WX ,WZ〉t =
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rtdt. Therefore, at time t ∈ [0, T ], and up to the multiplicative term (σM
t/T )

2,

the two dimensional process (X,Z) features a squared volatility equal to

Σt =

(
(σX

t )2 rtσ
X
t σZ

t

rtσ
X
t σZ

t (σZ
t )

2

)
.

Finally, σM , which is the common deterministic volatility component, is a càglàd
(left-continuous with right limits) function from [0, 1] to R+ − {0}. The com-
ponent σM can be interpreted as the market volatility (i.e. common to all
the stocks), whereas σX and σZ correspond to the idiosyncratic component
of volatility. For example, σM can be a linear trend, while σX and σZ can both
be a product of daily U-shape and random stochastic component such as Heston
model. Further examples are considered in our finite sample analysis.

Remark 2.1. The components σX and σZ may differ, will be assumed ergodic
and typically account for the long time regularities (e.g. seasonality) of X and
Z. Having ergodic returns is in line with most of the literature on cointegration,
see for instance [50], or the more recent work of [46]. On the other hand, σM

encompasses possibly non ergodic trends in volatility and is assumed to be a
common factor in X and Y . As far as we know, and as detailed in Section 4, if
the non ergodic components differ in X and Y , then constructing a test statistic
which is numerically reliable and whose distribution is identifiable under the null
of no cointegration remains an open and difficult question that we set aside in
this paper. Note that adding such a non ergodic component scaled in time from
0 to T is common practice in the literature on tests for unit root processes, as
in [11], [13] and more recently [7] among others. In our case, however, σM is
taken càdlàg whereas earlier works on unit root processes assumed the function
to satisfy a Lipschitz condition except for, at most, a finite number of points
of discontinuity. Note also that, as mentioned in the aforementioned papers,
the fact that σM is assumed deterministic can be easily relaxed to random and
independent of the main filtration F. Then all the convergences can be taken
conditionally to σM . Finally, to our knowledge, there is no existing literature
on a test of no cointegration which is robust to the presence of a common non
ergodic volatility component.

Just as ΔXc
i is the continuous time counterpart of Δxt, ΔZi now plays

the role of ut in (2.1). Note also that the presence of an intercept c0 in the
regression is just a convenient way to center the residual process ε without loss
of generality. Moreover, as ρ controls how close the residual is from a unit root
process in (2.1), ρ now controls how close ε is from an Itô-martingale in (2.8),
with the two extreme cases being ρ = 1 where εi = Zi, and ρ = 0 where εi = ΔZi

for i ∈ {1, . . . , n}. When 0 < ρ < 1, εi lies somewhere between an Itô-martingale
and an increment of an Itô-martingale.

Remark 2.2 (limitation in terms of economic/statistical modeling). Note that
as the model was designed with the (necessary and non straightforward) develop-
ment of asymptotic theories in mind, there is (at least) an important side-effect
feature in terms of economic/statistical modeling. If 0 ≤ ρ < 1, εi and Y c

i are
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Δ dependent. Highly related literature working under the cointegration error, εi,
being independent of Δ includes [5], [33] and [35].

In general, when JX �= 0 or JY �= 0, it would be natural to simply replace Xc

and Y c by X and Y in (2.8), but it turns out that imposing such a constraint on
the jump processes would imply that ΔJY = α0ΔJX . If the jumps are seen as
structural breaks in the processes X and Y , it is a very strong assumption which
would require substantial support from empirical data. More importantly, letting
JX and JY free of constraint does not affect our strategy (and the related limit
theory) for analyzing X and Y , which will consist in first getting rid of the jump
components using the truncation approach of [40] and then directly work with
the estimated continuous components. Accordingly, for the sake of generality,
we keep (2.8) even in the presence of jumps. The cointegration relation between
X and Y yields for i ∈ {1, . . . , n} that

Yi = c0 + JY
i − α0J

X
i + α0Xi + εi, (2.10)

which can be seen as cointegration (if ρ < 1) with multiple level shifts. Coin-
tegration with breaks has been studied in [24] (see Model 2) in the case of a
single shift, and extended to the case of an arbitrary large (but known) number
of deterministic breaks in [39]. In Equation (2.10), the shifts are ΔJY

s −α0ΔJX
s

for s ∈ [0, T ], which may be in infinite number, are of random sizes, and can
feature endogeneity.

We now adapt the notion of no cointegration introduced in [22] and discussed
above to the case of driftless Itô-semimartingales.

Definition 2.1 (no cointegration). Two càdlàg processes X and Y are said
not cointegrated if any linear combination Y − αX, α ∈ R, is a driftless Itô-
semimartingale whose volatility component σ is such that

P − lim inf
T→+∞

T−1

∫ T

0

σ2
sds > 0.

Definition 2.1 is thus a straightforward adaptation where time series have
been replaced by càdlàg processes and unit root processes have been replaced
by driftless Itô-semimartingales with non-trivial volatility components so that
they are indeed explosive as T → +∞. Let us now get back to the model
(2.8) and turn our attention to the description of different settings of ρ and
their impact on the relationship between X and Y . Following the time series
framework, Y and X are not cointegrated if ρ = 1 and, of course, if for any

x ∈ R2 − {0}, P − lim infT→+∞ T−1xT
∫ T
0
Σ2

sdsx > 0, since in that case, (2.8)
reads for any i ∈ {1, . . . , n}

Y c
i = c0 + α0X

c
i + Zi.

We now turn our attention to the notion of cointegration. We follow again
the time series case and say that X and Y satisfying (2.8) are cointegrated if
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ρ ∈ [0, 1) and does not depend on n. In that case, note that this implies the
existence of c0, α0 ∈ R such that

Y c
i = c0 + α0X

c
i + εi,

where εi is not the value of an Itô-martingale (and is of one order of magnitude
smaller). Finally, we will also consider the intermediary situation where X and
Y are weakly cointegrated, which corresponds to the case where ρ = 1 − β/n
for some β > 0. Henceforth we will accordingly always assume that X and Y
are generated according to one of the following setting:

(i) Cointegration 0 ≤ ρ < 1 (independent of n).
(ii) Weak cointegration ρ = 1− β/n, with β > 0.
(iii) No cointegration ρ = 1.

We end this section with a brief remark on the connection between the
above definition of cointegration and continuous-time mean reverting residu-
als. It sounds indeed reasonable to expect that if Xc and Y c are such that for
any t ∈ [0, T ]

Y c
t = c0 + α0X

c
t + Et

where E is mean-reverting around 0, i.e if for instance

dEt = −θEtdt+ σE(t)dWt

for some θ > 0 and where W is a standard Brownian motion, then E remains of
order OP(1) for any t ∈ [0, T ] and Y c and Xc should be cointegrated to a certain
degree. The next remark shows that this mean-reverting residual framework
precisely corresponds asymptotically to the case of weak cointegration, where
Xc and Y c satisfy (2.8) for ρ = 1−β/n with β = θT , and where the observation
frequency n → +∞.

Remark 2.3. Assume that X and Y satisfy (2.8) with cointegration parameter
ρ = 1− θT/n with θ > 0. Then, the interpolating residual

εt = εi for t ∈ [ti, ti+1)

is such that when n → +∞

ε →u.c.p E =

(∫ t

0

e−θ(t−s)dZs

)
t∈[0,T ]

where →u.c.p stands for the uniform convergence in probability on any compact.
Therefore, E enjoys the mean-reverting dynamics

dEt = −θEtdt+ σZ(t)σM (t/T )dWZ
t , t ∈ [0, T ].

In particular, when σZ(t) = σZ and σM = 1, E is an Ornstein-Uhlenbeck pro-
cess.

Proof. We have the representation εt =
∑n

j=1 ρ
Δ−1(ti−tj)(Zti∧tj − Zti∧tj−1) for

t ∈ [ti, ti+1). Therefore, the convergence towards E is a direct consequence of

the convergence ρΔ
−1s = (1 − θT/n)ns/T → e−θs for any s ∈ [0, T ] along with

Theorem I.4.31(iii) from [32] (p. 47).



Cointegration in high-frequency data 1273

3. Estimation of cointegrated systems

3.1. Construction of the estimator

We now focus on estimating the couple (α0, c0) based on the discrete obser-
vations of X and Y . Naturally, one can expect (α0, c0) to be identifiable only
when X and Y are cointegrated. Indeed, we will see that when ρ = 1 (i.e. non
cointegration case), our proposed estimator is inconsistent. Accordingly, any es-
timation of the cointegration parameters is untrustworthy without performing
a test of no cointegration, question that we set aside in this section, and that
is treated in Section 4. In any case, constructing the estimator does not require
any knowledge whatsoever about the cointegration level ρ ∈ [0, 1].

We first consider the case where JY = JX = 0 and σM = 1. We adapt the
classical OLS estimator proposed in [22], and resulting from (2.8) seen as a linear
regression where ε is the noise process. Recall that X and Z may be correlated,
so that the regression model induced by (2.8) features endogeneity. In particular,
this rules out the alternative regression based on the high-frequency returns of
X and Y

ΔY c
i = c0 + α0ΔXc

i +Δεi, with Δεi = (ρ− 1)εi−1 +ΔZi, (3.1)

because ΔY c
i , ΔXc

i and Δεi being of the same order
√
Δ, the OLS estimator

based on (3.1) would be inconsistent due to non-zero correlation between Δεi
and ΔXc

i . Conversely, the regression based on (2.8) is robust to endogeneity
because Xi and Yi are of order

√
T whereas when ρ < 1, εi remains of order√

Δ.
In general, X and Y contain jumps and a non-constant common volatility

component. Accordingly, we now estimate (α0, c0) in a three-step procedure
consisting in first getting rid of those two features and then applying the afore-
mentioned OLS estimation. At this point, in view of the representation (2.10),
it seems natural to adapt the methodology of [24] and derive a modified OLS
estimator which estimates and cancels the effect of the jumps seen as level shifts
in (2.10). However, the time required to run the break-robust OLS estimation
greatly increases with the number of breaks. [39] proposed an alternative and
less time-consuming method, but it also presents several drawbacks. First, the
number of breaks (or at least an upper bound k) must be known. Second, the
limit distribution of the test statistic depends on k, meaning that it may be
necessary to calculate critical values if k is larger than five, which is the highest
value for which they have been reported. Finally, the method is supported by a
numerical study only (again, for models with five breaks at most). Since we allow
for a potentially high number of jumps in (2.10), both approaches are inadapted,
which is why we henceforth adopt the truncation method of [40]. As explained
in the asymptotic theory section, it is independent of the number of shifts and
robust to all the aforementioned features of the jumps, both for estimation and
test. Accordingly, we remove the increments of X and Y such that at least one
of them is greater than a given threshold in absolute value. More precisely, for
U ∈ {X,Y }, we compute the truncated process T (U) = (T (U)0, . . . , T (U)n)
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such that T (U)0 = U0, and for i ∈ {1, . . . , n}

ΔT (U)i = ΔUi1{|ΔXi|≤aΔω}∩{|ΔYi|≤aΔω},

that is

T (U)i = U0 +

i∑
j=1

ΔUj1{|ΔXj |≤aΔω}∩{|ΔYj |≤aΔω},

for some constant a > 0 and some exponent ω ∈ (0, 1/2) satisfying additional
constraints stated in the next section.

Remark 3.1. The practitioner should keep in mind that the choice of the thresh-
old tuning parameters (a, ω) is very important in practice. On the one hand, if
the threshold is too loose, then some small jumps will not be properly removed.
On the other hand, when the truncation is tight, some returns will be mistak-
enly truncated away. From a theoretical perspective, both constraints are crucial,
and the power of the test procedure will be badly affected while the cointegration
estimator may become inconsistent if they are not satisfied. From a numerical
perspective, however, it seems that not being able to remove jumps distorts the
test procedure far more than removing too many returns. Details about the con-
straints that the truncation exponent ω must satisfy can be found in Assumption
[C].

Second, we deflate the returns of both truncated processes T (X) and T (Y )
by a consistent estimator

√
Ci of σ

M
ti− up to some multiplicative constant. The

procedure is similar to what was proposed in [7] for the case of a unit root
process. Hereafter, we take Ci as the standard local realized volatility on the
truncated returns of X (Using the returns of Y would yield an estimator of σM

ti−
up to a coefficient which depends on ρ). First, for two indices 0 ≤ l < k < i,
i ∈ {1, . . . , n}, we define

RVi,k,l =

(i−l−1)∨1∑
j=(i−k)∨1

ΔX2
j 1{|ΔXj |≤aΔω}, (3.2)

where a and ω were defined before. Next, we take k = [T γΔ−1], l = [T γ′
Δ−1]

(which both implicitly depend on n), where [x] is the floor of x, and 0 < γ′ <
γ < 1. The local window considered for (3.2) is thus such that the number
of observations k − l → +∞ and at the same time the length of the window
(k − l)Δ = o(T ). Moreover, realized volatility is calculated over the interval
[ti−k, ti−l−1] and not [ti−k, ti−1] in order to preserve the martingale structure
of some transformations of ε when ρ < 1 and thus circumvent some technical
difficulties that arise in the proofs. We then define for i ∈ {1, . . . , n}

Ci = T−γRVi,k,l if RVi,k,l > 0 and i > 2k,

Ci = +∞ otherwise.

Given that l is negligible with respect to k, it does not affect the limit theory
of Ci. We then compute the deflated version of T (U) ∈ {T (X), T (Y )}, T (U)def
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such that T (U)def0 = U0, and for i ∈ {1, . . . , n},

ΔT (U)defi =
ΔT (U)i√

Ci

,

that is

T (U)defi = U0 +

i∑
j=1

ΔUj√
Cj

1{|ΔXj |≤aΔω}∩{|ΔYj |≤aΔω}.

Key to our analysis is that both operations T and ‘def ’ naturally preserve the
cointegration relationship, in the sense that for any i ∈ {1, . . . , n}

T (Y )defi = c0 + α0T (X)defi + T (ε)defi , (3.3)

with the new residual

T (ε)defi =

i∑
j=1

Δεj√
Cj

1{|ΔXj |≤aΔω}∩{|ΔYj |≤aΔω}.

Finally, for two processes A,B, their associated OLS estimator is defined as

OLS[A,B] =

(∑n
i=1(Bi −B)(Ai −A)∑n

i=1(Ai −A)2
, B −

∑n
i=1(Bi −B)(Ai −A)∑n

i=1(Ai −A)2
A

)
with A = n−1

∑n
i=1 Ai and B = n−1

∑n
i=1 Bi. The general cointegration esti-

mator is defined as

(α̂, ĉ) = OLS[T (X)def , T (Y )def ]. (3.4)

Remark 3.2. When JX = JY = 0 and in the absence of truncation, (α̂, ĉ) is the
OLS estimator of a the linear transformation of X and Y where their respective

returns have been multiplied by the weights wi = C
−1/2
i . This is similar (yet

not equal) to the GLS of [34], where the authors pre-estimate the time-varying
variance of the noise ε by a standard OLS, and then construct the associated
GLS cointegration estimator consisting in putting similar weights directly in
front of Xi and Yi.

3.2. Assumptions and high-frequency framework

We now proceed to give an asymptotic framework along with reasonable condi-
tions under which the OLS estimator introduced in (3.4) is consistent (assuming,
of course, ρ < 1, i.e. cointegration). We also give a stronger setting on the jump
processes which ensures a central limit theory for (α̂, ĉ). We will use the same
framework when testing for no cointegration in the next section. Our first as-
sumption specifies the high frequency asymptotics that is considered in this
paper.
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Assumption [A]: n → +∞, T → +∞, Δ = T/n → 0.

Such a double asymptotic is consistent with the high-frequency context (Δ →
0) and the fact that cointegration is a long-run phenomenon (T → +∞). Next,
we assume that the volatility matrix Σ has bounded moments up to some order
p0 and is ergodic.

Assumption [B]: There exists p0 ≥ 8 such that supt∈R+
E‖Σt‖p0 < +∞, where

for a matrix M , ‖M‖ :=
∑

i,j |mi,j |. Moreover, there exists a positive definite
matrix Ω = (ωij)1≤i,j≤2 such that

ε(T ) := sup
u∈[0,1]

E

∣∣∣∣∣ 1T
∫ T

uT

Σtdt− (1− u)Ω

∣∣∣∣∣
2

→ 0, T → +∞. (3.5)

Moreover, σX is asymptotically bounded from below with probability 1, i.e.
there exists σX > 0 such that P − lim inft→+∞ σX

t ≥ σX .

Remark 3.3. The definition of ergodicity stated in [B] is quite flexible. For
instance, it encompasses most combinations of stationary ergodic processes and
periodic processes. The asymptotic boundedness of σX away from 0 is assumed
to avoid degenerate behaviors of the statistics due to the deflation operation.
Similar long-run high-frequency asymptotics and ergodic settings can be found
in the recent literature, see e.g. [16] and [3] where the volatility process is the
product of a stationary mixing component and a periodic component. Finally,
note that Σt may be correlated with (WX ,WZ) so that the Brownian integrals
feature leverage effect.

Now we turn to our third assumption, which states conditions on the trun-
cation parameters, and an additional condition on the relationship between T
and n.

Assumption [C]: We have 1
4−r < ω < 1

2 − 3
2p0

. Moreover, let e1 = 1
2ω(1−r) ∨

1
ω(4−r)−1 if r > 0 and e1 > 1

4ω−1 if r = 0, and e2 = 4
p0(1/2−ω) ∨

1
p0(1/2−ω)+2ω−3/2 .

We have T 1+e1∨e2n−1 → 0.

Remark 3.4. In particular, the second condition in [C] implies that T must
tend to infinity slowly enough compared to n. In the case where Σt admits mo-
ments of any order (p0 = +∞), we note that Condition [C] can be simplified
as 1/(4− r) < ω < 1/2, and taking ω arbitrarily close to 1/2, the condition on

T becomes T 1+η+ 1
1−r n−1 → 0 for η > 0 arbitrarily small. Finally, note that for

jumps of finite activity r = 0, this can be further simplified as T 2+ηn−1 → 0
which is stronger than the condition Δ → 0 stated in Assumption [A]. Of course,
if JX = JY = 0 and the truncation step is ignored in the estimators, all the
stated results hold with e1 = 0 in [C]. If moreover p0 = +∞ then e2 = 0 too
and [C] reduces to Δ → 0.

Finally, we state an additional more restrictive assumption on the jumps,
that we will use only to derive a central limit theorem under cointegration for
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(α̂, ĉ) (Theorem 3.1) and an equivalent of the Dickey-Fuller statistics under the
alternative of cointegration (Proposition 4.2). It plays no role in the derivation
of the consistency of the OLS and of the Dickey-Fuller test under any of the
hypotheses.

Assumption [D]: JX and JY are two sequences of jump processes such that
for U ∈ {X,Y }, supj∈{1,...,n},u∈[0,1] |JU

tj∧uTn
− JU

tj−1∧uTn
| = OP(Δ

1/2), and

T−1
∑

0<s≤T |ΔJY
s − α0ΔJX

s | = oP(T
−1/2n−1).

The above assumption states that the jump processes are asymptotically
negligible in the regression, and satisfy an additional cointegration condition.
Hereafter, we will always implicitly assume that [A]-[C] hold. As for [D], we
will explicitly state whether it is assumed or not.

3.3. Asymptotic theory of the OLS estimator under cointegration

We now give the asymptotic properties of Ci, and of the OLS estimator under
the cointegration regime ρ < 1. We start with Ci. Since 0 < γ < 1, note that
the local time window T γ → +∞ so that the ergodic theory for Σ kicks in, and
at the same time the scaled time window T γ−1 → 0 so that for t ∈ [ti−kn , ti−ln ],
σM
t/T ≈ σM

(ti/T )− by left continuity of σM .

Proposition 3.1. For any i ∈ {1, . . . , n}, when n → +∞,

E|Ci − (σM
(ti/T )−)

2ω11|2 → 0.

As proved in the Appendix (see Lemma B.3), it turns out that the above
L2 convergence is even uniform outside a set of indices whose cardinality is
negligible with respect to n. A full uniformity as in Lemma 4.1 of [7] is impossible
here because σM may have jumps (whereas in the aforementioned paper σM is
assumed differentiable). We now focus on the asymptotic properties of (α̂, ĉ)
when X and Y are cointegrated. In what follows, we let W = (W 1,W 2) be a
standard Brownian motion on [0, 1]. Moreover, defining

L =

( √
ω11 0

ω
−1/2
11 ω12

√
ω22 − ω−1

11 ω
2
12

)
=

( √
ω11 0√

ω22r∞
√
ω22

√
1− r2∞

)
, (3.6)

with r∞ = ω12/
√
ω11ω22, we also let B = (B1, B2) = LW be a two dimensional

Brownian motion on [0, 1], with covariance matrix LLT = Ω. Below, for a process

V on [0, 1], we let V =
∫ 1
0
Vudu.

Theorem 3.1. Assume that X and Y are cointegrated, that is ρ < 1 and is
fixed. Assume further that 1/2 ≤ γ < 1 and 0 < γ′ < γ. Then we have

α̂− α0 →P 0 and T−1/2(ĉ− c0) →P 0.
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Moreover, under the additional assumption [D], we have the convergence in
distribution(

n(α̂− α0)
nT−1/2(ĉ− c0)

)
→d 1

1− ρ

⎛⎜⎝ ω12+
∫ 1
0
(B1

s−B
1
)dB2

s∫ 1
0
(B1

s−B
1
)2ds

ω
−1/2
11 B2

1 − ω12+
∫ 1
0
(B1

s−B
1
)dB2

s∫ 1
0
(B1

s−B
1
)2ds

ω
−1/2
11 B

1

⎞⎟⎠ .

The fast rate n for the estimation of α0 is in line with the literature on
cointegration estimation, see for instance Proposition 1 of [22] and Theorem 7
in [34]. Similarly, the fact that Xc

T and Y c
T are of order T 1/2 implies that one can

consistently estimate only T−1/2c0, with the same rate n as for α0. Note also that
in the exogenous residual case ω12 = 0, the limit distribution for α̂ corresponds
to the one of a classical OLS on an homoskedastic cointegration regression as in

Lemma 2.1 of [51] up to the mean terms W
1
, due to the presence of the constant

c0 in our regression. In other words, the jumps and the heteroskedasticity coming
from σM do not impact the limit theory of α̂ and ĉ, and no efficiency is lost
due to the truncation and the deflation. Finally, note that, as explained in the
following remark, the above limit distribution is actually mixed normal.

Remark 3.5. Rewriting B as LW and conditioning on W 1, we can specify
the above limit as the following mixed normal distribution. Defining I[W 1] =∫ 1
0
(W 1

s − W
1
)dW 1

s = (W 1
1 )

2/2 − 1/2 − (W
1
)W 1

1 , J [W
1] =

∫ 1
0
(W 1

s − W
1
)2ds,

K[W 1] =
∫ 1
0
(W 1

s )
2ds, r∞ = ω12/

√
ω11ω22, vε :=

ω22

ω11(1−ρ)2 , we have(
n(α̂− α0)

nT−1/2(ĉ− c0)

)
→d √

vεMN
(
r∞B[W 1],

(1− r2∞)

J [W 1]
V [W 1]

)
where

B[W 1] =

(
1+I[W 1]
J[W 1]

W 1
1 − 1+I[W 1]

J[W 1] W
1

)
and V [W 1] =

(
1 W

1

W
1

K[W 1]

)
.

Moreover, when B1 and B2 are independent, r∞ = 0, and the above limit be-
comes (

n(α̂− α0)
nT−1/2(ĉ− c0)

)
→d

√
vε

J [W 1]
MN

(
0,

(
1 W

1

W
1

K[W 1]

))
.

Remark 3.5 suggests that it is possible to construct a studentized version of
Theorem 3.1, essential for the computation of confidence intervals and signifi-
cance tests. To do so, we need to estimate the different quantities appearing in
the bias and the variance of the mixed normal distribution. We construct the
estimated residuals

ε̂i = T (Y )defi − ĉ− α̂T (X)defi , (3.7)

and then estimate vε, ρ, and r∞ as follows.

v̂ε = T−1
n∑

i=1

ε̂2i , (3.8)
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ρ̂ =

∑n
i=2 Δε̂iε̂i−2∑n
i=1 Δε̂iε̂i−1

, (3.9)

r̂∞ =

∑n
i=2 ΔT (X)defi (ε̂i − ρ̂ε̂i−1)√∑n

i=2(ε̂i − ρ̂ε̂i−1)2
. (3.10)

Note that for the estimation of ρ, we have preferred the formula of (3.9) over
the more classical estimator ρ̃ =

∑n
i=1 ε̂iε̂i−1/

∑n
i=1 ε̂

2
i , because the former is

robust to truncation under [A]-[C] whereas it is not theoretically clear whether
the latter is consistent without Assumption [D]. We also substitute T (X)def to
all the quantities involving W 1 appearing in the central limit theorem. That is,
letting

T (X)
def

= T−1/2n−1
n∑

i=1

T (X)defi

I[T (X)def ] =
(T (X)defn )2 − T

2T
− T−1/2T (X)

defT (X)defn

J [T (X)def ] = n−1
n∑

i=1

(T−1/2T (X)defi − T (X)
def

)2

K[T (X)def ] = J [T (X)def ] + (T (X)
def

)2,

we introduce the estimators for the asymptotic biases and variances of α̂ and ĉ:

Bα̂ = n−1
√

v̂εr̂∞
1 + I[T (X)def ]

J [T (X)def ]
,

Bĉ = n−1T 1/2
√
v̂εr̂∞

(
T−1/2T (X)defn − 1 + I[T (X)def ]

J [T (X)def ]
T (X)

def
)
,

and

Vα̂ = v̂ε
1− r̂2∞

J [T (X)def ]
and Vĉ = v̂ε

(1− r̂2∞)K[T (X)def ]

J [T (X)def ]
.

we have the following studentized version of the central limit theory for α̂ and
ĉ.

Proposition 3.2. Assume that X and Y are cointegrated, that is ρ < 1 and is
fixed. Assume that 1/2 ≤ γ < 1 and 0 < γ′ < γ. We have

ρ̂ →P ρ.

Moreover, if we assume [D], then we also have

(v̂ε, r̂∞) →P (vε, r∞),

n(α̂− α0 −Bα̂)√
Vα̂

→d N (0, 1),

and
nT−1/2(ĉ− c0 −Bĉ)√

Vĉ

→d N (0, 1).
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4. Residual based test for cointegration

4.1. Construction of the test and limit theory

It is perhaps of even more crucial importance to infer from the data whether X
and Y are cointegrated or not in the first place prior to analyzing the estimated
cointegration coefficients. Consequently, we now give a test for the null hypoth-
esis that there is no cointegration against the alternative of cointegration. We
let

H0 : ρ = 1.

H1 : 0 ≤ ρ < 1 (independent of n).

Recall that both hypotheses induce respectively the following models on the
continuous parts of X and Y :

H0 : Y c
i = c0 + α0X

c
i + Zi

H1 : Y c
i = c0 + α0X

c
i + εi with εi = ρεi−1 +ΔZi, ρ < 1,

and that the parameter ρ controls how far H1 is from H0. As it is standard in
the literature on tests for unit roots and cointegration (see e.g. [48], [7]) and
useful to derive the local power of our test, we embed H0 in the family of local
alternatives H̃n,β

1 defined as

H̃n,β
1 : ρ = 1− β

n
, with β ≥ 0, (4.1)

which implies the following model on the continuous parts of X and Y ,

H̃n,β
1 : Y c

i = c0 + α0X
c
i + εi with εi = ρεi−1 +ΔZi, ρ = 1− β

n
, and β ≥ 0,

that corresponds to the notion of weak cointegration introduced at the end of
Section 2 when β > 0, and is simply H0 when β = 0. The canonical test in
the unit root literature is the so-called Dickey-Fuller test on residuals of [19]. It
has been extended to many directions, such as, among others, the augmented
Dickey-Fuller (ADF) test, robust to a residual following an AR(p) specification,
and the Zt and Zα tests of [49], robust to autocorrelated returns under the
null hypothesis of a unit root process. These tests have been later adapted to
cointegration, and their asymptotic properties derived in [50]. In the present
work, we choose to focus on the DF approach, performed on the estimated
residuals resulting from the OLS estimation of (3.4). Before we state the main
result of this section, we briefly recall the construction of the test statistic. Recall
that the estimated residuals are defined for i ∈ {1, . . . , n} as

ε̂i = T (Y )defi − ĉ− α̂T (X)defi .

Then, the associated DF statistic Ψ is the t-statistic of the coefficient φ in
the linear regression

Δε̂i = φε̂i−1 + ηi, i ∈ {1, . . . , n},
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that is, first estimating φ with

φ̂ =

∑n
i=1 Δε̂iε̂i−1∑n

i=1 ε̂
2
i

,

and estimating the standard deviation of φ̂ with

sφ̂ =

√
n−1
∑n

i=1(Δε̂i − φ̂ε̂i−1)2∑n
i=1 ε̂

2
i−1

,

Ψ is defined as

Ψ =
φ̂

sφ̂
. (4.2)

We now proceed to derive the asymptotic distribution of Ψ under H̃n,β
1 , for any

β ≥ 0. In particular, recall that H0 is covered by Theorem 4.1 below, since
H0 = H̃n,0

1 . We need to define a few quantities before we state the main result.
As in the previous section, we consider W = (W 1,W 2) a standard Brownian
motion on [0, 1], and we define the two dimensional process on [0, 1] and for
β ≥ 0

J(β)u =

∫ u

0

e−β(u−s)σM
s dWs, u ∈ [0, 1].

Next, letting λ = (r∞/
√
1− r2∞, 1)T , we consider

ξ(β)u = W 2 − β

∫ u

0

(σM
s )−1λTJ(β)sds, u ∈ [0, 1]

and finally

H(β) = (W 1 −W
1
, ξ(β)− ξ(β)),

where we recall that for a process (Vu)u∈[0,1], V =
∫ 1
0
Vudu. Note that under

H0, β = 0 and H(0) is simply W −W . We finally introduce

κ(β) :=

(∫ 1
0
H(β)1uH(β)2udu∫ 1
0
(H(β)1u)

2du
,−1

)T

.

The next proposition shows that the OLS estimator (and therefore the associ-

ated estimated residual process) is inconsistent under H̃n,β
1 .

Proposition 4.1. Let β ≥ 0. Let Lα0 =
√

ω22

ω11

(√
1− r2∞, r∞

)T
, and Lc0 =

−
√

ω22

ω11

(
W

1
, ξ(β)

)T
. Then, under H̃n,β

1 , we have the joint convergences

α̂− α0 →d LT
α0
κ(β),

and
T−1/2(ĉ− c0) →d LT

c0κ(β).
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We are now ready to state the limit distribution of Ψ under any local alter-
native H̃n,β

1 . Define

Q(β) = κ(β)TH(β) =

∫ 1
0
H(β)1uH(β)2udu∫ 1
0
(H(β)1u)

2du
H(β)1 −H(β)2.

Theorem 4.1. Let β ≥ 0. Under H̃n,β
1 ,

Ψ →d

∫ 1
0
Q(β)sdQ(β)s√

κ(β)Tκ(β)
∫ 1
0
Q(β)2sds

.

In particular, under H0, we have

Ψ →d

∫ 1
0
QsdQs√

κTκ
∫ 1
0
Q2

sds

where

κ := κ(0) =

(∫ 1
0
(W 1

u −W
1
)(W 2

u −W
2
)du∫ 1

0
(W 1

u −W
1
)2du

,−1

)T

and
Q := Q(0) = κT (W −W ).

The next proposition gives the behavior of Ψ (and proves the consistency
of the test) under H1, and provides an equivalent of the statistics under the
stronger assumption [D].

Proposition 4.2. Under H1, we have

Ψ →P −∞.

Moreover, under [D], we have

Ψ ∼P −n1/2

√
1− ρ

1 + ρ
.

When β = 0, the limit distribution of Ψ in Theorem 4.1 is the same as the one
of the ADF statistic in Theorem 4.2 of [50], up to the mean componentW coming
from the fact that an intercept is present in the regression. Therefore, under H0,
as in the previous section, the truncation and the deflation completely cancel
the impact of jumps and that of the non ergodic volatility σM that may affect
Ψ. Moreover, in Proposition 4.2, the divergence rate of Ψ also corresponds to
the standard one (see Theorem 5.1 in [50]). However, under the local alternative

H̃n,β
1 with β > 0, the limit of Ψ depends on the shape of σM , so that the local

power of the test may be affected by a non ergodic volatility component. This
feature was already present in the time-varying variance robust unit root tests
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of [7]. More importantly, without jumps and if σM = 1, a careful examination of
Theorem 1 in [48] shows that the limit distribution of the standard DF and our
own modified test coincide for any β ≥ 0: no local power is lost when applying
the truncation and the deflation even in the absence of those features. Finally, as
a direct corollary of Theorem 4.1 and Proposition 4.2, we conclude this section
with the consistency of the modified DF test.

Corollary 4.1. Let δ ∈ (0, 1) and qδ be the δ-quantile of∫ 1

0

QsdQs/

√
κTκ

∫ 1

0

Q2
sds.

Then the test statistic Ψ satisfies

P(Ψ < qδ|H0) → δ and P(Ψ < qδ|H1) → 1.

4.2. Testing for cointegration with drifting Itô-semimartingales

We now examine how the testing procedure can be adapted if the processes Xc

and Z feature drift terms. We only partially address the problem, and restrict
ourselves to the simple case of linear trends. Dealing simultaneously with general
drifts, even ergodic ones, and a non ergodic volatility component is a difficult
matter (at least to us) that we set aside in this work. As a matter of fact, we
show in this section that even with linear drifts a natural adaptation of our
DF statistic already yields a complex limit distribution that depends on the
curve u → σM

u even under the null hypothesis (so that critical values must be
estimated everytime the test is run). The new model for X and Y is

Xc
t = X0 + bXt+

∫ t

0

σM
s/Tσ

X
s dWX

s and Zt = bZt+

∫ t

0

σM
s/Tσ

Z
s dW

Z
s

for t ∈ [0, T ] and where bX , bZ ∈ R.
The testing procedure can be modified as follows to be drift robust. We first

truncate the returns, then detrend the processes by subracting to each return
the quantity D(U) = n−1(T (U)n − T (U)0), and finally deflate by

√
Ci each

truncated and detrented return. This yields the new process for U ∈ {X,Y }

T̆ (U)defi = U0 +

i∑
j=1

C
−1/2
j (ΔUj1{|ΔXj |≤aΔω}∩{|ΔYj |≤aΔω} −D(U)).

Next, we apply the testing procedure of the previous section to T̆ (X)defi and

T̆ (Y )defi in lieu of T (X)defi and T (Y )defi . We denote by Ψ̆ the associated statis-

tic. In the following theorem, for (Vu)u∈[0,1] a process, we define (V̆ )u∈[0,1] such
that for u ∈ [0, 1],

V̆u =

∫ 1

0

Vsds+

(∫ 1

0

(σM
s )−1sds−

∫ 1

u

(σM
s )−1ds

)∫ 1

0

σM
s dVs

whenever the integrals make sense.
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Theorem 4.2. Let β ≥ 0. Under H̃n,β
1 , Ψ̆ converges to the same limit as Ψ in

Theorem 4.1 except that W and ξ(β) are respectively replaced by W̆ and ξ̆(β) in
the expression of H(β), κ(β) and Q(β).

In particular, note that even in the case of a constant drift, the limit distribu-
tion of Ψ̆ now depends on σM even under H0. Therefore, one needs to estimate
the curve of σM and then compute the related critical values by, for instance,
Monte-Carlo simulations. This sheds light on the lack of applicability of the
above procedure, and also indicates that dealing with a drift and time-varying
volatility at the same time is a complex procedure.

Since the drift seems to be having a negligible impact in our numerical studies,
at least in a realistic model and when it is calibrated to values usually encoun-
tered in empirical data, it seems more reasonable to use the simpler statistic Ψ
whose critical values are known and independent of the model at hand. Corre-
spondingly, we will focus entirely on that statistic in the following finite sample
experiment. In particular, we will not implement Monte-Carlo method to prees-
timate the curve of σM .

5. Finite sample

In this section, we conduct a Monte Carlo experiment in two steps. First, we
investigate that the deflated and truncated based OLS method to estimate the
cointegrated relations performs reasonably well, and that it outperforms the
classical OLS procedure in a general model incorporating all the features of high
frequency data in case of cointegration. Very related to estimation of relation
methods is that of autocorrelation of the residuals’ level, which we also look at.
Second, we examine the size and power properties of the modified Dickey-Fuller
residual based test for the null of no cointegration against the alternative of
cointegration. In addition, we explore how the modified test performs relative
to four standard residual based tests from the literature on cointegration in a
variety of models, and more specifically in the presence of which feature the new
test outperforms the standard procedures.

5.1. Setup

Overall, eight different models are generated. An overview is reported on Table 1.
One model (i.e. Model 8) is general and includes all the aforementioned features
of high frequency data, whereas each remaining model (i.e. Model 1–7) includes
one specific feature. In what follows, and for the sake of brevity, we sharpen our
focus on Model 3, Model 7 and Model 8. Additional tables and comments related
to the other models can be found in the Appendix. We simulate M = 1, 000
Monte Carlo paths of high-frequency returns, where each path consists of T = 2
years of generated returns. A year is divided into 252 working days, each of
them being set to 6.5 hours of trading activity, i.e. 23,400 seconds. Each path
is simulated via an Euler scheme with related step set to 10 seconds.
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Table 1

Overview of models

No Market volatility Idiosyncratic part of volatility Drift Price jumps
1 constant constant no no
2 linear constant no no
3 constant + 1 jump constant no no
4 constant Heston no no
5 constant daily U-shape + jumps no no
6 constant constant yes no
7 constant constant no yes
8 linear + 1 jump Heston + daily U-shape + jumps yes yes

5.1.1. Sampling gap

In accordance with our empirical examples, we consider the gap between two
observations Δ ranging from 10 minutes, i.e. 600 seconds which sets the number
of observations to n = 19, 656 across the two simulated years, to 2 days, yielding
n = 252 observations. With one observation every 10 minutes, we are enough
in the high frequency regime so that the limit theory related to the truncation
method kicks in, but not too much into it so that we prevent as much as possible
from market microstructure effects. When the gap is two days, this is purely low
frequency setting.

5.1.2. Simulation mechanism

We simulate Xc
t and Zt as:

Xc
t = X0 +

∫ t

0

bXt dt+

∫ t

0

σM
s/Tσ

X
s dWX

s

and

Zt =

∫ t

0

bZt dt+

∫ t

0

σM
s/Tσ

Z
s dW

Z
s

for t ∈ [0, T ], where the correlation between WX
t and WZ

t is set to ρ = 0.2,
i.e. d〈WX ,WZ〉t = ρdt. Here, contrary to the theoretical setting in (2.9), the
two processes can incorporate non-zero drifts which are set to bXt = 0.03(1 +

WX,b
t ), and bZt = 0.02(1 +WZ,b

t ), where WX,b
t and WZ,b

t are two independent
Brownian motions. Depending on the model at hands, the market volatility can
be constant, linear, or including 1 jump, and may respectively take the following
forms:

σM
t = σ̃, (5.1)

σM
t = σ̃(1− 3t/4), (5.2)

σM
t = σ̃(1{x<0.2} + 1/3× 1{x≥0.2}), (5.3)

where we fix σ̃ =
√
0.1. For V ∈ {X,Z}, the idiosyncratic component of the

volatility is split into a U-shape intraday seasonality component and Heston
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model with jumps specified as

σV
t = σV

t−,Uσ
V
t,SV ,

where

σV
t,U = C +Ae−at/T +De−c(1−t/T ) + Jσ,V

t ,

d(σV
t,SV )

2 = α(σ̄2 − (σV
t,SV )

2)dt+ δσV
t,SV dW̄

V
t ,

with C = 0.75, A = 0.25, D = 0.89, a = 10, c = 10, the volatility jump
process is defined as dJσ,V

t = Mσ,V
t Sσ,V

t dNσ,V
t , where the volatility jump mag-

nitude Mσ,V
t is distributed as N (0.5, 0.1), the signs of the jumps Sσ,V

t = ±1

are i.i.d symmetric, Nσ,V
t is a homogeneous Poisson process with parameter

λ̄ = 10T/252 (with that setting volatility jumps occur randomly on average ten
times a year), α = 5, σ̄2 = 1, δ = 0.4, W̄V

t is a standard Brownian motion
correlated to WV with d〈WV , W̄V 〉t = φdt, φ = −0.75, (σV

0,SV )
2 is sampled

from a Gamma distribution of parameters (2ασ̄2/δ2, δ2/2α), which corresponds
to the stationary distribution of the CIR process. To obtain more information
about the model one can consult [17]. The model is inspired directly from [2]
and [1].

In addition, for V ∈ {X,Y } the price jumps are generated via dJV
t =

MV
t SV

t dNV
t , where the magnitude MV

t is distributed as N (σ̃/
√
10, σ̃/103/2),

the signs of the jumps SV
t = ±1 are i.i.d symmetric, Nσ,V

t is a homogeneous
Poisson process with parameter λ̄ = 10T/252 (with that setting jumps occur
on average 10 times a year and the contribution of jumps to the total quadratic
variation of the price process is around 50%, both of which are roughly in line
with empirical findings in [28]).

Finally, the parameter related to the autocorrelation of residuals’ level in-
troduced in (2.8) is obviously set to ρ = 1 in case of no cointegration (i.e. null
hypothesis) and chosen equal to ρ = 0.8, 0.9 when there is cointegration (i.e. in
the alternative).

5.1.3. Concurrent methods

We implement four concurrent leading methods, all of which have already been
mentioned: the DF test and the ADF test, and the Phillips-Perron tests Zα and
Zτ , which are tuned to cointegration in [50].

5.1.4. Remaining tuning parameters

We choose ω = 0.48, a = a0σ̂MLE , a0 = 4, where σ̂MLE is the daily volatility
MLE, consistently with the parameter values of the numerical study (Section 5,
p. 301) in [18] and [1] (except for a0 = 4, because the original value (a0 = 3)
was yielding too many jumps detection in our case). Parameters related to the
deflation are set to γ = 1/2 and γ′ = 0.01.
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Table 2

Summary statistics of cointegration relations estimation in case when there is cointegration
in Model 8

n Modified OLS Standard OLS

Bias Std Bias Std
Estimation of c0

True model: c0 = 1, α0 = 2, ρ = 0.8
19,656 0.005 0.202 9.075 3.087
6,552 -0.005 0.361 9.037 3.175
3,276 0.326 4.202 9.106 3.007
1,638 9.178 4.484 8.950 3.167
504 10.062 5.782 9.163 3.062
252 9.570 4.818 9.041 3.206
True model: c0 = 1, α0 = 2, ρ = 0.9
19,656 0.002 0.206 9.097 3.205
6,552 -0.003 0.348 9.102 3.020
3,276 0.286 3.119 8.927 2.880
1,638 9.074 4.263 9.061 3.091
504 9.700 5.780 9.213 3.147
252 9.890 4.937 9.053 3.214

Estimation of α0

True model: c0 = 1, α0 = 2, ρ = 0.8
19,656 -0.001 0.045 -1.962 0.670
6,552 0.001 0.081 -1.953 0.688
3,276 -0.060 0.829 -1.969 0.650
1,638 -1.831 0.816 -1.935 0.691
504 -2.022 0.733 -1.979 0.665
252 -2.001 0.753 -1.955 0.692
True model: c0 = 1, α0 = 2, ρ = 0.9
19,656 -0.001 0.047 -1.965 0.694
6,552 0.001 0.078 -1.969 0.657
3,276 -0.056 0.713 -1.929 0.625
1,638 -1.893 0.786 -1.962 0.670
504 -1.992 0.707 -1.996 0.683
252 -2.027 0.733 -1.959 0.689

5.2. Results

5.2.1. Estimation of cointegrated relations via modified OLS

Table 2 reports the bias and standard deviation of the two parameters of cointe-
grated relations in the case of the modified OLS and standard OLS in a general
model when there is cointegration. It is clear that the standard OLS is defec-
tively biased for any level of subsampling. On the contrary, the modified OLS
works well when the frequency of subsampling is high enough, but is equally bi-
ased when the frequency decreases. This is due to the truncation method which
performs more poorly when the frequency decreases. Thus, a limitation of our
method when there is a price jump component is that it requires to sample at
reasonable high frequencies, i.e. up to one hour.
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Table 3

Estimation of autocorrelation of the residuals’ level ρ in Model 8

n Modified est. ρ̂ Standard est. ρ̃

True model: ρ = 1
19,656 1.010 0.987
6,552 0.994 0.976
3,276 0.985 0.963
1,638 0.996 0.950
504 1.015 0.913
252 0.934 0.869
True model: ρ = 0.8
19,656 0.799 0.986
6,552 0.808 0.976
3,276 0.824 0.963
1,638 0.685 0.950
504 0.942 0.906
252 0.846 0.870
True model: ρ = 0.9
19,656 0.899 0.986
6,552 0.905 0.975
3,276 0.910 0.967
1,638 1.004 0.951
504 0.980 0.906
252 0.962 0.866

Fig 1. Signature plot of estimated autocorrelation of the residuals’ level ρ in Model 8

Table 3 reports the estimated autocorrelation of the residuals’ level ρ. The
corresponding signature plots can be found on Figure 1. The standard estima-
tor is off, notably in the presence of cointegration (i.e. ρ < 1). The modified
estimator is quite reliable when subsampling up to one hour, but insufficient
with lower frequencies. The standard and adapted DF can be seen as testing
respectively ρ̃ = 1 and ρ̂ = 1.
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Table 4

Size and power properties tabulated to 5% quantile of several cointegration tests in Model 3

n Modified DF DF ADF Zα Zτ

Size
19,656 0.046 0.235 0.233 0.237 0.174
6,552 0.058 0.233 0.228 0.236 0.175
3,276 0.047 0.229 0.227 0.246 0.176
1,638 0.062 0.225 0.231 0.242 0.180
504 0.063 0.236 0.225 0.251 0.189
252 0.061 0.233 0.228 0.254 0.186

Power, ρ = 0.8
19,656 1.000 1.000 1.000 1.000 1.000
6,552 1.000 1.000 1.000 1.000 1.000
3,276 1.000 1.000 1.000 1.000 1.000
1,638 1.000 1.000 1.000 1.000 1.000
504 0.999 1.000 1.000 1.000 1.000
252 0.978 0.995 0.988 0.915 1.000

Power, ρ = 0.9
19,656 1.000 1.000 1.000 1.000 1.000
6,552 1.000 1.000 1.000 1.000 1.000
3,276 1.000 1.000 1.000 1.000 1.000
1,638 1.000 1.000 1.000 1.000 1.000
504 0.987 0.998 0.993 0.998 1.000
252 0.627 0.859 0.824 0.915 0.935

Table 5

Size and power properties tabulated to 5% quantile of several cointegration tests in Model 7

n Modified DF DF ADF Zα Zτ

Size
19,656 0.048 0.046 0.047 0.044 0.047
6,552 0.061 0.054 0.052 0.058 0.057
3,276 0.052 0.061 0.060 0.070 0.073
1,638 0.039 0.059 0.060 0.071 0.070
504 0.050 0.051 0.052 0.056 0.056
252 0.048 0.065 0.065 0.066 0.066

Power, ρ = 0.8
19,656 1.000 0.103 0.072 0.054 0.075
6,552 0.998 0.097 0.087 0.058 0.072
3,276 0.641 0.097 0.085 0.068 0.073
1,638 0.093 0.104 0.095 0.085 0.093
504 0.094 0.101 0.097 0.109 0.122
252 0.093 0.102 0.098 0.104 0.113

Power, ρ = 0.9
19,656 1.000 0.093 0.078 0.050 0.071
6,552 0.994 0.095 0.090 0.062 0.081
3,276 0.636 0.096 0.092 0.075 0.083
1,638 0.091 0.087 0.083 0.075 0.082
504 0.084 0.082 0.082 0.090 0.102
252 0.078 0.080 0.080 0.092 0.089

5.2.2. Validity of modified DF tests

We turn now to the behavior of the size and power of the tests. Table 4–6 report
the size and power of the tests for a variety of models.
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Table 6

Size and power properties tabulated to 5% quantile of several cointegration tests in Model 8

n Modified DF DF ADF Zα Zτ

Size
19,656 0.040 0.063 0.065 0.067 0.053
6,552 0.037 0.047 0.048 0.055 0.048
3,276 0.039 0.061 0.064 0.070 0.067
1,638 0.058 0.057 0.058 0.066 0.050
504 0.065 0.070 0.069 0.077 0.072
252 0.101 0.066 0.066 0.078 0.063

Power, ρ = 0.8
19,656 1.000 0.052 0.052 0.054 0.047
6,552 0.998 0.061 0.062 0.065 0.064
3,276 0.913 0.061 0.059 0.063 0.067
1,638 0.058 0.077 0.075 0.075 0.070
504 0.078 0.068 0.069 0.077 0.067
252 0.088 0.066 0.063 0.076 0.071

Power, ρ = 0.9
19,656 1.000 0.060 0.060 0.058 0.056
6,552 0.997 0.046 0.046 0.049 0.044
3,276 0.925 0.059 0.061 0.067 0.062
1,638 0.045 0.057 0.059 0.067 0.065
504 0.074 0.070 0.073 0.075 0.071
252 0.113 0.068 0.072 0.072 0.071

Table 4 report the size and power of modified DF and that of the alternative
methods when there is one break in market volatility. It is clear that sizes of
the concurrent methods are distorted when market volatility is non constant.
Reversely, sizes of the modified DF are satisfactory at any level of sampling and
for both configurations. The powers of all the methods are not affected. This
indicates that the deflation provides a real advantage in practice when market
volatility is non constant.

Table 5 reports the statistical properties in case of breaks in price process. We
can see that the power of the concurrent methods is distorted when price features
jumps. In case of the modified DF, the power is adequate when the sampling
frequency is high enough, but not suitable when the frequency decreases. This
is what to be expected using the truncation method, and definitely a limitation
of our method. Nonetheless, we can see that the truncation is beneficial for
whoever implements standard residual based tests for no cointegration with
high frequency data.

Finally, Table 6 is concerned with a general model featuring all the afore-
mentioned high frequency features. Mostly, the idiosyncratic effects add to each
other, although the sizes of the concurrent methods are somehow not as badly
impacted as in the pure non constant market volatility case.

6. Empirical examples

We illustrate our methodology by studying two empirical examples where in par-
ticular the modified tests results deviate from that of standard tests. The two
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Table 7

Empirical test results and estimated autocorrelation of the residuals’ level on the pair
ACE-ALXN in period 2012–2013

n Modified DF DF ADF Zα Zτ ρ̂ ρ̃

0: no rejection, 1: rejection
19,656 1 0 0 0 0 0.940 0.991
6,552 1 0 0 0 0 0.894 0.984
3,276 1 0 0 0 0 0.896 0.976
1,638 1 0 0 0 0 0.895 0.966
504 0 0 0 0 0 1.057 0.905
252 1 0 0 0 0 0.830 0.782

Fig 2. Signature plot of estimated autocorrelation of the residuals’ level ρ on the pair ACE-
ALXN in period 2012–2013

pairs of stocks considered are Action Construction Equipment Limited (ACE)
– Alexion Pharmaceuticals (ALXN) and CMS Energy Corporation (CMS) –
Eversource Energy (ES), all of which traded on the S&P500.2 In line with our
numerical study, we consider a two-year-long period, i.e. 2012–2013, and sub-
sample with frequency ranging from ten minutes to two days to conduct the
tests.

6.1. ACE-ALXN case

Table 7 reports the tests results. The corresponding signature plot of estimated
autocorrelation of the residuals’ level can be found on Figure 2. The modified
DF rejects the null of no cointegration at the highest frequencies, with estimated
autocorrelation level around 0.90. On the contrary, the concurrent tests do not
reject the null hypothesis. This is an echo of the results available on Table
6 in the case ρ = 0.9. It seems that there is cointegration, and that due to
price jumps, the alternative tests do not reject the null hypothesis. As in the
numerical study, the tests results related to the modified DF are unstable when
the subsample frequency is higher or equal to two hours. The signature plot in

2The data were obtained through Reuters and provided by the Chair of Quantitative
Finance of Ecole Centrale Paris.
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Table 8

Empirical test results and estimated autocorrelation of the residuals’ level on the pair
CMS-ES in period 2012–2013

n Modified DF DF ADF Zα Zτ ρ̂ ρ̃

0: no rejection, 1: rejection
19,656 0 1 1 1 1 0.822 0.236
6,552 0 1 1 1 1 0.856 0.172
3,276 0 1 1 1 1 0.988 0.124
1,638 0 0 0 0 0 0.985 0.804
504 1 1 1 1 1 0.009 0.087
252 1 1 1 1 1 0.022 0.005

Fig 3. Signature plot of estimated autocorrelation of the residuals’ level ρ on the pair CMS-ES
in period 2012–2013

Figure 2 is also a replica of that in Figure 1 related to the case ρ = 0.9, and
corroborates the aforementioned analysis.

6.2. CMS-ES case

Table 8 reports the tests results. The related signature plot of estimated auto-
correlation of the residuals’ level is available on Figure 3. This case is reverse
from the previous case. The modified DF does not reject the null of no coin-
tegration at the highest frequencies, while the concurrent tests do reject the
null hypothesis. For this particular pair of stocks, results are to be compared
with size results in Table 4. It seems that we should trust modified DF, which
indicates no cointegration, whereas the concurrent tests are altered due to time-
varying market volatility. Here again the test results related to modified DF are
unstable when subsampling with lower frequencies.

7. Final remarks

We have explored the challenges posed by the use of cointegration methods along
with high frequency data. In terms of theoretical contribution, we have adapted
the problem to the in-fill asymptotics case. We have provided a modified OLS
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Table 9

Size and power properties tabulated to 5% quantile of several cointegration tests in Model 1

n Modified DF DF ADF Zα Zτ

Size
19,656 0.045 0.051 0.051 0.051 0.053
6,552 0.055 0.050 0.051 0.049 0.056
3,276 0.048 0.049 0.052 0.050 0.060
1,638 0.061 0.051 0.051 0.054 0.063
504 0.063 0.056 0.061 0.064 0.068
252 0.059 0.049 0.056 0.058 0.060

Power, ρ = 0.8
19,656 1.000 1.000 1.000 1.000 1.000
6,552 1.000 1.000 1.000 1.000 1.000
3,276 1.000 1.000 1.000 1.000 1.000
1,638 1.000 1.000 1.000 1.000 1.000
504 0.999 1.000 1.000 1.000 1.000
252 0.984 1.000 0.998 1.000 1.000

Power, ρ = 0.9
19,656 1.000 1.000 1.000 1.000 1.000
6,552 1.000 1.000 1.000 1.000 1.000
3,276 1.000 1.000 1.000 1.000 1.000
1,638 1.000 1.000 1.000 1.000 1.000
504 0.993 1.000 1.000 1.000 1.000
252 0.737 0.849 0.838 0.884 0.933

to estimate cointegration relations when there is cointegration, together with its
related central limit theory. We have also developed a (non ergodic) time-varying
volatility and price-jump robust DF estimator, along with its limit theory.

In terms of applied contribution, we have seen in finite sample that some
of the residual based concurrent methods to test for no cointegration are not
sufficient when the model accommodates high frequency features, whereas our
modified DF showed adequate size and reasonable power. Two empirical exam-
ples corroborated the fact that modified DF and standard tests can disagree in
practice.

Appendix A: Additional finite sample results

This section reports the size and power of the tests for additional models.
Table 9 reports the size and power of modified DF and that of the concurrent

methods in a pure time series environment, i.e. with no high frequency data fea-
ture and constant volatility. Evidently, the DF test, which was designed for such
environment performs the best, but there is no substantial difference between the
size and power of modified DF and that of the concurrent methods. This seems
to indicate that the deflation and truncation do not degrade much the behavior
of the statistic in this basic framework. Although we would not recommend to
use our more sophisticated test given the setup, it is fairly reassuring to see that
the modified test is yet substantially in line with the alternative methods.

Table 10 reports the size and power of modified DF and that of the alternative
methods when there is a linear trend in market volatility. The results are very
comparable to the one break case.
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Table 10

Size and power properties tabulated to 5% quantile of several cointegration tests in Model 2

n Modified DF DF ADF Zα Zτ

Size
19,656 0.044 0.123 0.121 0.125 0.102
6,552 0.054 0.124 0.126 0.133 0.109
3,276 0.048 0.122 0.121 0.135 0.110
1,638 0.062 0.124 0.123 0.136 0.116
504 0.064 0.123 0.132 0.139 0.118
252 0.062 0.137 0.139 0.148 0.113

Power, ρ = 0.8
19,656 1.000 1.000 1.000 1.000 1.000
6,552 1.000 1.000 1.000 1.000 1.000
3,276 1.000 1.000 1.000 1.000 1.000
1,638 1.000 1.000 1.000 1.000 1.000
504 1.000 1.000 1.000 1.000 1.000
252 0.984 1.000 0.994 1.000 1.000

Power, ρ = 0.9
19,656 1.000 1.000 1.000 1.000 1.000
6,552 1.000 1.000 1.000 1.000 1.000
3,276 1.000 1.000 1.000 1.000 1.000
1,638 1.000 1.000 1.000 1.000 1.000
504 0.992 1.000 1.000 1.000 1.000
252 0.709 0.885 0.867 0.914 0.935

Table 11

Size and power properties tabulated to 5% quantile of several cointegration tests in Model 4

n Modified DF DF ADF Zα Zτ

Size
19,656 0.045 0.048 0.048 0.049 0.054
6,552 0.052 0.049 0.049 0.051 0.056
3,276 0.051 0.050 0.050 0.050 0.061
1,638 0.060 0.047 0.049 0.056 0.065
504 0.062 0.054 0.060 0.065 0.071
252 0.056 0.049 0.056 0.063 0.057

Power, ρ = 0.8
19,656 1.000 1.000 1.000 1.000 1.000
6,552 1.000 1.000 1.000 1.000 1.000
3,276 1.000 1.000 1.000 1.000 1.000
1,638 1.000 1.000 1.000 1.000 1.000
504 0.997 1.000 1.000 1.000 1.000
252 0.984 1.000 0.998 1.000 1.000

Power, ρ = 0.9
19,656 1.000 1.000 1.000 1.000 1.000
6,552 1.000 1.000 1.000 1.000 1.000
3,276 1.000 1.000 1.000 1.000 1.000
1,638 1.000 1.000 1.000 1.000 1.000
504 0.990 1.000 1.000 1.000 1.000
252 0.736 0.849 0.839 0.886 0.937

Table 11–12 report the size and power properties respectively in the presence
of U-shape and jumps in the idiosyncratic component of volatility. It seems
that both configurations do not affect the size and power properties. It is not
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Table 12

Size and power properties tabulated to 5% quantile of several cointegration tests in Model 5

n Modified DF DF ADF Zα Zτ

Size
19,656 0.045 0.048 0.048 0.049 0.054
6,552 0.052 0.049 0.049 0.051 0.056
3,276 0.051 0.050 0.050 0.050 0.061
1,638 0.060 0.047 0.049 0.056 0.065
504 0.062 0.054 0.060 0.065 0.071
252 0.056 0.049 0.056 0.063 0.057

Power, ρ = 0.8
19,656 1.000 1.000 1.000 1.000 1.000
6,552 1.000 1.000 1.000 1.000 1.000
3,276 1.000 1.000 1.000 1.000 1.000
1,638 1.000 1.000 1.000 1.000 1.000
504 0.997 1.000 1.000 1.000 1.000
252 0.984 1.000 0.998 1.000 1.000

Power, ρ = 0.9
19,656 1.000 1.000 1.000 1.000 1.000
6,552 1.000 1.000 1.000 1.000 1.000
3,276 1.000 1.000 1.000 1.000 1.000
1,638 1.000 1.000 1.000 1.000 1.000
504 0.990 1.000 1.000 1.000 1.000
252 0.736 0.849 0.839 0.886 0.937

Table 13

Size and power properties tabulated to 5% quantile of several cointegration tests in Model 6

n Modified DF DF ADF Zα Zτ

Size
19,656 0.044 0.048 0.048 0.050 0.046
6,552 0.052 0.048 0.048 0.048 0.050
3,276 0.048 0.047 0.048 0.050 0.055
1,638 0.057 0.047 0.047 0.052 0.061
504 0.062 0.051 0.055 0.064 0.063
252 0.056 0.049 0.056 0.062 0.060

Power, ρ = 0.8
19,656 1.000 1.000 1.000 1.000 1.000
6,552 1.000 1.000 1.000 1.000 1.000
3,276 1.000 1.000 1.000 1.000 1.000
1,638 1.000 1.000 1.000 1.000 1.000
504 0.999 1.000 1.000 1.000 1.000
252 0.986 1.000 0.998 1.000 1.000

Power, ρ = 0.9
19,656 1.000 1.000 1.000 1.000 1.000
6,552 1.000 1.000 1.000 1.000 1.000
3,276 1.000 1.000 1.000 1.000 1.000
1,638 1.000 1.000 1.000 1.000 1.000
504 0.994 1.000 1.000 1.000 1.000
252 0.736 0.846 0.837 0.878 0.935

surprising as our assumption of ergodicity on the idiosyncratic part of volatility
falls within the setting of [49].

Table 13 reports the size and power properties of modified DF and that of
the concurrent methods in the presence of drift. This is considerably important
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as the theoretical setup related to modified DF does not accommodate with a
non zero drift. Comparing to Table 9, there is no visible difference between the
results obtained in case of drift inclusion or not. Actually, we have generated
models including drift with parameter values ten times as big as the standard
values we can find in the financial literature, and still there was no perceptible
effect on the statistics. Our conclusion is that the drift does not seem to affect the
size and power properties, at least in this specific stochastic model and within
the range of parameter values we will come across on real stocks. Accordingly,
we believe that it is reasonably safe to use our tests on stocks data including
drift.

Appendix B: Proofs

B.1. Notation

For the sake of clarity, most quantities (T , Δ, Ci,. . . ) introduced in the main
body of the paper and which depend on n are explicitly indexed by n (Tn, Δn,
Ci,n,. . . ) to avoid confusion. In addition to (2.2)–(2.4), we also often introduce
for a process A and i ∈ {1, . . . , n}, t ∈ [0, Tn] the notation ΔAi,t = Ati∧t −
Ati−1∧t where x ∧ y is the minimum of x and y.

When ρ < 1, (2.8) defines ε only for the discrete times t0, . . . , tn. For the
proofs, it will be more convenient to embed those discrete observations in a
process on [0, Tn] as follows. For t ∈ [0, Tn], we let

εt =

n∑
j=1

ρΔ
−1
n (t−tj)ΔZj,t.

One immediately checks that for i ∈ {1, . . . , n}, εi coincides with (2.8) (however,
the above definition is different from the interpolation introduced in Remark
2.3). Moreover, since all the estimated quantities are based on the discrete ob-
servations only, there is no loss of generality in assuming that ε is defined as
above.

For a càdlàg function f on [0, 1], we write w′
f (or simply w′ when there is no

room for ambiguity) its associated modulus of continuity as defined in (12.6),
p. 122, in [8]. We will also often deal with convergence of sequences of càdlàg
processes Xn from [0, 1] to Rk, k ∈ N − {0}. Accordingly, Xn →u.c.p X means
supu∈[0,1] ‖Xn

u −Xu‖ →P 0, and Xn →d X is the weak convergence with respect
to the associated Skorohod topology of the Skorohod space DRk [0, 1] (We also
use →d for the convergence in distribution of simple random variables). By
Proposition VI.1.17 from [31] and Theorem 2.7 from [8], note that, if Xn →d X
and the limit X is continuous, then for any mapping f on DRk [0, 1] which is
continuous with respect to the uniform topology, then f(Xn) →d f(X). For
instance, if Xn →d X and X is continuous, then for any s ∈ [0, 1], Xn

s →d Xs,

and also
∫ 1
0
Xn

s ds →d
∫ 1
0
Xsds. In the proofs, we will often apply this to several

mappings which are clearly continuous for the uniform norm. When we do so,
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we will simply say “by the continuous mapping theorem. . . ” with no further
reference to this discussion.

Hereafter, K stands for a positive constant which does not depend on n or
any other index but may vary from one line to the next. Finally, for an event
E, Ec stands for the complementary event.

B.2. Estimates and preliminary lemmas

We recall that, under [B], for any q ≤ 2p0 we have for U ∈ {Xc, Z}

sup
t∈R+

E

[
sup

w∈[0,s]

|Ut+w − Ut|q
]
≤ Ksq/2 (B.1)

as a consequence of the Burkholder-Davis-Gundy inequality.
We now proceed to derive a few useful estimates for the jump increments.

For i ∈ {1, . . . , n}, u ∈ [0, 1], let

Ai,n,u = {|ΔXi,uTn | ≤ aΔω
n} ∩ {|ΔYi,uTn | ≤ aΔω

n}.

Lemma B.1. Let p ∈ [r, 8]− {0}. There exists a constant K > 0 such that for
U ∈ {X,Y }

sup
t∈R+

E

[
sup

0≤u≤s

∣∣JU
t+u − JU

t

∣∣p] ≤ K(s+ sp∨1). (B.2)

Moreover, assume r > 0. Then, for q ≥ r, there exists K > 0 which does not
depend on i ∈ {1, . . . , n}, such that

E

[
sup

u∈[0,1]

|ΔJU
i,uTn

|q1{|ΔJU
i,uTn

|<aΔω
n}

]
≤ KΔ1+ω(q−r)

n , (B.3)

and we have the deviation for p, q ∈ {1, 2}, U ∈ {X,Y }

E sup
u∈[0,1]

|(ΔUi,uTn)
p1Ai,n,u − (ΔU c

i,uTn
)p|q

≤ K

(
Δ1+ω(pq−r)

n +Δ
1+p0−2ω

2
n

)
. (B.4)

1/2 + p0(1/2− ω) When r = 0, (B.3) and (B.4) remain true replacing r in the
right-hand sides by any positive number arbitrarily close to 0.

Proof. Assume r > 0. The estimate (B.2) is a direct consequence of (2.1.40) for
p ∈ [r, 1] and (2.1.41) for p ∈ (1, 8] from Lemma 2.1.7 in [29], along with (2.6).
To show (B.3), we first remark that

|ΔJU
i,uTn

|q1{|ΔJU
i,uTn

|<aΔω
n} ≤ aq−rΔω(q−r)

n |ΔJU
i,uTn

|r,

so that taking the supremum over [0, 1] in u, applying expectation on both sides
and applying (B.2) with p = r, s = aΔω

n yields the claimed result. Now we show
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(B.4) for U = X. First, note that

|(ΔXi,uTn)
p1{|ΔXi,uTn≤aΔω

n}| − (ΔXc
i,uTn

)p|q

≤ K
(
|ΔJX

i,uTn
|pq1{|ΔXi,uTn |<aΔω

n} + |ΔXc
i,uTn

|pq1Ac
i,n,u

)
:= Iu + IIu.

Now, remark that 1{|ΔXi,uTn |<aΔω
n} ≤ 1{|ΔJX

i,uTn
|<2aΔω

n} + 1{|ΔXc
i,uTn

|>aΔω
n} so

that Iu can be further dominated up to a multiplicative constant by IAu + IBu
with

IAu = sup
u∈[0,1]

∣∣ΔJX
i,uTn

∣∣pq 1{|ΔJX
i,uTn

|<2aΔω
n} (B.5)

and

IBu = sup
u∈[0,1]

∣∣ΔJX
i,uTn

∣∣pq 1{|ΔXc
i,uTn

|>aΔω
n}. (B.6)

By (B.3), we have

EIAu ≤ KΔ1+ω(pq−r)
n . (B.7)

As for the expected value of (B.6), it can be dominated by√
E sup

u∈[0,1]

∣∣∣ΔJX
i,uTn

∣∣∣2pq E sup
u∈[0,1]

1{|ΔXc
i,uTn

|>aΔω
n}

By Lemma B.1, we have E supu∈[0,1]

∣∣ΔJX
i,uTn

∣∣2pq ≤ KΔn. Moreover, by (B.1),

E sup
u∈[0,1]

1{|ΔXc
i,uTn

|>aΔω
n} ≤ KE sup

u∈[0,1]

Δ−2p0ω
n |ΔXc

i,uTn
|2p0

≤ KΔ2p0(1/2−ω)
n ,

so that overall,

E sup
u∈[0,1]

∣∣ΔJX
i,uTn

∣∣pq 1{|ΔXc
i,uTn

|>aΔω
n} ≤ KΔ1/2+p0(1/2−ω)

n . (B.8)

Now we deal with IIu. Since

1Ac
i,n,u

= 1{|ΔXi,uTn |>aΔω
n}∪{|ΔYi,uTn |>aΔω

n}

≤ 1{|ΔXc
i,uTn

|> a
2Δ

ω
n} + 1{|ΔY c

i,uTn
|> a

2Δ
ω
n}

+ 1{|ΔJX
i,uTn

|> a
2Δ

ω
n} + 1{|ΔJY

i,uTn
|> a

2Δ
ω
n},

we derive separate estimates for

IIAu = sup
u∈[0,1]

|ΔXc
i,uTn

|pq(1{|ΔXi,uTn |c> a
2Δ

ω
n} + 1{|ΔYi,uTn |c> a

2Δ
ω
n}) (B.9)
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and

IIBu = sup
u∈[0,1]

|ΔXc
i,uTn

|pq(1{|ΔJX
i,uTn

|> a
2Δ

ω
n} + 1{|ΔJY

i,uTn
|> a

2Δ
ω
n}) (B.10)

Similar calculation as for IBu yields for the expected value of IIAu the domination

E sup
u∈[0,1]

|ΔXc
i,uTn

|pq(1{|ΔXi,uTn |c> a
2Δ

ω
n} + 1{|ΔYi,uTn |c> a

2Δ
ω
n})

≤ KΔpq/2+p0(1/2−ω)
n . (B.11)

Finally, we derive an estimate for (B.10). For U ∈ {X,Y },

E sup
u∈[0,1]

|ΔXc
i,uTn

|pq1{|ΔJU
i,uTn

|> a
2Δ

ω
n}

≤ KE sup
u∈[0,1]

|ΔXc
i,uTn

|pq|ΔJU
i,uTn

|r(1−
pq
2p0

)Δ
−(1− pq

2p0
)ωr

n

≤ K

Δ
(1− pq

2p0
)ωr

n

(
E sup

u∈[0,1]

|ΔXc
i,uTn

|2p0

) pq
2p0
(

E sup
u∈[0,1]

|ΔJU
i,uTn

|r
)(1− pq

2p0
)

≤ KΔ
pq/2+(1− pq

2p0
)(1−ωr)

n

≤ KΔ1+ω(pq−r)
n (B.12)

where the last estimate is a consequence of ω < 1
2 −

3
2p0

≤ p0−1
2p0−r by Assumption

[C], and where we have applied Hölder inequality at the second step. In view of
(B.7), (B.8), (B.11) and (B.12), and using the fact that pq ≥ 1, (B.4) for U = X
readily follows. The case U = Y is similar, using that under all the alternatives
E|Δεi,uTn |2p0 < KΔp0

n for any i ∈ {1, . . . , n}. Finally, if r = 0, then note that
Condition (2.6) is satisfied for any r′ > 0 arbitrary close to 0, hence the claimed
result.

Now we devote the next three lemmas to prove the convergence and the
uniform boundedness away from 0 of the local realized volatility used for the
deflation. First, we need a technical lemma for the cádlág function σM .

Lemma B.2. Let un ≥ 0 and un → 0. For i ∈ {1, . . . , n}, define

Di,n =

∫ ti
Tn

ti
Tn

−un

|(σM
s )2 − (σM

ti−)
2|2ds.

Then, there exists An ⊂ {1, . . . , n}, such that #An = o(n) and

sup
i∈{1,...,n}−An

u−1
n Di,n → 0.

Proof. For η ≥ 0, set Bη = {i ∈ {1, . . . , n}|∃s ∈ ( ti
Tn

− un,
ti
Tn

) s.t |Δ(σM
s )2| ≥

η}. For i ∈ {1, . . . , n} − Bη we easily have that

Di,n ≤ un(2w
′(un)

2 + η2),
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where w′ is the modulus of continuity of (σM )2 introduced in the notation
section and moreover #Bη ≤ NηunΔ

−1
n where Nη is the number of jumps of

(σM )2 of size at least η. Let an > 0 such that anun → 0 and an → +∞.
Since Nη is left continuous in η, if we set ηn = sup{η ≥ 0|Nη ≥ an}+1/n, then
Nηn ≤ an, and it is easy to see that ηn must be finite since Nη = 0 as soon as η is
larger than the greatest jump of (σM )2, and moreover ηn ↓ 0 because otherwise
(σM )2 would have an infinite number of jumps of size larger than some η∞ > 0.
Therefore, setting An = Bηn , we get #An ≤ anunΔ

−1
n = o(n/Tn) = o(n) and

sup
i∈{1,...,n}−An

u−1
n Di,n ≤ (2w′(un)

2 + η2n) → 0.

Now we prove the uniform consistency of Ci,n outside of the set A′
n whose

cardinality is negligible with respect to n. The following lemma is a stronger
version of Proposition 3.1.

Lemma B.3. Let γ′ < γ ∈ (0, 1). Let kn = [T γ
nΔ

−1
n ] and ln = [T γ′

n Δ−1
n ], and

finally A′
n = An ∪ {1, . . . , 2kn} where An is as in Lemma B.2. Then, uniformly

in i ∈ {1, . . . , n} − A′
n

E|Ci,n − (σM
(ti/Tn)−)

2ω11|2 → 0.

Proof. The proof is conducted in two steps.

Step 1. We remove the truncation part. We prove the case r > 0. The proof is
simpler if r = 0. Defining

R̃V i,kn,ln =

i−ln−1∑
j=i−kn

(ΔXc
j )

2, (B.13)

We prove that uniformly in i ∈ {2kn+1, . . . , n}, T−γ
n (RVi,kn,ln−R̃V i,kn,ln) →L2

0. By Jensen’s inequality, (B.4) applied with p = q = 2, and using kn− ln − 1 <
kn, we have that

T−2γ
n E|RVi,kn,ln − R̃V i,kn,ln |2 ≤ KΔ−2

n (Δ1+ω(4−r)
n +Δ1/2+p0(1/2−ω)

n ).

Note that for p0 ≥ 8 and ω < p0−1
2p0−r we automatically have −3/2+p0(1/2−ω) >

0, and moreover, ω(4−r)−1 > 0 since ω > 1/(4−r), so that T−2γ
n E|RVi,kn,ln −

R̃V i,kn,ln |2 → 0 uniformly in i ∈ {2kn + 1, . . . , n}.

Step 2. Introducing Ai,kn =
∑i−1

j=i−kn

∫ tj+1

tj
(σM

s/Tn
)2(σX

s )2ds, we have by Itô’s

formula that R̃V i,kn,ln −Ai,kn = Mi,kn,ln with

Mi,kn,ln = 2

i−ln−1∑
j=i−kn

∫ tj+1

tj

(Xc
s −Xc

tj )σ
M
s/Tn

σX
s dWX

s

−
i−1∑

j=i−ln

∫ tj+1

tj

(σM
s/Tn

)2(σX
s )2ds.
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Now,

EM2
i,kn,ln ≤ 4

i−ln−1∑
j=i−kn

E
∫ tj+1

tj

(Xc
s −Xc

tj )
2(σM

s/Tn
)2(σX

s )2ds+KΔ2
nl

2
n

≤ KΔ2
n(kn + l2n) = K(ΔnT

γ
n + T 2γ′

n )

so that uniformly in i ∈ {2kn + 1, . . . , n}, E|R̃V i,kn,ln − Ai,kn |2 = O(ΔnT
γ
n +

T 2γ′
n ). Now defining ˜Ai,kn = (σM

(ti/Tn)−)
2
∫ ti−1

ti−kn
(σX

s )2ds, we have for i ∈ {kn +

1, . . . , n} − An:

E
∣∣∣Ai,kn − ˜Ai,kn

∣∣∣2 = E

∣∣∣∣∣∣
i−1∑

j=i−kn

∫ tj+1

tj

((σM
s/Tn

)2 − (σM
(ti/Tn)−)

2))(σX
s )2ds

∣∣∣∣∣∣
2

≤ knΔn

i−1∑
j=i−kn

∫ tj+1

tj

∣∣∣(σM
s/Tn

)2 − (σM
(ti/Tn)−)

2)
∣∣∣2 E(σX

s )4ds

≤ KT γ+1
n sup

i∈{kn+1,...,n}−An

Di,n = o(T 2γ
n ),

where we have applied Jensen’s inequality at the second step and Lemma B.2
with un = T γ−1

n at the last step. Finally, By [B], we immediately deduce that

E|˜Ai,kn − (σM
ti−/T )

2T γ
nω11|2 ≤ KT 2γ

n ε(T γ
n ) = o(T 2γ

n ). Combining all those in-

equalities we get that for any i ∈ {1, . . . , n} − A′
n

E|T−γ
n R̃V i,kn,ln − (σM

ti−/T )
2ω11|2 ≤ K(an +ΔnT

−γ
n + T 2(γ′−γ)

n ) → 0

for some sequence an → 0, and we are done.

Next, we prove that Ci,n are uniformly bounded from below in probability,
which will allow us to greatly simplify the subsequent proofs.

Lemma B.4. There exists 0 < c < 1
2 (σ

X)2 minu∈[0,1](σ
M
u )2 such that

P

[
min

i∈{1,...,n}
Ci,n < c

]
→ 0.

Proof. The proof is conducted in two steps.

Step 1. Let dn = [Δ−2ω
n ]. We prove that

min
j∈{1,1+dn,...,1+[(n−1)/dn]dn}

Cj,n − min
i∈{1,...,n}

Ci,n →P 0. (B.14)

Indeed, note that for 2kn + 1 ≤ j ≤ k ≤ n,

T γ
n |Ck,n − Cj,n|

≤
k−ln−1∑

l=(k−kn)∨(j−ln)

ΔX2
l 1{|ΔXl|≤aΔω

n} +

(k−kn)∧(j−ln−1)∑
l=(j−kn)

ΔX2
l 1{|ΔXl|≤aΔω

n},
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and since ln = o(kn), we immediately deduce that then

|Ck,n − Cj,n| ≤ KT−γ
n Δ2ω

n [(k − j) ∧ kn] (B.15)

so that, since dn ≤ kn, we have almost surely for k and j larger than 2kn + 1

max
|k−j|≤dn

|Ck,n − Cj,n| ≤ KT−γ
n . (B.16)

Now, let in be the random index such that Ci,n is minimal. There exists jn of
the form 1 + kdn such that |jn − in| ≤ dn and clearly in and jn are larger than
2kn + 1. Then (B.14) can be rewritten as

min
j∈{1,1+dn,...,1+[(n−1)/dn]dn}

Cj,n − Cin,n ≤ Cjn,n − Cin,n

≤ KT−γ
n →P 0,

by (B.16) and we are done.

Step 2. In view of Step 1 and since Ci,n = +∞ if i ≤ 2kn, we only need
to prove that the claimed result holds when the minimum is taken over the
subset Bn = {1, 1+dn, . . . , 1+ [(n−1)/dn]dn}−{1, . . . , 2kn}. Moreover, letting
En = {inft≥tkn

(σX
t )2 > 2c/minu∈[0,1](σ

M
u )2} with c as in the lemma, by [B] we

have P(En) → 1, so that it is sufficient to prove

P

[{
min
i∈Bn

Ci,n < c

}
∩ En

]
→ 0.

We have, setting I(i, j) =
∫ tj
ti
(σM

s/Tn
)2(σX

s )2ds{
min
j∈Bn

Cj,n < c

}
∩ En

⊂
⋃

j∈Bn

{∣∣Cj,n − T−γ
n I(j − kn, j − ln)

∣∣ > T−γ
n I(j − kn, j − ln)− c

}
∩ En

⊂
⋃

j∈Bn

{∣∣Cj,n − T−γ
n I(j − kn, j − ln)

∣∣ > c
}

so that, using 1{|a+b|>c} ≤ 1{|a|>c/2} + 1{|b|>c/2} ≤ 4|a|2/c2 + 2|b|/c with a =

T−γ
n (R̃V j,kn,ln −

∫ tj−ln

tj−kn
(σM

s/Tn
)2(σX

s )2ds), and b = RVj,kn,ln − R̃V j,kn,ln where

R̃V j,kn,ln was defined in (B.13), we get

P

[
min
j∈Bn

Cj,n < c

]
≤ K

∑
j∈Bn

P

⎡⎣∣∣∣∣∣Cj,n − T−γ
n

∫ tj−ln

tj−kn

(σM
s/Tn

)2(σX
s )2ds

∣∣∣∣∣
2

> c

⎤⎦
≤ I + II

with

I = KT−γ
n

∑
j∈Bn

E

∣∣∣∣∣
kn−1∑
k=ln

∫ tj−k

tj−k−1

(Xc
s −Xtj−k−1

)σM
s/Tn

σX
s dWX

s

∣∣∣∣∣
2
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and
II = KT−γ

n

∑
j∈Bn

E
∣∣∣RVj,kn,ln − R̃V j,kn,ln

∣∣∣ .
Application of Burkholder-Davis-Gundy inequality and (B.1) yields

I ≤ Knd−1
n T−γ

n knΔ
2
n ≤ K

(
T

1+ 1−γ
2ω

n /n
)2ω

→ 0

by Assumption [C]. Moreover, application of (B.4) for p = q = 1 yields for r > 0

II ≤ K

(
T

1+ 1
ω(4−r)−1

n /n

)ω(4−r)−1

+ K

(
T

1+ 1
p0(1/2−ω)+2ω−3/2

n /n

)p0(1/2−ω)+2ω−3/2

→ 0

again by Assumption [C]. Similar reasoning yields II → 0 for r = 0.

In view of the previous lemma and a standard localization argument, from
now on we will always prove the convergences in probability and in distribution
assuming that we are on the event {mini∈{1,...,n} Ci,n ≥ c}, which is asymptoti-
cally of probability 1. This amounts to assuming without loss of generality that
Ci,n is bounded away from 0 uniformly in i:

[H] There exists c > 0 such that for any i ∈ {2kn + 1, . . . , n}, we have Ci,n =
(T−γ

n RVi,kn,ln) ∨ c, where x ∨ y is the maximum of x and y.
We now proceed to show that X, Z and ε, when properly scaled (both in

space and time) and seen as càdlàg processes on [0, 1], converge in distribution.

Let X̃c,def,n, Z̃def,n, and ε̃ be the processes such that for u ∈ [0, 1], we have

X̃c,def,n
u = T−1/2

n

(
X0 +

n∑
i=1

C
−1/2
i,n ΔXc

i,uTn

)
, (B.17)

a similar definition for Z̃def,n, and

ε̃nu = T−1/2
n εuTn = T−1/2

n

n∑
i=1

ρ
n(u− ti

Tn
)

n ΔZi,uTn . (B.18)

Moreover, let ε̃def,n be the process such that

Δε̃def,nti
Tn

= ε̃def,nti
Tn

− ε̃def,nti−1
Tn

= T−1/2
n

Δεi√
Ci,n

for any i ∈ {1, . . . , n}, that is, for u ∈ [0, 1],

ε̃def,nu =
n∑

i=1

C
−1/2
i,n Δε̃nti

Tn
,u

(B.19)
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where for a process V on [0, 1], we write ΔV ti
Tn

,u
:= V ti

Tn
∧u

− V ti−1
Tn

∧u
. We also

naturally define the scaled process Ỹ c,def,n as

Ỹ c,def,n
u = c0 + α0X̃

c,def,n
u + ε̃def,nu , u ∈ [0, 1]. (B.20)

Finally, consider for u ∈ [0, 1]

T̃ (X)def,nu = T−1/2
n

(
X0 +

n∑
i=1

C
−1/2
i,n ΔXi,uTn1Ai,n,u

)
(B.21)

and

T̃ (Y )def,nu = T−1/2
n

(
Y0 +

n∑
i=1

C
−1/2
i,n ΔYi,uTn1Ai,n,u

)
. (B.22)

We first prove in the following Lemma that T̃ (X)def,n (resp. T̃ (Y )def,n) is well

approximated by its continuous counterpart X̃c,def,n (resp. Ỹ c,def,n).

Lemma B.5. We have

T̃ (X)n − X̃c,def,n →u.c.p 0,

and
T̃ (Y )n − Ỹ c,def,n →u.c.p 0.

Proof. We prove the convergence for X and r > 0. First, recall that C
−1/2
i,n <

c−1/2 < +∞ so that

T̃ (X)def,nu − X̃c,def,n
u ≤ KT−1/2

n

n∑
i=1

∣∣ΔXi,uTn1Ai,n,u −ΔXc
i,uTn

∣∣
and applying (B.4) with p = q = 1 yields

E sup
u∈[0,1]

|T̃ (X)def,nu − X̃c,def,n
u | ≤ KT−1/2

n n(Δ1+ω(1−r)
n +Δ1/2+p0(1/2−ω)

n )

≤ K

⎛⎝T
1+ 1

2ω(1−r)
n

n

⎞⎠ω(1−r)

+ K

⎛⎝T
1+ 1

2p0(1/2−ω)−1
n

n

⎞⎠p0(1/2−ω)−1/2

→ 0

by Assumption [C]. The convergence for Y and for the case r = 0 can be proven
the same way.

We now show that under the local alternative H̃n,β
1 , the process

(Un
u )u∈[0,1] =

(
X̃c,def,n

u , Z̃def,n
u , ε̃nu

)
u∈[0,1]
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converges in distribution toward a limit which depends on the matrix

Ω = P − lim
T→+∞

1

T

∫ T

0

Σtdt =

(
ω11 ω12

ω12 ω22

)
and on B = LW , where we recall that W is a two dimensional standard Brow-
nian motion on [0, 1], and L was defined in (3.6).

Lemma B.6. Under H̃n,β
1 , we have the convergence in distribution with respect

to the Skorokhod topology of DR3 [0, 1]

(Un
u )u∈[0,1] →d (Uu)u∈[0,1]

such that
(Uu,1,Uu,2)u∈[0,1] = ω

−1/2
11 (Bu)u∈[0,1],

and

(Uu,3)u∈[0,1] = (I(β)u)u∈[0,1] :=

(∫ u

0

e−β(u−s)σM
s dB2

s

)
u∈[0,1]

.

Under H1, we only have the convergence of the subvector

(Un
u,1,Un

u,2)u∈[0,1] →d (Uu,1,Uu,2)u∈[0,1].

Proof. We first prove the functional convergence in distribution for the vector
(Un

1 ,Un
2 , G

n), where Gn is the process such that for u ∈ [0, 1]

Gn
u = ρ−un

n ε̃nu = T−1/2
n

⎛⎝Z0 +

n∑
j=1

ρ
n

tj
Tn

n ΔZj,uTn

⎞⎠ ,

which is a martingale. We apply Corollary VIII.3.24 p. 476 from [31] to the
continuous martingale Un. We need to prove for any u ∈ [0, 1]

[(Un
1 ,Un

2 ), (Un
1 ,Un

2 )]u →P uω−1
11 Ω, (B.23)

[Gn, Gn]u →P ω22

∫ u

0

e2βs(σM
s )2ds, (B.24)

[Un
1 , G

n]u →P ω
−1/2
11 ω12

∫ u

0

eβsσM
s ds, (B.25)

and

[Un
2 , G

n]u →P ω
−1/2
11 ω22

∫ u

0

eβsσM
s ds. (B.26)

We first prove (B.23). Note that

[(Un
1 ,Un

2 ), (Un
1 ,Un

2 )]u = T−1
n

∫ uTn

0

C−1
t/Tn,n

(σM
t−/Tn

)2Σtdt,

since σM
t−/Tn

= σM
t/Tn

Lebesgue almost everywhere, and where C.,n is the càdlàg

piecewise constant process on [0, 1] such that Cti/Tn,n = Ci,n. Now, we have for
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u ∈ [0, 1]:

E

∣∣∣∣∣[Un
1 ,Un

1 ]u − ω−1
11 T

−1
n

∫ uTn

0

(σX
s )2ds

∣∣∣∣∣
≤ ω−1

11 T
−1
n E

[un]∑
i=1

∫ ti+1

ti

∣∣∣C−1
i,n (σ

M
s−/Tn

)2ω11 − 1
∣∣∣ (σX

s )2ds

≤ c−1ω−1
11 T

−1
n E

[un]∑
i=1

∫ ti+1

ti

∣∣∣(σM
s−/Tn

)2ω11 − Ci,n

∣∣∣ 1{Ci,n<+∞}(σ
X
s )2ds → 0,

because on the one hand, as #A′
n = o(n), we have

E
∑
i∈A′

n

∫ ti+1

ti

∣∣∣(σM
s−/Tn

)2ω11 − Ci,n

∣∣∣ 1{Ci,n<+∞}(σ
X
s )2ds = o(Tn)

by application of (B.1), and on the other hand, using Cauchy-Schwarz inequality
along with Lemma B.3, we have

E
∑
i/∈A′

n

∫ ti+1

ti

∣∣∣(σM
s−/Tn

)2ω11 − Ci,n

∣∣∣ 1{Ci,n<+∞}(σ
X
s )2ds = o(Tn).

Finally, by [B], ω−1
11 T

−1
n

∫ uTn

0
(σX

s )2ds →P u, and this proves (B.23) for [Un
1 ,Un

1 ].
The other components are proved similarly. Now we prove (B.24). Introducing
ρ̃n = e−β/n, we have for some constant L > 0 and for n large enough, and
for any u ∈ [0, 1], |ρ2unn − ρ̃2unn | ≤ L/n. Moreover, recall that Gn

u = ρ−un
n ε̃nu =

T
−1/2
n

(
Z0 +

∑n
j=1 ρ

n
tj
Tn

n ΔZj,uTn

)
, and thus

E

∣∣∣∣∣∣[Gn, Gn]u − T−1
n

n∑
j=1

∫ tj∧uTn

tj−1∧uTn

e2β
tj
Tn (σM

t/Tn
)2(σZ

t )
2dt

∣∣∣∣∣∣
≤ T−1

n

n∑
j=1

∫ tj∧uTn

tj−1∧uTn

|ρ2n
tj
Tn

n − ρ̃
2n

tj
Tn

n |(σM
t/Tn

)2E(σZ
t )

2dt

≤ Kn−1.

This yields

E

∣∣∣∣∣[Gn, Gn]u − T−1
n

∫ uTn

0

e2βt(σM
t/Tn

)2(σZ
t )

2dt

∣∣∣∣∣
≤ T−1

n

n∑
j=1

∫ tj∧uTn

tj−1∧uTn

|ρ̃2n
tj
Tn

n − e−βt|(σM
t/Tn

)2E(σZ
t )

2dt+Kn−1

≤ Kn−1
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so that

[Gn, Gn]u = T−1
n

∫ uTn

0

e2βt(σM
t/Tn

)2(σZ
t )

2dt+ oP(1)

= T−1
n

[
√
uTn]∑
i=1

∫ i
√
uTn

(i−1)
√
uTn

e2β
t

Tn (σM
t/Tn

)2(σZ
t )

2dt+ oP(1).

Therefore, letting

Bn
u =

∣∣∣∣∣∣[Gn, Gn]u − T−1
n

[
√
uTn]∑
i=1

e2β(i−1)
√

u
Tn (σM

(i−1)
√

u
Tn

)2
∫ i

√
uTn

(i−1)
√
uTn

(σZ
t )

2dt

∣∣∣∣∣∣
we obtain that EBn

u is dominated by

T−1
n

[
√
uTn]∑
i=1

∫ i
√
uTn

(i−1)
√
uTn

∣∣∣∣e2β t
Tn (σM

t
Tn

)2 − e2β(i−1)
√

u
Tn (σM

(i−1)
√

u
Tn

)2
∣∣∣∣E(σZ

t )
2dt

≤ K

[
√
uTn]∑
i=1

∫ i
√

u
Tn

(i−1)
√

u
Tn

∣∣∣∣e2β t
Tn (σM

t )2 − e2β(i−1)
√

u
Tn (σM

(i−1)
√

u
Tn

)2
∣∣∣∣ dt → 0

where we have used that the above integrals are all o(T
−1/2
n ) except for a number

of indices which is negligible with respect to [
√
uTn], by the same argument as

for Lemma B.2 along with the fact that e2β.(σM )2 is càdlàg. Moreover, by a
Riemann sum argument we also have

∫ u

0

e2βt(σM
t )2dt =

√
u

Tn

[
√
uTn]∑
i=1

e2β(i−1)
√

u
Tn (σM

(i−1)
√

u
Tn

)2 + o(1),

so that

E

∣∣∣∣[Gn, Gn]u − ω22

∫ u

0

e2βt(σM
t )2dt

∣∣∣∣
≤T−1/2

n

[
√
uTn]∑
i=1

e2β(i−1)
√

u
Tn (σM

(i−1)
√

u
Tn

)2E

∣∣∣∣∣∣
∫ i√uTn

(i−1)
√
uTn

(σZ
t )

2dt
√
Tn

−
√
uω22

∣∣∣∣∣∣
≤K max

1≤i≤[
√
uTn]

E

∣∣∣∣∣T−1/2
n

∫ i
√
uTn

(i−1)
√
uTn

(σZ
t )

2dt−
√
uω22

∣∣∣∣∣→ 0

by the triangle inequality and the ergodicity assumption [B], since Tn → +∞,
which concludes the proof of (B.24). (B.25) and (B.26) are proved similarly.
This gives the functional convergence in distribution for (Un

1 ,Un
2 , G

n). Finally,
since for any u ∈ [0, 1], Un

u,3 = ρunn Gn
u and ρunn →u.c.p e−βu, we get by the
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continuous mapping theorem the convergence in distribution of Un toward the
desired limit. Finally, under H1, Un

1 and Un
2 have the same distribution as under

H̃n,β
1 so that the convergence of the subcomponent (Un

1 ,Un
2 ) remains true.

Finally, we prove that several Riemann sums are uniformly convergent.

Lemma B.7. We have(
n−1

n∑
i=1

X̃c,def,n
ti
Tn

∧u
−
∫ u

0

X̃c,def,n
v dv

)
u∈[0,1]

→u.c.p 0, (B.27)

and (
n−1

n∑
i=1

Z̃def,n
ti
Tn

∧u
−
∫ u

0

Z̃def,n
v dv

)
u∈[0,1]

→u.c.p 0. (B.28)

Moreover, under H̃n,β
1(

n−1
n∑

i=1

C
−1/2
i,n ε̃nti

Tn
∧u

− ω
−1/2
11

∫ u

0

(σM
v )−1ε̃nvdv

)
u∈[0,1]

→u.c.p 0 (B.29)

and (
n−1

n∑
i=1

ε̃def,nti
Tn

∧u
−
∫ u

0

ε̃def,nv dv

)
u∈[0,1]

→u.c.p 0. (B.30)

Proof. (B.27) and (B.28) are direct consequences of the fact that uniformly in
i ∈ {1, . . . , n}, we have

E sup
u∈[0,1],v∈[ti−1∧u,ti∧u]

|X̃c,def,n
ti
Tn

∧u
− X̃c,def,n

v | ≤ KT−1/2
n Δ1/2

n → 0

and a similar estimate for Z̃def,n. For (B.29), note that

E|n−1
n∑

i=1

C
−1/2
i,n ε̃nti

Tn
∧u

− ω
−1/2
11 n−1

n∑
i=1

(σM
(ti/Tn)−)

−1ε̃nti
Tn

∧u
|

≤ n−1
n∑

i=1

√√√√√E|C−1/2
i,n − ω

−1/2
11 (σM

(ti/Tn)−)
−1|2 E|ε̃nti

Tn
∧u

|2︸ ︷︷ ︸
≤K

→ 0

by Lemma B.3 (separating the cases where i ∈ A′
n and i /∈ A′

n), since outside A′
n

|C−1/2
i,n − ω

−1/2
11 (σM

(ti/Tn)−)
−1|2

≤
|Ci,n − ω11(σ

M
(ti/Tn)−)

2|2

ω11(σM
(ti/Tn)−)

2Ci,n|C−1/2
i,n + ω

−1/2
11 (σM

(ti/Tn)−)
−1|2

≤ K|Ci,n − ω11(σ
M
(ti/Tn)−)

2|2
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where we have used that Ci,n ≥ c > 0. Moreover, we also have

E sup
u∈[0,1]

|ω−1/2
11 n−1

n∑
i=1

(σM
(ti/Tn)−)

−1ε̃nti
Tn

∧u
− ω

−1/2
11

∫ u

0

(σM
v )−1ε̃nvdv| → 0

separating again the cases i ∈ A′
n and i /∈ A′

n and applying Lemma B.2 with

un = Δn along with the fact that under H̃n,β
1 uniformly in i ∈ {1, . . . , n}, we

have E supu∈[0,1],v∈[ti−1∧u,ti∧u] |ε̃nti
Tn

∧u
− ε̃nv | ≤ KT

−1/2
n Δ

1/2
n → 0, and we are

done. Finally (B.30) is proved similarly.

B.3. Proofs of Proposition 4.1, Theorem 4.1 and Theorem 4.2

We first derive the limit distribution of ε̃def,n under any local alternative H̃n,β
1 .

Lemma B.8. Under H̃n,β
1 , Jointly with Un, we have the convergence in distri-

bution

(ε̃def,n) →d ω
−1/2
11 ζ(β) := ω

−1/2
11

(
B2 − β

∫ ·

0

(σM
v )−1I(β)vdv

)
.

Proof. Simple algebraic manipulations give

Δε̃def,nti
Tn

,u
= ΔZ̃def,n

ti
Tn

,u
− β

n
√

Ci,n

ε̃nti−1
Tn

∧u
,

so that for i ∈ {1, . . . , n}

ε̃def,nti
Tn

∧u
= Z̃def,n

ti
Tn

∧u
− β

n

i−1∑
j=0

C
−1/2
j,n ε̃ntj

Tn
∧u

so that by (B.29) from Lemma B.7,

ε̃def,n − Z̃def,n + βω
−1/2
11

∫ .

0

(σM
v )−1ε̃nvdv →u.c.p 0. (B.31)

Finally, by the continuous mapping theorem we also have jointly with Un

Z̃def,n − βω
−1/2
11

∫ .

0

(σM
v )−1ε̃nvdv →d ω

−1/2
11 ζ(β)

which, combined with (B.31) yields the claimed result.

We are now ready to prove Proposition 4.1.

Proof of Proposition 4.1. We first deal with α̂. For two processes (Uu)u∈[0,1],
(Vu)u∈[0,1], let us define

C[U, V ] =
1

n

n∑
i=1

(Uti/Tn
− μ(U))(Vti/Tn

− μ(V )),
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where μ(U) = n−1
∑n

i=1 Uti/Tn
and μ(V ) = n−1

∑n
i=1 Vti/Tn

. Note that by
(3.4), (B.21) and (B.22), we have the representation

α̂ =
C[T̃ (X)def,n, T̃ (Y )def,n]

C[T̃ (X)def,n, T̃ (X)def,n]
. (B.32)

By the uniform convergences of Lemma B.5 we easily obtain

C[T̃ (X)def,n, T̃ (Y )def,n]− C[X̃c,def,n, Ỹ c,def,n] →P 0 (B.33)

and
C[T̃ (X)def,n, T̃ (X)def,n]− C[X̃c,def,n, X̃c,def,n] →P 0. (B.34)

Using now the Riemann sum approximations (B.27) and (B.30) from Lemma
B.7 yields

C[X̃c,def,n, Ỹ c,def,n]

−
∫ 1

0

(
X̃c,def,n

u − X̃c,def,n
)(

Ỹ c,def,n
u − Ỹ c,def,n

)
du →P 0 (B.35)

and

C[X̃c,def,n, X̃c,def,n]−
∫ 1

0

(
X̃c,def,n

u − X̃c,def,n
)2

du →P 0 (B.36)

where we recall that for a process (Vu)u∈[0,1], V =
∫ 1
0
Vudu. Next, by lemmas

B.6 and B.8 we have the convergence in distribution(
X̃c,def,n, Ỹ c,def,n

)
→d ω

−1/2
11

(
B1, α0B

1 + ζ(β)
)
, (B.37)

so that by application of the continuous mapping theorem along with the con-
vergences (B.33)–(B.36) we get(

C[T̃ (X)def,n, T̃ (Y )def,n]

C[T̃ (X)def,n, T̃ (X)def,n]

)
→d

(∫ 1
0
F (β)1u(α0F (β)1u + F (β)2u)du∫ 1

0
(F (β)1u)

2du

)
(B.38)

where
F (β) = (B1 −B

1
, ζ(β)− ζ(β)). (B.39)

By (B.32) and another application of the continuous mapping theorem, we ob-
tain

α̂ →d α0 +

∫ 1
0
F (β)1uF (β)2udu∫ 1
0
(F (β)1u)

2du
. (B.40)

To get the claimed form for the right hand side we now recall the following
definitions,

J(β) =

∫ .

0

e−β(u−s)σM
s dWs, (B.41)
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ξ(β) = W 2 − β

∫ .

0

(σM
s )−1λTJ(β)sds (B.42)

where λ = (r∞/
√

1− r2∞, 1)T and r∞ = ω12/
√
ω11ω22, and

H(β) = (W 1 −W
1
, ξ(β)− ξ(β)). (B.43)

Then, direct calculation gives the linear relation F (β) = LH(β), so that∫ 1
0
F (β)1uF (β)2udu∫ 1
0
(F (β)1u)

2du
=

ω12

ω11
+

√
ω22(1− r2∞)

ω11

∫ 1
0
H(β)1uH(β)2udu∫ 1
0
(H(β)1u)

2du
.

This yields, letting

κ(β) =

(∫ 1
0
H(β)1uH(β)2udu∫ 1
0
(H(β)1u)

2du
,−1

)T

,

the convergence
α̂− α0 →d LT

α0
κ(β) (B.44)

with Lα0 =
√

ω22

ω11

(√
1− r2∞, r∞

)T
. We now turn our attention to ĉ. Recall

that we have
T−1/2
n ĉ = μ

(
T̃ (Y )def,n

)
− α̂μ

(
T̃ (X)def,n

)
(B.45)

so that similar arguments as above show that, jointly with α̂, we have the
convergence

T−1/2
n (ĉ− c0) →d ω

−1/2
11 ζ(β)− ω

−1/2
11

∫ 1
0
F (β)1uF (β)2udu∫ 1
0
(F (β)1u)

2du
B

1
. (B.46)

Replacing once again F (β)1 and F (β)2 by their respective expressions in terms
of H(β) in the above expression gives

T−1/2(ĉ− c0) →d LT
c0κ(β) (B.47)

where Lc0 = −
√

ω22

ω11

(
W

1
, ξ(β)

)T
, and we are done.

We can now prove Theorem 4.1.

Proof of Theorem 4.1. By lemmas B.5, B.6 and B.8 along with the continuous
mapping theorem, recall that we have(

T̃ (X)def,n, T̃ (Y )def,n
)
→d ω

−1/2
11

(
B1, α0B

1 + ζ(β)
)
. (B.48)

Let us now define the scaled estimated residual process rn as the càdlàg process
such that for u ∈ [0, 1],

rnu = T̃ (Y )def,nu − T−1/2
n ĉ− α̂T̃ (X)def,nu . (B.49)
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Note that for i ∈ {1, . . . , n}, rnti
Tn

coincides with T
−1/2
n ε̂ti . Then, by the contin-

uous mapping theorem, (B.48), (B.40) and (B.46) we get that with respect to
the Skorohod topology of DR[0, 1]

rn →d −ω
−1/2
11 η(β)TF (β) (B.50)

where η(β) = ((
∫ 1
0
(F (β)1u)

2du)−1
∫ 1
0
F (β)1uF (β)2udu,−1)T . Next, in order to

reformulate (B.50) in terms of H(β), recall that F (β) = LH(β), so that

LT η(β) =

(
l11

∫ 1
0
F (β)1uF (β)2udu∫ 1
0
(F (β)1u)

2du
− l21

−l22

)
=

(
l22

∫ 1
0
H(β)1uH(β)2udu∫ 1
0
(H(β)1u)

2du

−l22

)
= l22κ(β),

where for i, j ∈ {1, 2}, lij is the coefficient in position (i, j) of L. We thus get

rn →d −ω
−1/2
11 η(β)TF (β) = −ω

−1/2
11 η(β)TLH(β) = −ω

−1/2
11 l22κ(β)

TH(β).

Therefore, letting Q(β) = κ(β)TH(β), we deduce from the above results, and
the continuous mapping theorem that

nφ̂ = n

∑n
i=1 r̂

n
ti−1/Tn

Δr̂nti/Tn∑n
i=1(r̂

n
ti/Tn

)2
→d

∫ 1
0
Q(β)sdQ(β)s∫ 1
0
Q(β)2sds

.

Now we derive the limit of sφ̂, where

sφ̂ =

√
n−1
∑n

i=1(Δε̂i − φ̂ε̂i−1)2∑n
i=1 ε̂

2
i−1

.

We have that

n−1
n∑

i=1

(Δε̂i − φ̂ε̂i−1)
2 = n−1

n∑
i=1

Δε̂2i − 2n−1φ̂

n∑
i=1

Δε̂iε̂i−1 + n−1φ̂2
n∑

i=1

ε̂2i−1

= I + II + III.

Moreover

Δ−1
n I = T−1

n

n∑
i=1

(ΔT (Y )defi )2 − α̂T−1
n

n∑
i=1

ΔT (Y )defi ΔT (X)defi

+ α̂2T−1
n

n∑
i=1

(ΔT (X)defi )2.

Next, since C−1
i,n < c−1 < +∞ by [H], and using (B.4) with p = 2 and q = 1,

we have

T−1
n E

n∑
i=1

|(ΔT (X)defi )2 − C−1
i,n (ΔXc

i )
2| ≤ K(Δω(2−r)

n +Δp0(1/2−ω)−1/2
n )
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which is negligible by Assumption [C]. Similarly we have

T−1
n

n∑
i=1

(ΔT (Y )defi )2 = T−1
n

n∑
i=1

C−1
i,n (ΔY c

i )
2 + oP(1)

and

T−1
n

n∑
i=1

ΔT (Y )defi ΔT (X)defi = T−1
n

n∑
i=1

C−1
i,nΔY c

i ΔXc
i + oP(1).

Combined with (B.23), the fact that T−1
n

∑n
i=1 C

−1
i,nΔε2i →P ω−1

11 ω22, (B.40),
(B.46) and Slutsky’s lemma, this yields the convergence

Δ−1
n I →d ω−1

11 l
2
22κ(β)

Tκ(β).

Moreover straightforward calculation shows that II = OP(Δnn
−1), and III =

OP(Δnn
−1), using φ̂ = OP(n

−1), so that jointly with nφ̂ we have

nsφ̂ →d

√
κ(β)Tκ(β)∫ 1
0
Q(β)2sds

,

and thus

Ψ →d

∫ 1
0
Q(β)sdQ(β)s√

κ(β)Tκ(β)
∫ 1
0
Q(β)2sds

.

Finally we prove Theorem 4.2.

Proof of Theorem 4.2. Since for Δn → 0 the increments of the drift term are
negligible with respect to the increments of the Brownian integral, we immedi-
ately deduce that the lemmas B.1, B.3, and B.4 remain true. Next, we replace

C
−1/2
i,n ΔXi,uTn1Ai,n,u and C

−1/2
i,n ΔYi,uTn1Ai,n,u in definitions (B.21)–(B.22) by

C
−1/2
i,n (ΔXi,uTn1Ai,n,u −Δ−1

n Δi,n,uD(X))

and
C

−1/2
i,n (ΔYi,uTn1Ai,n,u −Δ−1

n Δi,n,uD(Y ))

respectively, where Δn,i,u = (ti∧uTn−ti−1∧uTn). Similarly, defining for discrete
observations Vi, i ∈ {1, . . . , n}

D(V ) = n−1(Vn − V0),

we replace ΔXc
i,uTn

and ΔZi,uTn by ΔXc
i,uTn

−bXΔn,i,u−Δ−1
n Δi,n,uD(Xc−bX ·)

and ΔZi,uTn −bZΔn,i,u−Δ−1
n Δi,n,uD(Z−bZ ·) in definitions (B.17) and (B.18).

A straightforward application of Lemma B.1 as in the previous proofs shows
that with these new definitions, Lemma B.5 and Lemma B.7 remain also true.
Moreover, by the continuous mapping theorem and Lemma B.6 in the case
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without drift, we have jointly with T
−1/2
n (Xc − bX ·, Z − bZ ·) the convergences

nT
−1/2
n D(Xc − bX ·) →d

∫ 1
0
σM
s dB1

s and nT
−1/2
n D(Z − bZ ·) →d

∫ 1
0
σM
s dB2

s ,
so that by another application of the continuous mapping theorem we de-
duce that Lemma B.6 remains true if in the limits B is replaced by B −∫ ·
0
(σM

s )−1ds
∫ 1
0
σM
s dBs. Finally, following closely the proofs of Lemma B.8 and

Theorem 4.1, we easily prove that everything holds if in the limits W −W and
ξ − ξ are replaced by W − W̆ and ξ − ξ̆.

B.4. Proofs of Theorem 3.1 and Proposition 4.2

We begin this section with a technical lemma. Let

gn :=
n∑

i=1

⎛⎝X̃c,def,n
ti
Tn

− n−1
n∑

j=1

X̃c,def,n
tj
Tn

⎞⎠⎛⎝ε̃def,nti
Tn

− n−1
n∑

j=1

ε̃def,ntj
Tn

⎞⎠ .

Lemma B.9. Under H1, jointly with (Un
1 ,Un

2 ), we have the convergence in
distribution

gn →d ω−1
11

1− ρ

(
ω12 +

∫ 1

0

(B1
s −B

1
)dB2

s

)
.

Proof. We rewrite

gn :=

n∑
j=1

X̃c,def,n
tj
Tn

ε̃def,ntj
Tn

− n−1
n∑

j=1

X̃c,def,n
tj
Tn

n∑
j=1

ε̃def,ntj
Tn

= I + II.

The limit for I and II is derived in two steps.

Step 1. Let us define for all i ∈ {1, . . . , n}

q ti
Tn

=

i∑
j=1

ρi−jΔZ̃def,n
tj
Tn

(B.51)

where ΔZ̃def,n
tj
Tn

= Z̃def,n
tj
Tn

− Z̃def,n
tj−1
Tn

. Note that for i ≤ 2kn, q ti
Tn

= 0. Accordingly,

define also

Ĩ =

n∑
j=1

X̃c,def,n
tj
Tn

q tj
Tn

and ĨI =

n∑
j=1

q tj
Tn

.

We show that

I − Ĩ →P 0 (B.52)

and

II + n−1
n∑

j=1

X̃c,def,n
tj
Tn

ĨI →P 0. (B.53)
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Note that elementary algebraic manipulations yield the representation

ε̃def,nti
Tn

=

i∑
j=1

aij,nΔZ̃def,n
tj
Tn

(B.54)

where aij,n = 1+
√
Cj,n(ρ− 1)

∑i
k=j+1

ρk−1−j√
Ck,n

with the convention +∞× 0 = 0

in the last expression, so that if i ≤ 2kn we have ε̃def,nti
Tn

− q ti
Tn

= 0 and for

i ≥ 2kn + 1

ε̃def,nti
Tn

− q ti
Tn

=

i∑
j=2kn+1

(δ
i,(1)
j,n + δ

i,(2)
j,n )ΔZ̃def,n

tj
Tn

with

δ
i,(1)
j,n =

1− ρ√
Cj,n

i∧(j+ln)∑
k=j+1

ρk−1−j(
√

Ck,n +
√
Cj,n)(Ck,n − Cj,n),

and

δ
i,(2)
j,n =

1− ρ√
Cj,n

i∑
k=i∧(j+ln)+1

ρk−1−j(
√

Ck,n +
√
Cj,n)(Ck,n − Cj,n).

Now, using E|ΔZ̃def,n
tj
Tn

|2 ≤ c−1Kn−1, we get

E
i∑

j=2kn+1

|δi,(2)j,n ||ΔZ̃def,n
tj
Tn

| ≤ Kn−1/2
i∑

j=2kn+1

√
E|δi,(2)j,n |2

≤ Knρln/2

since by straightforward calculations E|δi,(2)j,n |2 ≤ Kρln . Now, note that since
Ck,n is Fj−1 measurable for any k ∈ {j, . . . , j + ln}, we get that

i∑
j=2kn+1

δ
i,(1)
j,n ΔZ̃def,n

tj
Tn

is a sum of martingale increments. Moreover, since we have |x∨c−y∨c| ≤ |x−y|
for any x, y ∈ R, then for k ≥ j ≥ 2kn + 1, recall that

|Ck,n − Cj,n| ≤ T−γ
n

k−ln−1∑
l=(k−kn)∨(j−ln)

ΔX2
l 1{|ΔXl|≤aΔω

n}

+ T−γ
n

(k−kn)∧(j−ln−1)∑
l=(j−kn)

ΔX2
l 1{|ΔXl|≤aΔω

n},
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and since ln = o(kn), we immediately deduce for any q ≥ 1

|Ck,n − Cj,n|q ≤ KT−qγ
n Δ2qω

n [(k − j)q ∧ kqn] (B.55)

which yields for δ
i,(1)
j,n

E|δi,(1)j,n |4 ≤ KE

⎛⎝ i∑
k=j+1

ρk−1−j(
√

Ck,n +
√
Cj,n)(Ck,n − Cj,n)

⎞⎠4

≤ K

(
1− ρ

1− ρi−j

)3 i∑
k=j+1

ρk−1−jE(
√

Ck,n +
√
Cj,n)

4(Ck,n − Cj,n)
4

≤ KT−4γ
n Δ8ω

n

i∑
k=j+1

ρk−1−j(k − j)4

︸ ︷︷ ︸
≤K

≤ KT−4γ
n Δ8ω

n

where, in the above calculation we have used Jensen’s inequality at the second
step, along with (B.55), and we have used at the third step Cauchy-Schwarz
inequality along with (B.1) and the fact that p0 ≥ 8. We thus obtain

E

∣∣∣∣∣∣
i∑

j=2kn+1

δ
i,(1)
j,n ΔZ̃def,n

tj
Tn

∣∣∣∣∣∣
2

=

i∑
j=2kn+1

E

[
(δ

i,(1)
j,n )2(ΔZ̃def,n

tj
Tn

)2
]

≤
i∑

j=2kn+1

√
E(δi,(1)j,n )4E(ΔZ̃def,n

tj
Tn

)4

≤ KΔ4ω
n T−2γ

n ,

where we have used that E(ΔZ̃def,n
tj
Tn

)4 ≤ c−2Kn−2. Finally this yields uniformly

in i ∈ {1, . . . , n}
E|ε̃def,nti

Tn

− q ti
Tn

|2 ≤ KΔ4ω
n T−2γ

n (B.56)

since nρln/2 = o(Δ4ω
n T−γ

n ), and by similar calculation, we also deduce

E|
n∑

i=1

(ε̃def,nti
Tn

− q ti
Tn

)|2 = O(Δ4ω−1
n T 1−2γ

n ) = o(1)

since γ ≥ 1/2 and ω > 1/4 by [C]. As n−1
∑n

j=1 X̃
c,def,n
tj
Tn

= OP(1), this proves

(B.53). To show (B.52), it suffices to note that

I − Ĩ =

n∑
j=1

X̃c,def,n
tj−1
Tn

(ε̃def,ntj
Tn

− q tj
Tn

) +

n∑
j=1

ΔX̃c,def,n
tj
Tn

(ε̃def,ntj
Tn

− q tj
Tn

).



Cointegration in high-frequency data 1317

The first term can be treated following exactly the same path as for II − ĨI,

multiplying δ
i,(1)
j,n and δ

i,(2)
j,n by X̃c,def,n

tj−1
Tn

which is L2p0 bounded and does not

affect the estimates. As for the second term, using (B.56) we have

E

∣∣∣∣∣∣
n∑

j=1

ΔX̃c,def,n
tj
Tn

(ε̃def,ntj
Tn

− q tj
Tn

)

∣∣∣∣∣∣ ≤
n∑

j=1

√
E|ΔX̃c,def,n

tj
Tn

|2E|(ε̃def,ntj
Tn

− q tj
Tn

)|2

≤ Δ2ω−1/2
n T 1/2−γ

n → 0

since γ ≥ 1/2 and ω > 1/4.

Step 2. We prove that jointly with (Un
1 ,Un

2 ),(
Ĩ

ĨI

)
→d ω−1

11

1− ρ

(
ω12 +

∫ 1
0
B1

sdB
2
s

ω
−1/2
11 B2

1

)
. (B.57)

First, note that by definition of q, Ĩ and ĨI can be rewritten as follows:

Ĩ =

n∑
i=1

X̃c,def,n
ti
Tn

q ti
Tn

=

n∑
j=1

n∑
i=j

i∑
k=j

ρi−jΔX̃c,def,n
tk
Tn

ΔZ̃def,n
tj
Tn

+

n∑
j=1

n∑
i=j

ρi−jX̃c,def,n
tj−1
Tn

ΔZ̃def,n
tj
Tn

=
1

1− ρ

n∑
j=1

n∑
k=j

ρk−j(1− ρn−k)ΔX̃c,def,n
tk
Tn

ΔZ̃def,n
tj
Tn

+
1

1− ρ

n∑
j=1

(1− ρn+1−j)X̃c,def,n
tj−1
Tn

ΔZ̃def,n
tj
Tn

= A+B

and

ĨI =
1

1− ρ

n∑
j=1

(1− ρn+1−j)ΔZ̃def,n
tj
Tn

.

Moreover, A can be further decomposed as

A =

n∑
j=1

(1− ρn−j)ΔX̃c,def,n
tj
Tn

ΔZ̃def,n
tj
Tn

+
n∑

j=1

n∑
k>j

ρk−j(1− ρn−k)ΔX̃c,def,n
tk
Tn

ΔZ̃def,n
tj
Tn

= A1 +A2.

Note that by Jensen’s inequality

E

⎛⎝ n∑
j=1

ρn−jΔX̃c,def,n
tj
Tn

ΔZ̃def,n
tj
Tn

⎞⎠2

≤ 1− ρn

1− ρ

n∑
j=1

ρn−jE(ΔX̃c,def,n
tj
Tn

ΔZ̃def,n
tj
Tn

)2
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≤
(
1− ρn

1− ρ

)2

n−2 → 0,

and we have also
∑n

j=1 ΔX̃c,def,n
tj
Tn

ΔZ̃def,n
tj
Tn

→P ω−1
11 ω12, so that this proves that

A1 →P ω−1
11 ω12. Now, remark that A2 can be represented as the sum of martin-

gale increments A2 =
∑n

k=1 mk,nΔX̃c,def,n
tk
Tn

with

mn,k =

⎛⎝k−1∑
j=1

ρk−jΔZ̃def,n
tj
Tn

⎞⎠ (1− ρn−k),

and thus

EA2
2 ≤

n∑
k=1

√
E[m4

n,k]E(ΔX̃c,def,n
tk
Tn

)4.

Again, using Jensen’s inequality and (1− ρn−k) ≤ 1, we have

E[m4
n,k] ≤

(
ρ− ρk

1− ρ

)3 k−1∑
j=1

k−j∑
j=1

ρk−jE(ΔZ̃def,n
tk
Tn

)4

≤ Kn−2,

so that EA2
2 ≤ Kn−1 → 0, and thus overall A →P ω−1

11 ω12. Finally, since we
have the immediate approximations

B =

n∑
j=1

X̃c,def,n
tj−1
Tn

ΔZ̃def,n
tj
Tn

+ oP(1) =

∫ 1

0

X̃c,def,n
u dZ̃def,n

u + oP(1)

and

ĨI =
Z̃def,n
1

1− ρ
+ oP(1)

All we need is to show a joint central limit theorem for the extended process
(X̃c,def,n, Z̃def,n, V n) where V n is defined as

V n
u :=

∫ u

0

X̃c,def,n
s dZ̃def,n

s , (B.58)

which is a consequence of Lemma B.6 along with Theorem 2.2 in [38], with
δ = ∞ and Condition C2.2(i) being satisfied for any localizing sequence. We
have thus with respect to the Skorohod topology of DR3 [0, 1] the convergence

(X̃c,def,n, Z̃def,n, V n) →d (ω
−1/2
11 B1, ω

−1/2
11 B2, ω−1

11

∫ .
0
B1

sdB
2
s ), which implies by

the continuous mapping theorem along with Slutsky’s Lemma the convergence
(B.57). Finally, combined with the fact that

n−1
n∑

j=1

X̃c,def,n
tj
Tn

=

∫ 1

0

X̃c,def,n
u du+ oP(1),

the continuous mapping theorem, and Step 1 of this proof, the convergence of
gn readily follows.
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Next, we prove a technical lemma for the jump part.

Lemma B.10. Under H1 and [D], we have

n(T̃ (Y )def,n − T−1/2
n c0 − α0T̃ (X)def,n − ε̃def,n) →u.c.p 0.

Proof. By definition, we have for u ∈ [0, 1]

n(T̃ (Y )def,nu − T−1/2
n c0 − α0T̃ (X)def,nu − ε̃def,nu )

= nT−1/2
n

n∑
j=1

C
−1/2
j,n (ΔJY

j,uTn
− α0ΔJX

j,uTn
)1Aj,n,u

+ nT−1/2
n

n∑
j=1

C
−1/2
j,n Δεj,uTn1Ac

j,n,u

= Iu + IIu.

Using C
−1/2
j,n ≤ c−1/2, we have that

sup
u∈[0,1]

Iu ≤ nT−1/2
n

∑
0<s≤Tn

|ΔJY
s − α0ΔJX

s | = oP(1)

by [D]. As for II, recall that 1Ac
j,n,u

≤ 1{|ΔXc
j,uTn

|> a
2Δ

ω
n} + 1{|ΔY c

j,uTn
|> a

2Δ
ω
n} +

1{|ΔJX
j,uTn

|> a
2Δ

ω
n}+1{|ΔJY

j,uTn
|> a

2Δ
ω
n}. Now, on the one hand for U ∈ {X,Y } and

any q > 0,

sup
j∈{1,...,n},u∈[0,1]

1{|ΔJU
j,uTn

|> a
2Δ

ω
n} ≤ K sup

j∈{1,...,n},u∈[0,1]

|ΔJU
j,uTn

|qΔ−qω
n

= OP(Δ
q(1/2−ω)
n )

by [D], and on the other hand, still for U ∈ {X,Y },

E sup
u∈[0,1]

1{|ΔUc
j,uTn

|> a
2Δ

ω
n} ≤ KΔ−2p0ω

n E sup
u∈[0,1]

|ΔU c
j,uTn

|2p0 ≤ KΔp0(1−2ω)
n .

Therefore, supu∈[0,1] |IIu| ≤ IIA + IIB with

IIA = n
n∑

j=1

C
−1/2
j,n sup

u∈[0,1]

|Δεj,uTn |
∑

U∈{X,Y }
1{|ΔUY

j,uTn
|> a

2Δ
ω
n}

≤ nK

n∑
j=1

sup
u∈[0,1]

|Δεj,uTn |︸ ︷︷ ︸
=OP(nΔ

1/2
n )

sup
j∈{1,...,n}
u∈[0,1]

∑
U∈{X,Y }

1{|ΔUY
j,uTn

|> a
2Δ

ω
n}

= OP(n
2Δ1/2+q(1/2−ω)

n ),

and

IIB = n

n∑
j=1

sup
u∈[0,1]

|Δεj,uTn |(1{|ΔXc
j,uTn

|> a
2Δ

ω
n} + 1{|ΔY c

j,uTn
|> a

2Δ
ω
n})
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so that by Cauchy-Schwarz inequality we get

EIIB ≤ n2Δ1/2+p0(1/2−ω)
n .

Taking q ≥ p0, this yields

II = OP(n
2Δ1/2+p0(1/2−ω)

n ) = oP(1)

by assumption [C].

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1 and Remark 3.5. We first prove the consistency of the
OLS estimator under [A]-[C]. By definition, we have the representation

T−1/2
n (ĉ− c0) =

1

n

n∑
i=1

(T̃ (Y )def,nti
Tn

− T−1/2
n c0 − α0T̃ (X)def,nti

Tn

)

− α̂− α0

n

n∑
i=1

T̃ (X)def,nti
Tn

(B.59)

and

α̂− α0 =
fn

n−1
∑n

i=1(T̃ (X)def,nti
Tn

− n−1
∑n

i=1 T̃ (X)def,nti
Tn

)2
(B.60)

with

fn = n−1
n∑

i=1

(T̃ (Y )def,nti
Tn

− T−1/2
n c0 − α0T̃ (X)def,nti

Tn

)T̃ (X)def,nti
Tn

−n−1
n∑

i=1

(T̃ (Y )def,nti
Tn

− T−1/2
n c0 − α0T̃ (X)def,nti

Tn

)

n∑
i=1

T̃ (X)def,nti
Tn

.

By Lemma B.5 (combined with Cauchy-Schwarz inequality for the first term)
yields

fn = n−1
n∑

i=1

ε̃def,nti
Tn

T̃ (X)def,nti
Tn

− n−1
n∑

i=1

ε̃def,nti
Tn

n∑
i=1

T̃ (X)def,nti
Tn

+ oP(1)

= n−1gn + oP(1)

= oP(1)

by Lemma B.8. Since the denominator in (B.60) is stochastically bounded by
the continuous mapping theorem and Lemma B.5, B.6, B.7, we get α̂ →P α0.
Repeating the same argument in (B.59) and using the consistency of α̂, we

immediately deduce T
−1/2
n (ĉ−c0) →P 0. Now we prove the central limit theorem
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under the additional condition [D]. Note that now, Lemma B.10 (combined with
Cauchy-Schwarz inequality for the first term) yields

nfn =

n∑
i=1

ε̃def,nti
Tn

T̃ (X)def,nti
Tn

−
n∑

i=1

ε̃def,nti
Tn

n∑
i=1

T̃ (X)def,nti
Tn

+ oP(1),

which in turn, easily yields

nfn = gn + oP(1)

by Lemma B.5 along with the fact that under H1, E|ε̃def,nti
Tn

|2 ≤ Kn−1. Similarly,

by Lemma B.5, B.6, B.7 and the continuous mapping theorem, we have jointly
with (gn,Un

1 ,Un
2 )

n−1
n∑

i=1

(T̃ (X)def,nti
Tn

− n−1
n∑

i=1

T̃ (X)def,nti
Tn

)2 →d ω−1
11

∫ 1

0

(B1
u −B

1
)2du,

and by Lemma B.9, the convergence of distribution of n(α̂ − α0) toward the
claimed distribution readily follows. By similar arguments as for α̂, we also
have

nT−1/2
n (ĉ− c0) =

n∑
i=1

ε̃def,nti
Tn

− n(α̂− α0)n
−1

n∑
i=1

X̃c,def,n
ti
Tn

+ oP(1).

By (B.56) and the convergence of the second component in (B.57) we have jointly

with (gn,Un
1 ,Un

2 ) that
∑n

j=1 ε̃
def,n
tj
Tn

→d (1 − ρ)−1ω
−1/2
11 B2

1 , and so combined

with lemmas B.6, B.7, B.9, along with the continuous mapping theorem, we

deduce that jointly with n(α̂−α0), nT
−1/2
n (ĉ−c0) converges toward the claimed

distribution. Finally, reformulating the limit as a function of W (using B =
LW ) and conditioning on the first component of W yields the mixed normal
representation derived in Remark 3.5.

Proof of Proposition 4.2. Defining as in (B.49) for any u ∈ [0, 1] the scaled
estimated residual

rnu = T̃ (Y )def,nu − T−1/2
n ĉ− α̂T̃ (X)def,nu , (B.61)

we easily get by the first part of Theorem 3.1, and Lemma B.5 that

sup
u∈[0,1]

|rnu − ε̃def,nu | = oP(1). (B.62)

We first derive an estimate for the numerator and the denominator of

φ̂ =

∑n
i=1 Δrnti

Tn

rnti−1
Tn∑n

i=1

(
rnti

Tn

)2 .
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Note that we have the identity

2

n∑
i=1

Δrnti
Tn

rnti−1
Tn

= (rn1 )
2 − (rn0 )

2 −
n∑

i=1

(
Δrnti

Tn

)2

which, combined with (B.61), (B.4), (B.56) and [C] gives

2

n∑
i=1

Δrnti
Tn

rnti−1
Tn

= (qn1 )
2 − (qn0 )

2 −
n∑

i=1

(
Δqnti

Tn

)2

+ oP(1), (B.63)

where we recall that

qnti
Tn

=

i∑
j=1

ρi−jΔZ̃def,n
tj
Tn

,

and Δqnti
Tn

= qnti
Tn

− qnti−1
Tn

. From the above representation it is straightforward

to check that qn1 →P 0, qn0 = 0,

n∑
i=1

qnti
Tn

qnti−1
Tn

→P ρ(1− ρ2)−1ω−1
11 ω22,

and
n∑

i=1

(
qnti

Tn

)2

→P (1− ρ2)−1ω−1
11 ω22, (B.64)

so that, using (Δqnti
Tn

)2 = (qnti
Tn

)2 + (qnti−1
Tn

)2 − 2qnti
Tn

qnti−1
Tn

, we immediately get

that (B.63) yields

n∑
i=1

Δrnti
Tn

rnti−1
Tn

→P (ρ− 1)(1− ρ2)−1ω−1
11 ω22 < 0. (B.65)

Now, in general, unfortunately, (B.62) is not sufficient to get
∑n

i=1

(
rnti

Tn

)2
=∑n

i=1

(
qnti

Tn

)2
+ oP(1). However, we do have by (B.56) and (B.62) the weaker

estimate
n∑

i=1

(
rnti

Tn

)2

=

n∑
i=1

(
qnti

Tn

)2

+ oP(n) = oP(n). (B.66)

Moreover, note that by definition of φ̂

n∑
i=1

(
Δrnti

Tn

− φ̂rnti−1
Tn

)2

≤ 2

n∑
i=1

(
Δrnti

Tn

)2

+ 2

(
n∑

i=1

Δrnti
Tn

rnti−1
Tn

)2

= OP(1) (B.67)
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by the above calculations. Therefore, by (B.65), (B.66), and (B.67),

Ψ−1 = n−1/2

√∑n
i=1

(
Δrnti

Tn

− φ̂rnti−1
Tn

)2∑n
i=1

(
rnti

Tn

)2

∑n
i=1 Δrnti

Tn

rnti−1
Tn

→P 0,

and moreover with probability tending to 1 we have
∑n

i=1 Δrnti
Tn

rnti−1
Tn

< 0 by

(B.65) so that Ψ →P −∞ which proves the first part of the proposition. Now,
under [D], we easily get by Theorem 3.1 and Lemma B.10 that

sup
u∈[0,1]

|rnu − ε̃def,nu | = OP(n
−1),

and combined with (B.56) and [C] this easily yields

n−1∑
i=1

(
rnti

Tn

)2

=
n−1∑
i=1

(
qnti

Tn

)2

+ oP(1),

→P (1− ρ2)−1ω−1
11 ω22, (B.68)

so that

φ̂ →P ρ− 1. (B.69)

Moreover, following a similar path as before, we also deduce that

n∑
i=1

(Δrnti
Tn

− φ̂rnti−1
Tn

)2 =

n∑
i=1

(ΔZ̃def,n
ti
Tn

)2 + oP(1) →P ω−1
11 ω22,

and thus

n1/2sφ̂ →P
√

1− ρ2

and so

Ψ ∼ −n1/2

√
1− ρ

1 + ρ
.

Finally we prove the studentized version of the central limit theorem.

Proof of Proposition 3.2. Using the notation introduced in (B.49), and by sim-
ilar calculations as for (B.65), we have

n∑
i=2

Δε̂iε̂i−2 =

n∑
i=2

Δrnti
Tn

rnti−2
Tn

→P ρ(ρ− 1)(1− ρ2)−1ω−1
11 ω22,

which, along with (B.65) proves the consistency of ρ̂. Under [D], the consistency
of v̂ε is a direct consequence of (B.68) and (B.64) from the proof of Proposition
4.2. Finally, the consistency of r̂∞ is easily obtained following the same line of
reasoning as for the proof of Proposition 4.2. Now, by Lemma B.5, B.6, B.7
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and the continuous mapping theorem, we immediately deduce that, jointly with

(n(α̂− α0), nT
−1/2
n (ĉ− c0)), we have⎛⎜⎜⎝

T (X)
def

I[T (X)def ]
J [T (X)def ]
K[T (X)def ]

⎞⎟⎟⎠→d

⎛⎜⎜⎝
W

1

I[W 1]
J [W 1]
K[W 1])

⎞⎟⎟⎠
which, combined with the consistency of v̂ε, ρ̂, and r̂∞ along with Slutsky’s
Lemma and the continuous mapping theorem yields the claimed result.
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