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Thin-shell theory for rotationally invariant random
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Abstract

For fixed functions G,H : [0,∞)→ [0,∞), consider the rotationally invariant probabil-
ity density on Rn of the form

µn(ds) =
1

Zn
G(‖s‖2) e−nH(‖s‖2) ds.

We show that when n is large, the Euclidean norm ‖Y n‖2 of a random vector Y n

distributed according to µn satisfies a thin-shell property, in that its distribution is
highly likely to concentrate around a value s0 minimizing a certain variational problem.
Moreover, we show that the fluctuations of this modulus away from s0 have the order
1/
√
n and are approximately Gaussian when n is large.

We apply these observations to rotationally invariant random simplices: the simplex
whose vertices consist of the origin as well as independent random vectors Y n

1 , . . . , Y
n
p

distributed according to µn, ultimately showing that the logarithmic volume of the
resulting simplex exhibits highly Gaussian behavior. Our class of measures includes
the Gaussian distribution, the beta distribution and the beta prime distribution on
Rn, provided a generalizing and unifying setting for the objects considered in Grote-
Kabluchko-Thäle [Limit theorems for random simplices in high dimensions, ALEA 16,
141–177 (2019)].

Finally, the volumes of random simplices may be related to the determinants of
random matrices, and we use our methods with this correspondence to show that
if An is an n × n random matrix whose entries are independent standard Gaussian
random variables, then there are explicit constants c0, c1 ∈ (0,∞) and an absolute
constant C ∈ (0,∞) such that

sup
s∈R

∣∣∣∣∣∣P
 log det(An)− log(n− 1)!− c0√

1
2
logn+ c1

< s

− ∫ s

−∞

e−u2/2 du√
2π

∣∣∣∣∣∣ < C

log3/2 n
,
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1 Introduction

1.1 High-dimensional probability and random simplices

High-dimensional probability theory is concerned with random objects, their charac-
teristics, and the phenomena that accompany both as the dimension of the ambient space
tends to infinity. It is a flourishing area of mathematics not least because of numerous
applications in modern statistics and machine learning related to high-dimensional data,
for instance, in form of dimensionality reduction [14], clustering [46], principal compo-
nent regression [54], community detection in networks [22, 42], topic discovery [20], or
covariance estimation [16, 59]. High-dimensional probability bears strong connections
to geometric functional analysis and convex geometry and this propinquity is typically
reflected both in the flavor of a result and the methods used to obtain it. One of the
early results of the theory is commonly known as the Poincaré-Maxwell-Borel Lemma
(see [19]) and states that the first k coordinates of a point uniformly distributed over
the n-dimensional Euclidean ball (or sphere) of radius

√
n are independent standard

normal variables in the limit as n → ∞ with k fixed. Ever since, a variety of limit
theorems has been obtained, many of those with the purpose to understand the geom-
etry of high-dimensional convex bodies. Among others, there is Schmuckenschläger’s
central limit theorem related to the volume of intersections of `np -balls [52] and its
multivariate version by Kabluchko, Prochno, and Thäle who also obtained moderate
and large deviations principles [36, 37]. Then there is the prominent central limit
theorem for convex bodies proved by Klartag, showing that most lower-dimensional
marginals of a random vector uniformly distributed in an isotropic convex body are ap-
proximately Gaussian [41], and a number of other results in which limit theorems related
to analytic and geometric aspects of high-dimensional objects have been established
[3, 4, 5, 7, 10, 12, 15, 23, 31, 33, 35, 38, 39, 40, 44, 50, 51, 55, 57, 58].

1.2 Rotationally invariant random simplices

The focus of the current paper is rotationally invariant random simplices. Suppose
p, n ∈ N with 1 ≤ p ≤ n and that y1, . . . , yp are vectors in Rn, and consider the simplex

∆(y1, . . . , yp) :=

{ p∑
i=1

siyi : s1, . . . , sp ≥ 0 and
p∑
i=1

si ≤ 1

}
,

whose vertices are given by {0, y1, . . . , yp}. Whenever p ≤ n and the vectors y1, . . . , yp are
linearly independent, this simplex is a p-dimensional convex body within n dimensional
Euclidean space with non-zero p-volume, and this volume may be written [53, Section
8.7] in terms of the representation

Volp (∆(y1, . . . , yp)) =
1

p!

√
p

det
i,j=1
〈yi, yj〉, (1.1)

where 〈·, ·〉 is the standard Euclidean inner product on Rn and Volp the p-dimensional
Lebesgue measure. The primary focus of this paper is in the study of the asymptotics of
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the random variable

Wn,p := log Volp
(
∆(Y n1 , . . . , Y

n
p )
)

given by the logarithmic volume of a simplex whose vertices Y n1 , . . . , Y
n
p are independent

random vectors in Rn.
Before proceeding, let us mention here that various related models for random sim-

plices have been considered in the literature. Recently Akinwande and Reitzner obtained
multivariate central limit theorems for random simplicial complexes [1], Gusakova and
Thäle studied the logarithmic volume of simplices in high-dimensional Poisson-Delaunay
tessellations and obtained several types of limit theorems [26], and Grote, Kabluchko,
and Thäle [25] investigated the logarithmic volume for other classes of random simplices
such as those generated by Gaussian, Beta or the spherical distribution. We should
remark here that with a view to drawing on connections with random matrices, we study
random simplices for which the origin is a fixed vertex, where as in the chief focus of
Grote, Kabluchko, and Thäle are random simplices all of whose vertices are random.
A central limit theorem for random simplices arising from product distributions with
sub-exponential tails was treated by Alonso-Gutiérrez et al. in [2].

In view of the recent works [2] and [25], we work more generally, making the sole
restriction that the law of the simplex is invariant under rotations of the underlying space,
which occurs whenever the vectors Y n1 , . . . , Y

n
p are drawn independently according to a

probability distribution µ on Rn that is rotationally invariant, in the sense that

µ(T (A)) = µ(A)

for every Borel subset A of Rn and every linear orthogonal transformation T : Rn → Rn.
Given that a random variable Y is distributed according to a rotationally invariant
probability distribution, we can decompose Y so that

Y
d
= RΘ, (1.2)

where R
d
= ‖Y ‖2 is a [0,∞)-valued random variable independent of the random vector

Θ uniformly distributed on the Euclidean unit sphere Sn−1 :=
{

(xi)
n
i=1 :

∑n
i=1 x

2
i = 1

}
.

Here and elsewhere
d
= refers to equality in distribution. We would like to emphasize

that this framework encompasses the spherical, Gaussian, beta and beta prime models
considered in [25], where in these natural contexts as in many others the distribution of
the radial part R tends to vary with the underlying dimension n.

The radial decoupling (1.2) behaves agreeably with the determinant, in that if
{Yi = RiΘi : i = 1, . . . , p} are independent and identically distributed decompositions
of the law µ, by (1.1) we have the decoupling of the volume

Volp
(
∆(Y1, . . . , Yp)

)
=

1

p!

√
p

det
i,j=1
〈Yi, Yj〉

=
1

p!

(
p

det
i,j=1

(
‖Yi‖2‖Yj‖2

〈
Yi
‖Yi‖2

,
Yj
‖Yj‖2

〉))1/2

d
=

1

p!

(
p∏
k=1

Rk

)√
p

det
i,j=1
〈Θi,Θj〉. (1.3)

In particular, there are two independent sources of variance that contribute to the sim-

plicial volume: the product
∏p
k=1Rk and the spherical determinant

(
detpi,j=1〈Θi,Θj〉

)1/2
.

Before going any further, we take a moment to focus on this latter term, which we would
obtain in (1.3) if µ was the uniform distribution on the unit sphere Sn−1 in Rn, so that in
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the above decomposition each Ri would be equal to 1 almost surely. In this case it was
first observed by Miles [45] that we have the distributional identity

p

det
i,j=1
〈Θi,Θj〉

d
=

p−1∏
j=1

βn−j
2 , j2

, (1.4)

where the terms in the product on the right-hand side are independent random variables
such that each β(n−j)/2,j/2 is beta distributed with shape parameters (n− j/2, j/2).

Recall now that a random variable follows a beta distribution with shape parameters
α, β > 0 if it has Lebesgue density on [0, 1] given by

x 7→ Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1.

In view of (1.3) and (1.4), the logarithmic volume thus satisfies

log Volp
(
∆(Θn

1 , . . . ,Θ
n
p )
) d

= − log p! +
1

2

p−1∑
j=1

log βn−j
2 , j2

.

This representation of the log-volume of a spherical random simplex as a sum of in-
dependent random variables is utilized by Grote et al. [25] to obtain a Berry-Esseen
bound

dKS

(
Wn,p − E[Wn,p]√

Var[Wn,p]
, N

)
≤ C
√
p

for the logarithmic volume Wn,p of a random simplex with spherically distributed vertices,
where

dKS (X,N) = sup
r∈R

∣∣∣∣∣P [X < r]−
∫ r

−∞

e−u
2/2 du√
2π

∣∣∣∣∣
is the Kolmogorov-Smirnov distance between a random variable X and N . Throughout
this paper, N denotes a standard Gaussian random variable.

In fact, Grote et al. [25] find representations analogous to (1.4) suitable for simplices
with Gaussian, beta, and beta prime distributed vertices, and prove analogous Berry-
Esseen bounds in these settings.

1.3 An overview of our results

In this paper we work in a broad setting, considering random simplices whose vertices
are random vectors distributed according to one of a large class of rotationally invariant
probability distributions. We find that the volumes of these simplices exhibit a certain
interplay of high dimensional phenomena creating what might be described as extremely
Gaussian behavior. With a view to outlining these phenomena here, by combining the
decoupling representation (1.3) with the spherical identity (1.4) and taking logarithms,
we obtain the distributional identity

Wn,p := log Volp
(
∆(Y n1 , . . . , Y

n
p )
) d

= − log p! +
1

2

p−1∑
j=1

log βn−j
2 , j2

+

p∑
j=1

logRnj , (1.5)

constituting the starting point for our analysis. Since Wn,p has a representation of
order p independent random variables, it is natural to expect, provided the moments are
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Figure 1: Histograms of 400 simulated log Volp
(
∆(Y n1 , . . . , Y

n
p )
)
, properly centered and

standardized (as in [48]), for p = 300 and n = 1000. Left: Y ni uniformly distributed on
the unit sphere. Right: Y ni with i.i.d. standard normal components.

sufficiently regular, that when appropriately normalized, Wn,p converges at a speed 1/
√
p

in distribution to a standard Gaussian random variable; see Figure 1 for an illustration.
We find that in a host of natural settings (including Gaussian, beta and beta prime

simplices) the dimension n of the ambient space also contributes to creating Gaussian
behavior at a speed much faster than the 1/

√
p speed predicted by the Berry-Esseen

theorem. We prove this by way of a pincer strategy, handling differently the distinct sums
on the right-hand side of (1.5). More concretely, we will focus on random simplices in
which the random vectors Y n1 , . . . , Y

n
p are distributed according to a probability measure

of the form

µn(ds) =
1

Zn
G(‖s‖2) exp (−nH(‖s‖2) ds, (1.6)

where ‖s‖2 :=
(∑n

i=1 s
2
i

)1/2
is the `2-norm, G,H : [0,∞)→ [0,∞) are functions satisfying

some mild conditions and Zn is a normalization constant. This class of probability
measures includes the beta and beta prime models, as well as the Gaussian model (which
is obtained after rescaling by 1/

√
n). Let us briefly outline our results here in the case

where p ≤ θn for a fixed θ < 1:

• Consider the random variable

W Sph
n,p := log Volp

(
∆(Θn

1 , . . . ,Θ
n
p )
) d

= − log p! +
1

2

p−1∑
j=1

log βn−j
2 , j2

. (1.7)

Using a Fourier-analytic approach, we prove a fast Berry-Esseen bound for the
random variable W Sph

n,p , the word ‘fast’ being used here to indicate that the speed
of the bound exceeds 1/

√
p for p uniformly bounded away from n.

• The next major step in our work is a thin-shell type result for rotationally invariant
probability distributions of the form (1.6). Namely, we show that if X1, X2, X3 . . .
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is a sequence of independent random vectors such that each Xi takes values in Ri

and is distributed according to µi, then the sequence of their standardized log-radii

R̃i :=
log ‖Xi‖2 − E[log ‖Xi‖2]√

Var[log ‖Xi‖2]
, i ∈ N,

converges in distribution to a standard Gaussian random variable as i → ∞.
Theorem B below says something stronger however: there is a constant L =

L(G,H) ∈ (0,∞) depending on the functions G and H but independent of p and n
such that if Xn

1 , . . . , X
n
p are independent and identically distributed according to

µn, and R̃n1 , . . . , R̃
n
p are their associated normalised log-radii, then we have the fast

Berry-Esseen bound

dKS

(
R̃n1 + . . .+ R̃np√

p
, N

)
≤ L

(
1
√
pn

+ e−cp
)
,

where c > 0 is an absolute constant.
• The two prior results state that both

∑p
j=1 logRnj and

∑p−1
j=1 log βn−j

2 , j2
are both

within certain Kolmogorov-Smirnov distances of Gaussian random variables with
certain means and variances. These results may be combined fairly quickly using
a triangle inequality for Kolmogorov-Smirnov distances, leading to a proof of
Theorem C.

Finally, we drop assumption (1.6), which is used to relate the distribution of the
log-radius of the vectors Y ni to a Gaussian distribution, and consider more general
rotationally invariant random vectors Y ni . In particular, the log-radius might be in
the domain of attraction of an infinite variance stable distribution. Depending on the
relation between the tails of the log-radius of Y ni and the variance of W Sph

n,p we find that
the properly normalized log Volp

(
∆(Y n1 , . . . , Y

n
p )
)

either converges to a normal limit, an
infinite variance stable limit or a mixture between those two.

Overview of the remainder of the paper

The rest of the paper is structured as follows. In Section 2, we present our main
results. First, we present a fast Berry-Esseen theorem for the log-volume of the spher-
ical simplex which is then extended to rotationally invariant random simplices. As a
byproduct, we prove a Berry-Esseen type result for the sum of iid random variables
whose density resembles the Gaussian density.

In Section 2.3, we provide limit theory for the log-volume of the rotationally invariant
random simplices under general conditions, also allowing for very heavy-tailed distribu-
tions. Section 2.4 highlights the connection of our findings to random matrix theory. As
an application of our results we prove convergence of the logarithmic determinant of an
iid standard Gaussian random matrix at speed (log n)−3/2.

Section 3-7 are devoted to the proofs of the results in Section 2. In Section 3, we
begin with a careful analysis of random simplices whose vertices are p points chosen
uniformly on the unit sphere in Sn−1, culminating in a proof of Theorem A. In Section
4, we introduce our probabilistic approach to the Laplace method, ultimately working
towards a proof of Theorem B. Section 5 combines our work in the prior two sections
together to prove Theorem C. In the next section, Section 6, we give a short proof of
Theorem G, using some of the machinery developed in Section 3. Finally, all results from
Section 2.3 are proved in Section 7.

2 Main results

In this section we state our results in full.
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2.1 A fast Berry-Esseen theorem for the log-volume of the spherical simplex

Our first result is a Berry-Esseen bound for the spherical random simplex. Here, for
integers p ≤ n let

W̃ Sph
n,p :=

W Sph
n,p − E[W Sph

n,p ]√
Var[W Sph

n,p ]
(2.1)

denote the standardized log-volume of the spherical random simplex associated with p
points chosen independently and uniformly at random from Sn−1.

Theorem A. Let p, n ∈ N such that p ≤ n and W̃ Sph
n,p be the normalized log-volume of a

spherical simplex. Then there is a universal constant C ∈ (0,∞) such that whenever
p ≥ 41,

dKS

(
W̃ Sph
n,p , N

)
≤ C θ2

n(1− θ)
[
log 1

1−θ − θ
]3/2 ,

where θ := θ(p, n) := p−1
n . In fact, we may take C = 28.

We take a moment to unpack the bound in Theorem A by looking at the following
easily verified consequences:

• Fix φ ∈ (0, 1). Using the inequality log 1
1−θ − θ ≥ θ2/2 for θ ∈ [0, 1), it is easily

verified that whenever p−1
n = θ ≤ φ, we have

dKS

(
W̃ Sph
n,p , N

)
≤ Cφ
p− 1

,

where Cφ := 2
√

2C/(1− φ).

• On the other hand, for all p ≤ n by setting q := n− p+ 1 (so that q = n(1− θ)), we
have

dKS

(
W̃ Sph
n,p , N

)
≤ C

q(log(n/q)− 1)3/2
. (2.2)

Let us remark here that an analogous result to Theorem A appears in Section 3 of
Grote et al. [25, Theorem 3.6], who in contrast to us consider random simplices not
having the origin as a fixed vertex. They obtain a similar bound in the case where p−1

n

is bounded away from one, though their bound is weaker in the n− p = o(n) case; they
obtain C/ log1/2(n/q) in the setting of (2.2).

2.2 A Berry-Esseen theorem for the Laplace method

Our next result concerns the highly Gaussian behavior of the sums of the log-radii.
Here we take a moment to give a brief digression on the Laplace method, which states
that when g and h are suitably regular functions with h attaining a global minimum at
some x0 ∈ (a, b), then we have the asymptotics∫ b

a

g(x) e−nh(x) dx = (1 + o(1))

√
2π

nh′′(x0)
g(x0) exp(−nh(x0)) (2.3)

as n→∞. See e.g. [6]. The key conceptual point in the Laplace method is that, thanks
to the Taylor expansion nh(x0 + w/

√
n) ≈ w2h′′(x0)/2 +O(w3/

√
n), the integral in (2.3)

behaves roughly like a Gaussian integral around x0.
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Theorem B develops this idea further, stating that when n is large, random variables
whose probability distributions take the form (2.3) are approximately Gaussian. To set
this up, we require some conditions on the functions. For a fixed pair (g, h), we consider
probability density functions of the form

ρn(dx) =
1

Zn
g(x) exp (−nh(x)) dx, n ∈ N, (2.4)

where the Zn ∈ (0,∞) are normalization constants, and the ordered pair of functions
g, h : [0,∞)→ [0,∞) is admissible per the following definition.

Definition 2.1. Let g, h : R→ [0,∞) be two functions. We say the pair (g, h) is admissible
if and only if (a)-(c) hold.

(a) The density function ρn is differentiable almost-everywhere, and has a unique
maximum at a point x0 in R such that x0 is a minimum of h. Moreover, we assume
that ρn is increasing on (−∞, x0] and decreasing on [x0,∞).

(b) In a neighbourhood [x0 − δ, x0 + δ] of x0, h is twice differentiable. Moreover, if we
write

h(x) = h(x0) + h′′(x0)

(
1

2
(x− x0)2 + r(x)

)
and g(x) = g(x0)(1 + q(x− x0)),

then we have

|r(x)| ≤ 1

4δ
|x− x0|3 and |q(x)| ≤ 1

4δ
|x− x0|.

(c) Outside of this neighborhood, i.e., for each x ∈ R \ [x0 − δ, x0 + δ], there exist
constants α, c, C ∈ (0,∞) such that

h(x) ≥ c log(1 + |x− x0|) and g(x) ≤ C(1 + |x− x0|α).

As an immediate consequence of Theorem B below, all probability distributions with
densities of the form (2.4) that satisfy Definition 2.1 are in the domain of attraction of the
normal law. In particular, they include the Gaussian distribution, the Gamma distribution
and the beta distribution.

Our Berry-Esseen theorem for the Laplace method states that when n is large,
the normalized sum of p independent random variables distributed according to an
admissible density ρn is close in distribution to a standard Gaussian random variable N .

Theorem B. For an admissible pair (g, h) there is a constant Cg,h ∈ (0,∞) and n0 ∈ N
such that for all n ≥ n0 we have the following: if Xn

1 , . . . , X
n
p are independent random

variables with density ρn given by (2.4), then

dKS

(∑p
i=1X

n
i − pE[Xn

1 ]√
pVar[Xn

1 ]
, N

)
≤ Cg,h

(
1
√
pn

+ 2−p
)
.

The value of Theorem B lies in its application to a sort of thin-shell property for a
large class of radial densities on Rn. To this end, we say a pair (G,H) of functions
G,H : [0,∞)→ R are radially admissible if the pair (g, h) given by

g(s) := G(es) and h(s) := H(es)− s

are admissible.
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Suppose now for a fixed radially admissible pair (G,H) for each n ∈ N we have a
rotationally invariant probability density on Rn of the form

µn(s) :=
1

Zn
G(‖s‖2) exp (−nH(‖s‖2)) , s ∈ Rn, (2.5)

where Zn is the normalizing constant. Then by virtue of a straightforward calculation
involving the polar integration formula, if Xn is a random vector distributed according
to µn, then its log radius log ‖Xn‖2 has the density

1

Z̃n
G(er) exp (−n(H(er)− r)) =

1

Z̃n
g(r) e−nh(r), r ∈ R,

on the real line, where Z̃n is again a normalizing constant. This observation is one of
the key ingredients in synthesizing Theorem B with Theorem A to obtain the following
general result.

Theorem C. For each radially admissible pair G,H there is a constant CG,H ∈ (0,∞) and
n0 ∈ N such that for all n ≥ n0 we have the following: if Y n1 , . . . , Y

n
p are p independent

random vectors in Rn distributed according to µn as it appears in (2.5), then for WG,H
n,p :=

log Volp
(
∆(Y n1 , . . . , Y

n
p )
)

it holds that

dKS

WG,H
n,p − E[WG,H

n,p ]√
Var[WG,H

n,p ]
, N

 ≤ CG,H θ2

n(1− θ)
[
log 1

1−θ − θ
]3/2 ,

where θ := θ(p, n) := p−1
n .

We take a moment to highlight two special cases of Theorem C.

• The case where G(x) = 1 is the identity map and H(x) = x2/2 corresponds to
the Gaussian distribution with covariance matrix 1

nIn, where In denotes the n× n
identity matrix.

• The case where G(x) = 1 is the identity map and H(x) = 1+φ
2 log(1 + |x|2) corre-

sponds to the so called Beta prime distribution on Rn with parameter ν = φn,
where φ > 0.

2.3 Fluctuations of the log-volume under general conditions

In this subsection, we work more generally and drop assumption (2.4), which was used
to relate the distribution of the log-radius of the vectors Y ni to a Gaussian distribution.
We consider iid, rotationally invariant random vectors Y ni , which we collect in the data
matrix

Y := Yn := (Y n1 , . . . , Y
n
p ) . (2.6)

The main focus is no longer on deriving fast Berry-Esseen bounds for the conver-
gence to the Gaussian distribution. Our goal is to study the asymptotic distribution of
log Volp (∆Y) for a wide range of radial laws. For the number of points constituting our
simplex, we consider the asymptotic regime

p = pn →∞ and p ≤ n , as n→∞ . (2.7)

To simplify notation, we define the random variable R(n) = ‖Y n1 ‖2 and set R̃(n) =

logR(n). For the field (βi/2,j/2)i,j∈N of independent random variables such that βi/2,j/2 is

Beta(i/2, j/2) distributed, we write β̃i/2,j/2 = log βi/2,j/2.
Our next result provides conditions on the radius R(n) under which the fluctuations

of the log-volume about its mean are asymptotically Gaussian.
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Theorem D (Normal limit). Under the growth condition (2.7), consider the data matrix
Y defined in (2.6) with independent and rotationally invariant columns, i.e (1.2) holds.
Assume there exists a sequence of positive constants σn such that, as n→∞,

p
(
E[R̃2

(n)1{|R̃(n)|<σn}]− (E[R̃(n)1{|R̃(n)|<σn}])
2
)

σ2
n

+
1

4σ2
n

p−1∑
j=1

(
E[β̃2

n−j
2 , j2

1{|β̃n−j
2

,
j
2
|<2σn}]− (E[β̃n−j

2 , j2
1{|β̃n−j

2
,
j
2
|<2σn}])

2

)
→ 1 ,

(2.8)

and

pP(|R̃(n)| ≥ εσn) +

p−1∑
j=1

P(|β̃n−j
2 , j2
| ≥ 2εσn)→ 0 , ε > 0 . (2.9)

Let (bn)n≥1 be a sequence satisfying, as n→∞,

bn = pE[R̃(n)1{|R̃(n)|<σn}]− log(p!) +
1

2

p−1∑
j=1

E[β̃n−j
2 , j2

1{|β̃n−j
2

,
j
2
|<2σn}] + o(σn) . (2.10)

Then we have
log Volp(∆Y)− bn

σn

d→ N , n→∞ . (2.11)

Theorem D characterises the distributions of radii such that the logarithmic volume
satisfies a central limit theorem. In fact, since Petrov’s [49] infinite smallness condition
is always satisfied in our model, a slightly stronger result holds under the assumptions
of Theorem D and a sequence of positive constants σn. Namely, the existence of a
non-random sequence (bn) such that (2.11) holds is equivalent to (σn) satsifying (2.8)
and (2.9). If (2.8) and (2.9) hold, we may choose bn as in (2.10).

Our next result shows that the logarithmic volume can also have an α-stable limit.
In particular, this is the case when R̃(n) has power law tails with index α < 2. To the
best of our knowledge, the most general setting in which the limiting distribution of the
log-volume (or equivalently the log-determinant) was derived was in [9, 60] who assumed
that the entries of Y possess a finite fourth moment, which is the typical assumption
in papers on linear spectral statistics. We refer to [8, 18, 27, 28, 21, 11, 29, 30] for
collections of results which show the stark differences in the asymptotic behavior under
infinite fourth moments.

In order to present our stable limit theorem, we introduce the auxiliary sequence

ω2
n := −1

2
log

n− p+ 1

n
− p2

2n(p+ 1)
, n ≥ 1 ,

which one may interpret as the critical variance sequence.

Theorem E (α-stable limit). Under the growth condition (2.7), consider the data matrix
Y defined in (2.6) with independent and rotationally invariant rows, i.e (1.2) holds. For
some α ∈ (0, 2) and c1, c2 ≥ 0 with c1 + c2 > 0, assume that there exists a sequence of
positive constants σn such that, as n→∞, ωn/σn → 0 and

pP(σ−1
n R̃(n) ≤ −x)→ c1x

−α , pP(σ−1
n R̃(n) > x)→ c2x

−α , x > 0 , and

lim
ε→0

lim sup
n→∞

p

σ2
n

(
E[R̃2

(n)1{|R̃(n)|<εσn}]− (E[R̃(n)1{|R̃(n)|<εσn}])
2
)

= 0 .

Set an = σ−1
n E[R̃(n)1{|R̃(n)|<σn}] and let (bn)n≥1 be a sequence satisfying

bn = − log(p!)+
1

2

p−1∑
j=1

E[β̃n−j
2 , j2

]+pσn

(
an +

∫ ∞
−∞

x

1 + x2
dP(R̃(n) ≤ σn(x+ an))

)
+o(σn) .
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Then we have the following weak convergence to an α-stable limit:

log Volp (∆Y)− bn
σn

d→ Zα , n→∞ .

The limit random variable Zα = Zα(c1, c2) has the characteristic function

E[eitZα ] =

{
exp

{
α(c1 + c2)Γ(−α) cos(πα2 )|t|α

(
1− iη tan(πα2 ) sign(t)

)}
, if α 6= 1,

exp
{
−(c1 + c2)π2 |t|

(
1 + iη 2

π sign(t) log |t|
)}

, if α = 1,
(2.12)

where η = (c2 − c1)/(c1 + c2).

Finally, there is an interesting mixed case, when the variances of the two sums on
the right-hand side of (1.5) are of the same order.

Theorem F (mixed limit). Under the growth condition (2.7), consider the data matrix
Y defined in (2.6) with independent and rotationally invariant rows, i.e (1.2) holds. For
some α ∈ (0, 2) and c1, c2 ≥ 0 with c1 + c2 > 0, assume that there exists a sequence of
positive constants σn such that, as n→∞, ωn/σn → q ∈ (0,∞) and

pP(σ−1
n R̃(n) ≤ −x)→ c1x

−α , pP(σ−1
n R̃(n) > x)→ c2x

−α , x > 0 , and

lim
ε→0

lim sup
n→∞

p

σ2
n

(
E[R̃2

(n)1{|R̃(n)|<εσn}]− (E[R̃(n)1{|R̃(n)|<εσn}])
2
)

= 0 .

Set an = σ−1
n E[R̃(n)1{|R̃(n)|<σn}] and let (bn)n≥1 be a sequence satisfying

bn = − log(p!) +
1

2

p−1∑
j=1

E[β̃n−j
2 , j2

] + pσn

(
an +

∫ ∞
−∞

x

1 + x2
dP(R̃(n) ≤ σn(x+ an))

)
+ o(σn) .

Then we have
log Volp (∆Y)− bn

σn

d→ q N + Zα , n→∞ ,

where Zα = Zα(c1, c2) has the characteristic function (2.12).

2.4 The random matrix perspective

While we have discussed our results so far from the perspective of the volumes of
random simplices, the framework we considered is intimately related to the determinants
of random matrices. Indeed, we saw in (1.1) that the volume of a simplex with vertices
Y n1 , . . . , Y

n
p in Rn may be expressed in terms of a determinant. Developing this equation

slightly, we may write

Volp
(
∆(Y n1 , . . . , Y

n
p )
)

= Volp (∆Y) =
1

p!

√
det(Y>Y), (2.13)

where Y := Yn is the n× p matrix whose columns are given by Y n1 , . . . , Y
n
p . In particular,

we may invert the relation

log det(Y>Y) = 2 (log Vol(∆Y) + log p!)

to obtain various statements about the log-determinants of random matrices Y> whose
columns are rotationally invariant random vectors. We remark that for our decomposition
in (1.3) it is important that the rows of Y are independent rotationally invariant random
vectors. If instead the columns of Y were rotationally invariant, one cannot separate
the radius from the direction as in (1.3) even though Y>Y and YY> have the same
non-zero eigenvalues. The phenomenon that the roles of rows and columns are not
interchangeable is illustrated in Figure 2.
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Figure 2: Histograms of 300 simulated log Volp (∆Y), properly centered and standardized
(as in [48]), for p = 300 and n = 1000. Left: multivariate t-distributed rows of Y with 60
degrees of freedom. Right: multivariate t-distributed columns of Y with 60 degrees of
freedom.

Before discussing the applications of our results to the determinants of random
matrices, we take a moment to highlight just a single result from the large body of work
on the asymptotic distribution of the logarithms of such determinants [24, 56, 9, 60, 48].
Namely, Nyugen and Vu [47] consider the log-determinant of an n× n random matrix An

with independent and identically distributed entries with zero mean, unit variance and
finite fourth moment. They show that, as n→∞,

dKS

 log |det(An)| − 1
2 log(n− 1)!√

1
2 log n

,N

 = (log n)−1/3+o(1) .

Nguyen and Vu speculate that (log n)−1/3 could be the optimal rate of convergence for
such a theorem, though suggest that this could be potentially improved to (log n)−1/2

with a finer correction for the expectation of the log determinant. It transpires that
when the entries are further assumed to be independent standard Gaussians, the rate of
convergence can be improved to (log n)−3/2. To this end, we require estimates on the
mean and variance of log |det(An)| that are fine up to constant order. To this end, let
γ := limn→∞ (

∑n
k=1 1/k − log n) denote the Euler-Mascheroni constant, and define the

constants

c0 := −γ
2
− 1

2

∫ ∞
0

(
1

2
− 1

ζ
+

1

eζ −1

)
1

eζ/2−1
dζ (2.14)

and

c1 :=
γ

2
+

1

4

∫ ∞
0

(
1

2
− 1

ζ
+

1

eζ −1

)
ζ

eζ/2−1
dζ. (2.15)

We believe the following result to be new.
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Theorem G. Let n ∈ N and An be an n × n matrix whose entries are independent
standard Gaussian random variables. Then, we have

dKS

 log |det(An)| − ( 1
2 log(n− 1)! + c0)√

1
2 log n+ c1

, N

 ≤ C

log3/2 n
,

where C ∈ (0,∞) is an absolute constant.

Theorem G is proved directly in Section 6. A weaker version of Theorem G, without
explicit estimates for the mean and variance of log |det(An)| is actually an indirect
consequence of a more general result concerning the log-determinants of random
matrices whose columns are distributed according to a rotationally invariant probabillity
density µn on Rn. Namely, the following result is an immediate corollary of Theorem C,
using (2.13) to restate the result in terms of determinants of random matrices rather
than volumes of random simplices.

Theorem H. Let An,p be an n× p matrix whose p columns Y n1 , . . . , Y
n
p are independent

and identically distributed according to a probability density of the form µn, with µn

as in (2.5) and (G,H) a radially admissible pair. Then there is a constant CG,H ∈ (0,∞)

such that

dKS

(
log det

(
(An,p)>An,p

)
)− E

[
log det

(
(An,p)>An,p

)]√
Var[log det ((An,p)>An,p)]

, N

)

≤ CG,H
θ2

n(1− θ)
[
log 1

1−θ − θ
]3/2 ,

where θ := θ(p, n) := p−1
n .

That completes the section on random matrices.

3 Extremely Gaussian behavior for spherical random simplices

The chief focus of this section will be in analyzing the Gaussian behavior of the
log-volume of random simplices whose vertices are uniformly distributed on the unit
sphere. We begin in the next section by discussing the polar integration formula and
radial laws.

3.1 The polar integration formula and radial laws

Throughout we will use the following polar integration formula. Let f : Rn → [0,∞)

be an integrable function on Rn depending only on the Euclidean norm, in the sense that
f(s) = f̃(‖s‖2) for some f̃ : [0,∞) → [0,∞). Then the polar integration formula states
that ∫

Rn
f(s) ds =

2πn/2

Γ(n/2)

∫ ∞
0

rn−1f̃(r) dr. (3.1)

Given a Borel subset A of [0,∞), define the Borel subset radn(A) of Rn by setting

radn(A) := {s ∈ Rn : ‖s‖2 ∈ A}.

Given any probability distribution µ on Rn, we define the radial law ν associated with µ
to be the probability measure on [0,∞) defined by setting

ν (A) := µ (radn(A)) .
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We now record the following simple lemma on the radial laws of rotationally invariant
distributions of standard form.

Lemma 3.1. Let µn be a rotationally invariant probability distribution on Rn of the form

µn(ds) = Cng(‖s‖2) e−nh(‖s‖2) ds.

where g, h : [0,∞)→ [0,∞) are measurable functions. Then the radial law νn associated
with µn is given by

νn(dr) =
2πn/2Cn
Γ(n/2)

rn−1g(r) e−nh(r) dr.

Proof. Let A be a Borel subset of [0,∞). Then

νn(A) = µn (radn(A)) =

∫
Rn
f(s) ds,

where for s ∈ Rn, f(s) := 1radn(A)(s)Cng(‖s‖2) e−nh(‖s‖2). The result follows after apply-
ing (3.1).

3.2 Miles’ identity

Integral to our analysis is the distributional identity (1.4) which is a consequence of
the following proposition, which was recently given in Grote, Kabluchko and Thäle [25,
Theorem 2.4(d)], though similar identities date back (at least) to Miles [45].

Proposition 3.2. Let Θn
1 , . . . ,Θ

n
p be points chosen independently and uniformly from

the Euclidean unit sphere Sn−1 in Rn. Then we have the following identity in law

Volp
(
∆(Θn

1 , . . . ,Θ
n
p )
) d

=
1

p!

p−1∏
j=1

βn−j
2 , j2

1/2

,

where
{
βn−j

2 , j2
: j = 1, . . . , p− 1

}
is a collection of independent random variables such

that βn−j
2 , j2

is beta distributed with parameters
(
n−j

2 , j2
)
.

It is immediate from Proposition 3.2 that the log-volume of the spherical random
simplex may be written as

W Sph
n,p := log Volp∆

(
Θn

1 , . . . ,Θ
n
p

) d
= − log p! +

1

2

p−1∑
j=1

log β(n−j)/2,j/2. (3.2)

3.3 Polygamma functions

For complex ζ with positive real part, let Γ(ζ) :=
∫∞

0
uζ−1 e−u du be the gamma

function. Then the k-th polygamma function is given by

ψk(ζ) :=
dk+1

dζk+1
log Γ(ζ) , ζ ∈ C, Re(ζ) > 0. (3.3)

The zeroth polygamma function ψ0, better known as the digamma function, has the
following integral representation

ψ0(ζ) :=

∫ ∞
0

(
e−t

t
− e−ζt

1− e−t

)
dt, ζ ∈ C, Re(ζ) > 0, (3.4)
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due to Gauss (see e.g. [43, Section 1.4]). By differentiating through Gauss’ integral
representation (3.4) for k ≥ 1 we have

ψk(ζ) = (−1)k−1

∫ ∞
0

tke−ζt

1− e−t
dt. (3.5)

A simple calculation involving the gamma integral tells us that we have the sandwich
inequality

(k − 1)!

ζk
+

k!

2ζk+1
≤ ψk(ζ) ≤ (k − 1)!

ζk
+

k!

ζk+1
k ≥ 1, ζ ∈ [1/2,∞) (3.6)

Finally, we note from (3.5) that for ζ in C with Re(ζ) > 0 we have |ψk(ζ)| ≤ |ψk(Re(ζ))|.
In particular, with Ck = (k − 1)! + 2k! we may extract from (3.6) the upper bound

|ψk(ζ)| ≤ Ck
Re(ζ)k

ζ ∈ C,Re(ζ) ≥ 1/2. (3.7)

3.4 Moments of log-beta random variables

In this subsection, we provide all moments of the log-beta random variables in terms
of combinatorial expressions involving the polygamma functions. To this end, we need
the one-dimensional Faà di Bruno formula (see, e.g., [34] for this and its multivariate
form). To set this up, recall that a partition of {1, . . . , k} is a collection of disjoint subsets
(called blocks) of {1, . . . , k} whose union is equal to {1, . . . , k}. Let Pk be the collection of
set partitions of {1, . . . , k}. For partitions π in Pk, let #π denote the number of blocks in
π. For a block Γ of some π, let #Γ denote the number of elements of {1, . . . , k} contained
in Γ.

Namely, if k ∈ N and f, g : R → R are k times differentiable functions, then Faà di
Bruno’s formula states that the k-th derivative of the composition f ◦ g is given by

dk

dζk
f (g(ζ)) =

∑
π∈Pk

f (#j) (g(ζ))
∏
Γ∈π

g(#Γ)(ζ),

where for j ∈ N, f (j) and g(j) denote the j-th derivatives of f and g respectively. We note
that in particular, when f(ζ) = eζ , we have

dk

dζk
eg(ζ) = eg(ζ)

∑
π∈Pk

∏
Γ∈π

g(#Γ)(ζ). (3.8)

We are now equipped to give a combinatorial representation for the moments of
the logarithm of a beta random variable in terms of set partitions and the polygamma
functions.

Lemma 3.3. Let βζ,η be beta distributed with parameters (ζ, η). Then

E
[

(log βζ,η)
k
]

=
∑
π∈Pk

∏
Γ∈π

q#Γ(ζ, η),

where for integers j ∈ N, qj(ζ, η) := ψj−1(ζ)− ψj−1(ζ + η).

Proof. First we make the observation that

E
[

(log βζ,η)
k
]

=
Γ(ζ + η)

Γ(ζ)Γ(η)

∫ 1

0

(log s)
k
sζ−1(1− s)η−1ds

=
Γ(ζ + η)

Γ(ζ)Γ(η)

∫ 1

0

dk

dζk
sζ−1(1− s)η−1ds.
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In particular, by taking the derivative outside the integral, we may write

E
[

(log βζ,η)
k
]

= e−g(ζ)
dk

dζk
eg(ζ),

where g(ζ) := log Γ(ζ)− log Γ(ζ + η). The result follows by using (3.8) and the definition
(3.3) of the polygamma functions.

Our second lemma gives us the centered moments.

Lemma 3.4. Let k ∈ N and Qk be the collection of set partitions of {1, . . . , k} containing
no singletons. Assume that βζ,η is beta distributed with parameters (ζ, η). Then

E
[

(log βζ,η − E[log βζ,η])
k
]

=
∑
π∈Qk

∏
Γ∈π

q#Γ(ζ, η),

where for integers j ∈ N, qj(ζ, η) := ψj−1(ζ)− ψj−1(ζ + η).

Proof. We begin with the observation that

E
[

(log βζ,η − E[log βζ,η])
k
]

=
∑

S⊆{1,...,k}

(−1)k−#Sqk−#S
1 E[(log βζ,η)#S ],

where we wrote qj := qj(ζ, η) for simplicity. For each subset S of {1, . . . , k}, we may
expand E[(log βζ,η)#S ] using Lemma 3.3 so that

E
[

(log βζ,η − E[log βζ,η])
k
]

=
∑

S⊆{1,...,k}

(−1)k−#Sqk−#S
1

∑
π∈PS

∏
Γ∈π

q#Γ. (3.9)

Each partition π of S has a canonical extension π̄ to {1, . . . , k} by letting

π̄ = π ∪ {{x} : x ∈ {1, . . . , k} − S} .

Let A(π) be the set of x ∈ {1, . . . , k} such that the singleton {x} is a block of π. It follows
that T = k − S is a subset of A(π̄). In particular, reindexing the sum in (3.9), we have

E
[

(log βζ,η − E[log βζ,η])
k
]

=
∑
π̄∈Pk

 ∑
T ⊆A(π̄)

(−1)#T

∏
Γ∈π̄

q#Γ. (3.10)

Now note that ∑
T ⊆A

(−1)#T =

{
1 if A is empty,

0 otherwise.

It follows that the sum in (3.10) is supported only on partitions π̄ in Pk such that A(π̄) is
empty, i.e., contains no singletons.

The following lemma collects together some information on the first three moments
of log βζ,η, and is an immediate consequence of Lemmas 3.3 and 3.4.

Lemma 3.5. Assume that βζ,η is beta distributed with parameters (ζ, η). The mean and
variance of log βζ,η are given by

E [log βζ,η] = ψ0(ζ)− ψ0(ζ + η) and Var [log βζ,η] = ψ1(ζ)− ψ1(ζ + η).

Moreover, we have the following upper bound on the centered absolute third moment

E
[
|log βζ,η − E [log βζ,η]|3

]
≤
(
ψ3(ζ)− ψ3(ζ + η) + (ψ1(ζ)− ψ1(ζ + η))

2
)3/4

.
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Proof. The equations for the mean and variance follow from respectively setting k = 1 in
Lemma 3.3 and k = 2 in Lemma 3.4. The upper bound for the centered absolute third
moment is obtained by setting k = 4 in Lemma 3.4 and using Lyapunov’s inequality.

If W Sph
n,p is the log-volume of a spherical random simplex associated with p points

sampled independently and uniformly from Sn−1, then by Lemma 3.5 and (3.2) we have

µSph
n,p := E

[
W Sph
n,p

]
= − log(p!) +

1

2

p−1∑
j=1

(
ψ0

(
n− j

2

)
− ψ0

(n
2

))
and

(
σSph
n,p

)2
:= Var

[
W Sph
n,p

]
=

1

4

p−1∑
j=1

(
ψ1

(
n− j

2

)
− ψ1

(n
2

))
.

At several stages below we will require the following lower bound on the variance(
σSph
n,p

)2
, which follows easily from (3.6).

Corollary 3.6. Let p, n ∈ N with p ≤ n. Then we have(
σSph
n,p

)2 ≥ 1

2

[
− log

(
1− p− 1

n

)
− p− 1

n

(
1 +

3

2n

)]
. (3.11)

Setting θ := θ(p, n) := p−1
n , whenever p ≥ 7 we have the rougher bound

(
σSph
n,p

)2 ≥ 1

4

(
log

1

1− θ
− θ
)
. (3.12)

Proof. Using (3.6) to obtain the first inequality below we have

(
σSph
n,p

)2
:=

1

4

p−1∑
j=1

(
ψ1

(
n− j

2

)
− ψ1

(n
2

))

≥ 1

4

p−1∑
j=1

(
2

n− j
+

1

(n− j)2
− 2

n
− 4

n2

)

≥ 1

4

p−1∑
j=1

(
2

n− j
− 2

n
− 3

n2

)

= −1

4
(p− 1)

(
2

n
+

3

n2

)
+

1

2

∫ n

n−p+1

dζ

bζc
,

where bζc is the largest integer less than ζ. Using the fact that for ζ > 0, 1
bζc ≥

1
ζ , and

then performing the resulting integral, the bound (3.11) follows.
As for the second bound, suppose p ≥ 7. Now rewriting (3.11) to obtain the first

inequality below, and using the fact that p ≥ 7 to obtain the second, we have(
σSph
n,p

)2 ≥ 1

2

[
log

1

1− θ
− θ − 3

2(p− 1)
θ2

]
≥ 1

2

[
1

2

(
log

1

1− θ
− θ
)

+
1

2

(
log

1

1− θ
− θ − θ2/2

)]
.

The result now follows from using the inequality log 1
1−θ − θ − θ

2/2 ≥ 0.

That completes the section on the moments of the log-gamma random variables. In
the next section we undertake a careful analysis of the characteristic function of the
log-beta random variable, which is the most delicate step in proving Theorem A.
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3.5 The characteristic function of the log-beta random variable

Our proof of Theorem A involves a Fourier-analytic approach based on a careful
analysis of the characteristic function of W Sph

n,p . We begin with the following lemma giving
a useful representation for the characteristic function of a recentering of log β(n−j)/2,j/2.

Lemma 3.7. For j, n ∈ N such that j < n let βn−j
2 , j2

be a beta distributed random variable

with shape parameters (n−j2 , j2 ), let Yn,j := log βn−j
2 , j2

, and set Vn,j :=
Yn,j−E[Yn,j ]√

Var[Yn,j ]
. Then,

for all t ∈ R, the characteristic function of Vn,j is given by

ϕn,j(t) := E
[
eitVn,j

]
= exp

{
− t

2

2
+
i

2

∫ t/σn,j

0

∫ t1

0

∫ t2

0

∫ j

0

ψ3

(
n− s

2
+ it3

)
dsdt3 dt2 dt1

}
,

where ψ3 is as in (3.3) and σ2
n,j := ψ1

(
n−j

2

)
− ψ1

(
n
2

)
.

Proof. We begin by studying the characteristic function of Yn,j for t ∈ R. It is a straight-
forward computation using the definition of the beta-integral to see that

E[eitYn,j ] =
Γ(n/2)

Γ((n− j)/2)Γ(j/2)

∫ 1

0

sit+(n−j)/2−1(1− s)j/2−1ds =
Γ
(
n−j

2 + it
)

Γ
(
n
2 + it

) Γ
(
n
2

)
Γ
(
n−j

2

) .
(3.13)

By integrating in the complex plane and using the definition of the digamma function ψ0,
we have

log Γ
(n− j

2
+ it

)
− log Γ

(n
2

+ it
)

= −1

2

∫ j

0

ψ0

(
n− s

2
+ it

)
ds

and similarly we obtain (by simply setting t = 0 in the previous display and changing the
sign) that

log Γ
(n

2

)
− log Γ

(n− j
2

)
=

1

2

∫ j

0

ψ0

(
n− s

2

)
ds.

In view of (3.13), this means that we may write

E[eitYn,j ] = exp

{
−1

2

∫ j

0

ψ0

(
n− s

2
+ it

)
− ψ0

(
n− s

2

)
ds

}
.

Performing a second integral in the complex plane, as using the definition of ψ1, we
obtain

E[eitYn,j ] = exp

{
− i

2

∫ t

0

∫ j

0

ψ1

(
n− s

2
+ it1

)
dsdt1

}
.

We now turn to extracting the characteristic function of Vn,j from that of Yn,j . First of all
from the definition of Vn,j we plainly have

E
[
eitVn,j

]
= exp

{
−i t

σn,j
µn,j −

i

2

∫ t/σn,j

0

∫ j

0

ψ1

(
n− s

2
+ it1

)
dsdt1

}
, (3.14)

where µn,j and σ2
n,j denote respectively the mean and variance of log β(n−j)/2,j/2, which

were identified in Lemma 3.5 above. We now note that we may usefully represent µn,j as
an integral via

µn,j = ψ0

(
n− j

2

)
− ψ0

(n
2

)
= −1

2

∫ j

0

ψ1

(
n− s

2

)
ds, (3.15)
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so that plugging (3.15) into (3.14) to obtain the first equality below, and performing
another integration to obtain the second, we have

E
[
eitVn,j

]
= exp

{
− i

2

∫ t/σn,j

0

∫ j

0

ψ1

(
n− s

2
+ it1

)
− ψ1

(
n− s

2

)
dsdt1

}

= exp

{
1

2

∫ t/σn,j

0

∫ t1

0

dt2

∫ j

0

ψ2

(
n− s

2
+ it2

)
dsdt1

}
. (3.16)

Using σ2
n,j = ψ1

(
n−j

2

)
− ψ1

(
n
2

)
= − 1

2

∫ j
0
ψ2

(
n−s

2

)
ds it can be checked that∫ t/σn,j

0

∫ t1

0

∫ j

0

ψ2

(
n− s

2

)
dsdt2 dt1 = −t2.

Plugging this into (3.16), we have

E
[
eitVn,j

]
= exp

{
−t2/2 +

1

2

∫ t/σn,j

0

∫ t1

0

∫ j

0

ψ2

(
n− s

2
+ it2

)
− ψ2

(
n− s

2

)
dsdt2 dt1

}
.

The result follows from a final integration step.

We now turn to studying the characteristic function of the sum of the log-beta random
variables. First we note that if W̃n,p :=

(
W Sph
n,p − µSph

n,p

)
/σSph

n,p , then with ϕn,j as in Lemma

3.7 the characteristic function of W̃n,p is given by

φn,p(t) := E
[
eitW̃n,p

]
=

p−1∏
j=1

ϕn,j

(
tσn,j

2σSph
n,p

)

= exp

−t2/2 +
i

2

∫
0<t3<t2<t1<t/(2σ

Sph)
n,p

p−1∑
j=1

∫ j

0

ψ3

(
n− s

2
+ it3

)
dsdt1 dt2 dt3

 ,

(3.17)

where the final line above follows from a brief calculation using Lemma 3.7.
Clearly, by virtue of the centering, the random variable W̃n,p has zero mean and unit

variance. The following lemma compares the logarithms of the characteristic funtions
of W̃n,p and a standard Gaussian random variable, where we recall that the latter is

t 7→ e−t
2/2.

Lemma 3.8. Let p, n ∈ N with p ≤ n and φn,p be the characteristic function of W̃n,p.
Then, for all t ∈ R, ∣∣log φn,p(t) + t2/2

∣∣ ≤ εn,p|t|3,
where

εn,p :=
7

96

1

(σSph
n,p )3

p−1∑
j=1

[
1

(n− j)2
− 1

n2

]
. (3.18)

Proof. Using (3.17) to obtain the first inequality below, and using the upper bound in
(3.7) with k = 3 (and hence C3 = 14) to obtain the second, we have

∣∣log φn,p(t) + t2/2
∣∣ ≤ 1

2

∫
0<t3<t2<t1<t/(2σ

Sph)
n,p

p−1∑
j=1

∫ j

0

∣∣∣∣ψ3

(
n− s

2
+ it3

)∣∣∣∣ dsdt1 dt2 dt3

≤ 1

2

∫
0<t3<t2<t1<t/(2σ

Sph
n,p )

p−1∑
j=1

∫ j

0

14

(n− s)3
dsdt1 dt2 dt3.
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The latter integrand above is independent of t1, t2, t3. In particular, since the simplex
{(t1, t2, t3) ∈ R3 : 0 < t3 < t2 < t1 < a} has volume a3/6, we have

∣∣log φn,p(t) + t2/2
∣∣ ≤ 7

48

|t|3

(σSph
n,p )3

p−1∑
j=1

∫ j

0

1

(n− s)3
ds.

The result in question follows by performing the s integral.

Our next lemma appraises the factor εn,p featuring in Lemma 3.8.

Lemma 3.9. Let εn,p be as in Lemma 3.8. Then, whenever p ≥ 7, we have

εn,p ≤
7

4

θ2

n(1− θ)
[
log 1

1−θ − θ
]3/2 ,

where θ := θ(p, n) := p−1
n .

Proof. We would like to bound the sum occuring in (3.18). To this end, we note that

p−1∑
j=1

[
1

(n− j)2
− 1

n2

]
= −p− 1

n2
+

1

(n− p+ 1)2
+

p−2∑
j=1

1

(n− j)2

≤ −p− 1

n2
+

1

(n− p+ 1)2
+

∫ n−1

n−p+1

ds

s2

= −p− 1

n2
+

1

(n− p+ 1)2
+

1

n− p+ 1
− 1

n− 1

=
1

n

[
1

1− θ
− 1− θ

]
+

1

n2(1− θ)2
−
(

1

n− 1
− 1

n

)
≤ 1

n

[
1

1− θ
− 1− θ

]
+

1

n2

(
1

(1− θ)2
− 1

)
≤ 1

n

[
1

1− θ
− 1− θ

]
+

1

n2

3θ

(1− θ)2

=
θ

n(1− θ)

[
θ +

3

n(1− θ)

]
. (3.19)

Whenever 7 ≤ p ≤ n, we have 1
n ≤ θ := p−1

n ≤ 1− 1
n . In particular, for all such θ we have

nθ(1− θ) ≥ 1− 1/n ≥ 6/7 so that 3
n(1−θ) ≤

7
2θ. Thus, from (3.19) we obtain

p−1∑
j=1

[
1

(n− j)2
− 1

n2

]
≤ 9θ2

2n(1− θ)
. (3.20)

In particular, combining (3.20) with (3.18) we have

εn,p ≤
7

96

1

(σSph
n,p )3

9

2

θ2

n(1− θ)
=

7

16

1

(σSph
n,p )3

θ2

n(1− θ)
.

The result follows by combining the bound (3.20) with (3.12) in the definition (3.18).

The following lemma is the final step in the proof. This technique is well known,
appearing in various proofs of the Berry-Esseen theorem (see, e.g., Petrov [49, Chapter
5]).
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Lemma 3.10. Let f : R→ C be a function that satisfies∣∣log f(t) + t2/2
∣∣ ≤ ε|t|3 (3.21)

for all t ∈ R. Then, for all |t| ≤ 1/(4ε) we have∣∣∣f(t)− e−t
2/2
∣∣∣ ≤ ε|t|3 e−t

2/4 .

Proof. For z ∈ C we have the inequality | ez −1| ≤ |z| e|z|. In particular, using the
assumption (3.21),∣∣∣f(t)− e−t

2/2
∣∣∣ = e−t

2/2
∣∣∣f(t) et

2/2−1
∣∣∣ ≤ | log f(t) + t2/2| e| log f(t)+t2/2|

≤ ε|t|3 exp

(
− t

2

2
+ ε|t|3

)
.

The result follows by noting that whenever |t| ≤ 1/4ε, t2/2− ε|t|3 ≥ t2/4.

3.6 Proof of Theorem A

We are now ready to prove Theorem A.

Proof of Theorem A. Theorem A follows from the statement

dKS

(
W̃N,p, N

)
≤ 16 εn,p,

which we now prove. By the Berry smoothing inequality (see, e.g., [17, Section 7.4]), the
Kolmogorov-Smirnov distance between W̃n,p and a standard Gaussian random variable
N may be bounded via

dKS

(
W̃N,p, N

)
≤ 1

π

∫ T

−T

|φn,p(t)− e−t
2/2 |

|t|
dt+

10

πT
, (3.22)

for any T > 0. Setting T := (4εn,p)
−1 and appealing to Lemmas 3.10 and 3.8, we have

dKS

(
W̃n,p, N

)
≤ εn,p

π

∫ T

−T
t2 e−t

2/4 dt+
40

π
εn,p,

The result follows by using the fact that
∫∞
−∞ t2 e−t

2/2 dt = 4
√
π ≤ 8, and then using that

48/π ≤ 16.

4 Central limit theory and the Laplace method

4.1 Statement

With a view to proving Theorem B, in this section we will be considering probability
density functions of the form

ρn(dx) =
1

Zn
g(x) exp (−nh(x)) dx, n ∈ N,

where the Zn ∈ (0,∞), n ∈ N are normalization constants, and the ordered pair of
functions g, h : [0,∞) → [0,∞) is admissible in the sense of Definition 2.1. Recall in
particular that the function h has a global minimum at a point x0 ∈ R.

By changing the normalization constant Zn if necessary, we may assume without
loss of generality that h(x0) = 0 and g(x0) = 1. Moreover, since the random variables
in the statement of Theorem B are recentered, whenever the statement of Theorem B
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holds for a density 1
Zn g(x)e−nh(x) it also holds for the rescaled and recentered density

λ
Zn g(λx+ µ)e−nh(λx+µ). In particular, we may assume without loss of generality that the
global minimum occurs at zero, i.e. x0 = 0, and that h′′(x0) = 1.

In summary, without loss of generality we restrict ourselves to considering densities
of the form

ρn(x) :=
Qn√
2π

(1 + q(x)) exp
(
−n
(
x2/2 + r(x)

))
, x ∈ R,

where Qn ∈ (0,∞) is a normalizing constant and where by the assumptions of Definition
2.1, r, q : R→ R have the following properties: first, by part (b) of Definition 2.1 there
exists some δ > 0 such that

|r(x)| ≤ 1

4δ
|x|3 and |q(x)| ≤ 1

4δ
|x| for x ∈ [−δ, δ], (4.1)

where as by part (c) there exist constants α, c, C ∈ (0,∞) such that

h(x) ≥ c log(1 + |x|) and g(x) ≤ C(1 + |x|α) for x ∈ R− [−δ, δ]. (4.2)

Again, without loss of generality, (since the random variables in the statement of Theorem
B are centered), we may change variable x 7→ x/

√
n, so that we consider for n ∈ N

densities Jn : R→ [0,∞) of the form

Jn(x) = Dn e−x
2/2

√
2π

(
1 + q(x/

√
n)
)

e−nr(x/
√
n),

where Dn ∈ (0,∞), n ∈ N are normalizing constants. For a moment it will be useful to
consider the unnormalized function J̃n(x) := (Dn)−1Jn(x). Our next lemma states two
things. First of all, that in a large interval containing the origin, J̃n is within distance
O(1/

√
n) of the standard Gaussian density. It also states that outside of this large interval,

J̃n has well behaved tails. All O(·) terms refer to a constant that may depend on g and h
but is independent of x and n.

Lemma 4.1. Let J̃n(x) := e−x
2/2

√
2π

(1 + q(x/
√
n)) e−nr(x/

√
n). Then we have the following

three bounds.

• For all |x| ∈ [0, (δ
√
n) ∧ n1/6], we have

J̃n(x) =
e−x

2/2

√
2π

(
1 +O

(
|x|+ |x|3√

n

))
.

• For all |x| ∈ [(δ
√
n) ∧ n1/6, δ

√
n], we have

J̃n(x) ≤ e−
1
4n

1/3

(4.3)

• For all |x| ∈ [δ
√
n,∞), we have

J̃n(x) := O
((

1 + |x/
√
n|
)α−cn)

.

Proof. First we control J̃n(x) for local x. With δ as in (4.1) we observe that whenever
|x| ≤ (δ

√
n) ∧ n1/6, we have

|nr(x/
√
n)| ≤ 1

4δ

|x|3√
n
≤ 1

4δ
.
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Thus, in particular, e−nr(x/
√
n) = 1 +O( |x|

3

√
n

) uniformly for |x| ≤ (δ
√
n) ∧ n1/6]. Moreover,

again by (4.1) we clearly have q(x/
√
n) = O(|x|/

√
n) uniformly for |x| ≤ (δ

√
n) ∧ n1/6. It

follows that uniformly for |x| ≤ (δ
√
n) ∧ n1/6, we have

J̃n(x) :=
e−x

2/2

√
2π

(
1 + q(x/

√
n)
)

e−nr(x/
√
n) =

e−x
2/2

√
2π

(
1 +O

(
|x|+ |x|3√

n

))
.

Next up, we consider intermediate values of x, i.e. those x for which |x| ∈ (δ
√
n ∧

n1/6, δ
√
n]. Again by virtue of (4.1) we have |r(x/

√
n)| ≤ 1

4δ |x/
√
n|3 ≤ 1

4 |x/
√
n|2 for

|x/
√
n| ≤ δ, so that in particular,

1

2
x2 + nr(x/

√
n) ≥ 1

4
x2 whenever |x| ≤ δ

√
n. (4.4)

Moreover, by (4.1) we have

|1 + q(x/
√
n)| ≤ 5

4
whenever |x| ≤ δ

√
n. (4.5)

Combining (4.4) with (4.5) in the definition of J̃n, we have

J̃n(x) ≤ 5

4

1√
2π
e−x

2/4 whenever |x| ≤ δ
√
n. (4.6)

In particular, restricting the bound in (4.6) to |x| ≥ n1/6, we obtain

J̃n(x) ≤ 5

4

1√
2π
e−n

1/3/4 whenever |x| ∈ (δ
√
n ∧ n1/6, δ

√
n].

In particular, since 5
4

1√
2π
≤ 1, we obtain (4.3).

Finally, we note that for |x| ≥ δ
√
n, from (4.2) we have

J̃n(x) ≤ C(1 + |x/
√
n|α) e−nc log(1+|x/

√
n|) = O

((
1 + |x/

√
n|
)α−cn)

,

as required.

Our next result utilizes Lemma 4.1, which stated that the unnormalized function
J̃n was similar to the Gaussian distribution, to control the moments of the probability
density Jn(x) = DnJ̃n(x).

Lemma 4.2. For the normalizing constant Dn of Jn, we have Dn = 1 +O(1/
√
n), and

µn :=

∫ ∞
−∞

xJn(x)dx = O(1/
√
n) and (σn)2 :=

∫ ∞
−∞

x2Jn(x)dx = 1 +O(1/
√
n).

Proof. By the first point in Lemma 4.1, for k = 0, 1, 2 we have∫
|x|∈[0,(δ

√
n)∧n1/6]

xkJ̃n(x) dx = 1{0,2}(k) +O(1/
√
n). (4.7)

By the second point in Lemma 4.1, for k = 0, 1, 2 we have∫
|x|∈[(δ

√
n)∧n1/6,δ

√
n]

xkJ̃n(x) dx = O
(
n3/2 e−

1
4n

1/3
)

= O(1/
√
n). (4.8)

Finally, by the third point in Lemma 4.1 there is a constant C ∈ (0,∞) independent of x
and n such that for k = 0, 1, 2 we have∫

|x|∈[δ
√
n,∞)

xkJ̃n(x) dx ≤
∫
|x|∈[δ

√
n,∞)

Cxk

|1 + x/
√
n|cn−α

dx. (4.9)
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By changing variable, we now show that the integral on the right-hand side of (4.9)
decays exponentially in n. Indeed,∫

|x|∈[δ
√
n,∞)

Cxk

|1 + x/
√
n|cn−α

dx ≤ 2C

∫ ∞
δ
√
n

xk

(1 + x/
√
n)cn−α

dx

≤ 2C

∫ ∞
δ
√
n

1

(1 + x/
√
n)cn−α−k

dx

= 2Cn
k+1
2

∫ ∞
δ

1

(1 + y)cn−α−k
dy

=
2Cn

k+1
2

(cn− α− k + 1)(1 + δ)cn−α−k+1)
, (4.10)

which decays exponentially as n increases. In particular, combining (4.9) and (4.10) we
obtain ∫

|x|∈[δ
√
n,∞)

xkJ̃n(x) dx = O(1/
√
n). (4.11)

It now follows from setting k = 0 in (4.7), (4.8) and (4.11) that

Dn :=

(∫ ∞
−∞

J̃n(x) dx

)−1

= 1 +O(1/
√
n). (4.12)

The claimed facts about the mean and variance of Jn follow from combining (4.12) with
setting k = 1 and k = 2 in (4.7), (4.8) and (4.11).

So far, in Lemmas 4.1 and 4.2 we have seen that roughly speaking Jn is within
O(1/

√
n) of the standard Gaussian density. In the following, we will consider a corrected

version of Jn to have zero mean and unit variance. Indeed, with µn and σn as in Lemma
4.2 we have, for all x ∈ R,

In(x) := σnJn(µn + σnx). (4.13)

It is plain from the definition that for k = 0, 1, 2∫ ∞
−∞

xkIn(x) dx = 1{0,2}(k). (4.14)

Our next lemma is essentially an analogue of Lemma 4.1 for In rather than Jn, stating
that In is close to the Gaussian density on a large interval containing the origin, and that
In has well behaved tails.

Lemma 4.3. We have the following three bounds.

• For all |x| ∈ [0, (δ
√
n) ∧ n1/6 − 1], we have

In(x) =
e−x

2/2

√
2π

(
1 +O

(
1 + |x|3√

n

))
.

• For all |x| ∈ [(δ
√
n) ∧ n1/6 − 1, δ

√
n− 1], we have

In(x) = O
(

e−
1
4n

1/3
)
.

• For all |x| ∈ [δ
√
n− 1,∞), we have

In(x) = O

(
1

(1 + |x/
√
n|)cn−α

)
.
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Proof. To prove the first point, note that (σn)2 = 1 +O(1/
√
n) implies σn = 1 +O(1/

√
n).

Moreover, since Dn = 1 +O(1/
√
n) also, and µn = O(1/

√
n), by virtue of the first point

in Lemma 4.1 for all |x| ∈ [0, n1/6 − 1] ⊂ [0, n1/6 −O(1/
√
n)], we have

In(x) := σnDnJ̃n(µn + σnx) =
e−x

2/2

√
2π

(
1 +O

(
1 + |x|3√

n

))
.

As for the second point, we note that since for sufficiently large n, we have

[n1/6 − 1,
√
n− 1] ⊂ [n1/6/2 +O(n1/6/

√
n),
√
n−O(O(n1/6/

√
n)],

we may use In(x) = σnDnJ̃n(µn + σnx) in conjunction with the second part of Lemma
4.1.

Finally the third claim follows quickly from the third claim of Lemma 4.1 since

O

(
1

(1 + |µn + σnx/
√
n|)cn−α

)
= O

(
1

(1 + |x/
√
n|)cn−α

)
.

To recapitulate on our work in this section, we have shown that if Xn is a random
variable distributed according to ρn as in Equation (2.4), where (g, h) is an admissible
pair, then the normalized variable

X̃n :=
Xn − E[Xn]√

Var[Xn]

is distributed according to a probability density In that has zero mean and unit variance,
and is close to the standard Gaussian density in the sense that Lemma 4.3 holds.

In the next section we utilize the similarity of In with the Gaussian density in order
to show that the characteristic function of X̃n is similar to that of the standard Gaussian
density.

4.2 Characteristic functions

Our next lemma states that when n is large, the characteristic function of X̃n is
similar to that of the standard Gaussian density.

Lemma 4.4. Recall from (4.13) that In is a rescaling of ρn that has zero mean and unit
variance. Let ϕn be the associated characteristic function, that is

ϕn(t) :=

∫ ∞
−∞

eitx In(x) dx.

Then for a constant Cg,h independent of n and t we have∣∣∣ϕn(t)− e−t
2/2
∣∣∣ ≤ Cg,h√

n
|t|3.

Proof. Expressing e−t
2/2 as an integral, we have∣∣∣ϕn(t)− e−t

2/2
∣∣∣ =

∣∣∣∣∣
∫ ∞
−∞

eitx

(
In(x)− e−x

2

√
2π

)
dx

∣∣∣∣∣ .
Now by Taylor’s expansion, there is a function θ : R → C satisfying |θ(u)| ≤ 1 for all

u ∈ R such that eitx = 1− itx− t2x2/2− i|x|3|t|3θ(tx)
6 for all t, x ∈ R. In particular, since

the mean and variance of In(x) agree with that of the standard Gaussian density, i.e.,
(4.14) holds, we have∣∣∣ϕn(t)− e−t

2/2
∣∣∣ ≤ |t|3

6

∫ ∞
−∞
|x|3

∣∣∣∣∣In(x)− e−x
2

√
2π

∣∣∣∣∣dx. (4.15)

Note that by virtue of Lemma 4.3, we obtain the following.
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• For all |x| ∈ [0, n1/6 − 1], we have

In(x)− e−x
2

√
2π

= O

(
1 + |x|3√

n

)
e−x

2/2 .

• For all |x| ∈ [n1/6 − 1,
√
n− 1], we have

In(x)− e−x
2

√
2π

= O
(

e−
1
4n

1/3

+ e−
1
2 (n1/6)2

)
.

• Finally, for all |x| ∈ [
√
n− 1,∞), we have

In(x)− e−x
2

√
2π

= O

(
1

(1 + |x/
√
n|)cn−α

+ e−
1
2x

2

)
.

These three bounds may be applied to control the integrand in (4.15), so that it is
straightforward to show that ∣∣∣ϕn(t)− e−t

2/2
∣∣∣ ≤ C|t|3/√n

for a constant C ∈ (0,∞) depending on g and h as they appear in ρn (and implicitly in
In), but independent of n.

While Lemma 4.4 was concerned with the characteristic function of X̃n, in our next
lemma we look at the characteristic function of the normalized sum

S̃n :=

∑p
i=1 X̃

n
i√

p
,

where Xn
1 , . . . , X

n
p are independent and identically distributed according to probability

density In. Roughly speaking, where Lemma 4.4 stated that the characteristic function
of X̃n was within O(1/

√
n) of the Gaussian characteristic function, our next result states

that this bound improves to O(1/
√
pn) when considering a normalized sum of p copies.

Lemma 4.5. Whenever p ≥ 2, n ≥ 64 e4 C2, and |t| ≤ 2
√
p, we have∣∣∣ϕn(t/

√
p)p − e−t

2/2
∣∣∣ ≤ Cg,h√

np
|t|3 exp

{
−t2/8

}
,

where Cg,h ∈ (0,∞) is as in Lemma 4.4.

Proof. Note that whenever u, v are complex numbers such |u|, |v| ≤ a, we have the bound
|up − vp| ≤ p|u− v|ap−1. With this inequality in mind, let u = ϕn(t/

√
p) and v := e−t

2/2p.

Then using Lemma 4.4 both u and v are bounded in modulus by a := e−t
2/2p +C |t|3√

np3/2
.

In particular, again using Lemma 4.4 to bound |u− v|, we have

∣∣∣ϕn(t/
√
p)p − e−t

2/2
∣∣∣ ≤ C
√
np
|t|3
(

e−
t2

2p +
C√
np3
|t|3
)p−1

=
C
√
np
|t|3 e−

p−1
p

t2

2

(
1 +

C√
np3
|t|3 et

2/2p

)p−1

≤ C
√
np
|t|3 exp

(
−p− 1

p

t2

2

(
1− 2

C
√
np
|t| et

2/2p

))
.
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Now provided |t| ≤ 2
√
p, we may bound the internal term in the exponent, so that∣∣∣ϕn(t/

√
p)p − e−t

2/2
∣∣∣ ≤ C
√
np
|t|3 exp

(
−p− 1

p

t2

2

(
1− 4 e2 C√

n

))
.

Provided n ≥ 64 e4 C2,
(

1− 4 e2 C√
n

)
≥ 1/2. Moreover, whenever p ≥ 2, p−1

p ≥ 1/2, so

that under these conditions∣∣∣ϕn(t/
√
p)p − e−t

2/2
∣∣∣ ≤ C
√
np
|t|3 e−t

2/8,

as required.

We will ultimately like to use the Berry smoothing inequality to show that S̃n is within
O(1/

√
pn) of a standard Gaussian random variable. To this end, we need control over

the characteristic function ϕn(t/
√
p)p of S̃n in a region of size order

√
np. Lemma 4.5

only provides coverage up in a region of size
√
p. Our next lemma supplies a tail bound

taking care of the region outside of
√
p.

Lemma 4.6. For all t ∈ R \ {0},

|ϕn(t/
√
p)p| ≤ 1

|t/√p|p
.

Proof. Whenever a density function f is differentiable on R, it is easily verified by
integration by parts that ∣∣∣∣∫ ∞

−∞
eitx f(x)dx

∣∣∣∣ ≤ 1

|t|

∫ ∞
−∞
|f ′(x)|dx.

Now since ρn has a unique maximum, so does the normalized density In, and since
Dn = 1 +O(1/

√
n) this maximum has takes the form 1√

2π
+O(1/

√
n). In particular, there

exists some n0 ∈ N such that for all n ≥ n0, we have

sup
x∈R

In(x) ≤ 1

2
.

Moreover, by assumption (a) of Definition 2.1 we have∫ ∞
−∞
|(In)′(x)|dx = 2 sup

x∈R
Hn(x) ≤ 1.

In particular, the characteristic function ϕn satisfies the inequality

|ϕn(t)| ≤ 1/|t|.

for all t ∈ R \ {0}. The result for ϕn(t/
√
p)p follows.

In the next section we complete the proof of Theorem B.

4.3 Proof of Theorem B

We now prove Theorem B.

Proof of Theorem B. By setting T =∞ in the Berry smoothing inequality (see, e.g., [17,
Section 7.4]), the Kolmogorov-Smirnov distance between S̃np and a standard Gaussian
random variable G may be bounded via

dKS

(
S̃np , G

)
≤ 1

π

∫ ∞
−∞

|ϕn(t/
√
p)p − e−t

2/2 |
|t|

dt.
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Using Lemmas 4.5 and 4.6 to respectively control the integrand inside and outside of
[−2
√
p, 2
√
p], we have

dKS

(
S̃np , G

)
≤ 1

π

C
√
np

∫ 2
√
p

−2
√
p

|t|3 e−t
2/8 dt

|t|
+

∫
|t|>2

√
p

(
e−t

2/2 +
1

|t/√p|p

)
dt

|t|
.

Performing each of the integrals, we find that there is a constant C ∈ (0,∞) independent
of n and p such that

dKS

(
S̃np , G

)
≤ C

(
1
√
np

+ 2−p
)
,

completing the proof.

5 Proof of Theorem C

In this section we prove Theorem C. Let WG,H
n,p be the log-volume of a random simplex

whose vertices Y p1 , . . . , Y
n
p are independent and identically distributed according to µn

as in (2.5). Then, by the distributional equality (1.5),

WG,H
n,p

d
= W Sph

n,p +

p∑
j=1

logRnj , (5.1)

where logRnj are independent and identically distributed with the law log ‖Y n‖2, where
Y n ∼ µn. The proof of Theorem C hinges on the idea that both terms on the right-hand
side of (5.1) are close in distribution to a standard Gaussian random variable, and these
facts may be synthesized by the following parallelogram inequality for Kolmogorov-
Smirnov distances.

Lemma 5.1. Let X,X ′, Y, Y ′ be independent real-valued random variables. Then

dKS (X + Y,X ′ + Y ′) ≤ dKS (X,X ′) + dKS (Y, Y ′) . (5.2)

Proof. It is immediate from the definition that Kolmogorov-Smirnov distances satisfy the
triangle inequality. That is, if dKS(A,B) := sups∈R |P(A < s)− P(B < s)|, then

dKS(A,C) ≤ dKS(A,B) + dKS(B,C). (5.3)

On the other hand, write f(s) := |P(X < s)−P(X ′ < s)|. Then |P(X+Y < s)−P(X ′+Y <

s)| = E[f(s− Y )] ≤ sups∈R f(s). It follows in particular that

dKS(X + Y,X ′ + Y ) ≤ dKS(X,X ′). (5.4)

The inequality (5.2) may be proved by letting A = X + Y , B = X ′ + Y and C = X ′ + Y ′,
and subsequently using (5.3) followed by (5.4).

Specializing to distances from Gaussian random variables, we have the following
corollary.

Corollary 5.2. Let X,Y be independent random variables with zero mean and unit
variance. Then for real numbers σ, τ (not zero simultaneously) and N a standard
Gaussian, we have

dKS

(
σX + τY√
σ2 + τ2

, N

)
≤ dKS(X,N) + dKS(Y,N).

We are now ready to prove Theorem C.
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Proof of Theorem C. We will show that when p and n are large, both terms on the
right-hand-side of (5.1) are close in distribution to standard Gaussian random variables.
Indeed, considering the sum over j first, by using the polar integration formula, it follows
that for r > 0 we have

P (‖Y n1 ‖2 ∈ dr) = C̃nnrn−1G(r) e−nH(r) dr.

for some constant C̃n ∈ (0,∞). Transforming, it is verified that log ‖Y n1 ‖2 is then
distributed according to the probability measure on R whose density function is given by

ρn(r) := C̃ng(r) e−nh(r), r ∈ R,

where we recall that g(r) = G(er) and h(r) = H(er)− r.
In particular, since (G,H) are radially admissible, i.e., (g, h) are admissible, so that

Theorem B applies. In particular, there is a constant CG,H ∈ (0,∞) and n0 ∈ N depending
on (G,H) such that for all n ≥ n0 we have

dKS

(∑p
j=1 logRnj − pE[logRn1 ]√

Var[logRn1 ]
, N

)
≤ CG,H

(
1
√
pn

+ 2−p
)
. (5.5)

On the other hand, using Theorem A we have

dKS

W Sph
n,p − E[W Sph

n,p ]√
Var[W Sph

n,p ]
, N

 ≤ C θ2

n(1− θ)
[
log 1

1−θ − θ
]3/2 . (5.6)

Combining (5.5) and (5.6), (5.1) and making use of Corollary 5.2, we obtain

dKS

WG,H
n,p − E[WG,H

n,p ]√
Var[WG,H

n,p ]
, G

 ≤ CG,H ( 1
√
pn

+ 2−p
)

+
C θ2

n(1− θ)
[
log 1

1−θ − θ
]3/2 .

The result follows from the observation that the former bound is finer than the latter.
That is, for all 1 ≤ p ≤ n, there is a constant C ∈ (0,∞) such that with θ = p−1

n , we have

1
√
pn

+ 2−p ≤ 2

p
≤ C θ2

n(1− θ)
[
log 1

1−θ − θ
]3/2

for some constant C ∈ (0,∞). That completes the proof of Theorem C.

6 Proof of Theorem G

In this section we provide a direct proof of Theorem G, which states that if An is an
n× n matrix with standard Gaussian entries, then

dKS

 log |det(An)| − ( 1
2 log(n− 1)! + c0)√

1
2 log n+ c1

, N

 ≤ C

log3/2 n
,

With the exception of a few definitions and bounds relating to the polygamma functions
that we import from Section 3.3, this section is independent of the remainder of the
paper, though several parts run closely in parallel with ideas seen in Section 3.
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Now let An be an n × n matrix whose entries are independent standard Gaussian
random variables. The starting point of our analysis is the well known identity in law

|det(An)| d
= 2n/2

 n∏
j=1

Rj/2

1/2

, (6.1)

dating back to Goodman [24], where R1/2, . . . , Rn/2 are independent random variables
such that Rj/2 has the Gamma distribution with shape parameter j/2 and unit scale
parameter.

Taking logarithms of (6.1), we may express the log-determinant of |det(An)| in terms
of an independent sum of log-gamma random variables:

log |det(An)| d
=
n

2
log 2 +

1

2

n∑
j=1

logRj/2. (6.2)

A brief calculation tells us that if P [W ∈ dζ] = 1
Γ(λ)ζ

λ−1 e−ζ dζ tells us that

E[W ] = ψ0(λ) and Var[logW ] = ψ1(λ),

so that in particular

E [log |det(An)|] =
n

2
log 2 +

1

2

n∑
j=1

ψ0(j/2)

and

Var [log |det(An)|] =
1

4

n∑
j=1

ψ1(j/2).

We now compute the characteristic function of a normalized log-gamma random
variable. The following lemma is an analogue of Lemma 3.7 with the log-gamma random
variable in place of the log-beta random variable. Since the proof is rather similar — and
simpler — we will be content to sketch just a few key details.

Lemma 6.1. Let Wλ be gamma distributed with parameter λ > 0, and define

Q̃λ :=
logWλ − ψ0(λ)√

ψ1(λ)
.

Then, for all t ∈ R,

ϕλ(t) := E[eitQλ ] = exp

(
−t2/2− i

∫ t/
√
ψ1(β)

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3ψ2 (β + it3)

)
.

Proof. A basic calculation tells us that

E[eit logWλ ] =
Γ(λ+ it)

Γ(λ)
= exp

(
i

∫ t

0

ψ0(λ+ it1)dt1

)
.

In particular

E[eitQ̃λ ] = exp

{
−it ψ0(λ)√

ψ1(λ)
+ i

∫ t/
√
ψ1(λ)

0

ψ0(λ+ it1)dt1

}

= exp

{
−
∫ t/
√
ψ1(λ)

0

dt1

∫ t1

0

dt2 ψ1(λ+ it2)

}
.
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Pulling out a factor of t2/2 from the integrand to obtain the first inequality below, and
packaging the difference as in integral to obtain the second, we have

E[eitQ̃λ ] = exp

{
−t2/2−

∫ t/
√
ψ1(λ)

0

dt1

∫ t1

0

dt2 (ψ1(λ+ it2)− ψ1(λ))

}

= exp

{
−t2/2− i

∫ t/
√
ψ1(λ)

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3 ψ2(λ+ it3)

}
,

completing the proof of Lemma 6.1.

We now note that if φn(t) is the characteristic function of the centering of log det(An),
then using (6.2) we have

φn(t) := E

[
exp

{
it

log det(An)− E[log |det(An)|]√
Var[log |det(An)|]

}]
=

n∏
j=1

ϕj/2

(√
ψ1(j/2)

Sn
t

)
, (6.3)

where ϕj/2 are defined as in Lemma 6.1 and Sn :=
√∑n

k=1 ψ1(k/2).
Our next lemma expresses how similar the centering of log det(An) is to a standard

Gaussian random variable.

Lemma 6.2. For all t ∈ R, we have∣∣log φn(t) + t2/2
∣∣ ≤ εn|t|3

where

εn := 4/ log3/2 n.

Proof. Using (6.3) in conjunction with Lemma 6.1 we have

log φn(t) + t2/2 = −i
∫ t/Sn

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3

n∑
j=1

ψ2

(
j

2
+ it3

)
.

Using (3.7), and the fact that the simplex {(t1, t2, t3) ∈ R3 : 0 < t3 < t2 < t1 < a} has
volume a3/6, we have

∣∣log φn(t) + t2/2
∣∣ ≤ 1

6

|t|3

S3
n

n∑
j=1

8

(j/2)2
≤ 32

6

|t|3

S3
n

π2

6
.

Now using the lower bound in Lemma 3.6 we have S2
n :=

∑n
k=1 ψ1(k/2) ≥

∑n
k=1 2/k ≥

2 log n. Using the fact that 32π2

36
1

23/2 ≤ 4, the result follows.

We are now equipped to prove a version of Theorem G with implicit means and
variances.

Theorem 6.3. Let An be an n× n matrix with independent standard Gaussian entries.
Then

dKS

(
log det(An)− E[log det(An)]√

Var[log det(An)]
, N

)
≤ C/ log3/2 n.

Proof. With ε as in Lemma 6.2, using Lemma 3.10 we see that, for all |t| ≤ (4εn)−1, we
have |φn(t) − e−t

2/2 | ≤ ε|t|3 e−t
2/4. Now as in the proof of Theorem A in Section 3.6,

Theorem 6.3 follows from Berry’s smoothing inequality (3.22).
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In order to complete the proof of Theorem G, we require fine estimates on the mean
and variance of log det(An). To this end we have the following lemma.

Lemma 6.4. Let c0 and c1 be as in (2.14) and (2.15). Then we have

E[log det(An)] =
1

2
log(n− 1)! + c0 + εn

and

Var[log det(An)] =
1

2
log n+ c1 + δn, (6.4)

where for a universal constant C ∈ (0,∞), we have |εn|, |δn| < C/n.

Proof. Recall that

E [log det(An)] =
n

2
log 2 +

1

2

n∑
j=1

ψ0(j/2). (6.5)

We begin with the integral formula

ψ0(z) := log z − 1

2z
+

∫ ∞
0

(
1

2
− 1

ζ
+

1

eζ −1

)
e−zζ dζ, (6.6)

(see, e.g., Whittaker and Watson [61, Section 12.31]). In particular, we may write

n∑
j=1

ψ0(j/2) = −n log 2 +

n∑
j=1

log j −
n∑
j=1

1/j +

n∑
j=1

pj , (6.7)

where

pj :=

∫ ∞
0

(
1

2
− 1

ζ
+

1

eζ −1

)
e−jζ/2 dζ.

It is easily verified that

∞∑
j=1

pj =

∫ ∞
0

(
1

2
− 1

ζ
+

1

eζ −1

)
1

eζ/2−1
dζ = c′0,

and that moreover there is a universal constant C ∈ (0,∞) such that∣∣∣∣∣∣
∞∑

j=n+1

pj

∣∣∣∣∣∣ =

∣∣∣∣∫ ∞
0

(
1

2
− 1

ζ
+

1

eζ −1

)
e−nζ/2

eζ/2−1
dζ

∣∣∣∣ ≤ C/n,
so that in particular

n∑
j=1

pj = c′0 −O(1/n).

The first equation for the mean now follows from (6.5) and (6.7) in conjunction with the
well known bound

n∑
j=1

1/j = log n+ γ +O(1/n).
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We turn to the proof of (6.4), which is similar. Recall first that

Var [log det(An)] =
1

4

n∑
j=1

ψ1(j/2).

Differentiating through (6.6) and using the identity 1
z2 =

∫∞
0
t e−zt dt, we have

ψ1(z) =
1

z
+

∫ ∞
0

(ζ − 1) eζ +1

eζ −1
e−zζ dζ.

In particular,

Var [log det(An)] =
1

2

n∑
j=1

1/j +
1

4

n∑
j=1

sj ,

where

sj :=

∫ ∞
0

(ζ − 1) eζ +1

eζ −1
e−jζ/2 dζ.

It is easily verified that

∞∑
j=1

sj =

∫ ∞
0

(ζ − 1) eζ +1

eζ −1

1

eζ/2−1
dζ = c′1

and that moreover there is a universal constant C ∈ (0,∞) such that∣∣∣∣∣∣
∞∑

j=n+1

sj

∣∣∣∣∣∣ =

∣∣∣∣∫ ∞
0

(ζ − 1) eζ +1

eζ −1

e−nζ/2

eζ/2−1
dζ

∣∣∣∣ ≤ C/n.
Again using the fact that

∑n
j=1 1/j = log n+ γ +O(1/n), the second equation follows.

We are almost ready to prove Theorem G from its implicit version, Theorem 6.3. The
final tool in sewing our work together is the following lemma, the proof of which we
relegate to the appendix.

Lemma 6.5. Let σ, σ̃ > 0 and µ, µ̃ ∈ R. Assume that X is a random variable such that
dKS((X − µ)/σ,N) ≤ ε, where N is a standard Gaussian. Then it holds

dKS

(
X − µ̃
σ̃

, N

)
≤ ε+

|µ− µ̃|
max{σ, σ̃}

+
3

8

|σ2 − σ̃2|
min{σ2, σ̃2}

.

We now prove Theorem G.

Proof of Theorem G. The proof of Theorem G follows immediately from using Theorem
6.3 and Lemma 6.4 in Lemma 6.5. Indeed, in our setting we have X = log det(An),
µ = E[log det(An)], µ̃ = 1

2 log(n − 1)! + c0, σ = Var[log det(An)], and σ̃ := 1
2 log n + c1. It

follows that with εn and δn as in Lemma 6.4 we have

dKS

 log det(An)− ( 1
2 log(n− 1)! + c0)√

1
2 log n+ c1

, G

 ≤ C

log3/2 n
+

εn√
1
2 log n

+
3

8

δn
1
2 log n

≤ C ′

log3/2 n

for a universal constant C ′ ∈ (0,∞).
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7 Proofs of Theorems D, E and F

We use the notation Ri = ‖Y ni ‖2, R̃i = logRi and R̄i = logRi − E logRi, as well as

β̃i/2,j/2 = log βi/2,j/2 , β̄i/2,j/2 = log βi/2,j/2 − E[log βi/2,j/2].

All limits and asymptotic equivalences in this section are for n → ∞ unless stated
otherwise.

From [25, Theorem 3.1] and its proof we obtain the following lemma.

Lemma 7.1. If (βi/2,j/2)i,j∈N are independent random variables such that βi/2,j/2 is
Beta(i/2, j/2) distributed and p = pn →∞ is an integer sequence, then it holds

Var

1

2

p−1∑
j=1

log βn−j
2 , j2

 ∼ −1

2
log

n− p+ 1

n
− p2

2n(p+ 1)
, n→∞ .

Proof. Let X1, . . . , Xp+1 be independent random points in Rn that are uniformly dis-
tributed on the sphere of radius 1 centered at the origin of Rn. Let Vn,p denote the
p-dimensional volume of the simplex with vertices X1, . . . , Xp+1. Then we have by
Theorem 2.5(d) in [25] that

ξ(1− ξ)p(p!Vn,p)2 d
= (1− ξ)p

p−1∏
j=1

βn−j
2 , j2

, (7.1)

where the random variable ξ ∼ Beta(n/2, p(n− 2)/2) is independent of everything else.
As in [25], we set Ln,p = log(p!Vn,p). Taking logarithm in (7.1) we get

log ξ + log(1− ξ)p + 2Ln,p
d
= log(1− ξ)p +

p−1∑
j=1

log βn−j
2 , j2

,

which implies

Var

1

2

p−1∑
j=1

log βn−j
2 , j2

 = Var[Ln,p] + Var[ 1
2 log ξ] .

From [25, Theorem 3.1] we know that

Var[Ln,p] ∼ −
1

2
log

n− p+ 1

n
− p2

2n(p+ 1)
, n→∞.

Using Lemma 3.5, we deduce that

Var[Ln,p] + Var[ 1
2 log ξ] = Var[Ln,p](1 + o(1)) , n→∞,

which completes the proof of the lemma.

7.1 Proof of Theorem D

From (1.5) and the definition of bn we get

log Volp (∆Y)− bn
σn

d
=
− log(p!) +

∑p
i=1 R̃i + 1

2

∑p−1
j=1 β̃n−j

2 , j2
− bn

σn
= Tn + o(1) , (7.2)

where

Tn =

∑p
i=1 R̃i + 1

2

∑p−1
j=1 β̃n−j

2 , j2
− pE[R̃(n)1{|R̃(n)|<σn}]−

1
2

∑p−1
j=1 E[β̃n−j

2 , j2
1{|β̃n−j

2
,
j
2
|<2σn}]

σn
.

Since
∑p
i=1 R̃i + 1

2

∑p−1
j=1 β̃n−j

2 , j2
is a sum of independent random variables, an application

of Theorem B.1 shows that Tn converges in distribution to a standard normal variable N ,
as n→∞. In conjunction with (7.2), the desired result (2.11) follows.
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7.2 Proof of Theorem E

Define

cn = an +

∫ ∞
−∞

x

1 + x2
dP(R̃(n) ≤ σn(x+ an)) .

From (1.5) and the definition of bn, we get

log Volp (∆Y)− bn
σn

d
= σ−1

n

p∑
i=1

(R̃i − cn) +

1
2

∑p−1
j=1 β̄n−j

2 , j2

σn
+ o(1) , (7.3)

where R̃i = logRi. We treat the terms on the right-hand side separately. In view of (1.7)
and (2.1), we have, using the definition of β̄, that

1

2

p−1∑
j=1

β̄n−j
2 , j2

d
= ωn

W̃ Sph
n,p

√
Var[W Sph

n,p ]

ωn
=: ωnZ̃n,p .

Observe that by Lemma 7.1 we have
√

Var[W Sph
n,p ]/ωn → 1. In combination with Theorem

A, we get that Z̃n,p
d→ N as n → ∞ for a standard normal random variable N . Using

ωn/σn → 0, we conclude that

1
2

∑p−1
j=1 β̄n−j

2 , j2

σn

d
=
ωn
σn
Z̃n,p

P→ 0 .

By virtue of Slutsky’s theorem (see, e.g., [13]) and (7.3), it remains to show that

σ−1
n

p∑
i=1

(R̃i − cn)
d→ Zα , n→∞ , (7.4)

where the limit random variable Zα = Zα(c1, c2) has the characteristic function (2.12).
Since p→∞, condition (B.1) is satisfied so that an application of Theorem B.2 proves
(7.4). The proof of Theorem E is now complete.

7.3 Proof of Theorem F

Recall the notations from the proof of Theorem E. Using ωn/σn → q ∈ (0,∞), we see
that

1
2

∑p−1
j=1 β̄n−j

2 , j2

σn

d
=
ωn
σn
Z̃n,p

d→ qN ,

where N is a standard normal variable independent of Zα. Following the lines of proof
of Theorem E, we conclude that

log Volp (∆Y)− bn
σn

d
= σ−1

n

p∑
i=1

(R̃i − cn) +

1
2

∑p−1
j=1 β̄n−j

2 , j2

σn
+ o(1)

d→ q Z + Zα , n→∞ ,

finishing the proof of Theorem F.

A Some facts about KS-distance

For random variables A,B, define the Kolmogorov-Smirnov distance between A and
B by

dKS(A,B) := sup
t∈R
|P (A ≤ t)− P (B ≤ t)|
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It is straightforward to verify that KS distances satisfy a triangle inequality

dKS(A,C) ≤ dKS(A,B) + dKS(B,C) (A.1)

as well as the fact that KS distances are invariant under affine transformations:

dKS(γA+ λ, γB + λ) = d(A,B). (A.2)

Finally, if A,B have continuous densities f and g, the KS distance is bounded above by
the total variation distance:

dKS(A,B) ≤ dTV (A,B) :=

∫ ∞
−∞
|f(s)− g(s)|ds.

Proof of Lemma 6.5. First, we use the affine invariance (A.2) to obtain first the equality
below, and then the triangle inequality (A.1) to obtain the following inequality, and then
the affine invariance with d((X − µ)/σ,N) ≤ ε to obtain the final inequality, we have

dKS

(
X − µ̃
σ̃

, N

)
= dKS (X, σ̃N + µ̃)

≤ dKS (X,σN + µ) + dKS (σN + µ, σ̃N + µ̃)

≤ ε+ dKS (σN + µ, σ̃N + µ̃)

It remains to bound the latter term in the final line above. Note that we have

dKS (σN + µ, σ̃N + µ̃) ≤ dKS (σN + (µ− µ̃), σN) + dKS (σ̃N, σN) (A.3)

and

dKS (σN + µ, σ̃N + µ̃) ≤ dKS (σ̃N + (µ̃− µ), σ̃N) + dKS (σ̃N, σN) (A.4)

The right-hand side of (A.3) and (A.4) is then bounded by Lemma A.2 and Lemma A.1,
which completes the proof.

Lemma A.1. The KS distance between two Gaussians with mean zero but different
variances σ2 > 0 and τ2 > 0 is bounded by

sup
t∈R

∣∣∣∣∫ t

−∞

1√
2πσ2

e−u
2/2σ2

du−
∫ t

−∞

1√
2πτ2

e−u
2/2τ2

du

∣∣∣∣ ≤ 3

8

|σ2 − τ2|
min{σ2, τ2}

. (A.5)

Proof. For a proof of (A.5) see Lemma 2.5 and Proposition 2.6 of [33]

The KS distance between two Gaussians with the same variance but different means
may be bounded as follows.

Lemma A.2. Let x > 0. Then the KS distance between two unit variance Gaussian RVs,
one with mean x, the other with mean 0 is bounded above by x. That is,

dKS

(
e−u

2/2 du√
2π

,
e−(u−x)2/2 du√

2π

)
:= sup

t∈R

∣∣∣∣∣
∫ t

−∞

(
e−u

2/2

√
2π
− e−(u−x)2/2

√
2π

)
du

∣∣∣∣∣ ≤ x.
Proof. For any t ∈ R we have

sup
t∈R

∣∣∣∣∣
∫ t

−∞

(
e−u

2/2

√
2π
− e−(u−x)2/2

√
2π

)
du

∣∣∣∣∣ = sup
t∈R

∣∣∣∣∣
∫ t

−∞

(
e−(u+x/2)2/2

√
2π

− e−(u−x/2)2/2

√
2π

)
du

∣∣∣∣∣
≤ e−x

2/8

∫ ∞
−∞

e−u
2/2

√
2π

∣∣∣eux/2− e−ux/2
∣∣∣ du.
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Expanding the power series for sinh and using the triangle inequality, this is bounded
further by

sup
t∈R

∣∣∣∣∣
∫ t

−∞

(
e−u

2/2

√
2π
− e−(u−x)2/2

√
2π

)
du

∣∣∣∣∣ ≤ 2 e−x
2/8

∞∑
n=0

(x/2)2n+1

(2n+ 1)!
E[|N |2n+1],

where N is a standard Gaussian. By Jensen’s inequality,

E[|N |2n+1] ≤ E[N2n+2]
2n+1
2n+2 .

Whenever n ≥ 0, E[N2n+2] ≥ 1, so we can use the cruder bound with no power adjust-
ment:

E[|N |2n+1] ≤ E[N2n+2]

In particular,

dKS

(
e−u

2/2 du√
2π

,
e−(u−x)2/2 du√

2π

)
≤ 2 e−x

2/8
∞∑
n=0

(x/2)2n+1

(2n+ 1)!
E[N2n+2]. (A.6)

Finally, the even Gaussian moments are given by

E[N2p+2] =
(2p+ 2)!

2p+1(p+ 1)!
. (A.7)

By (A.7), we have

∞∑
n=0

(x/2)2n+1

(2n+ 1)!
E[N2n+2] =

∞∑
n=0

(x/2)2n+1

(2n+ 1)!

(2n+ 2)!

2n+1(n+ 1)!

=
x

2
ex

2/8 . (A.8)

Plugging (A.8) into (A.6), we obtain the result.

B Some stable limit theory

Theorem B.1. [49, Theorem IV.4.18] Let (Xnk)n≥1,1≤k≤kn be a triangular array of real-
valued random variables that are independent within rows. Assume there exists a
sequence of positive constants (σn)n≥1 such that

lim
n→∞

1

σ2
n

kn∑
k=1

(
E[X2

nk1{|Xnk|<σn}]− (E[Xnk1{|Xnk|<σn}])
2
)

= 1 , and

lim
n→∞

kn∑
k=1

P(|Xnk| ≥ εσn) = 0 , ε > 0 .

Let (bn)n≥1 be a sequence satisfying

bn =

kn∑
k=1

E[Xnk1{|Xnk|<σn}] + o(σn) , n→∞ .

Then we have ∑kn
k=1Xnk − bn

σn

d→ Z ∼ N(0, 1) , n→∞ .
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Theorem B.2. Let (Xnk)n≥1,1≤k≤kn be a triangular array of real-valued random variables
that are independent within rows. For some α ∈ (0, 2) and c1, c2 ≥ 0 with c1 + c2 ∈ (0,∞),
assume that there exists a sequence of positive constants (σn)n∈N such that, as n→∞,

max
1≤k≤kn

P(|Xnk| ≥ εσn)→ 0 , ε > 0 , and (B.1)

kn∑
k=1

P(σ−1
n Xnk ≤ −x)→ c1x

−α ,

kn∑
k=1

P(σ−1
n Xnk > x)→ c2x

−α , x > 0 , and

lim
ε→0

lim sup
n→∞

1

σ2
n

kn∑
k=1

(
E[X2

nk1{|Xnk|<εσn}]− (E[Xnk1{|Xnk|<εσn}])
2
)

= 0 .

For n ≥ 1 and 1 ≤ k ≤ kn, set ank := σ−1
n E[Xnk1{|Xnk|<σn}] and let (bn)n≥1 be a sequence

of real numbers satisfying

bn =

kn∑
k=1

(
ank +

∫ ∞
−∞

x

1 + x2
dP(Xnk ≤ σn(x+ ank))

)
− γ + o(1) , (B.2)

where γ ∈ R. Then we have the following weak convergence to an α-stable limit:

σ−1
n

kn∑
k=1

Xnk − bn
d→ Zα , n→∞ .

The limit random variable Zα = Zα(c1, c2, γ) has the characteristic function

E[eitZα ] =

{
exp

{
iγt+ α(c1 + c2)Γ(−α) cos(πα2 )|t|α

(
1− iη tan(πα2 ) sign(t)

)}
, if α 6= 1,

exp
{

iγt− (c1 + c2)π2 |t|
(
1 + iη 2

π sign(t) log |t|
)}

, if α = 1,
(B.3)

where η = (c2 − c1)/(c1 + c2).

Proof. Without loss of generality we may restrict ourselves to the case σn = 1; otherwise
replace Xnk with Xnk/σn. For σn = 1 and noting that (B.1) is Petrov’s so-called infinite
smallness condition, [49, Theorem IV.2.8] yields the existence of a sequence of constants
bn such that

∑kn
k=1Xnk − bn converges in distribution to an infinitely divisible random

variable Zα with Lévy spectral function L(x) = c1|x|−α1{x<0} − c2x−α1{x>0} for x ∈ R.
By [49, Theorem IV.2.5], bn may be chosen as in (B.2). From the form of L(x) we can
deduce by [49, Theorem IV.3.11] that the limit variable Zα has a stable distribution with
characteristic function

exp

{
iγt−

∫ ∞
−∞

(
eitx−1− itx

1 + x2

)
dL(x)

}
,

where L is the Lévy spectral function from above. Finally, by parts (i) and (iv) of [32,
Theorem 3.3] (with c2 = c+ and c1 = c−), this expression equals the right-hand side in
(B.3). We mention that an alternative proof of the last step can be furnished by using
[49, Theorem IV.3.12].
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