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1. Introduction

In the present paper, we aim to show a connection between Optimal Transport
(OT) and Algebraic Statistics (AS).

Modern OT was started by Kantorovich in 1939 and a new wave of de-
velopment was initiated by Villani [22]. In the present paper we use also an
earlier result obtained by Gini [10]. A (finite) sample space X and a cost func-
tion c : X × X → R are given. The set of joint probability functions γ on
X ×X with given margins μ and ν is called the set of couplings, γ ∈ P (μ, ν).
In OT, one looks for an element that minimizes the expected value c(γ) =∑

x,y∈X c(x, y)γ(x, y). There is a rich general theory, see, for example, the text-
book by Santambrogio [18], but here we restrict our attention to the finite state
space case.

AS was started by the paper Diaconis and Sturmfels [8] and by the book
Pistone, Riccomagno, and Wynn [14]. In particular, the first paper deals with
an algebraic method for constructing an irreducible random walk on the space of
multi-way contingency tables with given margins. Each step of the random walk
is associated with a move, that is, a table with zero margins, that subtracted to
an initial table, produces a new table with the same margins. Basic results on
contingency tables are to be found in Fienberg [9].

We extend this idea to general tables, that is, tables not restricted to be
integer-valued, and apply it to OT on a finite state space. To this aim, we provide
a detailed study of the geometry of moves with continuous values. This paper
considers both topics in computational algebra and in computational statistics.
As an application, we define an MCMC algorithm for the computation of the
optimal value and the optimal coupling in the case of a discrete sample space.
Many special algorithms have been developed, see a general overview in Peyré
and Cuturi [13]. Our algorithm is intended to be an alternative proposal.

The paper is organised as follows. In Section 2 we review the generalities and
discuss the algebra of moves, considering both the linear algebra and the group
algebra of moves. The Kantorovich problem is a special Linear Programming
(LP) problem that we outline both as a primal and as a dual problem. In Sec-
tion 3 we prove that a class of basic moves connects all couplings. The results
are generalized to the tri-variate case in Section 4. Based on that theory, in Sec-
tion 5 we provide a MCMC algorithm to compute solutions of the minimal cost
problem.

2. Tables, cost, moves

Let X be a set with n points and let Δ(X) be its probability simplex.

Given probability functions μ, ν ∈ Δ(X), the joint probability function γ ∈
Δ(X ×X) is a coupling (also called transport plan) of (μ, ν), if μ and ν are the
two margins of γ. The set of all couplings P(μ, ν) is the polyhedron defined by
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the intersection of Δ(X ×X) with the 2n affine hyperplanes∑
y∈X

γ(x, y) = μ(x) ,
∑
x∈X

γ(x, y) = ν(y) , x, y ∈ X . (2.1)

The number of independent constraints is 2n − 1 and the dimension of the
polyhedron is (n − 1)2. This polyhedron is bounded, then it is a polytope. See
the relevant convexity theory in [3, Ch. I–II].

As we are dealing with functions defined on points in a product space,
γ(x, y) ∈ R+, (x, y) ∈ X × X, we consider the following definition. See the
relevant graph theory in [4].

Definition 2.1. The support of the coupling γ is

Supp (γ) = {(x, y) | γ(x, y) > 0} .

It is identified with a directed, possibly non-simple, graph with vertex set X and
edge set Supp (γ). By abuse of language, the graph itself is the support of γ.

If we add weights γ to the graph Supp (γ), we obtain a weighted graph.
Vertices of the coupling polytope are characteristic in that they have a small
support.

Proposition 2.1. If γ̃ is a vertex of the coupling polytope P(μ, ν), then its
support Supp (γ̃) has at most (2n− 1) edges.

Proof. This theorem is due to Brualdi [5]. See a proof based on the representa-
tion of the support as a bipartite graph in [13, §3.4].

As 2n − 1 = n + (n − 1), the condition in the proposition above could be
realized by a graph that has n loops x → x, x ∈ X, and other edges to form a
tree. This is not always the case, as the Example 2.1 below shows.

Notice that, for a vertex γ̃, the 2nmarginalization equations in Equation (2.1)
have 2n − 1 non-zero unknowns γ(x, y), (x, y) ∈ Supp (γ̃), so that an extremal
coupling is uniquely determined by its support.

Example 2.1. Let us consider X = {1, 2}. The probability simplex Δ(X ×X) is
the 3-simplex of Figure 1. The dashed segment represents the set of couplings
P((1/2, 1/2), (2/3, 1/3)). The two end-points are

γ1 =

(
1/6 1/3
1/2 0

)
, γ2 =

(
1/2 0
1/6 1/3

)
.

The supports of γ1 and γ2 have 2 · 2− 1 = 3 arcs. The support of γ2 is a looped
tree, while the support of γ1 is not because of the cycle 1 � 2. The support of
each non-vertex coupling γ = (1− λ)γ1 + λγ2, 0 < λ < 1, has 4 arcs.

The notion of couplings has a related setup in the context of the study of
integer-valued tables with given margins. Given a table T = [n(i, j)]ni,j=1 ∈
Z
n×n
+ , the grand total is n(+,+) =

∑n
i,j=1 n(i, j) and the margins are n(·,+),

n(+, ·). The corresponding probability function is defined by γ(i, j) = n(i, j)/N ,
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Fig 1. See Example 2.1. The arrow is the marginalization function of the probability simplex
Δ({1, 2}2) to the product of the two marginal simplexes Δ({1, 2})×Δ({1, 2}). Each vertex of
the left simplex is mapped to a vertex of the right polytope, δij �→ δi⊗δj . The dashed segment
from γ1 to γ2 represents the coupling polytope of the margins represented by the circle in the
right polytope. Notice that γ1 belongs to the facet opposite to δ22, while γ2 belongs to the facet
opposite to δ12.

with i, j ∈ {1, . . . , n}. Conversely, if γ ∈ Δ(X×X) has rational values, it comes
from a table. See the extensive treatments in [9] and [20].

Let c : X ×X → R+ be a non-negative valued function to be interpreted as
the cost. The cost of a coupling γ (c-cost) is

c(γ) =
∑

x,y∈X

c(x, y)γ(x, y) . (2.2)

We are interested in minimizing the expected cost over the polytope of couplings.
The Kantorovich cost (K-cost) is

Kc(μ, ν) = inf {c(γ) | γ ∈ P (μ, ν)} . (2.3)

Especially, when the cost is a distance d, the minimum cost defines a distance
on the simplex Δ(X), the Kantorovich distance (K-distance), namely,

d(μ, ν) = inf

⎧⎨⎩ ∑
x,y∈X

d(x, y)γ(x, y)

∣∣∣∣∣∣ γ ∈ P(μ, ν)

⎫⎬⎭ . (2.4)

The distance case is considered in detail in [12].
As the simplex is a compact set, the optimal value is always obtained at some

optimal coupling.
In the case of equality of the two margins μ = ν, the distance is zero because

there is a coupling whose support consists of loops only, where d(x, x) = 0.
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When the coupling is defined by the independence, γ = μ⊗ μ, the Kantorovich
value is a Gini index of dispersion of μ, see the monograph by Yitzhaki and
Schechtman [23].

The Kantorovich problem defined above is a special LP problem, in that we
want to find the minimum of a linear function subject to equality and inequality
constraints. It follows immediately from the definition that there exists a face
of P(μ, ν) whose elements γ̃ are optimal, that is, c(γ̃) = Kc(μ, ν) or, in the
distance case, d(μ, ν) =

∑
x,y d(x, y)γ̃(x, y). Generically, the set of solutions will

be a vertex of the coupling polytope, hence subject to the support constraints
of Proposition 2.1.

Let us discuss an equivalent form of the Kantorovich problem.
The marginalization operator is

Π: RX×X � f �→
(∑

y

f(·, y),
∑
x

f(x, ·)
)

∈ R
X ⊕ R

X ,

and kerΠ is the set of all functions f : X ×X → R whose margins are zero. It
follows that

P(μ, ν) = {μ⊗ ν − f | f ∈ kerΠ, μ⊗ ν ≥ f} ,

so that

Kc(μ, ν) =
∑
x,y

c(x, y)μ(x)ν(y)−sup

{∑
x,y

c(x, y)f(x, y)

∣∣∣∣∣ f ∈ kerΠ, μ⊗ ν ≥ f

}
.

Let us show that the convex set

A = {f | f ∈ kerΠ, μ⊗ ν ≥ f}

is, in fact, a compact convex set. In fact, for each f ∈ A and all (x, y), it holds

f(x, y) = −
∑
u �=y

f(x, u) ≥ −
∑
u �=y

μ(x)ν(u) = μ(x)ν(y)− μ(x) ≥ −μ(x) .

The same argument applies to the other variable, so that f(x, y) ≥ −(μ(x) ∧
ν(y)). In conclusion,

A = kerΠ ∩ {f |μ(x)ν(y) ≥ f(x, y) ≥ −μ(x) ∧ ν(y), x, y ∈ X} .

In turn, this allows to give a proof of the following continuity result.

Proposition 2.2. The mapping (μ, ν) �→ Kc(μ, ν) is continuous in the topology
of RX ⊕ R

X .

Proof. This is an application of Berge’s Maximum Theorem, see, for example,
[1, § 17.5]. Here is a sketch of a proof. As the function to optimize is continuous,
one has to show that the mapping (μ, ν) �→ A(μ, ν) is both upper and lower
hemicontinous, see the definitions in [1, § 17.2]. In our case, upper hemicontinu-
ity follows from the compactness. Lower hemicontinuity is proved by considering
a sequence (μn, νn) converging to (μ, ν) and noting that the elements of the se-
quence A(μn, νn) are convex and contained in an ε-neighborhood of A(μ, ν).
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As the Kantorovich problem is an LP problem, the duality theory applies,
see, for example, [3, § IV.8]. Equations (2.2) and (2.3) can be written in primal
standard form as

Kc(μ, ν) = inf
γ

〈c, γ〉 subject to Πγ = (μ, ν) , γ ≥ 0 .

The equivalent dual standard form is

sup
(φ,ψ)

〈(μ, ν), (φ, ψ)〉 subject to Πt(φ, ψ) ≤ c ,

that is,

Kc(μ, ν) = sup

{∑
z∈X

φ(z)μ(z) +
∑
z∈X

ψ(z)ν(z)

∣∣∣∣∣φ⊕ ψ ≤ c

}
, (2.5)

In fact, Πt(φ1, φ2) = φ1 ⊕ φ2 in the functional representation and = φ11
t + 1φt

2

in the matrix representation.
In this paper, we restrict our attention to the primal problem. However, the

dual problem is interesting in that the domain does not depend on μ, ν, but it
depends on the cost c only.

Let us observe that the feasibility domain {φ⊕ ψ} in the dual problem can
be further restricted. For a full presentation of the following argument, see [18,
§ 1.6]. If φ(x)+ψ(y) ≤ c(x, y), then φ1(x) = infy c(x, y)−ψ(y) has the following
properties:

(a) φ(x) ≤ φ1(x);
(b) φ1(x) + ψ(y) ≤ c(x, y);
(c) For each distance d on X, there is a constant K depending of d and c only

such that φ1(z)− φ1(z
′) ≤ Kd(z, z′).

The same argument applies to ψ. In conclusion, the feasible domain can be
restricted, without changing the maximum, to all pairs (φ, ψ) such that

φ(x) + ψ(y) ≤ c(x, y) , φ(z)− φ(z′) ≤ Kd(z, z′) , ψ(z)− ψ(z′) ≤ Kd(x, y) .
(2.6)

In particular, the optimal pair satisfies all the conditions above.
When the cost c is a distance (denoted, if any confusion could arise, by d),

then the Kantorovich construction induces a distance on probability functions.
Moreover, it is possible to define metric geodesics and hence, a proper geometry
associated to the given distance. The following proposition provides the details.
The extension property is a key characteristic of the K-distance which is not
shared by other statistical measures of divergence.

Proposition 2.3. Assume that the cost function in Equation (2.4) is a dis-
tance d.

1. The Kd value is a distance that extends the ground distance, that is, the
K-distance between two Dirac probability functions equals the distance be-
tween the respective supports.
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2. Given μ, ν ∈ Δ(X), the mixture curve μ(t) = (1− t)μ+ tν, 0 ≤ t ≤ 1, is
a metric geodesic for the K-distance, that is,

Kd(μ(t), μ(s)) = (t− s)Kd(μ, ν) , 0 ≤ s ≤ t ≤ 1 .

3. If γ̃ is optimal for d(μ, ν), then the coupling defined by

γ̃(x, y; s, t) = [(1− t)μ(x) + sν(y)] (x = y) + (t− s)γ̃(x, y) ,

with (x = y) = 1 if x = y, 0 otherwise, is optimal for Kd(μ(s), μ(t)).

Proof. This proof is known from the quoted literature. We repeat it here for
sake of completeness.

Given the existence of optimal couplings, we can write

Kd(μ, ξ) =
∑
x,z

d(x, z)γ1(x, z) and Kd(ξ, ν) =
∑
z,y

d(z, y)γ2(z, y) .

Moreover,

γ(x, y) =
∑

{z | ξ(z)>0}

γ1(x, z)γ2(z, y)

ξ(z)

defines a coupling γ of μ and ν whose value is less than or equal to the sum of
the two values. Notice that d must be a distance because we want to use the
triangle inequality to check the last statement.

The other two statements are proved together. First, one checks that γ̃(s, t)
is indeed a coupling of μ(s) = (1−s)μ+sν and μ(t) = (1−t)μ+tν, and its value
is (t − s)Kd(μ, ν). It follows that Kd(μ(0), μ(s)) ≤ sKd(μ, ν), Kd(μ(s), μ(t)) ≤
(t−s)Kd(μ, ν), andKd(μ(t), μ(1)) ≤ (1−t)Kd(μ, ν). But none of the inequalities
can be strict, because otherwise,

Kd(μ, ν) ≤ Kd(μ(0), μ(s)) +Kd(μ(s), μ(t)) +Kd(μ(t), μ(1)) <

(s+ (t− s) + (1− t))Kd(μ, ν) = Kd(μ, ν) .

This concludes the proof.

The previous proposition does not rule out the existence of multiple geodesics
between two points.

We will take also advantage of the following definition from the algebraic
theory of two-way contingency tables, see, for example, [15] and [2]. Remember
that the affine space of the convex polytope P(μ, ν) is the vector space generated
by the differences γ1 − γ2, γ1, γ2 ∈ P(μ, ν). Clearly, the margins of the elements
of the affine space are null.

Definition 2.2. A move is a real valued function M defined on X × X and
with null margins,

∑
x M(x, y) =

∑
y M(x, y) = 0. An integer move is an integer

valued move. It is a simple move if it takes values in {−1, 0, 1}. It is a basic move
if it is of the form

δx1 ⊗ δy1 − δx1 ⊗ δy2 − δx2 ⊗ δy1 + δx2 ⊗ δy2 =

(δx1 − δx2)⊗ (δy1 − δy2) , x1 �= x2, y1 �= y2 .
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Throughout this paper, we write {M > 0} to denote the set of indices
{(x, y) | M(x, y) > 0}, and similarly for {M < 0}.

Notice that there are
(
n
2

)2
different basic moves up to the sign. They are

not linearly independent. We prove below that, given a pivot point (u, v), the
(n− 1)2 basic moves of the type (δx − δu)⊗ (δy − δv), with x �= u, y �= v, form
a basis of the set of moves as vector space.

Proposition 2.4. The vector space M(X × X) of moves is the kernel of the
marginalization mapping

Π: Rn×n � A �→ (A1, At1) ∈ (Rn,Rn) .

The dimension of kerΠ is (n − 1)2. For each u, v ∈ X, the set of basic moves
(δu − δx) ⊗ (δv − δy), x, y ∈ X, x �= u and y �= v, is a basis of M(X × X).
Moreover, it holds

M =
1

# {M > 0}
∑
x,y

M(x, y)
∑

u,v : M(u,v)>0

(δx − δu)⊗ (δy − δv) . (2.7)

Proof. Note first that the image of the marginalization mapping is a space of di-

mension (2n−1), precisely
{
(f, g) ∈ R

2n
∣∣∣∑x f(x) =

∑
y g(y)

}
. In fact 1tA1 =

1tAt1, and, given any pair of margins f and g such that
∑

x f(x) =
∑

y g(y),
the outer product f ⊗ g is a counter-image. It follows that the dimension of the
kernel is n2 − (2n− 1) = (n− 1)2.

Every basic move (δu − δx) ⊗ (δv − δy) is clearly an element of the ker-
nel. Let us find a basis of M. Let M ∈ M and fix u, v ∈ X. As M(u, v) =
−
∑

x �=u M(x, v) =
∑

x �=u,y �=v M(x, y), with straightforward computations one
obtains

M =
∑

x �=u,y �=v

M(x, y)(δx − δu)⊗ (δy − δv) .

Equation (2.7) now follows immediately adding over all u, v such that M(u, v) >
0.

We have shown that every move M is a linear combination of the (n − 1)2

basic moves (δx − δu)⊗ (δy − δv), x �= u and y �= v. In particular, all other basic
moves are combination of these special moves. More generally, if M is a simple
move,

M =
∑

M(x,y)=+1

(δx − δu)⊗ (δy − δv)−
∑

M(x,y)=−1

(δx − δu)⊗ (δy − δv) .

In spite of the (n− 1)2 pivotal moves around (u, v) form a linear basis of the
vector space of moves, we will need to use all basic moves in order to perform a
connected random walk that stays in the polytope P (μ, ν), see [20].
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Proposition 2.5. The move M is the difference of two couplings, γ, γ ∈ P (μ, ν)
if, and only if, both hold∑

y

|M(x, y)| ≤ 2μ(x) and
∑
x

|M(x, y)| ≤ 2ν(y) ,

for all x, y ∈ X.

Proof. If γ, γ ∈ P (μ, ν), then M = γ − γ is a move such that∑
y

|M(x, y)| =
∑
y

|γ(x, y)− γ(x, y)| ≤
∑
y

γ(x, y) +
∑
y

γ(x, y) = 2μ(x) ,

∑
x

|M(x, y)| =
∑
x

|γ(x, y)− γ(x, y)| ≤
∑
x

γ(x, y) +
∑
x

γ(x, y) = 2ν(x) .

Conversely, assume M is a move, decomposed in its positive and negative part,
M = M+ −M−, such that∑

y

|M(x, y)| =
∑
y

(M+(x, y) +M−(x, y)) ≤ 2μ(x) ,

∑
x

|M(x, y)| =
∑
x

(M+(x, y) +M−(x, y)) ≤ 2ν(y) .

As
∑

y M
+(x, y) =

∑
y M

−(x, y) and
∑

x M
+(x, y) =

∑
x M

−(x, y), we have

a(x) =
∑
y

M+(x, y) =
∑
y

M−(x, y) ≤ μ(x)

b(y) =
∑
x

M+(x, y) =
∑
x

M−(x, y) ≤ ν(y) .

Notice that
∑

x a(x) =
∑

y b(y) = h, so that there exist a non-negative M∗ : X×
X → R whose margins are (μ − a) and (ν − b), respectively, and whose grand
total is 1− h.

The equations

γ(x, y) = M+(x, y) +M∗(x, y) , γ(x, y) = M−(x, y) +M∗(x, y) ,

provide the required coupling.

Proposition 2.6. Every move M is of the form

M = α1F1 + · · ·+ αkFk ,

where α1, . . . , αk > 0 and F1, . . . , Fk are simple moves. Moreover, it is possible
to choose the basic moves in such a way that, for the sequence of remainders
Mj = M − (α1F1 + · · ·+ αjFj), j = 1, . . . , k, it holds

{Mj−1 > 0} ⊃ {Mj > 0} and {Mj−1 < 0} ⊃ {Mj < 0} .
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Proof. Let M be a move and define the two sets of indices M+ = {M > 0},
M− = {M < 0}. Without restriction of generality, assume that the first projec-
tion of M+ has n points. Let us define a directed bipartite graph with vertices
M+ ∪ M− as follows. For each (x, y) ∈ M+ there is a edge going to (x, ȳ) if
(x, ȳ) ∈ M−. For each (x, y) ∈ M− there is an edge going to (x̄, y) if (x̄, y) ∈ M+.
Edges of the first type are horizontal in the table, while edges of the second type
are vertical. At least one edge of the first type always exists for each x because
the sum over that row is null. The same holds for each column y.

By construction, there are at least 2n edges in the graph and at most 2n
vertices. Hence, there is at least one irreducible cycle with even length, say 2m.
Fix a starting point in M+ and enumerate the vertices as

(x1, y1) → (x1, ȳ1) → (x̄1, ȳ1) = (x2, y2) → · · ·
(x̄m−1, ȳm−1) = (xm, ym) → (xm, ȳm) → (x̄m, ȳm) = (x1, y1) .

Let us construct a simple move from the cycle above. Observe that

F =

m∑
j=1

δxj ⊗ δyj −
m∑
j=1

δxj ⊗ δȳj =

m∑
j=1

δx̄j−1 ⊗ δȳj−1 −
m∑
j=1

δxj ⊗ δȳj ,

where the indices in the second expression are computed mod m. The first
expression shows that the first margin is zero, while the second expression shows
that the second margin is zero.

For each positive α, the move M ′ = M−αF subtracts from the values in M+

and adds to the values in M−. If α = min |M |, then the operation cancels at
least one non-zero value of M . As a consequence, #Supp (M ′) < #Supp (M).

Now the proposition is proved by a finite number of applications of the pre-
vious step.

We are interested in the characterisation of moves which are the difference of
two coupling, where the first one is fixed.

Definition 2.3. A move M is admissible for the coupling γ ∈ P(μ, ν) if γ =
γ − αM ≥ 0 for some α > 0, that is, γ = γ − αM ∈ P (μ, ν). In other words, a
move is admissible for γ, if, and only if, {M > 0} ⊂ Supp (γ).

The couplings γ and γ are related to each other through M and α. In par-
ticular, the cost of γ depends on α, on the cost of γ, and on the cost of M . We
are especially interested in M being a simple move. In such a case,

c(γ) = c(γ)− α

⎛⎝ ∑
{M=+1}

c(x, y)−
∑

{M=−1}
c(x, y)

⎞⎠ ,

so that the value c(γ) < c(γ) if, and only if,∑
{M=+1}

c(x, y) >
∑

{M=−1}
c(x, y) .

Now, this property can be restated in a more specific form.
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Proposition 2.7. Let M be a simple move and let (xi, yi), i = 1, . . . , k, be any
sequence of {M = +1}. It holds

M =

k∑
i=1

δxi ⊗ δyi −
k∑

i=1

δxi ⊗ δyσ(i)
, (2.8)

for a permutation σ ∈ Sk.

Proof. Clearly, the two sets {M = +1} and {M = −1} have the same number
of points. Let (xj , yj), j = 1, . . . , k, be an arbitrary sequencing of the second
one. The move is

k∑
i=1

δxi ⊗ δyi −
k∑

j=1

δxj
⊗ δyj

.

The first margin is

∑
y

F (x, y) =
k∑

i=1

δxi −
k∑

j=1

δxj
= 0 .

It follows that xj = xσ′(i) for some permutation σ′ ∈ Sk. Considering the second
margin, we find yj = yσ′′(j) for some permutation σ′′ ∈ Sk. Now the required
identity follows by taking σ = σ′′σ′ −1.

From Equation (2.8), it follows that the c-cost of a simple move M can be
written as

c(M) =

k∑
i=1

c(xi, yi)−
k∑

i=1

c(xi, yσ(i)) . (2.9)

The condition in Equation (2.9) appears in the literature under the name
given in the following definition. This name is due to Rockafellar [16, §24], who
considered a similar property as a condition for a multi-mapping to be the sub-
differential of a convex function.

Definition 2.4. A set of directed edges G ⊂ X × X is said to be cyclically
monotone for the cost c if for each sequence (xi, yj)

k
i=1 in G, and each permu-

tation σ ∈ Sk, it holds

k∑
i=1

c(xi, yi) ≤
k∑

i=1

c(xi, yσ(i)) . (2.10)

The cyclical monotonicity for the cost c of Supp (γ) is a known sufficient and
necessary condition for the optimality of γ in the corresponding Kantorovich
problem. It is the so-called Fundamental Theorem of Optimal Transport, see,
for example, [18, § 1.6]. Here, we want to discuss the same topic in the algebraic
language of moves by using the following simple equivalence.

Proposition 2.8. A set G ⊂ X × X is c-cyclically monotone if, and only if,
each simple move M such that {M > 0} ∈ G has non-positive value.
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Proof. Assume there exists a sequence in G such that (2.10) does not hold. This
is equivalent to saying the corresponding move has a positive value and support
contained in G.

We restate the Fundamental Theorem as follows. The proof is to be found,
for example, in [18, § 1.6]. We will provide a different proof in the next section.

Proposition 2.9. The coupling γ in P (μ, ν) has minimal c-cost if, and only
if, each admissible simple move has a non-positive c-cost.

Now we briefly discuss the algebraic properties of simple moves, see [19].
Proposition 2.7 shows that, given a set G = {(xi, yi) | i = 1, . . . , k} ⊂ X × X

and a permutation σ ∈ Sk, there exists a simple move M(G, σ) =
∑k

i=1 δxi ⊗
δyi − δxi ⊗ δyσ(i)

, and, conversely, every simple move is of this type. Notice that
the representation is not unique, because if σ(i) = i, then the two corresponding
terms cancel.

Let us consider first the effect of the composition of two permutations. If
σ = π1π2, then

M(G, σ) =

k∑
i=1

δxi ⊗ δyi − δxi ⊗ δyσ(i)
=(

k∑
i=1

δxi ⊗ δyi − δxi ⊗ δyπ2(i)

)
+

(
k∑

i=1

δxi ⊗ δyπ2(i)
− δxi ⊗ δyπ1π2(i)

)
=

M(G, π2) +M(π2G, π1) ,

where π2G =
{
(xi, yπ2(i))

∣∣ i = 1, . . . , k
}
.

Now, every permutation is a product of circular permutations. Consider
for example, the case σ = π1π2, where π1, π2 are circular permutations with
support I1 and I2, respectively. Choose a coding such that I1 = {1, . . . , h},
I2 = {h+ 1, . . . , k}. It follows that

M(G, σ) =

h∑
i=1

(
δxi ⊗ δyi − δxi ⊗ δyi+1

)
+

k∑
j=h+1

(
δxj ⊗ δyj − δxj ⊗ δyj+1

)
.

That is, every simple move is the sum of simple moves associated to a circular
permutation on disjoint supports. In turn, this shows that the support of a
simple move is a union of cycles.

Last case to consider is the case of a permutation given as a product of ex-
changes. If π = (i ↔ j), and G = {(x1, y1), (x2, y2)}, then the simple move is
δx1 ⊗ δy1 + δx2 ⊗ δy2 − δx1 ⊗ δy2 − δx2 ⊗ δy1 , which is, in fact, a basic move.
Indeed, every simple move is the sum of basic moves. This is a representation
different from that obtained by considering a linear basis because the represent-
ing basic moves depend on the original simple move. They are not restricted to
be elements of a basis.
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We conclude this section highlighting that the optimality is related with the
existence of cycles in the support of the coupling, as the following proposition
suggests.

Proposition 2.10. Let γ ∈ P(μ, ν) be a coupling such that Supp (γ) contains
a cycle and assume that the cost is a distance, denoted by d. Then there exists
a coupling γ∗ ∈ P (μ, ν) such that d(γ∗) ≤ d(γ) and γ∗ − γ is proportional to a
simple move.

Proof. First assume that Supp (γ) has a cycle with two elements of the form
x1 � x2. In this case the basic move (δx1 − δx2)⊗ (δx2 − δx1) clearly deletes the
cycle and reduces the cost, with α = min{γ(x1, x2), γ(x2, x1)}.

Assume now that Supp (γ) contains a cycle of length greater than 2. Two
cases arise.

If there are two concordant consecutive arrows of the form x1 → x2 →
x3, then the move (δx1 ⊗ δx2 + δx2 ⊗ δx3) − (δx1 ⊗ δx3 + δx2 ⊗ δx2), with α =
min{γ(x1, x2), γ(x2, x3)}, is admissible and reduces the cost by virtue of the
triangular inequality,

d(x1, x2) + d(x2, x3)− d(x1, x3)− d(x2, x2) ≥ 0 .

Moreover, applying this move, the original cycle is replaced by a cycle with one
edge less.

Finally, if all consecutive edges of Supp (γ) are discordant, such as in

x1 → x2 ← x3 → x4 ← x5 → x6 ← x1 ,

then an integer move (not necessarily basic) can be applied both with positive
and negative sign. For the example above, the relevant move is

(δx1 ⊗ δx2 + δx3 ⊗ δx4 + δx5 ⊗ δx6)− (δx1 ⊗ δx6 + δx3 ⊗ δx2 + δx5 ⊗ δx4) .

Choosing a sign such that the cost does not increase, and

α = min{γ(1, 2), γ(3, 4), γ(5, 6)} or α = {γ(1, 6), γ(3, 2), γ(5, 4)}

depending on the sign, one edge of the circuit is deleted.
Notice that all the moves used to reduce a cycle do not produce new cycles

because their supports are contained in the relevant cycle.

3. Couplings, homophily, and moves

Early in the 20th century, Gini [10] defined the notion of index of homophily
for a sample (xi, yi)

N
i=1 of a bi-variate real random variable (X,Y ). His aim was

to discuss a general notion of statistical dependence by comparing the value of
E (|X − Y |) with its minimum and maximum value in the class of joint prob-
ability functions with the same margins. Based on that, Gini introduced an
associated statistical index that was extensively studied in the following years
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by himself and by others, especially by Salvemini [17] and Dall’Aglio [6]. A mod-
ern account of the Gini methods is to be found in the monograph by Yitzhaki
and Schechtman [23]. Below we describe his work in the context of the subse-
quent developments by Kantorovich, who was inspired more by early work by
Monge on OT than by Gini’s methodological ideas. Here we use Gini’s method
as an intermediate tool to solve more general Kantorovich problems.

Given a bi-variate real sample (xi, yi)
N
i=1, let us sort in ascending order both

the first and the second variables, respectively,

x(1) ≤ x(2) ≤ . . . ≤ x(N) ,

y(1) ≤ y(2) ≤ . . . ≤ y(N) .

This operation produces a new bi-variate sample (x(i), y(i)), i = 1, . . . , N , with
the same marginal sample distributions as the original one. Gini calls it the
co-graduation of the original sample.

Clearly, this is a special case of the general theory of coupling, because the
original discrete sample distribution and its co-graduation have the same mar-
gins.

The difference between the original sample distribution and the co-graduation
is the simple move

N∑
i=1

δxi ⊗ δyi −
N∑
i=1

δxσ′(i) ⊗ δyσ′′(i) ,

where σ′ and σ′′ are permutations of SN that provide the sorting of each of the
two sequences.

More generally, we can say that two finite real sequences f, g : {1, . . . , N} →
R are co-monotone (resp. counter-monotone) if

(f(i)− f(i+ 1))(g(i)− g(i+ 1)) ≥ 0 (resp. ≤ 0) , i = 1, . . . , N − 1 .

Clearly, two finite real sequences are co-monotone if they are co-graduated,
and two co-monotone sequences are turned into two co-graduated sequences by
a suitable common permutation.

We observe that, if a joint probability function has rational probabilities, then
it can be simulated by a finite sequence of couplings. The following proposition
is the original Gini’s theorem. Notice that the theorem provides a special case
of cyclical monotonicity for the distance d(x, y) = |x− y|.
Proposition 3.1. Given a finite real double sequence (xi, yi)

N
i=1, with joint

sample distribution γ and marginal distributions μ and ν, the joint distribution
of each bi-variate sequence

(xσ′(i), yσ′(i))
N
i=1 , σ′, σ′′ ∈ SN

is a coupling of (μ, ν). The index

MG(σ
′, σ′′) =

N∑
i=1

∣∣xσ′(i) − yσ′′(i)

∣∣
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is minimum when the two sequences are co-monotone and is maximum when
they are counter-monotone.

Proof. It is enough to consider (as Gini himself does) the co-graduated (respec-
tively counter-graduated) case. Consider each pair of successive indices i and
i+ 1. Note first that both∣∣xσ′(i) − xσ′(i+1)

∣∣+∣∣yσ′′(i) − yσ′′(i+1)

∣∣ and ∣∣xσ′(i) − yσ′′(i+1)

∣∣+∣∣yσ′′(i) − xσ′(i+1)

∣∣
have the lower bound∣∣(xσ′(i) + yσ′′(i))− (xσ′(i+1) + yσ′′(i+1))

∣∣ .
Enumeration of all possible cases of signs of the differences shows that the

minimum is actually the lower bound above and it occurs when the two se-
quences are co-monotone.

Remark 3.1. From the point of view of transport theory, we have found that
the coupling of maximal index is obtained through the cross-tabulation of the
two co-graduated marginal distributions. In modern terms, we can say that Gini
has found the L1-optimal coupling of the two marginal distributions when the
frequencies are rational.

Example 3.1. Assume the bi-variate distribution is represented in a table where
the values of the two margins are ordered. If the marginal counts are 4, 6, 2, 4,
for the first variable, and 2, 11, 2, 1, for the second one, then the co-graduation
of the two variables is

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
x 1 1 1 1 2 2 2 2 2 2 3 3 4 4 4 4
y 1 1 2 2 2 2 2 2 2 2 2 2 2 3 3 4

The table of maximal homophily H is obtained by pairing these values,⎛⎜⎝
⎞⎟⎠

2 2 0 0 4
0 6 0 0 6

H = 0 2 0 0 2
0 1 2 1 4
2 11 2 1

and MG = 8.

Proposition 3.1 states that∑
i,j

|ai − bj |n(i, j)−
∑
i,j

|ai − bj |nco(i, j) ≥ 0

where ai and bj are the values of the two margins, respectively, and n(i, j) and
nco(i, j) are the counts in the original table and in H, respectively. The previous
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argument applies to tables of counts, that is, when the frequencies are rational
numbers.

More generally, the table H of the example above could be derived from
the margins by the so called North-West rule, that is, moving left to right and
top to bottom each cell gets the maximum value compatible with the marginal
constraints. See the history of the earlier results in [7]. We are going to see
that the North-West rule does produce the maximal homophily coupling in the
general discrete case.

In the following, without restriction of generality, consider the case where
both the values of x and y are {1, . . . , n}. In this way we have a natural total
order on the sample space.

Proposition 3.2. Let H = [n(i, j)]ni,j=1 be the maximal homophily table. Then
for all pairs (i, j) it holds

n(i, j) = min

⎧⎨⎩n(i,+)−
∑
k<j

n(i, k), n(+, j)−
∑
h<i

n(h, j)

⎫⎬⎭
= min

⎧⎨⎩∑
k≥j

n(i, k),
∑
h≥i

n(h, j)

⎫⎬⎭ . (3.1)

Proof. For each pair of indices (i, j), consider (h, j), h > i, and (i, k), k > j. Let
us show that n(h, j) and n(i, k) cannot be both positive. In fact, assume there
exists t1 and t2 such that xt1 = h, yt1 = j, xt2 = i, yt2 = k. Necessarily, t1 �= t2.
As x is non-decreasing and xt1 > xt2 , it holds t1 > t2. As y is non-decreasing
and yt1 < yt2 , it holds t1 < t2. We have obtained a contradiction and we have
shown that only one of the two counts left and down can be positive.

More precisely, if n(i, k) > 0 for some k > j then n(h, j) = 0 for all h > i,
that is, if the rest of the row is not all zero, then the rest of the column is. The
same holds exchanging rows and columns.

To conclude, write Equation (3.1) as

n(i, j) = min

⎧⎨⎩∑
k≥j

n(i, k),
∑
h≥i

n(h, j)

⎫⎬⎭ = n(i, j)+min

⎧⎨⎩∑
k>j

n(i, k),
∑
h>i

n(h, j)

⎫⎬⎭
and observe that at least one among

∑
k>j n(i, k) and

∑
h>i n(h, j) is zero.

Proposition 3.3. Given two probability functions μ and ν on X, the lexico-
graphic recursion

γH(i, j) = min

⎧⎨⎩μ(i)−
∑
k<j

γH(i, k), ν(j)−
∑
h<i

γH(h, j)

⎫⎬⎭ , i, j ∈ X , (3.2)

uniquely defines the homophily coupling γH ∈ P(μ, ν).
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Proof. First note that Equation (3.2) is well defined because the right hand side
of the equation involves pairs of indices which precede the current one (i, j).

We want γH to be non-negative with margins μ and ν, and
∑

i,j γH(i, j) = 1.
To prove the proposition, we proceed by recursion on the lines. Consider the
first element γH(1, 1) = min{μ(1), ν(1)}. If μ(1) = ν(1), then γH(1, 1) equals
the common value and all other elements in the first row and in the first column
are zero. Consider now the square sub-table with i, j = 2, . . . , N with the given
marginal values. In the case μ(1) < ν(1), then γH(1, 1) = μ(1) and all the other
elements of the first row are zero. The sub-table with i > 1 has the original
first margin and second margin equal to ν(1) − μ(1), ν(2), . . . , ν(N). The last
case is γH(1, 1) = ν(1) ≤ μ(1), when all the other entries of the first column are
zero. Suppose now that in the first row the entries until the position k − 1 are
γH(1, k) = ν(k) and γH(1, k) = μ1 −

∑
k<k ν(k). The subsequent entries of the

first row are zero, and the sum of the first row is equal to μ(1).
Now consider the sub-table with n − 1 rows and (n − k + 1) columns. The

row and column margins of such a table are:

(μ(2), . . . , μ(n)) and

⎛⎝−μ(1) +
∑
k≤k

ν(k), ν(k + 1), . . . , ν(n)

⎞⎠
respectively, and the table sums up to 1− μ(1).

As the above procedure does not depend on the normalization of the margins,
we can apply the procedure iteratively.

Example 3.2. Let us consider the probability functions μ = (0.5, 0.1, 0.1, 0.3)
and ν = (0.2, 0.2, 0, 2, 0.4). The H-coupling is⎛⎜⎝

⎞⎟⎠
0.2 0.2 0.1 0 0.5
0 0 0.1 0 0.1

γH(μ, ν) = 0 0 0 0.1 0.1
0 0 0 0.3 0.3
0.2 0.2 0.2 0.4

Theorem 3.1. Given two couplings γ, γ̃ ∈ P(μ, ν) there exist a sequence of basic
moves M1, . . . ,Mk and a sequence of real positive numbers α1, . . . , αk such that

γ̃ = γ −
k∑

i=1

αiMi

and

γ −
k∑

i=1

αiMi ∈ P(μ, ν)

for all k = 1, . . . , k.
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Noticing that the H-coupling is unique in P(μ, ν), the proof of the theorem
rests on the following proposition.

Proposition 3.4. Given a coupling γ ∈ P(μ, ν), there exist a sequence of basic
moves M1, . . . ,Mk and a sequence of real positive numbers α1, . . . , αk such that

γH(μ, ν) = γ −
k∑

i=1

αiMi

and

γ −
k∑

i=1

αiMi ∈ P(μ, ν)

for all k = 1, . . . , k.

Proof. We scan the table γ from (1, 1) to (1, n) in the first row, then from (2, 1)
to (2, n) in the second row and so on.

Let us consider the probability γ(i, j). If

γ(i, j) < min

⎧⎨⎩μ(i)−
∑
k<j

γ(i, k), ν(j)−
∑
h<i

γ(h, j)

⎫⎬⎭ (3.3)

then there exist indices i1 > i and j1 > j such that

γ(i, j1) > 0 γ(i1, j) > 0 .

Thus we can apply the basic move Mi,i1,j,j1 with +1 in (i, j1) and (i1, j), and
−1 in (i, j) and (i1, j1). Let αi,i1,j,j1 = min{γi,j1 , γi1,j} and we move from γ to
γ − αi,i1,j,j1Mi,i1,j,j1 .

Notice that for a given (i, j) only a finite number of moves can be applied
since at each step one probability in the i-th row or in the j-th column goes to
zero, and therefore the procedure ends in a finite number of steps.

In the following remark we show that the Euclidean distance in R is a typical
case where the optimal coupling is not unique.

Remark 3.2. Let us consider the following couplings with μ=(0.1, 0.25, 0.25, 0.4)
and ν = (0.5, 0.2, 0.2, 0.1).

γH =

⎛⎜⎜⎝
0 0 0 0

0.25 0 0 0
0.25 0 0 0
0 0.25 0.25 0

⎞⎟⎟⎠ γ1 =

⎛⎜⎜⎝
0 0 0 0
0 0.25 0 0

0.25 0 0 0
0.25 0 0.25 0

⎞⎟⎟⎠

γD =

⎛⎜⎜⎝
0 0 0 0
0 0.25 0 0
0 0 0.25 0

0.50 0 0 0

⎞⎟⎟⎠
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We observe that if the ground set is X = {1, 2, 3, 4} with the Euclidean distance
d(i, j) = |i − j|, then all the three couplings have the same c-cost, namely
c(γ) = 1.5, which is also equal to the Kantorovich distance. Although this
example is rather special, because it has one row and one column with zero
probability, nevertheless it allows us to show an example with several couplings
sharing the same c-cost by means of small tables.

Notice that the coupling γH is the coupling of maximum homophily, while
the coupling γD has the highest possible concentration on the main diagonal.

Moreover, all the mixtures of the three previous couplings have again c(γ) =
1.5, showing that the set of the optimal couplings is a face of the polytope. This
derives from the fact that with d(i, j) = |i − j| the basic moves involving one
diagonal cell, namely of the form Mi1,i2,i2,j2 , with i1 < i2 < j2, have a null
Kantorovich value.

The following proposition highlights an interesting connection between the
discrete and the continuous frameworks for the case of the Euclidean distance.
In the discrete case the optimality of the H-table follows from previous results,
and the optimality in the continuous case is derived.

Proposition 3.5. Given any pair of non-decreasing real sequences (xi)
N
i=1,

(yi)
N
i=1, with sample marginal distributions μN and νN , respectively, the ho-

mophily coupling γH coincides with the distribution of (xi, yi)
N
i=1 and hence it

minimizes ∑
i,j∈X

|xi − yj | γ(i, j)

among all couplings in P(μN , νN ). In general, given any pair of discrete proba-
bility functions μ and ν, γH(μ, ν) is optimal for the Euclidean distance in R.

Proof. The first part follows directly from Proposition 3.2. The second part
follows from the continuity of (μ, ν) �→ Kc(μ, ν), see Proposition 2.2.

The following result shows that the directed forest Supp (γ̃) generically con-
tains all loops, that is, vertices for which γ̃(x, x) > 0.

Proposition 3.6. Assume μ(x)ν(x) > 0 for some x ∈ X. If γ̃ is an optimal
coupling with γ̃(x, x) = 0, there exists an optimal coupling γ with γ(x, x) > 0
and γ(x, x) = γ̃(x, x) for x �= x.

Proof. Assume γ̃ is optimal and that for a vertex, say 1, it holds γ̃(1, 1) = 0.
Since μ(1)ν(1) > 0, there exist points, say 2 and 3, for which γ̃(1, 2)γ̃(3, 1) > 0.
Pick up the move

M = δ1 ⊗ δ2 + δ3 ⊗ δ1 − δ3 ⊗ δ2 − δ1 ⊗ δ1

as well as any number α ∈ (0,min{γ̃(1, 2), γ̃(3, 1)}].
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It is easily checked that the function γα = γ̃ − αM ∈ P(μ, ν) whose value is

d(μ, ν)− α(d(1, 2) + d(3, 1)− d(3, 2)) ,

and where d(1, 2) + d(3, 1) − d(3, 2) ≥ 0 is true by the triangle inequality. The
equality must hold, otherwise the value would be strictly smaller than the K-
distance. In conclusion, γα is an optimal coupling with γα(1, 1) > 0 and with
all the other diagonal elements equal to those of the original γ̃.

Remark 3.3. By repeating the previous argument, we can show that in the
case of μ and ν with full support there exists an optimal solution with positive
diagonal elements. It should be noticed from the necessary equality d(1, 2) +
d(3, 1) = d(3, 2) that solutions with zero elements on the diagonal are not
generic.

Remark 3.4. Notice that the previous proposition is no longer true if we replace
a distance with a dissimilarity. Let us consider for example the probability func-
tions μ = (0.5, 0.2, 0.3) and ν = (0.3, 0.2, 0.5). Moreover, let X be equipped with
the following dissimilarity matrix⎛⎝0 1 5

1 0 1
5 1 0

⎞⎠
An optimal γ is

γ1 =

⎛⎝0.3 0.2 0
0 0 0.2
0 0 0.3

⎞⎠
with one null diagonal entry. If we apply a basic move in order to fill in the
second diagonal element, we obtain the coupling

γ2 =

⎛⎝0.3 0 0.2
0 0.2 0
0 0 0.3

⎞⎠
which is not optimal.

Next proposition asserts that the support of an optimal coupling is generically
a connected graph. A detailed study how the support of an optimal coupling
depends on the given distance has been made in [12].

Proposition 3.7. If the support of the optimal coupling γ̃ is a disconnected
graph, with connected components (Xi,Si), i = 1, . . . , k, then μ(Xi) = ν(Xi)

for all i = 1, . . . , k and γ̃ =
∑k

i=1 γi, where each γi is supported by Xi × Xi

and is proportional to an optimal coupling for the conditional margins, μ|Xi

and ν|Xi
.

Proof. Without restriction of generality, we consider the case k = 2. Assume
the supporting graph of γ̃ has components (X1,S1) and (X2,S2). This means
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that γ̃(x, y) = 0 unless x and y belong both to X1 or both to X2. It follows
that

μ(X1) =
∑

x1∈X1

μ(x1) =
∑

x1,y1∈X1

γ̃(x1, y1) =
∑

y1∈X1

ν(y1) = ν(X1) ,

and, for the same reason, μ(X2) =
∑

x2,y2∈X2
γ̃(x2, y2) = ν(X2). Now, the K-

distance takes the conditional form

Kd(μ, ν) =
∑

x1,y1∈X1

d(x1, y1)γ̃(x1, y1) +
∑

x2,y2∈X2

d(x2, y2)γ̃(x2, y2) =∑
x1,y1∈X1

γ̃(x1, y1)
∑

x1,y1∈X1

d(x1, y1) γ̃|X1×X1
(x1, y1) +∑

x2,y2∈X2

γ̃(x2, y2)
∑

x2,y2∈X2

d(x2, y2) γ̃|X2×X2
(x2, y2) .

Each of the conditioned couplings γ̃|Xi×Xi
, i = 1, 2 is a coupling of the condi-

tioned margins μ|Xi
and ν|Xi

, and such couplings are necessarily optimal.

4. Multidimensional extension

In this section we extend the results in Proposition 3.3 to the case of joint
probability functions with three given margins.

Proposition 4.1. Given three probability functions μ, ν, and ζ, the joint prob-
ability function γH such that

γH(i, j, k) = min

⎧⎨⎩μ(i)−
∑

(j,k)≺(j,k)

γH(i, j, k),

ν(j)−
∑

(i,k)≺(i,k)

γH(i, j, k), ζ(k)−
∑

(i,j)≺(i,j)

γH(i, j, k)

⎫⎬⎭ (4.1)

is well defined, and it is unique. We name this joint probability function as the
joint probability function of maximal homophily. In Equation (4.1) the sign ≺ is
to be read in lexicographic order, e.g., (j, k) ≺ (j, k) if and only if either j < j
or j = j and k < k.

Proof. We prove that the definition in Equation (4.1) is the lifting of the bi-
variate H-coupling for μ and ν with respect to ζ. In other words, the defi-
nition for three variables is iterative. Consider the coupling γH(i, j) with the
indices (i, j) in lexicographic order, and build the table of maximal homophily
for γH(i, j) and ζ. From Equation (3.2), we have

γH(i, j, k) = min

⎧⎨⎩ζ(k)−
∑

(i,j)≺(i,j)

γH(i, j, k), γH(i, j)−
∑
k<k

γH(i, j, k)

⎫⎬⎭ .
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We check that the expression above leads to Equation (4.1).

γH(i, j, k) = min

⎧⎨⎩ζ(k)−
∑

(i,j)≺(i,j)

γH(i, j, k),

min

⎧⎨⎩μ(i)−
∑
j<j

γH(i, j), ν(j)−
∑
i<i

γH(i, j)

⎫⎬⎭−
∑
k<k

γH(i, j, k)

⎫⎬⎭
= min

⎧⎨⎩ζ(k)−
∑

(i,j)≺(i,j)

γH(i, j, k), μ(i)−
∑
j<j

γH(i, j)−
∑
k<k

γH(i, j, k),

ν(j)−
∑
i<i

γH(i, j)−
∑
k<k

γH(i, j, k)

⎫⎬⎭
= min

⎧⎨⎩ζ(k)−
∑

(i,j)≺(i,j)

γH(i, j, k),

μ(i)−
∑

(j,k)≺(j,k)

γH(i, j, k), ν(j)−
∑

(i,k)≺(i,k)

γH(i, j, k)

⎫⎬⎭
Example 4.1. Consider a joint sample distribution of three variables with mar-
ginal counts 4, 6, 2, 4 for the first variable and 2, 11, 2, 1 for the second variable,
as in Example 3.1, and 3, 3, 5, 5 for the third one. The co-graduation of the three
variables is

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
x 1 1 1 1 2 2 2 2 2 2 3 3 4 4 4 4
y 1 1 2 2 2 2 2 2 2 2 2 2 2 3 3 4
z 1 1 1 2 2 2 3 3 3 3 3 4 4 4 4 4

The four slices of the table of maximal homophily are:

z = 1 z = 2 z = 3 z = 4⎛⎜⎜⎝
2 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝
0 1 0 0
0 2 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝
0 0 0 0
0 4 0 0
0 1 0 0
0 0 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 1 0 0
0 1 2 1

⎞⎟⎟⎠
We now introduce the basic moves in the tri-variate case and we prove that

they are enough to connect all joint probability functions, using the same argu-
ments as in the bi-variate case. To ease the notation, we write only the indices
and we omit the symbol δ when considering the moves.

There are two types of basic moves: in the first type the +1 have a common
index, while in the second type the +1 have all different indices.
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Fig 2. Two basic moves in the tri-variate case. On the left, a move of the type T1, on the
right a move of the type T2. Black circles correspond to +1, white circles to −1.

Definition 4.1. Consider indices i �= i′, j �= j′, k �= k′. The tri-variate basic
moves on X ×X ×X are of two types:

T1: +1 in (i, j, k) and in (i, j′, k′), −1 in (i, j′, k) and in (i, j, k′), and similarly
the second +1 in (i′, j, k′) or in (i′, j′, k);

T2: +1 in (i, j, k) and in (i′, j′, k′) and −1

– in (i, j′, k′) and in (i′, j, k) or

– in (i′, j, k′) and in (i, j′, k) or

– in (i′, j′, k) and in (i, j, k′).

Two examples of basic moves are pictured in Figure 2.
We are now ready to extend Theorem 3.1 to the tri-variate case.

Theorem 4.1. Given two tri-variate joint probability functions γ, γ̃ ∈ P(μ, ν, ζ)
there exist a sequence of tri-variate basic moves M1, . . . ,Mk and a sequence of
real positive numbers α1, . . . , αk such that

γ̃ = γ −
k∑

i=1

αiMi

and

γ −
k∑

i=1

αiMi ∈ P(μ, ν, ζ)

for all k = 1, . . . , k.

Proof. We prove that from each joint probability function we can reach the
maximal homophily by using basic moves, following the same strategy as in the
proof of Theorem 3.4.

If the condition in Equation (4.1) is not satisfied, then there is an entry
(i, j, k) such that

γ(i, j′, k′) > 0, γ(i′′, j, k′′) > 0, γ(i′′′, j′′′, k) > 0

for suitable indices i′, i′′ �= i; j′′, j′′′ �= j; k′, k′′′ �= k.
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Algorithm 1: Simulated Annealing with final optimization step
Input: Two vectors μ and ν
Output: Configuration with minimum Kantorovich value
Data: Kantorovich function K, initial temperature τ0, number of MCMC steps B

1 Initialize: γ = μ⊗ ν; τ = τ0
2 for b in 1 : B do
3 Choose an admissible basic move M with −1 in (i1, j1) and (i2, j2)
4 Compute α = min{γ(i1, j2), γ(j2, i1)}
5 Generate u uniform in [0, α]
6 Define γ′ = γ − u ·M
7 if γ′ ≥ 0 then

8 Define p = min
{
exp(−(K(γ′)−K(γ)))1/τ , 1

}
9 Generate v uniform in [0, 1]

10 if p > v then
11 γ = γ′

12 Decrease τ

13 foreach M with i1 < i2 = j1 < j2 or j1 < j2 = i1 < i2 do
14 if α = min{γ(i1, j2)γ(i2, j1)} > 0 then
15 γ = γ − α ·M

Fig 3. Pseudo-code of the algorithm.

Let α = min{γ(i, j′, k′), γ(i′′, j, k′′), γ(i′′′, j′′′, k)}.
Then, define the integer move M with

• −1 in (i, j, k), (i′′, j′, k′) and (i′′′, j′′′, k′′);
• +1 in (i, j′, k′), (i′′, j, k′′) and (i′′′, j′′′, k).

Such a move, applied with the coefficient α above, satisfies the condition in Equa-
tion (4.1) in the point (i, j, k). The new points in (i′′, j′, k′) and (i′′′, j′′′, k′′) are
lexicographically greater than (i, j, k), so that scanning the joint probability
function from (1, 1, 1) lexicographically the procedure ends in a finite number
of steps.

Finally, note that if the move M lies in a slice (i.e., i = i′ = i′′ or j = j′ = j′′

or k = k′ = k′′) the move M is a basic move since one +1 and one −1 coincide.
In the other cases, the move M can be decomposed into two basic moves:

• M1 with −1 in (i, j, k) and (i′′, j′, k′), +1 in (i, j′, k′) and (i′′, j, k);
• M2 with −1 in (i′′, j, k) and (i′′′, j′′′, k′′), +1 in (i′′, j, k′′) and (i′′′, j′′′, k).

5. Algorithm

The Simulated Annealing for continuous variables has been introduced in [21],
then optimized in several ways for special applications. In its basics, a Simulated
Annealing algorithm seeks to find the minimum of a real function through a
Markov chain whose stationary distribution is uniform on the set of the global
minima. At each step, the Markov chain moves in a suitable set of neighbours
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Table 1

Acceptance probability of the first move of the MCMC for 4 ≤ n ≤ 20 and initial
temperature 10−2.6 ≤ τ0 ≤ 1.

10−2.6 10−2.4 10−2.2 10−2.0 10−1.8 10−1.6 10−1.4

4 0.5998 0.6406 0.6665 0.7150 0.7587 0.8049 0.8503
5 0.6515 0.6850 0.7257 0.7770 0.8138 0.8567 0.8944
6 0.6919 0.7236 0.7698 0.8098 0.8585 0.8929 0.9191
7 0.7260 0.7621 0.8036 0.8451 0.8822 0.9139 0.9405
8 0.7485 0.7879 0.8270 0.8664 0.9021 0.9302 0.9520
9 0.7724 0.8103 0.8532 0.8880 0.9142 0.9420 0.9572
10 0.7943 0.8357 0.8671 0.9005 0.9263 0.9496 0.9650
11 0.8142 0.8516 0.8815 0.9113 0.9371 0.9571 0.9702
12 0.8186 0.8648 0.8947 0.9217 0.9430 0.9629 0.9742
13 0.8352 0.8702 0.9064 0.9287 0.9520 0.9672 0.9764
14 0.8530 0.8847 0.9133 0.9368 0.9564 0.9702 0.9799
15 0.8631 0.8931 0.9206 0.9392 0.9606 0.9734 0.9818
16 0.8636 0.8991 0.9267 0.9466 0.9627 0.9759 0.9847
17 0.8757 0.9082 0.9301 0.9513 0.9674 0.9776 0.9850
18 0.8834 0.9126 0.9337 0.9533 0.9702 0.9790 0.9869
19 0.8927 0.9173 0.9419 0.9587 0.9710 0.9808 0.9878
20 0.8937 0.9195 0.9446 0.9629 0.9746 0.9827 0.9886

10−1.2 10−1.0 10−0.8 10−0.6 10−0.4 10−0.2 100

4 0.8901 0.9217 0.9437 0.9639 0.9766 0.9844 0.9900
5 0.9250 0.9473 0.9671 0.9763 0.9842 0.9903 0.9936
6 0.9450 0.9639 0.9751 0.9836 0.9895 0.9934 0.9958
7 0.9583 0.9721 0.9817 0.9878 0.9922 0.9950 0.9968
8 0.9660 0.9780 0.9856 0.9905 0.9937 0.9963 0.9976
9 0.9729 0.9824 0.9883 0.9926 0.9953 0.9970 0.9980
10 0.9765 0.9856 0.9899 0.9940 0.9961 0.9975 0.9984
11 0.9804 0.9880 0.9920 0.9948 0.9967 0.9979 0.9986
12 0.9833 0.9894 0.9932 0.9955 0.9971 0.9982 0.9989
13 0.9859 0.9907 0.9943 0.9960 0.9975 0.9984 0.9991
14 0.9868 0.9915 0.9945 0.9966 0.9978 0.9986 0.9991
15 0.9884 0.9925 0.9950 0.9969 0.9981 0.9988 0.9992
16 0.9901 0.9931 0.9961 0.9974 0.9983 0.9989 0.9993
17 0.9903 0.9938 0.9963 0.9975 0.9985 0.9991 0.9994
18 0.9917 0.9944 0.9964 0.9977 0.9986 0.9991 0.9994
19 0.9925 0.9949 0.9968 0.9981 0.9988 0.9992 0.9995
20 0.9930 0.9956 0.9971 0.9981 0.9989 0.9992 0.9995

and the transition probability is selected in order to have the desired stationary
distribution. For further details, see [11].

The basic moves introduced in the previous sections allow us to define the
neighbours and to obtain a connected chain. Moreover, we exploit the special
properties of the Kantorovich function, and through Proposition 3.6 we perform
one further optimization step.

The pseudo-code of the algorithm is given in Figure 3. To simplify the presen-
tation, we write the algorithm in the case of two-dimensional joint probability
functions, but it can be easily adapted to the three-dimensional case.

To choose the simulation parameters (i.e., the initial temperature τ0 and the
length of the Markov chain B), we have performed a preliminary simulation
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Table 2

Proportion of accepted moves after B iterations of the MCMC for 4 ≤ n ≤ 20 and B from
101 to 105.

101 102 103 104 105

4 0.0532 0.0079 0.0000 0.0000 0.0000
5 0.0829 0.0235 0.0004 0.0000 0.0000
6 0.1122 0.0382 0.0020 0.0000 0.0000
7 0.1437 0.0553 0.0049 0.0000 0.0000
8 0.1698 0.0730 0.0092 0.0000 0.0000
9 0.1975 0.0869 0.0129 0.0002 0.0000
10 0.2232 0.1054 0.0182 0.0006 0.0000
11 0.2470 0.1235 0.0213 0.0011 0.0000
12 0.2686 0.1403 0.0279 0.0020 0.0000
13 0.2867 0.1577 0.0325 0.0024 0.0000
14 0.3038 0.1754 0.0370 0.0036 0.0000
15 0.3194 0.1947 0.0417 0.0044 0.0000
16 0.3358 0.2055 0.0477 0.0051 0.0001
17 0.3440 0.2242 0.0524 0.0063 0.0001
18 0.3602 0.2406 0.0585 0.0072 0.0002
19 0.3690 0.2481 0.0623 0.0090 0.0004
20 0.3790 0.2664 0.0681 0.0097 0.0007

study for values of n ranging from 4 to 20. In the set {1, . . . , n}, the distance
used here is d(i, j) =

√
|i− j|.

In the first part of the simulation study, we have computed the acceptance
probability of the first move of the MCMC as a function of the initial tempera-
ture τ0. The results are displayed in Table 1. Each value is based on a sample of
10, 000 pairs of marginal probability functions μ, ν. Each entry of μ, ν is chosen
under the uniform distribution U [0, 1], and the two vectors are then normalized.

Remark 5.1. Our Simulated Annealing implementation has the independence
coupling as its starting point. This is because it is a joint probability distribution
far from the vertices of the polytope.

The initial temperature τ0 can be chosen reasonably small. For instance, if
we fix 0.95 as the acceptance probability of the first move, τ0 decreases with n
and ranges from 10−0.6 for n = 4 to 10−2.0 for n = 20.

In the second part of the simulation study, we have inspected when the
Markov chain does not produce new moves to evaluate the convergence of the
algorithm. For values of the number B of the MCMC steps ranging from 10
to 105, we have computed how many moves would be accepted in a window of
100 further steps. The simulation is based on 1, 000 pairs of marginal probabil-
ity functions μ, ν in each case, randomly chosen as in the previous part of the
study. The initial temperature for each n has been chosen from the first part
of the study, as outlined above. The temperature decrease function used here is
τ = τ0(0.95)

b, b = 1, . . . , B, but similar results are obtained for other choices,
namely τ = τ0(0.99)

b, τ = τ0/b, τ = τ0/ log(1 + b).

The proportions of accepted moves are displayed in Table 2. We observe that
for values of the number B of the MCMC steps ranging from 103 and 105 the
acceptance probability of a new move is less than 0.001.
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Table 3

Optimal coupling of Example 5.1 found by the Simulated Annealing.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.0732 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0976 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0352 0.0000 0.0294 0.0000 0.0000 0.0115 0.0100 0.0359 0.0000 0.0000
0.0000 0.0000 0.0000 0.0882 0.0000 0.0581 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.1471 0.0237 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0244 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0488 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0732 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0093 0.0882 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0581 0.0000 0.0882

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Example 5.1. For n = 10 consider the two margins μ and ν:

(0.0732, 0.0976, 0.1220, 0.1463, 0.1707, 0.0244, 0.0488, 0.0732, 0.0976, 0.1463),

(0.2059, 0.0000, 0.0294, 0.0882, 0.1471, 0.1176, 0.0588, 0.1765, 0.0882, 0.0882).

Using the distance d(i, j) =
√
|i− j|, and the numerical parameters from the

simulation study, the algorithm produces in less than one second the optimal
coupling shown in Table 3, whose c-cost is 0.4648.
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