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Abstract

In this paper, we study the extended mean field control problem, which is a class of
McKean-Vlasov stochastic control problem where the state dynamics and the reward
functions depend upon the joint (conditional) distribution of the controlled state and
the control process. By considering an appropriate controlled Fokker-Planck equation,
we can formulate an optimization problem over a space of measure-valued processes
and, under suitable assumptions, prove the equivalence between this optimization
problem and the extended mean-field control problem. Moreover, with the help of this
new optimization problem, we establish the associated limit theory i.e. the extended
mean field control problem is the limit of a large population control problem where the
interactions are achieved via the empirical distribution of state and control processes.
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1 Introduction

The aim of this paper is to provide a rigorous connection between two stochastic
control problems: the stochastic control problem of large population (or particles)
interacting through the empirical distribution of their states and controls on the one
hand, and the other hand the problem of control of stochastic dynamics depending upon
the joint (conditional) distribution of the controlled state and the control, also called
extended mean field control problem.

To fix the ideas, let us briefly described the problems. The large population stochastic
control problem can be formulated as follows (see Section 2.1 for more details). Consider
N-interacting controlled state processes X := (X!,..., X") governed by the following
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system of stochastic differential equations: for ¢ € [0, 7],

dXi == b(t, X;, (@évwx)se[()?t]’ @iva O[i)dt‘f’g(t, X;7 (@évvx)se[o’t]’ @iv7 ai)dwz +0-OdBt’

1N N
N ._ NX .
Yy = ;:1 5(xi ai) and ¢, " = ;:1 Oxi-

t

Here T > 0 is a fixed time horizon, (B, W!,..., W¥) are independent Brownian motions,
B is called the common noise and (o', ..,o") are some admissible controls chosen by a
global planner. In this stochastic control problem, the global planner aims to maximise
the average reward value given by

N T

1 ) ) )

N ZE{/O L(t, X3, (@év’x)se[o,t]’ 1 ap)dt + g(X7, (‘F’év’x)se[o,T]) :
i=1

When N goes to infinity, the expectation is that this problem “converges” towards
the extended mean field control problem. Loosely speaking (see Section 2.2 for more
details), in the extended mean field control problem the objective is to control via « the
state process X which follows the stochastic differential equation of McKean-Vlasov

type

dX; :b(t, X, (‘C(XSIB))SE[O,t]a ﬁ(Xt,Oét|B)7 at)dt
+o(t, Xi, (L(Xs|B))seo, g L(Xe, | B), ap)dWy + ood By,

in order to maximise the quantity

T
E{/ L(tv X, (‘C(XS|B))SE[O,t]v ‘C(Xtvat‘B)a at)dtJrg(XT» (‘C(XS|B))SE[O,T]) )
0

where L£(X;,«:|B) (resp L(X¢|B)) denote the conditional distribution of the couple
(X, aq) (resp the state X;) given the common noise B.

The connection we are investigating, i.e. that the stochastic control problem of large
population converges towards the mean field control problem, is often called limit theory
or (controlled) propagation of chaos. In contrast with the classical framework of McKean-
Vlasov stochastic control problem which only considers the conditional distribution of X,
here, there is in addition the presence of the conditional distribution of (X, o). Indeed,
when there is no law of control i.e. no £(X}, a|B) but only £(X;|B) in (b, 0, L, g), these
problems have been studied in the literature. Let us mention the work of Snitzman [33]
which shows, for particular coefficients (b, o) in the absence of control (and the law of
control), via some compactness arguments, a connection of this type. See also the papers
of Oelschlager [31] and Gartner [17], with no control and no law of control as well, which
use martingale problem in the sense of Stroock and Varadhan [34] adapted in the context
of Mckean-Vlasov equation to prove similar results under minimal assumptions.

In the controlled dynamic case but no extended type, that is to say when the dynamic
depends on the control but not its law, Fischer and Livieri [15] get a connection between
the large population stochastic control problem and the (extended) mean field control
problem for the study of a mean-variance problem arising in finance. Another interesting
work is that of Budhiraja, Dupuis, and Fischer [4], where they study the behavior
of empirical measures of controlled interacting diffusion in order to prove a large
deviation principle in a McKean-Vlasov framework. Still without touching the case
with law of control, the first papers that deal with the case with control under general
assumptions are Lacker [24] and Djete, Possamai, and Tan [11]. Thanks to an (extension
of) martingale problem of [34], as well as relaxed controls initiated by Fleming and Nisio
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[16], and developed by El Karoui, Huu Nguyen, and Jeanblanc-Picqué [12], combined
with compactness arguments adapted to the McKean-Vlasov setting, [24] proves the
connection between the two problems under general conditions on (b, o, L, g) without
common noise. Indeed, the idea of using relaxed controls, i.e. control seen as probability
measure of type d,, (du)dt helps to find some compactness properties necessary for
proving these types of results. Following upon these ideas, [11] develops a general
overview of McKean-Vlasov or mean field control problem, and treats the case with
common noise, which turns out to be a non trivial extension.

In the presence of the law of control, this propagation of chaos result is a natural
expectation. In spite of appearances, this is not an easy extension. The aforementioned
techniques do not work in this context. Two main reasons can explain the unsuitable
aspect of the techniques mentioned above. Firstly, the continuity of the application
t = L(X;|B) (or t — ;" *) plays a crucial role. Indeed, the classical idea is to put this
application in a canonical space, which is here the space C([0,7]; P(R")) of continuous
functions from [0,7] into the space of probability measures on R", and via compact-
ness arguments and martingale problem get this connection (see [24], and [11] for the
non-Markovian case with common noise). In our situation, this type of continuity is
lost because we must take into account the application ¢ — L£(X;,a;|B) (or t + @)
which does not have this property since the presence of control o can generate some
discontinuities. Secondly, as highlighted in [11], proving a result of propagation of chaos
is extremely related to the search of the closure of the set of all probabilities that are the
image measure of the controlled state process, the control and the conditional distribu-
tion of the controlled state process and control, i.e. £(X, 8, (du)dt, £(X, 6, (du)dt|B)).
Unfortunately, the natural space that one might think to answer this question is not a
closed set due to another problem of continuity (see Remark 2.5 for a more thorough
discussion).

There are not many papers in the literature which study the mean field control
problem with law of control and its connection with a large population stochastic control
problem. To the best of our knowledge, only the recent papers of Lauriére and Tangpi
[28] (with strong assumptions) and Motte and Pham [30] (for mean field Markov decision
processes) treat the limit theory question. Most papers focus on the questions of
existence and uniqueness of optimal control. Acciaio, Backhoff Veraguas, and Carmona
[1], with the help of Pontryagin’s maximum principle, obtain necessary and sufficient
conditions to characterize the optimum with strong assumptions on the coefficients in a
no common noise framework. Pham and Wei [32] (without common noise, with closed
loop controls) and Djete, Possamai, and Tan [10] establish the Dynamic Programming
Principle (DPP for short) and give a Hamilton-Jacobi equation on a space of probability
measures verified by the value function (heuristically proved in [10]). Let us also mention
Carmona and Lacker [6], Elie, Mastrolia, and Possamai [13], Cardaliaguet and Lehalle
[5], Alasseur, Taher, and Matoussi [2], Casgrain and Jaimungal [8], Lacker and Soret
[26], Féron, Tankov, and Tinsi [14] and [28] who study similar problem in the mean field
game framework called mean field game of controls or extended mean field game, as
well as our companion paper Djete [9] adapts the arguments of this paper to the context
of mean field game of controls.

In this article, our goal is to give some properties on the extended mean field control
problem and to show its connection with the large population stochastic control problem
under general assumptions on (b, 0, L, g) (see Theorem 3.3 and Theorem 3.1). To bypass
the difficulties highlighted above, we follow the idea mentioned in [11] which is to
introduce a new optimization problem by considering a suitable set of controls. This
set must be the closure of some set of probability measures. In this framework, the
appropriate space is the closure of all the probabilities that are the distributions of the
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conditional distribution of the state controlled process and the conditional distribution
of the state controlled process and the control, i.e. E(E(XAB))tE[O,T], 6£(Xhat‘3)(dm)dt)
(for more details see Section 2.3). Taking into account this type of probability turns
out to be the key to solve the main difficulties. The characterization of its closure is
possible by the appropriate use of (controlled) Fokker-Planck equation. Inspired by
the techniques developed in the proofs of Gyongy [18], especially [18, Lemma 2.1] (an
adaptation of Krylov [22]) and [18, Proposition 4.3] which are regularization results,
we can determine the desired set thanks to a Fokker-Planck equation. The conditions
used on the coefficients are general, except the non-degeneracy of the volatility o. This
assumption is capital to prove our main results. Apart from this assumption, our result
appears to be one of the first to establish some general properties on extended mean
field control problem and to show its connection with the large population stochastic
problem. Lacker [25] used similar techniques in the context of convergence of closed
loop Nash equilibria, but his analysis focuses mainly on an adequate manipulation of
[18, Theorem 4.6], while ours focuses on the techniques used for the proofs. Also, let us
mention Lacker, Shkolnikov, and Zhang [27] which establish a correspondence between
Fokker-Planck equations and solutions of SDE in a McKean-Vlasov framework with
common noise.

The rest of the paper is structured as follows. After introducing the notations and
the probabilistic structure to give an adequate definition of the tools that are used
throughout the paper, Section 2 states all the main assumptions and carefully formulates
first the large population stochastic control problem, then the strong formulation of
the extended mean field control problem and finally the stochastic control of measure-
valued processes. Next, in Section 3, we present the main results of this paper: the
equivalence between the strong formulation of extended mean field control problem and
the stochastic control of measure-valued processes, and the propagation of chaos result
i.e. the extended mean field control problem is, when N goes to infinity, the limit of
the large population stochastic control problem in presence of interactions through the
empirical distribution of state and control processes. Finally, Section 4 is devoted to the
proof of our main results and Section 5 provides some approximation results related to
the Fokker-Planck equation needed in our proofs.

Notations

(7) Given a Polish space (E,A), p > 1, we denote by P(E) the collection of all Borel
probability measures on E, and by P,(E) the subset of Borel probability measures
such that [, A(e, e)?u(de) < oo for some ey € E. We equip P,(E) with the Wasserstein
metric W, defined by

1/p
Wy, 1) = ( inf / Ae,e’p)\de,de') ,
pn) = (i Al Mde,de)
where A(p, 1) denotes the collection of all probability measures A on E x E such that
A(de, E) = u(de) and A\(E,de’) = p/(de’). Equipped with W, P,(FE) is a Polish space (see
[35, Theorem 6.18]). For any € P(FE) and u-integrable function ¢ : F — R, we write

mm:wwﬁéﬂmma .1

and for another metric space (E’,A’), we denote by y ® p/ € P(E x E’) the product
probability of any (u, u') € P(E) x P(E').

Given a probability space (2, F,P) supporting a sub-o-algebra G C F then for a
Polish space E and any random variable ¢ : 2 — E, both the notations £F (£|G)(w) and
PY o (¢)~! are used to denote the conditional distribution of ¢ knowing G under P.
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(7) For any (F,A) and (E’,A’) two Polish spaces, we shall refer to C,(E, E’) to
designate the set of continuous functions f from F into E’ such that sup,..z A'(f(e), ef) <
oo for some e}, € E’. Let IN be the set of non-negative integers and IN* be the notation
of the set of positive integers, i.e. N* := IN'\ {0}. Given non-negative integers m and n,
we denote by $”**" the collection of all m x n-dimensional matrices with real entries,
equipped with the standard Euclidean norm, which we denote by | - | regardless of the
dimensions, for notational simplicity. We also denote $" := $"*", and denote by 0,,x,
the element in $™*"™ whose entries are all 0, and by I,, the identity matrix in $". For
any matrix a € $” which is symmetric positive semi-definite, we write a'/? the unique
symmetric positive semi-definite square root of the matrix a. Let k be a positive integer,
we denote by CF(R"; R) the set of bounded maps f : R® — R with bounded continuous
derivatives of order up to and including k. Let f : R” — R be twice differentiable, we
denote by Vf and V?2f the gradient and Hessian of f.

(75i) Let T > 0, and (X, p) be a Polish space, we denote by C([0,7],3) the space of
all continuous functions on [0, 7] taking values in ¥. Then C([0,7T],¥) is a Polish space
under the uniform convergence topology, and we denote by || - || the uniform norm. When
¥ = RF for some k € N, we simply write C* := C([0, 7], R¥), also we shall denote by
Cl, == C([0,T], P(R¥)), and for p > 1, C1;¥ := C([0, T}, P, (RF¥)).

With a Polish space F, we denote by M(F) the space of all Borel measures ¢(dt, de)
on [0,7] x E, whose marginal distribution on [0, 7] is the Lebesgue measure d¢, that is to
say q(dt,de) = q(t,de)dt for a family (q(t,de));c[o,r) of Borel probability measures on E.
We also consider the subset My (F) C M(F) which is the collection of all ¢ € M(FE) such
that ¢(dt, de) = dy(+)(de)dt for some Borel measurable function ¢ : [0,7] — E. For any
q € M(FE), we define

qin.(ds,de) = Q(d37de)|[o fx T e (de)ds|(t 7] for some fixed e € E. (1.2)

2 Extended mean field control problem

Let (¢,n) € IN x IN*, (U, p) be a nonempty Polish space and P} denote the space of
all Borel probability measures on R™ x U i.e. Pj; := P(R" x U). We give ourselves the
following Borel measurable functions

[b,0,L] : [0,T] x R" x Cjj, x Py x U — R" x §™*" x Rand g : R" x Cjj, — R.

Assumption 2.1. The functions [b, o, L] are non-anticipative in the sense that, for all
(t,z,m,m,u) € [0,T] x R" x Cj, x Py x U
[b, o, L] (t,z,m,m,u) = [b, o, L} (t,z, Ten., M, 0).
Moreover, there exist positive constants C' and p such that p > 2 and
(1) U is a compact space;

(44) b and o are continuous bounded functions, and oy € $"** is constant;
(iii) one has for all (t,z,z',m, 7', m,m’,u) € [0,T] x (R™)? x (C})? x (PR)? x U

[, o)(t,z, m,m,u) — [b,o](t, ', 7", m’,w)| < C(lo—2a'|+ sup Wy(ms,ml) + Wy(m,m'));
€[0,77]

selo
(iv) for some constant § > 0, one has, for all (t,z,m,m,u) € [0,T] x R" x C}}, x Pjy x U,
01, < oo (t,x,m m,u);
(v) the reward functions L and g are continuous, and for all (¢,z,7,m,u) € [0,T] x

R" x Cy, x Py x U, one has

|L(t,a:,ﬂ',m,u)| +|g(z,m)| < C |1+ |z|P + sup W,(ms,do)? —|—/ |x’|pm(d1:’,U)].
s€[0,T] R"
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Remark 2.2. These assumptions are standard and in the same spirit as those used in
[24] and [11], but with some specific modifications adapted to the context of this article.
They ensure the well-posedness of the objects used throughout this paper. Due to the
technical aspect of our paper, the point (i) is considered essentially to simplify (the
presentation of) the proofs. But, using the classical uniform integrability condition as
in [24] and [11], it is possible to work with U a non-bounded set of R" for instance.
The point (iv) is the least classical assumption in the study in this problem. This is
an important assumption for the proofs of our results, in particular to deal with the
Fokker-Planck equations and the different SDEs considered in the proofs (see Section 5).

2.1 The large population stochastic control problem

In this section, we present the N-agent stochastic control problem or large population
control problem. The study of this control problem when /N goes to infinity is one of the
main objective of this paper.

For a fixed (v1,...,vY) € P,(R™)Y, let

o = RMY x ¢V xC*

be the canonical space, with canonical variable Xy = (X}, ..., X{\), canonical processes
W = (WL ... WN)c.cr and B = (Bs)o<s<7, and probability measure P/ under which

Xo~vy:=v'®- - ®@v" and (W, B) are standard Brownian motions independent of Xg.
Let FY = (FN)o<s<r be defined by

S

FN .= O—{XO’WT‘aBT’7 re [075]}7 s € [OvT]

S

Let us denote by Ay (vy) the collection of all U~valued F-predictable processes. Then,

given a := (at,...,aN) € (Ax(vn))N, denote by X* := (X*',...,X*") the unique
N .

strong solution of the following system of SDEs, EFv [||X*%||P] < oo, for each i €

{1,...,N},

t t
X?”=X6+/ b(r, X X, o, i)dr+/ o (r, X, N N al) AW + 60 By,
0 0

(2.1)
forall ¢t € [0, 7], with
N N
Z X”‘ 1 (dz) and ¢ (dz,du) == — Z X“ ; 1 (dz, dw).
The value function V& (v!,...,v") is defined by
vy 0Ny = sup V() (2.2)

(al,.a)

where
1 N N T N.X N.X
=y [/0 L(6 X3 o0 0t on)dt + g (X5 or0) |
1=

which is well-posed under Theorem 2.1.

Remark 2.3. (i) Our formulation allows for coefficients depending on the path of the
empirical distribution of X%, but can only accommodate a Markovian dependence with
respect to X< itself. In some sense, we work on a non-Markovian framework w.r.t. the
empirical distribution of X“. Indeed, as we will see in Section 2.3, our point of view is to
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write the entire problem as an optimization involving mainly the empirical distribution
of X i.e. VX, Therefore our key variable is ¢™V'* (not X ) and we can deal with its
path, hence the non-Markovian aspect.

(i4) Sometimes, the probability on CJ}, x M(Pp) x C*

-1
P(a',....a™):=P) o ((@iv’x)te[o,ﬂ,5(<p§)(dm)d8, (Bt)te[O,T]) (2.3)

will be used to refer to (al,...,a) € (An(vn))Y. The notation P (v1, ..., v") will
designate all probabilities of this type. The need for this space will become clearer in
the following.

2.2 The extended mean field control problem

On a fixed probability space, we formulate the classical McKean-Vlasov control
problem with common noise including the (conditional) law of control.
For a fixed v € P,(R"), let
Q= R"xC" x

be the canonical space, with canonical variable £, canonical processes W = (W;)o<i<r
and B = (By)o<i<7, and probability measure P, under which £ ~ v and (W, B) are
standard Brownian motions independent of £&. Let I = (F;)o<s<r and G = (Gs)o<s<T be
defined by: for all s € [0, 7],

Fs = U{g,Wr,Br, re [O,s]} and Gs = O'{Br, re [O,s]}.

Let us denote by A(v) the collection of all U-valued processes a = (o )o<s<7 Which are
FF-predictable. Then, given o € A(v), let X be the unique strong solution of the SDE
(see [10, Theorem A.3]): EF» [|| X“||?] < 0o, X§ = ¢, and for t € [0,T],

t ¢
X7 =Xg+ / b(r, X2, pdn a8 o ) dr + / o(r X2, pen B, ap)dW, + 00 By, (2.4)
0 0

with p2 = LP(X2|G,) and 2 := LP* (X%, a,|G,), for all v € [0, T].
Let us now introduce the following McKean-Vlasov control problem by

T
VS(V) = sjli() )‘I’(O{) where (I)(Oé) = E]PV |:/ L(t7X1§17/’['?/\~aﬁ?v at)dt + g(X’%a ‘ua) :
acA(v 0

(2.5)

Remark 2.4. Similarly to [11], notice that, this formulation takes into account the case
without common noise. Indeed, when ¢ = 0, the space C’ and $"*¢ degenerate and
become {0}. Then, B = 0 and, the filtration G is constant equal to the trivial o—algebra
{0,Q}. Therefore, there is no conditional distribution anymore.

Remark 2.5 (Discussion on a possible relaxed extended mean field control problem). An
adequate way to study the properties of Vs and/or to give a limit theory is to find the
closure S(v) of some particular space S(v) for the Wasserstein topology. To simplify,
let us take ¢ = 0 (without common noise), according to the classical ideas of relaxed
controls, S(v) := {P, o (X?, 6at(du)dt)_1, o € A(v)} (see discussion Djete, Possamai,
and Tan [11] and also Lacker [24]).

Following [24] and [11], let us give an example to see why the “natural” expected
relaxed controls is not a “good” set. Letn =1, U = [1,2], v = do, o(t,z, m,m,u) :=
| [, v’ m(R™,du’)| and b = 0. Notice that S(v) C P(C" x M(U)), then the canonical space
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is Qp := C" x M(U). Denote (X, A;(du)dt) the canonical process and F := (F)c(o,7) the
canonical filtration. A naive relaxed controls is Pr(r) C P(C™ x M(U)) defined by

Pr(v) = {F: P(X,=0)=1, (MF’f)te[()ﬂ is a (P, F)-martingale Vf € Cl?(]R)},

where M = £(X,) — L [EV2F(X)EP[ [, u Ay(du)]ds.

But, Pr(v) defined in this way is not a closed set. Indeed the map ¢ € M(U) — ¢; €
P(U) is not continuous for the Wasserstein topology. Therefore Pr(v) can not be the
closure of S(v). More generally, as long as the coefficients (b, o) are non-linear w.r.t m,
this kind discontinuity will appear. Due to this type of lack of continuity, this approach
cannot work. We need then to change the framework.

2.3 Stochastic control of measure-valued processes

As previously mentioned, the classical approach of relaxed controls is not appropriate.
To bypass the difficulty generated by the (conditional) distribution of control in this
study, especially to prove the limit theory result or (controlled) propagation of chaos, we
introduce a new stochastic control problem. Motivated by the Fokker-Planck equation
verified by the couple (u*,z%) from (2.4), we give in this part an equivalent formulation
of the extended mean field control problem which is less “rigid”.

2.3.1 Measure-valued rules

Recall that M := ]M(P{}) denotes the collection of all finite (Borel) measures ¢(d¢,dm)
on [0,7] x P{;, whose marginal distribution on [0, 7] is the Lebesgue measure ds, i.e.
q(ds,dm) = q(s,dm)ds for a measurable family (q(s,dm))scpo,r7 of Borel probability
measures on Pj;. Let A be the canonical element on IM. We then introduce a canonical
filtration FA = (FA)o<t<r on M by

Fr=o{A(C x[0,s]): Vs <t,C € B(PE)}.

For each ¢ € M, one has a disintegration property: ¢(dt,dm) = ¢(¢,dm)d¢t, and there is a
version of disintegration such that (¢, q) — ¢(t,dm) is F*-predictable.

We denote by (1, A, B) the canonical element on Q := C}}, x M x C*. The canonical
filtration F = (F);c[o,r) is then defined by: for all ¢ € [0,T]

Fypi= U{Nt/\-7 At Bt/\~}7

where A;,. denotes the restriction of A on P} x [0,¢] (see notation 1.2). Notice that, we
can choose a version of disintegration A(dm,dt) = A¢(dm)dt with (A¢)iecjo, ) @ P(Pf)-
valued F-predictable process.

Let us consider £ the following generator: for all (¢, z,m,m,u) € [0,7] x R™ x C};, x
Pp x U and any ¢ € C%(R")

Lio(x,m,m,u) := %TI‘[O’O’T(t,.T,ﬂ',m,u)VZ(p(Iﬂ +b(t,z,m,m,u) Ve(x),
also we introduce, for every f € C?(R"™), N;(f):
Nt(f) = <f('7O'OBt)7 fnu‘O

/ /w/n U f(- = o0Bo)] (@, p, m, w)m(da, du) A, (dm)dr,
X (2.6)
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recall that (-, ) is defined in (1.1). Notice that, under Theorem 2.1, the integral in the
definition N(f) is well-posedness. For each w € P(R"), one considers the Borel set Z
which is the set of probability measures m on R™ x U with marginal on R" equal to 7 i.e.

Ly = {m e P! m(de,U) = w(dx)}.

Definition 2.6. For every v € P(R"), P € P(Q) is a measure-valued rule if:

. P(,uo = V) =1.

* (By)iepo,1) is a (P, F) Wiener process starting at zero and for P-almost every w € €,
Ni(f) =0 for all f € CZ(R™) and everyt € [0,T].

« For dP ® dt almost every (t,w) € [0,T] x Q, A¢(Z,,,) = 1.

We shall denote by Py (v) the set of all measure-valued rules with initial value v.

2.3.2 Optimization problem
Let us define, for all (7, ¢q) € Cj;, x M(P}}),

J(r,q) = AT/E /RHXUL(t,x,w,m,u)m(dx,du)qt(dm)dt+/W g(a:,ﬂ)ﬂT(dx).

Notice that, under Theorem 2.1, the map J : C};” x M,(P{}) — R is continuous (see for
instance Theorem A.4). We can now define the measure-valued control problem: for
each v € P(R"™),

Vv(v):= sup EP[J(u,A)]. (2.7)
PGﬁv(V)

Remark 2.7. (i) Theorem 2.6 is partly inspired by the Fokker-Planck equation verified by
(g ¢ )eejo,7) (see (2.4) and Theorem 2.9), in particular the last two points characterize
this Fokker-Planck aspect. Indeed, (1, A) satisfy: for all (¢, f)

(f(- —00Bt),

)
= {(f, o) —l—/o /n /HXUET[f(- — 00B,)|(z, p, m,u)m® (dw) p, (dz) A, (dm)dr,

where for each m € P}, the Borel measurable function R" 5 z — m* € P(U) verifies
m?®(du)m(dz, U) = m(dx, du). This kind of control turns out to be less “rigid”. Especially,
Pv(v) is a compact set for the Wasserstein topology (see Theorem 3.1).

(#4) Working with these variables seems to be the key to better understand the
problem and solves the principal difficulties. Mainly, to prove a limit theory result in this
context, we make an approximation of the distribution of (u, A) thanks to the distribution
of variables of type (u“, gz (dm)dt) and not thanks to the approximation of the law of
X. This approximation is achieved by using Fokker-Planck equations. To the best of our
knowledge, looking at this kind of variable or “control” has never been studied in the
literature (except in [11], only for technical reasons).

SDE formulation of measure-valued rules Instead of presenting what we call
measure-valued rules as solutions of Fokker-Planck equation, it is possible to formu-
late the measure-valued rules through solution of SDEs. Indeed, using an equivalence
between Fokker-Planck equations and SDEs, there is an alternative way to formulate
the measure-valued rules. In order to give more insights about the measure-valued
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rules, let us describe the SDEs formulation. For this purpose, we introduce the notion of
extended relaxed control rules. We say that the tuple

(Q,F,F,P,W,B, X, u,A)
is an extended relaxed control rule if

(i) (Q,F,F,P) is a filtered probability space. on (Q, F,F,P), (W, B) is a R" x R~
valued F-Brownian motion, (X, i) is a R™ x P(R™)-valued F-adapted continuous
process and A is a P(Pj;)-valued F-predictable process.

(1i) Xo, W and (u, A, B) are independent.

(iii) The process u verifies p; = LF (X¢|pin., Ain., Bin.) = LE (X¢|p, A, B) for all ¢ € [0, T7.
The process A is s.t. Ay(Z,,) =1 dP ® dt a.e. and the process X is solution of:
LP(Xo) = v and

dX; :/ / b(t, X, pr, m, w)m™ (du) Ay (dm)dt
n U
U

1/2
+ (/ /UUT(t,Xt,u,m,u)mX‘(du)At(dm)) dW; + o¢d By,
nJu
U

where for each m € P}, the Borel measurable function R" 5 z — m®* € P(U)
verifies m” (du)m(dz,U) = m(dz, du).
Using [27, Theorem 1.3.] or an easy adaptation of Theorem 5.8 or Theorem 5.9, we
have the following equivalence result.
Proposition 2.8. (i) For any extended relaxed control rule (Q,F,F, P, W, B, X, u, A),
Po (uA, B)_1 belongs to Py (v).
(ii) Conversely, for any P € Py (v) measure-valued rule, there exists an extended
relaxed control rule (Q, F,F, P, W, B, X, u, A) s.t.

P="Po (A B) "

As stated in the preamble of this part, the measure-valued control problem is mo-
tivated by the Fokker-Planck equation verified by the couple (u®, %) of the strong
formulation. Therefore, the strong controls i.e. (u®,7i"),c() Can be seen as a spe-
cial case of measure-valued rules. By taking into account the previous equivalence
Proposition or by applying It6’s formula, it is straightforward to deduce the following
proposition.

Proposition 2.9. For each v € P,(R"), let us introduce

— P 71

Ps(v) i= { Py o (1 )eto s (Am)dr, (Boeor) s € Aw) .
one has Ps(v) C Py (v) and

Vs(v)= sup E%[J(n,A)].
QePs(v)

Proof. Let f € C?(R") and t € [0, 7], denote by N;(u1, A, B)(f) := Ny(f). Forany a € A(v),
it is obvious that P, (4§ = v) = 1 and 0o (Z,e) = 1 dP, ® dt a.e.. After applying
Ito6’s formula with the process X® — 0o B., and taking the conditional expectation w.r.t.
the o-field Gr, one has N;(u®, dze(dm)dt, B)(f) = 0, P,—a.e. for all (¢, f). Then P, o

(1™, 6z (dm)dt, B)_1 € Py (v). Therefore Pg(v) C Py (v). In addition, notice that
T
o) =B [ [ (0t m. ) mo (@mae + ()|
0 U

consequently Vs(v) = supgcp, () EX[J (1, A)]- O
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3 Main results

Now, we formulate the main results of this paper.

Theorem 3.1 (Equivalence). Let Theorem 2.1 hold true and v € P, (R™), with p’ > p.
Then Py (v) is convex and compact for the Wasserstein metric W,. Moreover

(i) When ¢ # 0, for W, the set Ps(v) is dense in Py (v).

(i1) When ¢ = 0, for any P € Py (v), there exists a family (P%)(, .)en<x[0,1] C Ps(v)
such that for each k € N*, [0,1] 5> 2 — P¥ € P(Q) is Borel measurable and one gets

1
lim W, (/ P* dz, P) =0.
k—oo 0

Consequently
W (v) =Vs(v),

and there exists P* € Py (v) such that Vs(v) = EY" [J(u, A)].

Remark 3.2. (i) As in [11] (see also [23] and [9] for the mean field game context), there
are some specificities when ¢ = 0. Indeed, when ¢ = 0, (1%, ") are deterministic, but
(1, A) can still be random, therefore, except in particular situation, it is not possible
to approximate the non atomic measure P by a sequence of atomic measure of type
d( 1 byza (dm)ds) However, a randomisation is possible as mentioned in (i) of Theorem 3.1.

(74) Theorem 3.1 and the following Theorem 3.3 are in the same spirit that Theorem
3.1 and Theorem 3.6 of [11]. The main difference is the presence of the distribution of
controlled state and control, and this particularity turns out to be a non trivial extension
(see discussion in Section 2.2).

Theorem 3.3 (Propagation of chaos). Let Theorem 2.1 hold true, p’ > p and (V*);en+ C
Py (R") satisfying supy>; + Zfil Jn |2/|P'vi(dz') < co. Then

N

. 1 i
]\}gnoo Vév(ul,...,uN) _VS(NZV)

=1

=0.

Finally, we provide some properties of optimal control of our problem. For any
v € P(R"), denote by Py (v) the set of optimal control i.e. P* € Py, (v) if P* € Py (v) and
Vi (v) =B [J(, A)].
Proposition 3.4. Suppose that the conditions of Theorem 3.3 hold. For some v €
Pp(R™), let imy 00 Wy (3 Zfil viv) =0.

(i) For any sequence of non negative numbers (e )yen+ verifying ]\}gnoo ey =0, if

(PN) nyen- is the sequence satisfying P := P(al,..., o) (see (2.3)) with

foreach N € N*, o’ € An(vy) Vi € [1,N] and V&V (v',..., o) — ey < BT [J(1,A)],

(3.1)
then
lim inf W, (PN, P*) =0.
N—00 P*EPV( )
(ii) Moreover, for each P* € P (v), there exist (e )N C (0,00) verifying
th en = 0 and a sequence (P*")yen- satisfying P~V := P(a* ..,a*") and condi-
— 00

tion 3.1 s.t. lim W,(P*V P*) = 0.
N—o0

Remark 3.5. (i) The previous proposition shows that any ¢y-optimal control of the
large population stochastic control problem converges towards an optimal control of
the McKean-Vlasov stochastic control problem in distribution sense. In particular when
there exists a unique strong optimal control of the McKean-Vlasov control problem,

EJP 27 (2022), paper 20. https://www.imstat.org/ejp
Page 11/53


https://doi.org/10.1214/21-EJP726
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Extended mean field control problem: a propagation of chaos result

any ¢ y—optimal control of the large population control problem converges towards this
control.

(#4) To the best of our knowledge, Theorem 3.3 and Theorem 3.4 seem to be the first
result under these general assumptions to provide these types of convergence results.
As mentioned in the introduction, other authors treat these questions but in a particular
framework. For instance, while dealing with the convergence of Nash equilibria, [28]
gives a limit theory result for the extended mean field control problem. The framework
of [28] is less general than ours, in particular, they consider a situation without common
noise (oo = 0), with volatility o constant. Besides, they need assumptions over (b, g, L)
via the Hamiltonian which lead to the uniqueness of the optimum and, these assumptions
are sometimes quite difficult to verify in practice. However, it should be mentioned
that the results of [28] include a rate of convergence that we do not provide. Let us
also mention [30] which treats these questions of convergence but for Markov decision
processes in discrete time.

The next corollary is just a combination of Theorem 3.3 and [11, Proposition 4.15]. It
states that if a strong control is close enough to the optimum value of the mean field
control problem, from this control, we can construct /N agents which are close to the
optimum of the large population stochastic control problem.

Corollary 3.6. Let Theorem 2.1 hold true. Let v € P, (R"™), withp’ > p, (en)nen~ be
a sequence of non negative real such that A}im ey = 0. Also, for each N € IN*, let
—00

oV € A(v) satisfying o) = ¢N(t,&,Win., Bin.) P, a.e. for allt € [0,T] with a Borel
function ¢~ : [0,T] x R" x C? x C* — U, and

Vs(v) —en < <I>(aN).

Then, there exists (0n)nen- C (0,00) s.t. lim dy =0 and (N oM Ny e An(vn)Y
—00

with vy (= v ® -- - ® v satisfying

ay™ = ¢N(t, X5, Wi, Bin), PY ae. and V& (v,...,v) =y < IV ("N, oV ),

4 Proofs of the main results

In this part, we will present the proof of the main results of this paper namely
Theorem 3.1 and Theorem 3.3. Some proofs use the results from Section 5 which will be
proven just after.

4.1 Equivalence result

This section is devoted to the proof of Theorem 3.1. To achieve this proof, we provide
an approximation of measure-valued rule by McKean-Vlasov processes. Before starting
the proofs, by shifting some probabilities, let us give a reformulation of measure-valued
rules. For all (¢,b,m,m) € [0,T] x C* x C3}, x Pg,

mlbldy) = [ 8,0 @m), mibdudy)i= [ G (d)m(du, )

RrxU
(4.1)
and any q € M,
q:[b](dm) = / 5(m/[bt]) (dm)gq (dm”). (4.2)
Py
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In the same way, let us consider the “shifted” generator L,

Zt [SO] (y7 b7 m,m, u)

1
= 5Tr [O’O’T (t,y + ooby, m[by], m[by], U)VQQD(y)] + b(t, y + ooby, T [by], m[by], u)TV¢(y).
4.3)

Next, on the canonical filtered space (Q,F) (see Section 2.3), let (¥¢);c(0,7] be
the P(R™)-valued F-adapted continuous process and (6;).c[,7] be the Pj-valued F-
predictable process defined by

9,(&) = (@)~ B@)] and O4(@)(dm) := A(@)[—B(@)](dm), for all (t,&) € [0,T] x .
(4.4)

The next result follows immediately, so we omit the proof.

Lemma 4.1. Let P € Py (v). Then, ©;(Zy,) = 1, dP ® dt, a.e. (t,w) € [0,T] x , and
P-a.e. w € Q, for all (f,t) € CZ(R™) x 0,77,

N(f)=(f,0) — / /n /WXU fly, B,¥, m,u)m(du,dy)O,(dm)dr.

Next, let us provide some estimates for the different controls. The first result is
standard, the second is just an application of Theorem 5.2 (see also Theorem 5.4)
combined with Theorem 4.1.

Lemma 4.2 (Estimates). Under Theorem 2.1, for any (v,v*,...,v") € Py (R™")N*! with
p’ > p, there exists K > 0, depending only of coefficients (b,c) and p’, such that: for
every (al,...,aN) € (An(vn))N one has

N

/ 1 .

EPN[ sup [ xl”m(dx)} <K[1+ TR zﬂ(dx’)}
te[0,T] JR" R" N i=1

where PV = P(a!,...,a" (

, QY (see definition (2.3)), and for each P € Py (v) or
a€ A(v) withP =P, (,uo‘,d o

)
dm) dt,B)_l, P-a.e.w €,

sup / |xp/19t(w)(dx)+EP{ sup |ac|”,,ut(dx)} < K[l—&—/
te[0,T] JR te[0,T] JR™

|x’|p/u(dx')] .

In addition
Wy (9s(w), 94 (w))” < K|t — 5|, forall (t,s) € [0,T] x [0,T], P-a.e.w € Q,

where ¥ is the process given in equation (4.4).

4.1.1 Technical lemmas

In this part, from a measure-valued rule, we will build a sequence of processes that
approximate the measure-valued rule and that are close enough to strong control rules.
This part is the fundamental part for the proof of Theorem 3.1.

let v € Py (R"), P € Py (v), and (Q, I, F, P) be a filtered probability space supporting
W R"-valued F-Brownian motion and let ¢ be a Fo-random variable s.t. £F (&) =v. We
define the filtered probability space (Q ]F _7-' ]P) which is an extension of the canonical
space (O, F,P): Q:=QxQ, F:= (F,® Fi)iepo,r) and P := P ® P. The variables (¢, W)
of  and (B, u, A) of Q are naturally extended on the space Q while keeping the same
notation (£, W, B, i, A) for simplicity. Also, let us consider the filtration (ét)te[O,T] defined
by

é\t = O'{Bt/\.,/lt/\.7At/\.}, forallt e [O,T]
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Proposition 4.3. Under Theorem 2.1, if we take any [0, 1]-valued uniform variable Z
PP-independent of (£, W, B, u, A), there exists a sequence of F-predictable processes
(a*)ren- satisfying: for each k € IN*,

of = G (t, €, puun., Ain., Win, Ben, Z), P-a.e., forallt € [0,T),

with a Borel function G* : [0,T] x R™ x Cl%, x M(Pg) x C* x C* x [0,1] — U such that if
we let X* be the unique strong solution of: EP[|| X*||P'] < oo, forall t € [0, T]

~

t ¢
Xt :£+/ b(r,Xf,u’“,ﬁ’:,aﬁ)dH/ o(r, X5, u*, 1y, af)dW, + 00 B, P-a.e.
0 0
where ¥ := LP(XF|G,) and i := £P(X*, a¥|G,) then

lim {Wp(éﬂk(dm)ds,As(dm)ds) + sup W,(uF, )| =0, P-ace.. (4.5)
k—o0 ° te[0,T]

Therefore

lim £P ((Mf)te[o,T], Oz (dm)ds, (Bt)te[O,T]) = P, for the Wasserstein metric W,.

k—o0

Proof. As P € Py (v), by definition, P a.e. w € Q, Ny(f) = 0 for all f € CZ(R") and
t € [0,T]. By Theorem 4.1, by taking into account the extension of all variables on SAI,
recall that (¢ );c[o,7] and (©;):c[o,7) are defined in (4.4), one has ©(Zy,) = 1, dP @ dt a.e.
(t,w) €[0,T] x €, and P-a.e. w € Q, for all (f,t) € CER™) x [0,T),

Nt(f):<f,q9t>—<f,1,>_/O‘/n/HXUETf(y,B,ﬁ,m,u)mmu,dy)er(dm)dr.
Define

= {m ePpr: / ly[?'m(dy, U) < K}

where K > 0 is such that K > K[l + fRn m’p/V(dx/>:|, with K is a constant used in

Lemma 4.2. Notice that I is a compact set of P,(R" x U) and by Theorem 4.2, one has
that ©,(') =1, dP®dt, a.e. (t,w) € [0,7] x Q. As T is a compact set of P,(R" x U), there
exists a family of measurable functions (h*),en- with A% : [0,7] x M — PZ, s.t.

lm Gk (p.0,,(dm)dt = Oy(dm)dt, P -a.e.
k—o0 ’
then

lim £P (9, 84e 1.0, (dm)dt, B) = LF (9,0, B), in W),

k00
In the same spirit of notations (4.3), we introduce
[b,6)(t, y, b, m,m,u) := [b,o](t,y + oobe, 7[b], m[by], u), (4.6)
notice that [b, 5] : [0,7] x R™ x C¢ x Cyy x Py x U — R™ x ™™ is continuous and for

b € Ct, [13, &](-,+, by -, -, -) verify the Assumption 2.1 with constant C' and ¢ independent of
b (see Assumption 2.1).
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Now, let us apply Theorem 5.8 (see also Theorem 5.6). As (19, Opk 1,0,y (dm)dt, B)

N keN*
is P independent of (£, W) and

lim £F (ﬁ,&hk(s o A_)(dm)ds,B) = LP (9,0,(dm)ds, B), in W,
k—o0 e

by Theorem 5.8, there exists G* : [0,T] x R" x M x C3}, x C" x C* x [0,1] — U a Borel
function such that if X* is the unique strong solution of: for all ¢ € [0, 7]

t t
Xk :§+/ b(r,X,’f,B,ﬁ’“,Ef,a,’f)dr+/ &(r, X¥, B,0% s, ak)dW,, P-ae., (4.7)
0 0

where
af = GM(,6,08, 910, Win, Bin, Z), U, := LF(XF,af|GF) and 0F == £P (X}|GF),

with ©F (dm)dt := 5( )(dm)dt, and G* := (G¥),cpo,1) := (0{sn., OF 1, Bin})scpo,1)s
then

h*(t,©¢n.)

D T | 3 o .
lim EP[ / W, (@, mi)Pdt + sup W08, 9,)| =0
Jj—o0 0 tE[[LT]

and

lim £P (9%, 0%, B) = £P (9,0, B), inW,,

j—o0

where m# := h¥(t,0,,.) and (k;);en- C N* is a sub-sequence. Notice that, as G* ¢ G,
and (¢, W, Z) are P independent of G, one has L” (X}, af|GF) = £F (X}, af|G,), P-a.e.
for all t € [0, T]. Using equation (4.6), we rewrite X* by: for all t € [0, 7], P-a.e.

Xk=¢+ /Ot b(r, XF + 0B, (E]?)(X;C + 001’3S|§s))se[o,T],E]T)(XiC + 00B,,a¥|G,), of)dr

+ /0 o (n X8 + 0By (LPCXE + 008,16 seioys EE(XE + 0By, k(G,), k) AW,
Denote by Xk .= X+ ¢ ooB, one finds IAP—a.e., forallt € [0, T,

XE =6t [ 00 R P REG sctomy £7(Res ). o)

t ~ =~ ~
+/ O—(Ter]?v(E]P(Xf|gs))se[0,T]aE]P(vaaﬂgT),O‘f)dWT+0—0Bt7
0

With the notation introduced in (4.1) and (4.2), it is straightforward to check that the
map

(m,q,b) € Cjhy x M x C* — (7[b], ¢:[b](dm)dt,b) € Cj3, x M x C*

is continuous. Consequently, one has

Jim Ef’[ / ! Wy (77 (B, m}? [Bt]>pdt+ sup W, (9 [B],ﬂt[B])} —0,
0

J—roo te[0,T)

therefore, in W,
. P P Ak7 =
jli)n;.lo EIP ((E]P (Xt ’ |gt)>t€[O,T] ) 5(61?’()?;"1 ,ozfl \QAS)) (dm)dsa B)

— lim £P (9% [B], 0 [B](dm)dt, B) = LF (9[B], ©,[B](dm)dt, B).

J—00
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~

After simple calculations, (¥[B], ©[B](dm)dt, B) = (u, A, B), P-a.e. Then

> T D Sk o~ . p R M
lim IE]P[ / Wy (£P (X, a11Gn). mi [B)]) dt + sup W, (£P(X{1Go), )| =0,
0

Jj—oo te[0,7T]
and hence

. P P, ki A _ sP o :
hJHl[, ((‘C (Xt |gt))t€[O,T]a6(£]F()’5§j7a’:l|§S))(dm)d573) =L (/’LaAvB) =P, in Wp'

After extraction from ()?kj , akf)jelN*, one has also the P-a.e. convergence (4.5). O

4.1.2 Proof of Theorem 3.1

First, for v € P, (R"), under Theorem 2.1, let us prove that Py (v) is a compact set for the
Wasserstein topology W,,. Let (Py)ren+ C Pv(v), by Theorem 4.4, (Py)ren- is relatively
compact for the Wassertein topology W, and any limit P, of any sub-sequence belongs
to Py (v). Therefore Py (v) is compact. By similar techniques used in [11, Theorem 3.1],
it is straightforward to show that Py (v) is convex.

Next, we prove the items (i) and (i¢) of Theorem 3.1. By applying Theorem 4.3,
with the same notations, for any [0, 1]-valued uniform variable Z P-independent of
(&, W, B, i, A), there exists a sequence of ﬁ—predictable processes (a¥)yen- satisfying:
for each k € IN¥,

Oéic = Gk(ta ga Hin-, At/\-a Wt/\v Bt/\, Z)? I/E\)_a'e'v forallt e [0, T}a
with G* : [0, 7] x R™ x Cy;, x M(Pg) x C™ x C* x [0,1] — U is a Borel function such that if
XP* is the unique strong solution of: for all t € [0,T]

t t
XF=¢+ / b(r, XE, puF, ik, oF)dr + / o(r, XF, p¥ ik, al)dW, + 0o B;, P-a.e.
0 0

where pf = £P(XF|G,) and ¥ := £LP(X*, a¥|G,) then
klim cP ((Mf)te[O,T]a gk (dm)ds, (Bt)te[o,T]) = P, for the Wasserstein metric W,.
—»00 e

For each k € IN*, X} = HF(&, Win., pien. Ain., Ben., Z), for all ¢ € [0,T), P-a.e. with
H* . R™ x C" x CJi, x M x C! x [0,1] — C™ a Borel function. Then, as (£, W, Z) are P-
independent of (11, A, B), one gets that forall € [0, 7], £F(XF, ,ak|G,) = £LP(XE, . o¥|Cr),
P-a.e.. Let us introduce the process (1¥)sei0.1

Al = LP(XE Xl — 00Bin, W,AE, |Gy), forall t € [0, T] with Af (du)dt == 6, (du)dt.

For each k € IN*, fif € P(C" x C" x C" x M(U)), for all ¢ € [0,7] and if (X,Y,W,A)
is the canonical process on C" x C" x C" x M(U), one has u¥ = L (X,), P-a.e., and
LP(XF, ak|Gy) (dz, du) = BAT [0%, (dz)A¢(du)], P-a.e. for all ¢ € [0, 7). It is straightforward
to see that iy = LP(XE  XE — 0oBin., W, Ak, |Gr), for each k € IN*, then for all ¢ €
[0,T],P-a.e.,

ﬁf = LIP()?ZC/\»)?ZQ/\‘ —00Bin, W, Af/\~|Bt/\~a ﬁf/\) = ﬁIP()A(tkA»)?tk/v —00Bin., WA?A~|B7ﬁk)
and (B, fi*) are P-independent of (¢, W). For all k € IN*, denote

Q

F—Po ()?k,)/(\'k — UOB,AIC,V[/',B,ﬁk)i1
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@k belongs to

P(Cm x €™ x M(U) x €™ x € x P(C" % C" x C" x M())),

then Qk is a weak control according to [11, Definition 2.9]. Then by (a slight extension
of) [11, Proposition 4.5], ‘

(1) when ¢ # 0, there exists a/"* € A(v), and X" the strong solution of (2.4) with
control o/** such that

] -1
lim P, o (Xa““,W,B,(SWJ,k aj,k)(dm,du)ds)

J—0o0

~ —~ —1
—Po (Xk, W, B, 65 ai (dm, du)ds) ,in W,.

(2) When ¢ = 0, there exists a family of Borel functions (x}); with % : [0,T] x
R™ x C" x [0,1] — U, such that if of*[z] := K5 (t, &, Win., z), for z € [0,1], one gets
(ag’k[z])te[o,T] € A(v) and

1 )
lim [ P,o (Xa“‘[zl, W,B,6 i
I‘I’S E)

j—o0 0

-1
(dm, du)ds) dz

ol 2]
~ /~ -1
=Po (Xk, W, B, 6, a;;,)(dm, du)ds) , in W,

All these results are enough to deduce the items (i) and (i¢) of Theorem 3.1, and
conclude that: for v € P, (R"), Vs(v) = Vi (v) and there exists P* € Py (v) such that
Vv (v) =E" [J(u,A)].

4.2 Propagation of chaos

With the help of Theorem 3.1, in this section we provide one of the main objective of
this paper, which is to prove the limit theory result or (controlled) propagation of chaos.

4.2.1 Technical results: study of the behavior of processes when N goes to
infinity

In this part, the properties of some sequences of probability measures on the canonical
space () are given. Mainly, the behavior when N goes to infinity of sequences of type
(P(al, ...,a")) yen+ construct from the formulation of large population stochastic control
problem are studied. (see Section 2.1 and Theorem 2.3).

Proposition 4.4. Let Theorem 2.1 hold true and (v*);en+ C Py (R™). Recall that vy :=
'@ ...@vVN, foreach N € IN*.

(i) Let (PV)nen- be the sequence satisfying PV := P(abV, ...,a™') (see definition
(2.3)) with a"N € Ay(vy) Vi € [1, N, for each N € N*. If

N
1 ’
sup — E / |2/|P v (dz’) < oo
/L:1 RTI,

N>1 N
then (PY)yen- is precompact in P,(S2) for the metric W, and for every P> € P(Q) the
limit of any sub-sequence (P7) e, P € Py (limj_y00 o vaz’l vh).

(i4) Let us consider the sequence (Py)ren+ of probability measures such that Py, €
Py (v*) for each k € N*. If
sup/ |2/ | V¥ (da') < oo
k>1.JRn
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then (Py)ren~ is precompact in P,(Q) for the metric W, and for every P, € P(Q) the
Iimit of any sub-sequence (Py,)jen+, Poo € Py (limj_o0 7).

Proof. (i) Thanks to Proposition A.2 or/and Proposition-B.1 of [7], as U is compact, it
is easy to check that (P")yen- is pre-compact on P,(Q) for the metric W,. Let P>
be a limit of a sub-sequence (P )jen+. For sake of simplicity, we denote (PNJ‘)jG]N* =
(PY)nen+ and v := lim; Nij vagl vt

Now, let us show P* € Py (v). Let f € CZ(R™). For each t € [0,T], we shall denote
Ni(Bin.s Ain., en.)(f) = Ne(f) to specify the dependence w.r.t. (B, u, A) (see definition
(2.6)). Notice that the function (¢,b,7,q) € [0,T] x C* xC}, x M — Ny(bia., qin., men.)(f) €
R is continuous and bounded. It is straightforward to check that: for all ¢t € [0, T]

Ni (B, (8yn (dm)ds)en., o0i) (f)

N t

1 ) ) ) .

— 3 [ IO 0o X R, 0l )AWE, P
i=1 70

With the same techniques used in the proof of [24, Proposition 5.1] or [11, Proposition
4.17], one has

B (| v(h) 7]
— EPOO [’(Nt(Bt/\A,At/\-,/it/\-)(f)f} = hj{anPN “(Nt(Bt/\"At/\"#t/\')(f)f}

= lim EFY “(Nf, (Bin-s (85 (dm)ds)in., oin) (f)ﬂ

2
dr] =0.

N t
1 pY i ayi_ ai NX N i i
= h]{[nE |:‘ N Zl/o VX7 oo B)o(r, X, ¢ 2Py s 0 ) dW3

N t
. 1 N i i i
:h}&m;m M VIX3T = 00B o (r, X N X, oY o)

By taking (¢, f) under a countable set of [0,7] x CZ(R") then P> a.e. w € Q, Ny(f) =0
for all (¢, f) € [0,7] x CZ(R™).

For any bounded continuous functions h € Cy(R"™), the map (¢,7) € M x C}}, —
fOT fPﬁ |(h,m(dz,U)) — (h,m(dz)>|2qt(dm)dt € R is bounded and continuous (see for
instance Theorem A.4), one finds that

EP { /0 ! / z} |(h,m(dz,U)) — (h, pt(dz)>]2At(dm)dt}
=l EF MT/{} [y m(dz, U)) = (h, oV X(d2)) |6, (dm)dt]
= lim EP UOT ’% i[h(Xf*i) - h(x;’“)}fdt} -0,

by taking i under a countable set of Cj,(R™), one concludes A;(Z,,) = 1 P> @ dt a.e..
It is obvious that (B;):eo, 1) is a (P>, TF) Wiener process. Let Q € IN*, and (hT)geq1,...0} :
R™ — R be bounded functions, one has

Q Q
B[ [T, | = [Tt

q=1 q=1
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Let us show this result when ) = 2, when @Q € IN*, the proof is similar.

EP™ (A, o) (h?, o) = hm— Z EPY [R} (X5 h? (X))
4,j=1
1 & 1
1 1 1 2 i 1 7 2 j
fh]{]nm_ (b, v")(h 7V>+]Vg;<h’vl/><hayj>
i=1 i£j

N LN
—hm Z: NZ#) = (h',v)(h? V),

by [11, Proposition A.3], P>* o (Mo)fl = d,, then pug = v, P*-a.e.. All these results allow
to deduce the first statement of this proposition.
(#4) For the second part of this proposition, notice that, thanks to Lemma 4.2,

sup IEPk[ sup / |xp/19t(dx)] < K{l—&— sup / |x'|p,zxk(dx')} < o0

keIN* te[0,T] keIN*

and

limsup sup sup EX [W, (01547, 95)] =0,
6—0 kelN* T

where 7 is a [0, T]-valued F-stopping time, and recall that (¢);co 7] is the P(R")-valued
F-adapted continuous process defined in equation (4.4). Then by Aldous’ criterion
[20, Lemma 16.12] (see also proof of [7, Proposition-B.1]), (P, o ((7‘9t)t€[01T])_1>kelN* is
relatively compact for the metric W,. Then, using the fact that P, € Py (v*) for each
k € IN* and the relation between (1}, ©) and the canonical processes (u, A) (see equation
(4.4)), we deduce that (Py)ren = (P;€ o (,u,A, B)fl)kE]N* is relatively compact in W,.
The rest of the proof is similar to the previous proof. O

Proposition 4.5. Let Theorem 2.1 hold true, v € P, (R™) with p’ > p and (v");en C
Py (R™) such that

sup/ |2/[P' 1 (da’) < oo and V* e, v, then lim Vs(v') = Vg(v).

'LGN 1—00 1—00

In particular, the map Vs : P, (R"™) — R is continuous.

Proof. By Theorem 3.1, one has Vg(v) = Vy/(v), thanks to this result, the proof is similar
to the proof of [11, Proposition 3.7.]. Let (6%)ew- € IN* with limg_, o, 6% = 0 and (P*)gen-
be a sequence such that P* € Py (v%) and Vi, (V%) — 68 < EP"[J (11, A)]. By Proposition
4.4, (P*),cn is relatively compact on (P,(Q2),W,) and if P € P(Q) is the limit of a sub-
sequence (P*/),cn- then P € Py (v). Using Theorem 2.1, by convergence of (P¥i),cn-,
one has lim; [EP" [J (11, A)] — EP[J (1, A)]| = 0. Therefore, one gets

lim sup Vi (1) < limn EP" [J (1, )] = EP [T (1, A)] < Vi (v) = Vi (v).

By [11, Proposition 4.15], Vs(v) < liminf; Vs(l/kf), this is enough to conclude that
lilgn Vs(v*) = Vs(v), and deduce the result. O
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4.2.2 Proof of Theorem 3.3

By combining Theorem 3.1, Theorem 4.4 and Theorem 4.5, this proof turns to be the
same used in the proof of [11, Theorem 3.6]. For the sake of completeness, we repeat
the proof.

(i) By Theorem 4.4 (with the same notations), if the sequence (P")yen- is such that:
VW, . oY) —en < EPY[J (i, A)], where (¢V)yen- is sequence with limy o e = 0,

then (PY)yen- is relatively compact on (P,(22), W ) and for every P> € P(Q) the limit
of the sub-sequence (PY7) cn-, P> € Py (limj_, 00 7 e S, v;), therefore

N.
1 J
limsup V& (01, ..., oY) < lim EP [J(p, A)] = EF[J(u, A)] < VV( lim — Z%)

N—o00 Jj—o0 Jj—oo INj <
i=1

Then, as lim;_, N% 52N v; € P, (R™) and Theorem 2.1 holds true one can deduce that
Vv(limj%o Ly yi> = Vs <1imj%o Lyl ui). By [11, Proposition 4.15],

N;

1 N
— < 7).
Vol Jim 3y 2p) S Hmif V@)

J =1
To recap

Nj

VS( lim iz:yz) < hmlanS (Wl ., 0N

j—o0 j P Jj—o00

< lim sup Vévj(z/l, LN < VS( lim N I/i>.

Jj—o0

(i1) Let (N;),en be the sequence corresponding to:

Nj
_ 1 Nj/ 1 Ny (i z)
jlgrolo‘VS (v, ..,vV)—=Vg N, ZV .

= i=1

N

1 .

limsup V& (01, ..., v —VS(— I/Z)
N—oco o ( ) NZ

By the previous proof, lim; . Vévj(vl, EVAED = Vs<limj—>oc N% Efvzﬁ Vi), as the

sequence (N% vazjl V") jen~ is bounded in (P, (R™), W,/) and converges in (P,(R"), W,),
by Theorem 4.5,

N; N;
1 = 1
lim V. (— VZ) = ( lim — 1/7')
Jj—o0 o Nj ; j—>oo j ;
this is enough to conclude the proof. O

4.3 Proof of Theorem 3.4

Notice that, for v € P,,(R"), by Theorem 3.1, Py (v) is nonempty. Let us define the
distance function to the set Py, (), for each Q € P(Q), ¥*(Q) := infp. 2 () Wo (@, P¥).
It is well know that, as Py (v) is nonempty, the function ¥* : Q € P,(Q) — R is
continuous. Then by Theorem 4.4, (P")yen- is precompact in P,(Q) for the metric
W, and if P € P(Q) is the limit of a sub-sequence (P"7);cy+, one have P € Py (v).
Under Theorem 2.1, lim;_, oo EP "’ [J (11, A)] = EP[J (11, A)]. Combining Theorem 3.3 and
Theorem 4.5, one has that

N
1 J
lim VS (W) = ( lim — Zuz) =W (v) < EF[J(u, A,
j—>OO ]—)OO J i—1
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then P € Py (). Hence each limit of any sub-sequence of (PY)yen- belongs to Py ().

Consequently, if (PYs);cn is the sub-sequence corresponding to limsup ¥*(PY) =
N —oc0

lim ¥*(P"7), by continuity of ¥* and the fact that any limit is an optimal control,
Jj—o0

limsup ¥*(PY) = 0. The second part of this proposition is just a combination of The-

N—o00
orem 3.1, [11, Proposition 4.15] and Theorem 3.3. This is enough to conclude the
result.

5 Approximation of Fokker-Planck equations

In this section, we give an approximation of a particular Fokker-Planck equation
via a sequence of measure-valued processes constructed from classical SDE processes
interacting through the empirical distribution of their states and controls. This result is
a crucial part for the proof of Theorem 3.1 and Theorem 3.3.

5.1 Main ideas leading the proof

Because of the technical aspect of this part, before going into details, let us first
explain in a simple situation the main goal of this part and the ideas for the proof. As we
said earlier, from a Fokker-Planck equation satisfied by a measure-valued solution P (see
Theorem 2.6), we want to construct a sequence of “weak” McKean-Vlasov processes
s.t. the limit, in a certain sense, of this sequence will be P. Let us be more precise. For
simplification, we assume thatn =¢=1,U = [1,2], b =0, o(t,z,m,m,u) = o(m,u) :=
o(m)u. Let P € Py, (u, A, B) satisfy: A¢(Z,,) dP @ dt a.e. and for all (¢, f)

d{f(- — o0B¢), pt) /” /}Rn . " (x — 0oBy)o(m)?u?m® (du) s (dz) Ay (dm)dt.  (5.1)

Using the SDEs formulation, on an extension (Q, F, P) of (Q,F, P), we can find X satisfy-
ing

1/2
dX; = (/ / a(m)Qusz‘(du)At(dm)> dW; + ogd By, (5.2)
n Ju

Xo = & with py = £P(X,|G;) = LP(X,|Gr), where W is a F-Brownian motion, ¢ a
Fo-random variable s.t. £(¢) = v and (W, ¢) is independent of G1. The process (At)eciom)
can be seen as a control of the process X or u. The goal is to construct a sequence of
IF-predictable processes (a*)yen- s.t. if X* is the solution of

dXF = o(@)afdW, + 0odB;, X§ =¢, mF .= £(XF|G;) and mF := L(XTF, af|G)),
one has that

. 5 k -1 3 -1,
klgIC}OP o (m s O (dm)dt,B) " =Po (u,A,B) " inW,.

If it was possible for Equation (5.1) or Equation (5.2) to satisfied an appropriate
uniqueness result (in law), this kind of approximation would become much simpler to
perform. Unfortunately, for a general A, a uniqueness result can not be expected for this
type of equation. Therefore, find the sequence (a*),cn- becomes a challenging problem.

Strategy of proof: 1-regularization This part is realized in Section 5.2. The main
idea here is to regularize Equation (5.1) or Equation (5.2) in order to recover some
uniqueness result. Indeed, in Section 5.2, we show that: X°¢ solution of

AXE = 0°(t, Ay, X2)AW, + 00d By, XE =€, 15 = LP(XE|Gy) (5.3)

EJP 27 (2022), paper 20. https://www.imstat.org/ejp
Page 21/53


https://doi.org/10.1214/21-EJP726
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Extended mean field control problem: a propagation of chaos result

satisfies
lim sup W,(ue, 1) =0, P ae.
e=0¢e0,17
where for each ¢ > 0, we define G.(z) := e 'G(e7'z), where G € C*(R™;R) with

€
compact support satisfying G > 0, G(z) = G(—x) for € R", and [, G(y)dy = 1, and
(recall that A(Z,,) =1)

Ge(r —y)
= [ / ) o Gl — ) WM

/n/ 2u?m(du, dy) [ Gw(_x;y)(dZ7U)At(dm)'

Notice that, now, when A is given, Equation (5.3) or its associated Fokker-Planck
equation satisfies a uniqueness result. Indeed, as ¢¢ is smooth in x, Equation (5.3) is
uniquely solvable.

Next, we are able to find a sequence of Py;—valued (o0 {An.})icjo,rj-Predictable pro-

cesses (7¥)pen- s.t. hm dpr(dm)dt = A P-a.e. If u5F = ﬁf’(Xf’k@t) is the solution
of

A(f(- = 00Be) ;™) = | f"(x = 00B)o" (1,65 (dm),2) i (do)dt,  (5.4)

RTL
one has, when ¢ > 0 is fixed, by passing to the limit in Equation (5.4) and using
uniqueness of Equation (5.3), we find that klim p=F = 1 a.e. Consequently, we can set k
—00

and ¢ as fixed, and focus on the approximation of Equation (5.4) or equivalently of

AXE* = 0% (t, 6,0, XOF)AW, 4+ 00dB,, XS =¢ (5.5)

IR 7}

Strategy of proof: 2-construction of control and discretization Recall that the
map o°(t, Ok x) satisfies

G (:L“ —Y)
f]R" 2)oF(dz,U)
Let us assume that it is possible to construct a Borel function as* [0, T] x U x R™ —
U, a R"-valued FF-adapted continuous process X &k and a [0, 1]-valued F-predictable
process F satisfying: F; and X" are conditionally independent given G,
Ge(z —y)
(x — 2)vf(d2,U)’

Ua(t,épf,x)Q:/ o (oF)?u*of (du, dy)
U

LP% (@R (t, B, X9 XEF = w) =/ i (du, dy) T
Rn

and X" satisfies
d)?teyk = U(ﬁf)af’k(t’ Fta )?fk)th + U()dBt, )’Zg,k = f

Notice that, by uniqueness of Equation (5.4), LIXE¥G) = 5" ae. forall ¢ € [0,7).
Given (a®*, X% F), our last sequence is then given by: Y= solution of

AY7F = o(ms*)a (¢, Fy, XOF)AW, 4 00d By, with mS™* .= L£(Y%|G,)

and m;" = L(YSF ook (t, F,, X%)|G,). By using some technical results, proving in
Theorem A.2 and Theorem A.3, we deduce that

lim lim P o (ms’k7 (5mf,k(dm)dt, B)_l =Po (1, A,B)_1 in W,.

k—o00e—0
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The fact is we are not able to construct the tuple (a*, )25”“, F) as presented be-
low. This construction will be done through approximation by discretization in time in
Section 5.3. Moreover, the framework that we will consider in the next part will be
more general than the presentation we have chosen for the main results. The reason
is that the techniques we use can be applied to both mean field game and mean field
control problem (see our companion paper [9]). Therefore, we made the choice to have
a presentation that allows the results to be used in both contexts.

5.2 Regularization of the Fokker-Planck equation

In this part, with the help of a regularization by convolution, we show that it can be
possible to approximate a particular solution of a Fokker-Planck equation with “non-
smooth” coefficients by a sequence of solutions of Fokker-Planck equations with “smooth”
coefficients, this part is largely inspired by the proof of [18, Lemma 2.1].

Let b € C*, (ny)ieo,7) and (z;)ic(0,7] belong to C}}, and also ¢, (dm, dm’)dt € M((Pg)?).
Moreover, (n,z, q,b) satisfy the following equation: ng = v and

st om) = [(@us e om) +

(ALf ] b1, 2, m, 7, ), m) e (dm, da)] at,
(Pp)?

for all (¢, f) € [0,T] x Cp*([0,T] x R™), where the generator A is defined by
At(ﬁ(x, b7 n,z,m,u, u)

1 N
= iTr[z%fTT(t, z,b,n,z,m, v, u)V%@(x)} +b(t,z,b,n,z,m,v,u) Vo(z), (5.6)

with (b,&) : [0,T] x R™ x C* x (C},)? x (PR)? x U — R™ x $" is bounded and continuous
function in all arguments, and for each v € P{, the map (b,6)(-,-, b, -, z,-, 7, -) satisfies
Assumption 2.1 with constant f independent of .

Remark 5.1. As said in the end of Section 5.1, we consider this type of general Fokker-
Planck equation because we want to have a formulation useful both in mean field game
and mean field control. Here, the mean field game aspect appears in the integration
over dv in q and z. The integration over dv in q and z play the role of fixed measures as
it can happen in mean field game.

Let G e C>*(R™; R) with compact support satisfying G >0, G(z) = G(—=z) forz € R",
and f]Rn dy = 1, and define G.(z) := e "G(¢ ') and for all 7 € P(R"), n(®)(z) :=
Jn Ge )7(dy) for all x € R™. Now, for each ¢ > 0, let us introduce the generator of
the regulamzed Fokker-Planck equation A°: for all (¢,¢,z) € [0,T] x P((P%)?) x R"

gl m,7,d)(2) = ST (a1, 2,416 2) V()] + 57 b,m, 2, d)(1,0) Vile), (5.7)

where for (t,z,v,m, 8,m, v, u) € [0, T|xR"xC*x(C},)*x (PR)*xU, a(t,z,v, 7, B,m, v, u) :=

0
67 (t,x,~,m, B, m,v,u) and (a¢,b°) are defined by:

(a%,0%)[b, 7, B, q] (5.8)
/ N / 0, B)(, 9, Buncs Ton s Bom 1,5, 0) el Iy dyg(dm, d).
- (e, ) (@) "
(5.9)

We are now ready to formulate our regularization/approximation result of Fokker—
Planck equation. The following proposition is proved in Appendix A.1.

EJP 27 (2022), paper 20. https://www.imstat.org/ejp
Page 23/53


https://doi.org/10.1214/21-EJP726
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Extended mean field control problem: a propagation of chaos result

Proposition 5.2 (Regularization of Fokker-Planck equation). Let v € P,(R"™), for each
e > 0, there exists a unique solution (nf).cjo,r) € Cyyf of: n§j = v and for all f €
C*([0,T]) x R™) and

ety = | [ aseomicn + [ At zaleyni)|d. 610

Moreover, ifv € P,y (R") and §¢(Zy, x Pj;) = 1 dt—for almost every t € [0,T), then

lim sup W,(nf,n;) =0. (5.11)
EﬁOtE[O,T]

Remark 5.3. (i) Let (SA), ]AF7 .7?, IP) be a probability space supporting W a F-Wiener process
of dimension R" and ¢ a Fy-random variable such that £F(¢)(dy) = v(dy). Given € > 0,
let Y be the unique strong solution (well defined, see Appendix A.1 (more precisely the
Proof of Theorem 5.2) )

dYE = b°[b,n, 2z, q)(¢, Y7)dt + (a)/2[b,n, z, & (¢, Y7)dW,, Y§ = €, (5.12)

one has, by uniqueness of (5.10), L¥(Y,?) = n$ for all ¢ € [0, 7] where n¢ is the solution
of (5.10).

(i4) We will sometimes use the previous lemma with Theorem A.2, in which n°®
must be obtainable through a diffusion process that has a volatility term which verifies
a°[b,n,z,q,)(t,YF) > 0l,xn. The SDE (5.12) allows to say that n° satisfies these condi-
tions. Also, from Theorem 5.2 and the SDE representation (5.12), it is straightforward to
see that the measure n;(dz)d¢t is equivalent to the Lebesgue measure on R™ x [0,T] (see
for instance Theorem A.1 ).

Remark 5.4. Combining Theorem 5.3 (diffusion form (5.12) of n® ) with Theorem 5.2
(convergence result (5.11)), as (b, o) are bounded, there exists a constant C' > 0, depend-
ing only of coefficients (b, o), p and p’, such that

sup /n z|P n,(dz) < C (1 —I—/n |x|p/u(dx))

re(0,T)
and

Wy (ns,n,)” < Ot — s|, forall (¢,s) € [0,T] x [0, T].

5.3 Approximation by N-agents

Now, let us formulate the approximation result of Fokker-Planck equation by N-
interacting SDE equations. In order to achieve this, we first describe the associated
framework.

Let (Qq, F9TF9 Q) be a filtered probability space supporting (B;):co,r] @ Rf-valued
IF4-adapted continuous process, i and ¢ two P(R")-valued F9-continuous processes, A
a M((Pg)?)-valued variable such that (A;)¢c(o,7) is F-predictable. Besides, (1, B,(,A)
satisfy: A, (Zﬂt X 73{}) =1, for dQ ® dt-almost surely, and Q-a.e.

d<f7/'Lf> = /" P /]Rn UAtf(y7B7¢(:u‘)7<7m7Dau)m(dy’du)ﬂt(dm7dﬂ)dta Ho =V,

(5.13)
forall t € [0,T] and f € CZ(R"), where
.AtC,O(I, b7 T, 63 m, 177 U)
1 R
= 5TI‘[&&T(t, x,b,m, B, m, v, U)V2cp(as)] + b(t,z,b,m, B, m,7,u) Vo(z), (5.14)
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with, as in (5.6), (13,6) is continuous in all arguments and bounded, and the map
(13,&)(-, b, B,-,7,-) satisfies Assumption 2.1 with constant C and 6 independent of
(b, 8,7) (see Assumption 2.1). Besides, ¢ : Cj, = Cj}, is a Lipschitz function s.t. for all
t € [0,T], ¢e(m) = de(men.).

Remark 5.5. (i) Notice that, (5.13) is an equation over p in the sense that with the
condition A, (ZM X P{}) =1, for dQ ® dt-almost surely, the process i appears on both
sides on the equality. Under general Theorem 2.1, it is not difficult to show that there are
processes (u, A) verifying equation (5.13) (see for instance [11, Theorem A.2]). However,
without additional assumptions, a uniqueness result cannot be expected.

(#4) This type of Fokker-Planck equation appears especially in the study of optimal
control of McKean-Vlasov equation (see Section 4 above) and mean field game (see [9]).
One the most important variable is A. It can play the role of control in optimal control of
McKean-Vlasov equation, but also of external parameter as it is the case in the mean
field game.

Let (ﬁ, F , IAF, I?’) be another filtered probability space supporting:

* (W%);en+ a sequence of R"-valued independent F-Brownian motions and (€1)ien-
a sequence of independent Fy-random variables s.t. £¥(¢;) = v; € Py (R"),

* (1Y) new- and (V) yen- two sequences of P(R")-valued F-adapted continuous
processes, and (B"V)ycn- a sequence of Rf-valued F-adapted continuous pro-
cesses,

s (m™)nen- and (7V) yen- two sequences of Pl—valued F-predictable processes,

satisfying:
1 & P N
; , 72: i _ : P N\ N % NY) _ ,Q e
NIE)%OWP <N i:1y 71/) O and ngréo‘c (¢(/’L )aC aA 7B ) ‘C’ (¢(M)7C,A7B)7

(5.15)

where Kiv(dm, dv)dt := 0(,~ px)(dm, dv)dt. The convergence takes place in W,.
Furthermore, let (Z¢);c- be a sequence of independent [0, 1]-valued F-measurable
uniform variables independent of other variables, and for each (i, N) € IN* x IN*, denote

~

by FoN := (F;"™)iepo.r) the filtration defined by:
FN = o{e Kopo dun (6™), G Wi, BYY., 21}, for each t € [0,T]. (5.16)
The next proposition describes an approximation by a sequence of N-interacting

processes of the Fokker-Planck equation (5.13).

Proposition 5.6. There exists a sequence of processes (ai’N)(i,N)GW*X]N* satisfying for
each (i, N) € N* x IN*, o’V is FN_predictable, s.t. if we let (X}, ..., X} )ic(o.r| be the
continuous processes unique strong solution of: for eachi € {1,..., N}, ]Ef’[H)?in/] < 00,
forallt € [0,T]

t
Xi=¢+ / b(r, X7, BY, o(u™), (N, mpY, oY, ap™N)dr
0

t
b [ o LB o@), ¢V rY @l ) AW, Pae. (5.07)
0
where M} (dz,du) == % YL, 6 % o0y (dz,du), i (dz) := @} (dz,U), then, one has,

for a sub-sequence (Ni)ren+ C IN¥,

R T
Jim EP[ / Wy (s, mi) dt + sup Wy (@), @(W))] =0
0 0 t€[0,T]
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and

lim cP (ﬁNk,gNk,KNk,BNk) = £9(u,¢, A, B), in W, (5.18)
:—00

with ANs(dm,d)ds := 8 e ey (dm, dv)ds.

Remark 5.7. (i) Theorem 5.6 as well as Theorem 5.8 (see below) can be considered as a
general characterization of Fokker-Planck equation of type (5.13) via a sequence of SDE
processes interacting through the empirical distribution of the states and “controls”.
These results are very useful both in the study of extended mean field control problem
(see Theorem 4.3) and in mean field game of controls (see our companion paper [9]).

(7i) Because of non-uniqueness of Fokker-Planck equation (5.13), the condition (5.15)
is a crucial and essential assumption. Furthermore, notice that, the condition (5.15)
does not require any equation verified by the sequence (¢(p), (", KN, BY) Only
the convergence result (5.15) is necessary.

(ii7) Observe that, the sequence (A™) yen- is a subset of Mo ((P}})?) and not a general
subset of ]M((P{})Q) For an understandable and easy presentation, we consider this type
of sequence, but a general subset of M((P}})?) is possible (see Proposition 5.9 below).

(iv) The presence of the map ¢, notably in (5.15), specifies the condition needed on
w for the result. In particular, if ¢ is null, it means that no assumption of convergence
towards u is necessary to find a sequence of SDE processes converging to p.

NelN*"

Proof of Proposition 5.6. The proof is divided in three steps for a better understanding.
Step 1 : Approximation by regularization of F-P equation: Let ¢ > 0 and recall
that A° is defined in (5.7). For all w € Q9, by Theorem 5.2, there exists a continuous

process (45 (w))ie(o,r] verifying

d{f; pg (w)) = AL f[B(w), ¢(1(w)), C(w), Ae(w)] (2)psf (w)(dw)dt, pg =v,  (5.19)

Rn

for all f € C}(R™;R) and for Q-a.e. w € Q9, lim. o sup;c(o 71 Wy (4§ (W), it (w)). Also, by
Theorem A.6, there is a function ®¢ : C* x CJj, x CJ}, x M((P#)?) — €3}, such that Q-a.e.
we Q4

1 (W) = @2 (BtA.(w), ¢tA.(u(w)),Ct/\.(w),KtA.(w)), for all ¢ € [0, T7. (5.20)

Step 2 : Approximation by discretization: Now, let us define for all (z,m) € R™ x
Py, the probability

€ I GE ({,E — y)
He(z,m)(du) := /n m(du, dy) (0. d2)) O @)
Recall that G € C*°(R"™; R) with compact support satisfying G > 0, G(z) = G(—=x) for
z € R", and [, G(y)dy = 1. We denoted G.(x) := e "G(e~'z) and for all 7 € P(R"),
&) (2) := [p. G=(z — y)m(dy) for all z € R". By Blackwell and Dubins [3], there exists
a Borel application N¢ : (z,m,v) € R" x P§t x [0,1] — N¢(z,m)(v) € U s.t. for all
(z,m) € R" x P} and any [0, 1]-valued uniform random variable F,

Po (N(z,m)(F)) ™ (du) = H® (2, m)(du).

Step 2.1 : Construction of scheme of discretization: Let us consider the partition
(t{f )1<k<on With tkN = ]2“—5 and take a sequence of R"-valued independent Brownian
motions (Z%);en+, independent of all of other variables. Let ¢ : [0,7] x R® — [0,1] be a

Borel function such that, for all ¢ € [0, 7], £P (o(t — N, Zi — Z!y)) is the uniform law when
‘k
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t>tN. Forallie {1,..,N}, denote by V;"" := o(t — N, ZI — Zt’kN) when ¢ € [t} t7,,),

and given ¢ > 0, we define on (ﬁ,]ﬁ]?,f’), by Euler scheme, X%V := X’ as follows
X§:=¢ and forallte[0,7], i€ {1,...,N},

t
Xi = X3 [ B(s X BY o). ¢ ol N O ) (V) ds
0

t
+ / z(s,st]N,BN,wN),cN,m ﬂiv,Ns(X{s}N,méV)(V;*N))dW;, (5.21)
0

<s <ty and, for s € [t 17 ,),

B, X, BY, o), Vol o, N (e, m) (VY
= s X B, ), N )
+ B(s. Xy BY o(u™),¢¥ mY 7Y),

where [s]V = ¢ if ¢}

and
2 (s, Xiw BY 0(u™), ¢l oY N¥ (X, ) (VEY))
_Z(thN,BN,qb( Ny N om, N)
X 0(8 XtN,BN,tb(uN),(N7miv,ﬂév,NE( Zg,miv)(vsi’]v))7
with
B(s, Xj, BN, 6(u™), ¢V, md o)
- [z}e (B, 6(u™), <YK ] (5, Xy)
= [ By BY 6. Y o) (Xl )
and

2 (s Xiy, BN, (™), ¢ ml 71

a*[BY, o(u™), ¢V K] ] (5, Xy )12

—-1/2
X (A (S XthBN7¢(/u’N)ﬂ<N,mév )He( th f;v)(du)> ‘|a (522)

recall that X, (dm, dp)ds := &,,x (dm)d,~ dp)ds.
Notice that, there exists a Borel function FV : R™ x M((Pg)?) x Cj, x C, X C™ x C™

C* — C" s.t. foreachi € {1,..., N},
. . N . . ~
X} =FN (& Ap.s den-(w™), ¢ Wi, Zi ., ByY.), forall t € [0,T], P-a.e. (5.23)
Step 2.2 : Compactness and identi fication of the limit: At this stage, we want to
show a compactness result and identify the limit of a certain sequence of probabil-
L XN,

ity measures constructed from the SDE process (X!,.
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Using the assumptions imposed on coefficients (13, &) (see the definition of the genera-
tor fl in (5.14)), especially the fact that 567 > 61, and (b, 5) are bounded, one has that
[B, %] are bounded and there exists a constant D > 0 such that for all £ and N

sup EP [[Xf’i’N - X§""’N|p} <Dt — s, forall (t,s) € [0,T] x [0,T].  (5.24)
i€{1,...,N}

Moreover, by using the fact that supy~, >N Jgn |27’ Vi(dz) < oo (see condition

(5.15)), it is straightforward to verify that: supy~; Zf;l EP [Supte[O,T] |Xf’i’N|p/} < 00.
Then, by [7, Proposition A.2] or/and [7, Proposition-B.1], for each ¢ > 0, the sequence
(PY) nen~ is relatively compact in W,, where

—~ _ —1
PY = Po (0, 0(u™), N K, BY) e P(Cly x Gy x Gy x M((P§)?) x ')
with 9 (dz) = & vazl (SXta,i,N(dl').
Let us identify the limit of any convergent sub-sequence of (P")ycn-. For sake of

clarity, we use the notation X' instead of X%~ Recall that for the time being ¢ > 0 is
considered as fixed.

For each N € IN*, i € {1,..., N}, and (s,u) € [0,T] x U, let
B, 02N o= [, 4] [BY, 6(u), ¢ B2 ) (5, X )
and
I;é,Na di’N7 §;7N7 ii,N, A\?N:| (u) = |:I;a &a g) 27 ii—r} (Sa X[is]N7BN7 (b(/’['N)v gNa mé\f, D;V) U)
By It6’s formula, for all f € Cp°(R™) and t € [0,T]
(f.97)
1o [!
_ N i\, N € i N i, N i
=0y 2 [ OIS R ),

1oL [t
+N;/o

VHXDBEY (N (X ) (VIN))

o RO | e

— () + =3 [ VAXDSIN (N (X g, ml ) (VY)W

+ -Tr [@N (Ng(X[is]mmiv)(‘/;i’N))sz(X[is]N)H ds
1 t , ‘ N ‘ |
* NZ /0 [VA(XD) = V(X[ gw) ] BN (N (X[ gn, mY) (V) ) ds

- iZ/O %T&r[Ei’N(Ns(X[iS]N,mév)(VZ’N))[VQf(X;) - v2f(X[is]N>Hds.
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Observe that, for s € (t), Y, ), for each i # j, [B]7 = [A]i/ = 0, where
(Bl = EP [w%m{B@N(Nf(st]N,miV JViN)) = bt
V) { B (3 Oy (1) — 55
and
AL i B {2 (3 e e V) = a5 bO (L)
{Eg’N(NE(X[J;]N»mi;v)(vsj’N)) - AEJ’ }VQf( [s ]N):|'
Indeed, by using the fact that: for all (x,m,e) € R" x P§ x {1,..., N}, one has Po
(Ne(x,m)(Vf’K))_l(du) = H¢(z,m)(du), and (V},VJ) are independent and independent

S S
of other variables, one has

[B]i7 = EF

VA {5 (Vg mV) = [ B8 ) (K )}

VHCK o {5 (VO Y V2)) = [ 55 ) (K ><d“>}1 -
(5.25)

By similar way, if we denote by X4 := 2(5, X[iS]N,BN, o), N, mi, Dé\’) one finds

S

A = BP | V2 F(X ) { SV 6l (N (X mD ) (Vi) (52M) T — gt

ViR [S]N){Z] Mal N(Ns(X[ ]N)mév)(vsj’N)) (22N - &Z’j’N}]

— P

VRSO (B[ ) (v () (59T —
VRGO {3E [ HE O ) (52T &i’j’N}]

—EP

V2 i(Xig){asty - ast N v (g {as - aiﬂ?N}] 0. (5.26)
By simple calculations,

t
(FON) — (F.08) — / A2 FIBY, 6, ¢V BV (2)0, (A}

R™

NZ / Y F (X ) SN (N (X g, m ) (VEN)) AWV

/
0

+; HAZN(NE(X[S]M My(vENY) — di’i’N}V2f(s7stlN)}

Vf(X[LS]N ) {Eé?N (NE (X[ZS]N , mé\/’)(‘/sz,N)) _ gi’i’N}
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+ [VA(XD) = VX[ BoY (N (X g, mE) (V)

T [ARY (N (X, ) (VE)) [v2f<X;‘>—V2f<stlN”H o

consequently, there exists a constant C' > 0 (independent of N) such that

B (|00 — (1.9 - / A F[BY 0™, O BN )0 ()|
s e

<C <IE1P

/t
1L 5
il Eﬂ”

Ly

By successively applying the results (5.25) and (5.26), and inequality (5.24), one gets
a constant M > 0 depending on (f, b, o) (which changes from line to line) s.t.

‘NZ/ V(X[ ) SN (N (X0 MVEN))aw|

Lo

Tr[{Al N NE(X[ 1~ év)(‘éz,N)) - &?i’N}VQf(X[is]N)} ‘2] ds

‘N va {BlN(NE(X[ 5, m ) (V) — Ei’i’NHQ] ds

5

=1

N | =

V18 - VrEl| |5 V2R 925 (xy)] ﬂ d5>.

~ t _ 2
B [0y = 08 = [ A1, 0e). ¢ K )0 (e
1 1
+ox T

11
—+—= | (527
ton T N) (5.27)

N t 2
5 1 o~ . . .
<M<]E1P NZ/O VAXDZN (NS (X[, m ) (VEN)) AW,
i=1

L~ . . 2
XDEEN (N (X, md) (Vi) [ ds

1 & s
P
<M <Nz D E
=1
Remark that as V f and S are bounded,
1 & 5
P
7z E
i=1

Thanks to inequality (5.24), it is straightforward to verify that

t L . . 2
/ (VADEEN (N (X, m) (Vi) ds] < M%. (5.28)
0

. P —N 5 N
]\}E)noo Wp (E]P (,19]\/" 19N7 ¢(MN)7 CNa A ) BN) ) ‘C]P (19N7 (ﬁfy\ff]N)tG[O,Th ¢(MN)7 CNa A ) BN))
=0. (5.29)
Let P> € P(Cy, x Cjiy x Cjiy x M((Pf)?) x C*) be the limit of any sub-sequence
(PNe)gew= of (PY)nen-, and denote by (37, 3#, 3, B, B) the canonical process on Cj, x
Chy x €, x M((P)?) x C*. By combining inequalities (5.27) and (5.28) with the result

(5.29), by passing to the limit, using continuity of coefficients, given ¢ > 0: for all
(t, f) €[0,T] x Cp°(R™)
2]

lim EP
k

(fr00%) = (f,90") — /O A F[BY, g (™), ¢V B ()0, (d)dr

R»
2
-0
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Therefore, after taking a countable family of (f, ¢), one gets: for all (¢, f) € [0,T]x Cs°(R™)

(f.B7) = / / Asf (B, ", B4, B,] ()8! (dz)dr, forall t € [0,T], P*-a.e

from this equality, we can show the previous equality holds true for all f € CE(]R"). For
each ¢ > 0, by uniqueness 37 := ®¢ (B, 8, 8¢, B) with @ : C*xCJ}, xC3, x M ((P3)?) — Ci,
a Borel function used in (5.20). Notice that, by assumptions (5.15),

o (8,8%8.B) " =tmPo (¢(u™), ¢V K, BY) T = Qo (¢(1). ¢, A, B) ' in W

This result is enough to deduce that P> = Q o (1%, ¢(u), ¢, A, B)_l. This is true for any
limit P> for any sub-sequence of (P")yen-, therefore

Jim o (0, 6(u™), N Y BY) T = Qo (1,0, K, B) i W, (5.30)

Step 3 : Last approximation: To finish, now, let us define XV := X’ the strong
solution of: )?3 = ¢, forallt €[0,T),

AX; =b(t, X}, BN, (@), N, mN ol ad)dt + 6(t, X1, BN, ¢(iN), ¢, md v, ad) Wy,
where o} = NE(XZQ,,mI{V)(Vi’N) for all ¢ € [t}Y,t),,[, we denote also ;" (dz,du) :=

N Dic1 851, ap)(de, du) and Y (dz) := @)Y (de, U), recall that (X, ..., XV) are defined
in (5.21). It is straightforward to check that: there exists a constant D > 0 (independent
of € and N)

sup IE“A’[\)?f —f(g\p} < D|t — s|, forall (¢,s) € [0,T] x [0,T]. (5.31)

By Bukholder-Davis—-Gundy inequality, lipschitz property of coefficients and previous
inequality (5.31),

EP [ sup X1 X;p}
s€[0,t]

el

b(T X’L BN ¢(/\N>7<N mN ~N Oéi)

7’1"’7‘

~ . . . p
—B(r,XfﬂN,BW(uN),cN,mN,aN,N%XﬁT]N,miV )(V“N))] dr}

& (r, X5, BN, ¢(@N), N, mN, o), al)

~ . . . P
_E(TaX[ZT]NaBN7¢(/J’N)7CN7m£V777{V7NE(X[lr]N7miv)(W7N))‘ d7‘:|>

( [/ b(r, X2, BY (™), ¢l o o)

- IA)(’I”, X[iT]N7BN>¢(MN)><N7mN7DN7ai)

~ t ) )
P{/ b, X BY 06, ¢ 7Y )
0

7E(rvX[ir]N7BN7¢(NN)7<NamN717N,NE(X[‘r]N7 )(VZ N))’ 7{|
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+IEIP/‘ TX , BN, (AN)C my,vﬁ,ai)

o (r, Xfyw, BY o), ¢ ompY 5 o)

6(Ta X[ir]NaBNa ¢(HN),<N’miV’;77{V7ai)

+IE]AP_/t
0

~ . , ) p
- z(r, Xiw, BN, o), ¢V m)Y, *afV’NE(Xfr}N»miv)(W’N))‘ dr])

b [BY, 6(u™), ¢V K, ] (r, Xy

r ot
<D EP[/
0
_/ B(T,X[ﬁ_]N,BN,</>(uN),<N,miV,VM)HE(vastJNxd“)’pd’"}
U

~ t ) p
]E]P[/ ‘1—2 r,XfT]N,BN,¢>(uN),CN,miV,ﬂ£V)‘ dr
0

/ ( Z&X, ) (A, du). ,],V(dx,du))pdr}

N "'

. t . . 1
“ﬂ sup Wp(qbe/(ﬂNWe'(ﬂN”*/ oo, |X;X;|pdr}+2fv>
0

e’€[0,T) e€[0,r]

then by Gronwall lemma

EJT’[ sup | X} — Xﬂ (]E]P[ sup wp(@,(ﬁN),@,(uN)ﬂ +2—N+E“N cst>

te[0,T] e’ €[0,T]
eN . wp[ T Ly N P
where C=N = E [fo Wp(ﬁ L0 o) du),m] (dx,du)) dr],and
LA
EE,i,N

— EP /OT‘[ISE,dE][BNw( ),V RN (r Xy

~ . . p
—/ (B, (r, Xpyor, BN, 0™, ¢, 7 ) HE (X e, Y ) (du)| dr].
U
Firstly, thanks to results (5.30) and the approximation realized in (5.19), one gets

iy Jim B sup Wy (600,60 6%)) | = Ty B[ s W, (606), 00 0) | = 0.

e—=0 N—oo e—0

e’ €[0,T] e’€[0,T]
(5.32)
Secondly, after calculations, it is straightforward to deduce that
1 Y EE,’L,N _
B -
i=1
~ T
=1L
0 n ( 3)2
> _ Ge(z —y)
bv aj\ry, BNa ¢)(/’LN)7 <Na m,v,u E—m(duv dy)
[, el ) 0, O
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- b6 (r, 2, B, 6(u™), ¢V, u) —Ce@ V)
AXR" [b; ](, 7B 7¢(M )7C ’ " ¥ )(m(U,dz))(E)(x)

A, (dm, dv)9f) (dx)dr] .

p
m(du, dy)|

By regularity of coefficients (Assumption 2.1 and (13, &) bounded), the results (5.30) and
(5.29) allow to get

. e,i,N
i ZE

[k

- [6’ d} (T7'T7B’¢(ﬂ)7<amal77u)

I:ZA)7 d} (T7 y’ B’ d)(l’l’)? C? m’ 177 u)

P Ge(z —y)

(0, de) @ () ™ dy)A, (dm, d) g (dz)dr

N
1 e,i,N __
then, by Theorem A.3, lim lim N Z £ = 0.

e—=+0 N—oo
=1

Next, let us define the variable

TN (de', de)dr := EP {§(N ) (de’, de)dr| € M((Pg)?),

r o

where mY (dz, du) := & Zf;l 6(X1. ) (dz, du). It is easy to check that the sequence
[N

(YY) yen~ is relatively compact for the Wasserstein metric W,. Denote by T the limit
of a sub-sequence (Y™V¢),cn-. Let Q € IN¥, (fgeqr,.0r - R" x U — R® be bounded
continuous functions and g : [0,T] x P} — R. One has

/ /n)ZH (f1,€e)g(t,e)Ye°(de’, de)dt

_]EQU /

We prove this equality when @) = 2, the case @ € IN* follows immediately. Indeed,

T
//°<ﬂwq%MmﬂﬂMAM¢
0 J(PR)?

11/ e ) H o) (@), ) (. P

Uql

Ny T
Y 1 1 P 1 2 j Ny,
—IIIICHMEZJZZIE {A f (X[]Nkaat)f( [t]Nk7 t)g(t,mt )dt
— lim LLZEHA’ ' fl(Xi u)HE( m) (du)
ok \ Ni Ny o Ju ORE e ™

/fz( [t]Nk7 )HE( [t]Nk7mt )(du) (t mi\]k)dt]
+ Li ZE]?’ Tfl (Xz Ne (Xz me)(VLNk))
NN & L e N (K, me ) (Ve
e (X;]Nk,Ne<xfﬂwk7mzvk><vw>)g<t,mszdtD
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_hm< M //f 2, ) HE (2, m]*) (du) ¥, (do)

/]R/ Ay, w)H (y,m )(du)ﬁf:']’;\,k( )g(t’mévk)dt}

*EE U/ by ) HE (X i) (du)

/Ufz(X[it]Nkv )H (X[Zt]Nkvmt )(d’I.L) (t min)dt]
4 LLZEHA’ Tfl (Xi N¥( i me)(Vi,NkD
Nj, Ny & . 1V e M)V

72 (X N¥( fﬂwk,miwm"“k))g(t,mfk)dt})

e[ | ' e i)

[ fQ(y,U)HE(y,m)(dU)ui(dy)g(t,m)At(dm,P{})dt],
R JU

where the fourth equality is true because of Athe same argument used in (5.25) and (5.26),
i.e. forall (s,v) € (tkl,tkN_:_l) x {1,... N}, Po (Ns(z,m)(Vg”’Nl))il(du) = He¢(x,m)(du),
and for i # j (V!,VJ) are independent and independent of other variables, and the last

equality follows from (5.30) and (5.29), and the terms starting with ﬁ vazll go to zero
because (f!, f2,g) are bounded. Hence,

T°(de’, de)dt = T (de’, de)dt,

where T,(de/, de)dt := E de’)Ay(de, P{})dt} , this is true for any limit

Qs

|: (Hf(m,e)(du),u§ (da:)) (
T of any sub-sequence. Therefore, the sequence (T )yen~ converges towards Y for
the wasserstein metric JV,. Then, to finish, by Theorem A.3,

B p
lim lim C*N = lim lim ]E]P[ / ( Zé ) (s du)m ) dr}
e—0 N—oo e—0 N—oo ]N,a

— Jim EQ[/ / (2, m)(du) s (dz), )pAt(dm,P{})dt] —0.

e—0

All these results allow to deduce that lim lim —
e—0 N—oo

]/15|: sup ‘stN XElN’:|:O.

H
IM2

— te[0,T]
As
R T
EP {/ W, (mI{V, mfv)pdr]
0
P T
<E {/0 W, () (da, du) NZé XIN’Q)(dx ,du)) d}
+E@[/ Zé : d:C ,du), my (dz, du))"dr
N a
< 1 Z]En? g p?s,i,N,K _ Xs,i,N|Pdt
TN & o It [~
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[Nt

+E]APUOTWP(§Z5(X7: M)(dm,du),miv(dx,du))pdr}

+E@{/OTWP(;]Z<5(X1

(N %

>(d;v ,du), m (dz, du))pdr}

. T
then lim lim EP{ / W, (), myY )pdr} = 0, similarly, using (5.32),
0

e—=+0 N—oo

lim lim IE)]?’[ sup Wp(¢e/(ﬁN)>¢e/(liN))}

e—=+0 N—oo C/E[O,T]

< lim lim (Ef’[ sup Wp(szﬁe/(ﬁN),%(ﬁN))} +E’?’[ sup Wp(aﬁef(ﬁN),@(uN))D

e—0 N—o0 6’6[0 T e’ €[0,T]

< . . P e,i,N €,i,N |P -
st (530" 5] g

FEP| s Wy (060 )| ) <o

e’€[0,T]

All previous result combined with measurability property (5.23) allowed to say (o', ..., a™)

and ()A(l, e )A(N) are the controls and the processes we are looking for. O

In fact, in Theorem 5.6, instead of interaction processes of type (5.17), it is possible
to use a sequence of weak McKean-Vlasov processes and obtain similar result. Let us
assume COIldlthIlS and inputs prev10usly mentioned for Theorem 5.6 are satisfied. Let
W be a (P, ]F) ~Brownian motion, £ be a Fo-random variable with cP (§) =v,and Z be a
uniform variable independent of (£, W). In addition,

(&™), ¢V, A", BN) . are P-independent of (¢, 2). (5.33)

For each N € IN*, define the filtrations TV := (]?tN)te[O,T] and G := (gAtN)te[O’T] by

~ —N
]:t]V = 0{57 At/\-7 ¢t/\-(MN)7 Ct]\/[\a Wt/\-7 B{ZY\) Z}
and
= U{'#Z’t/\ Ct/\ 7At/\ 7B£7>]\ }

for all ¢ € [0,T]. G will play the role of the common noise filtration. We now provide
approximations by weak McKean-Vlasov processes. The proofs of the next Theorem 5.8
and Theorem 5.9 are left in Appendix A.1.

Proposition 5.8.AThere exists a sequence of processes (oV) nen- satisfying: for each
N € IN*, oV is FN-predictable, such that if X"V is the unique strong solution of:
EF| Y] < o0, XN =¢, forallt € [0,T],

dx}y
=b(t, XN, BN, (@), NN, oY aM)dt + 6 (t, XY, BN, o(@™), Nl oY, ol ) dw,
(5.34)
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where MY = P (XN,alN|GN) and @Y = cP (XN|GYN), then for the sub-sequence
(Ni)ken+ given in Proposition 5.6,

1 T
g B [, i) s W (6. 006%)] <0
—o0 0 te[0,T]

and if Ay (dm, dv)ds := 8 e ey (dm, dP)ds,

lim £P (ﬁNk,gNk,K,BNk) = £%u,¢, K, B), in W, (5.35)

Another useful approximation Using roughly the same arguments as those used in
the proof of the Theorem 5.6, another approximation result can be provided. This can be

N
seen as another version of Theorem 5.8 where the sequence (A" ) yen+ is not necessarily
a subset of ]1\/[0((7?3)2) and the controls that achieve the approximation are probability
measures.

Proposition 5.9. Let us stay in the context of Theorem 5.8 with (AN)NE]N* not nec-
essarily a subset of My ((P{)?). There exists (8V)nen+ a sequence of P(U)-valued

(]?t ® B(Py))iepo,r)-predictable processes such that if (XY )cjo.1) :== (Xt)ieo,r) is the
unique strong solution of: EF[| XV ||P'] < co, Xo =&, forallt € [0,T], P-a.e.,

dX,
:/ /B(t,Xt,BN,qs(nN),gN,rﬁgv[m],p,u)ﬁgv(m)(du) Kf’(dmdp)dt
P2 JU

1/2
F( [ oo X B o). Y v 5 () ) K )}
P2 Ju
where
N [m](de, du) := EF [@N (m)(du)dyx (dx)]@N] and il := LP(XN|GN) forallt € [0,T),

then, one has, for a sub-sequence (N;),en- C IN*,

N T
lim EP{ / / W, (mfs [m},m)Kivj (dm,P{})dr} =0
0 JPy

J]—00

and

tim | sup W (6,3, 0.00) | =0
J—roo s€[0,T]

in addition if AN (dm, dv)ds := fPU

S (o) (dm) AL (de, dp)ds,
lim £F (ﬁN-f,gNJ',KNJ‘,BNJ‘) = @ (M,qﬁ(u),g,x, B), inWw,. (5.36)
j—o0

Remark 5.10. With exactly the same proof, an important observation is the following: if
the coefficients functions (b, &) are of the form of type

(b,66 ) (t,z, b, m, B,m,7,u) := (b*,a*)(t,b,7, B,7) + (b°,a°)(t, 2, b, 7, B, m,u),

where (E*, ar, B", a°) are bounded continuous functions, we can replace the convergence
assumptions (5.15) by

1 N
Jim Wy (N Z}y@,u> =0
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and

lim cP (qﬁ(uN),gN,A"’N,A*’N, BN> = L£9(p(1), ¢, A°, A%, B), in W), (5.37)
— 00

with ASN = &, (dm, PR)dt, A*N = K} (PR, dp)dt, A° = Ay(dm, PR)dt, and A* =
A (Pp,dv)dt. And then, in Theorem 5.6, Theorem 5.8 and Theorem 5.9, the convergence
results (5.18), (5.35) and (5.36) are replaced by

tim £P (7%, ¢N, RV (dm, Pyt A (P, av)de, BN ) = £, 6(1), ¢ A%, A, B),
j—o0

in W,. In other words, when the variables (m, ) of (b,66 ) are “separated’, we just
N N
need separated condition on (A ) yen+ of type (5.37), i.e. A “separated”.
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A Some technical results

A.1 Technical proofs

We will give here successively the proofs of Theorem 5.2, Theorem 5.8 and Theo-
rem 5.9.

Proof of Theorem 5.2. Let § > 0 and define

1 t
q’(dm,dm’) :== = / q°(dm,dm/)ds, forallt e [0,T].
(t—8)VO
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By using similar approach to [29, Lemma 4.4], the sequence (q°)s- satisfying: for each
§ >0, @ (dm,dm’)dt € M((PR)?), &° : t € [0,T] — ) (dm,dm’) € (P?)? is continuous,
and ;in% 4’ = q;, in weakly sense for ds almost every t € [0, T].
—
Let us fix tp € (0,7], ¢ € Cf(IR”), by [21, Chapter 2 Section 9 Theorem 10], there
exists v5° € Cp%([0, to] x R™) satisfying: v (to, z) = ¢(z) and

D0 (t, ) + AS[v=° (¢, .)][b, n, z, @) (x) = 0 for all (t,z) € [0,%9) x R™. (A.1)

Notice that, under Theorem 2.1, for each ¢ > 0, a°[b, n, z, | (¢, x) > 61,,«,, forall (t,z,x) €
[0, T]xR™xP((P)?). By Proposition A.5, forallt € [0,T], z € R" — (a°)/?[n,z,x](t,z) €
$m*" is Lipschitz (with Lipschitz constant independent of (¢, n, z, k)).

Let (Q,TF, F7,P) be a probability space supporting W a R"-valued (PP, F)-Brownian
motion, and ¢ a Fy-random variable such that £F (¢) € P,(R"). Now, for every ¢ € [0, o],
denote by X%%%¢ := X the continuous process unique strong solution of: P-a.e.,

S S
X, =¢ +/ b [b,n, z, &) (r, X, )dr +/ (@°)Y%b,n,z, &) (r, X,.)dW, for all s € [t,T].
t t
By applying It6’s formula, one has that (Feynman Kac’s formula)
ve3(t,z) = EF [gz)(xffvtvf)k = x] — P [¢(X§f*t’f)} for all (t,z) € [0,£0] x R".  (A.2)

By definition of a° and b¢ (see (5.8)), and by using the fact that q° € ]1\/[((733)2) there
exists a constant C. (independent of 6 > 0) such that: for all (¢,z) € [0,T] x R™,

|V2(6°[b,n, 2, 0], @ [b, n,z, &) (t, 2)| + |V (65 [b, 0,2, &), a°[b,n, 2, &) (¢, z)| < C-.

Then, by [21, Chapter 2 Section 8 Theorem 8, Theorem 7], for two unit vectors (wl, wz) S
1

R™ x R", there exist two R"-valued F-adapted continuous processes Y%:%%" =Y and

zedtwwhw® . 7 qych that

e0t,.z+hw' _ ye b t.x
Xs Xs

lim EY Yi[| =0
I d
and
Ya,&,t,;c—i—hwz,wl _ Ya,é,t,x,wl
limEP{ sup |2 2 _Zs:| =0,
h—0 s€[t,to] h

formally speaking, Y can be seen as the “derivative” (given a direction w!) of x —
X7, and Z the “derivative” (given w! and another direction w?) of Y. In addition
E¥ [sup,eps ) [Ysl + | Zs|] < K., with K. depending on ¢ but not of 6. As ¢ € C3(R"), by
using the previous results and equation (A.2), there exists Ke > 0 (independent of )
satisfying: for all (¢,x) € [0,7] x R"

|V208’5(t,x)| + |VU€’6(t,Z‘)‘ + |U€’5(t,x)| < K.. (A.3)
Therefore, for all ¢ > 0,

|A§UE’5(t’ )[bv n,z, Qf}(z) - 'A?Ug’&(tv )[bv n,z, (Alf](x)’
< KE(|[BE,dE][b,n,z,qt](t,az) - [Z)a,(f][b,n,z,df](t,x)D,

by definition (5.8), as ;in%) 4’ = q,, for ds almost every ¢ € [0, 7], one gets:
—

lim |Asv=0 (¢, )[b,n, 7, 4] (z) — A5v™°(t, ) [b, 0, 2,&]] (z)| = 0, (A.4)
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for each ¢ > 0 and = € R™, for ds almost every ¢ € [0, T].

Uniqueness: For each ¢ > 0 fixed, let us prove the uniqueness of (nf).c[o,7] solution of
equation (5.10). Let n'¢ and n2¢ be two solutions of the Fokker—Planck equation (5.10)
mentioned in the Lemma, for any ¢y € [0,7] and ¢ € CZ(R"), denote by v := v=%:t0
solution of (A.1) associated to (g, ¢). One finds

o(y)ny (dy) — | o(y)ni(dy)
R" R

= /0 0(8,511(7“, J),mEE) — (Qpu(r,.), n>e)
+ (Afv[b,n,z,4,](.), n;%) — (Av[b, 1, 2,G,](.), n}")dr
- /0 O<Aiv[bvn,za qr}() - Aiv[b7na z, (Ali}('),n}a’6>

+ <A7E"U[b7 n,z, 611“]() - Ai’U[b, n,z, qi](% n276> d7’7

T

by (A. 4) g1ven e > 0, after taklng 6 — 0, by Lebesgue’s dominated convergence theorem,

fRn glto (dy) = [gn ¢(y)n;°(dy), this is true for all (to,¢) € [0,7] x CZ(R"), then
n l,e _ — n2e

Convergence of n®: Now, we show the second assertion of our Lemma. Using the
fact that q;(Zn, x Pj;) = 1 dt-almost surely ¢t € [0,T], one gets for all t € [0, T,

/n (t,y) ]RnG(z— y)ny dzdy—/n/n (t,z — y)n(dz)Ge(y)dy
:/ 200,y) | Ge(z —y)r(dz) dy+/ /{ Rnatu”(sz— y)n,(dz)

Rn
/ / = y)|(z,b,n,z,m, v, u)m(dz, du)qs(dm, dﬂ)} G:(y) dy ds
)2 JRoxU

= [ w0 [ Gle—umtasa+ [ t [ [aw(s,z —y)

+/ / AS[UE’6(8,~ —y)](z,b,n,z,m, u,u)mz(du)qs(dm,dy)] G:(y) ns(dz) dy ds
(Pg)2JU

= ve0 z —1y)v(dz t 00 (s <(z —y) ng(dz
= [ o [ e -pmaas [ [ o) [ 6 pnas

R™

/ 13(3, z,b,n,z,m, v, u)VvE’(S (s,y)Ge(z — y)m?*(du)ns(dz)qs(dm, dv)
(P3)?2 JRm XU

3 /]R"XU

1

ETr[d(s, z,b,n,z,m,n, u)V2v5’5(s, y)] G:(z — y)m*(du)ns(dz)qs(dm,dp) | dy ds

= [ w00 [ G -pmtar dy+/ [ [ams 10 O(y)

/ )2 /]R"><U

b(s7 z,b,n,z,m,v,u)

G:(z —v)
(m(d2', U))E) (y)

m(dz,du)qs(dm, dﬁ)VUE“S (s,y)(ns) () (v)
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5| o )
(P)2 JR7xU

[i(87 Z? b7 n7 Z7 m? D’ u)

G:.(z—vy)
(m(dz',U))®) (y)

(n,)(y)|dy ds

m(dz, du)q,(dm, d) V2™ (s, y)

_ / v*(0,) /R Gz~ yuld2)dy

[ ] 0 )+ AL b @ ) a) ) dy i,

where for each 7 € P(R"), we write 7(%) (z = [gn Ge(x — 2)7(dz), for all z € R"™.
Then by (A.1)

| 0wy
- / 6() (1) () dy
/ / AZ[%5 (r, )] by 1, 2, 6] () — AS[0™ (r, ][, m, 2, 4] ()] () ()
By equation (A.2), one has

/ 090,) [ Gelz - yul(dz)dy
IR"

]R’n.
- [ Blscioe =] = [ otwm
]R"L

where nS° = £P(XF%0¢7) for t € [0,7], with £P(£°)(dy) = v (y)dy. Combining the
previous equality,

. (y)ng, (dy)
— [ owmelan) ~ [ o) [ Gl -y dz)dy
R n R”
+ /n gb(y)/n Ge(z — y)ny, (d2)dy
= [ o ) - | 6w [ Gete = v, (@s)ay
+ /]Rn ve(O,y)/n G:(z — y)v(dz)dy+
|
/’ |:-AE = 6( T, )[b’ n,z, élr](y) - Aivsﬁé(rv )[b’ n,z, (if](y)] /IR” GE(Z - y)nT(dz) dy dr

t/ y)n;’ (dy) / o(y)ny, (dy) — / ?(y) /]R Ge(z — y)dy ng,(dz)+
/00

/n [Af,v“;(r, J)[b,n,z,q,|(y) — Aivg’é(r, J[b,n,z, q;i](y)] G:(z —y)n,(dz) dy dr.

R

EJP 27 (2022), paper 20. https://www.imstat.org/ejp
Page 41/53


https://doi.org/10.1214/21-EJP726
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Extended mean field control problem: a propagation of chaos result

Consequently, for each € > 0,

lim sup o(y)ny, (dy) — / oy nto( )‘

6—0 R™

o) = [ otw) [ Gule =)y (a2)].

‘ R™

Finally

ti limsup | [ oyne,(dy) — [ (y)mi;’(@ y| =0, (A.5)
e—=0 550 R»

for any ¢ € CZ(R") and to € [0,T], where we used that lim._,o | [, ¢(y)G<(z — y)dy —

¢(z)] =0, for all z € R™.

Notice that v(*)(y)(dy) converges weakly to v(dy). By Skorokhod’s representation
theorem, one can find a probability space (Q F, IP) supportmg (€%)e>0 and ¢ such that
LP (&) = 1O (y)(dy) and LF(€) = v(dy), and lim._,0 & = ¢ P a.e.. And when LP(¢) = v €
Py (1), one has sup,..o EF[|€5[7] = sup. [r. |97 v (y)(dy) < C(1+ [ |yl v(dy)) < oo,
by using standard techniques of uniform integrability, lim._,o EF[|¢5 — ¢|P] = 0, recall
that p’ > p. If necessary, it is possible to enlarge the initial space, for sake of clarity and
without technical problems, let us assume (Q, F, P) is equal to the initial space (2, F, P).
For each € > 0, let X* be the continuous process unique strong solution of: P-a.e.

S S
= §+/ b°[b,n,z,q,)(r, Xf,)dr—i—/ (a%)Y?[b,n, z,q,|(r, XZ)dW, for all s € [0, T].
0 0

By using the regularity of (5‘3, a®) for e fixed, it is straightforward to find that

lim lim IE]P[ sup ’Xf — th,(s,o,gf |p
e—06—0 te[0,T]

By Itd’s formula and uniqueness of the Fokker-Planck equation (5.10), n = £F(X?) for
each ¢ € [0,T]. Thanks to (A.5) and the previous result, one gets that, in weakly conver-

gence sense, hm n; = hm) élm n;’ €% — n, for each t € [0,T]. Therefore, we proved that: for
e—=06—0

each t € [0, T}, n; converges weakly to n,. To deduce the Wasserstein convergence W,
notice that: sup..qsup,cio,7) Jgn lz[P n¢(dz) < O(1 + Jwn ly|P'v(dy)) < oo, and

p
limsupsup sup W, (n(s-',-é’)/\T’ n;)
§'—0 e>0s€[0,T)]

= limsupsup sup W, (EIP(X(ES+5,)AT), P (x29))"
0’—0 e>0s€[0,T]

< limsupsup sup E [|X(Es+5,)AT - X:] < Climsupd’ =0,
0’—0 e>0s€[0,T] 6’ —0

where the last equality follows from the Holder’s property of trajectories of X© with a
constant independent of ¢ (essentially because (13, &) are bounded). By Aldous’ criterion
[20, Lemma 16.12] (see also proof of [7, Proposition-B.11), (n°).~ is relatively com-
pact in C([0, T]; P,(R™)) with the metric A(v, V') := sup,e(o. 1) Wp(11,v4) for all (v,1') €
C(0,T); Pp(R™)) x C([0,T]; Pp(R™)). As for each t € [0,T], nf converges weakly to n,,

then the limit of each sub-sequence of (n®).~¢ is n, consequently hII(l) sup Wp(ng,ny) =
e=V¢el0,1]
0. O

Proof of Theorem 5.8. Before starting, let us mention that many parts of this proof use

Theorem 5.6 and its associated proof.
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Let us take the sequence of processes (ai’N)(LN)e]N*XN* given in Theorem 5.6 with
Lf’(e’) — vi = v for each i, and define the unique strong solution XV of: XV = ¢ and
Axp™ =b(t, X", BY, o), ¢, my ™, 7l oy M) dt
+a(t,x0N, BN, (™), N mp N oY ap ™) awy,
with i = [lIP( XN, aiN|GN) and " = E]P( X;N|GN). As o#Y is F>N-predictable
(Y is defined in (5.16)), there exists a Borel function G : [0,7] x R™ x M((P#)?) x
Cly X Cy X C™ x €Y x [0,1] — U satisfying o)™ = G(t,gi,Kﬁ,, Gen- (W), ¢ Win, BN, Z1),
dt@dP-a.e.. Define a = G(t,&, Aoy, din. (™), (., Win., BN, Z). Let X" be the unique
strong solution of equation (5.34) (associated to o). By independence condition in

Assumption (5.33), recall that m” is given in equation (5.34),
~ i, N

i =N, P-ae.
and
. SN . . N z N N _j,N
given the o-field G;", fori # j, (X,1.,a;" ) are independent of (X{,', o)) (A.6)
and £P(XN ¢ B o(uM), ¢V, Wi, BN, 71) = P(xV, ¢, 8, ¢(uM), ¢V, W, BN, Z) for
each i.
Let us introduce for each N € IN*, the measure on [0,7] x P(C" x U) x P(C"™ x U)

TV (de, de)dt := EP (s de, de’)dt |,

BY, LP(X5N o 1N|g5V>)(
with 3, (dx, du) := Ly O(xin iy (dx, du). As (b,6) are bounded and v € P, (R"),

it is straightforward to check that supy>; sup;cqi, . vy E' [sup,c(o 1) |XZ’N|p/] < 00, and
hence (I'V) yen- is relatively compact for the Wasserstein metric W,. Denote by '™ the
limit of a sub-sequence of (I'"V) yen-. For simplicity, we will use the same notation for
the sequence and the sub-sequence. One gets

5°(de, de')dt = 5. (de)T5° (de, P(C™ x U))dt. (A.7)

It is enough to show that: for all ) € IN*, any bounded functions (fq)de{lj_“’Q} :C"x U —
R and g: [0,T] x P(C" x U) — R

/ /(c )z f9,e)g(t, eI (de, de’)dt
P(CrxU

/ /(C"XU)(}_[l<fq > (t 6)1"00 (de PC™ x U))d

Let us prove this result when ) = 2, the case € IN* is true by similar way.

/ / I, €)g(t. €I (de,de')at
C"><U)2

1 ]E]P[

i O 0 ) £ O ot ]

T
f, o
ij=1 0
: 1 P T 1/v4,N _i,N\ p2/viN 4N ~N

:h]{]nm ZE {/0 FHXGY o) (XA o ) g(t, my )dt}
N _ T )
ZEP[/O fl(XZ}\IY7 7N)fQ( A aat )g(t my )dt]>
i=1

EJP 27 (2022), paper 20. https://www.imstat.org/ejp
Page 43/53


https://doi.org/10.1214/21-EJP726
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Extended mean field control problem: a propagation of chaos result

1 1T N N AN B N iNua
= lim (WZEP{ / EF (11 (2 ar )G ER (12 (X3, o ™) 1G] ot g >dt]

~ T )
b S| [Pl P ‘N)g<t,th>dtD

~ T ) ) ) ~
- B | [P O 0l ) GNP [0 el ot G ]
1 o P T 1/vi,N _i,N\ p2(vi,N zN ~N
+WZE {/0 f (Xt}\-a )f (Xt/\ y & )g(t,mt )dt}>
e)(f?

/ /73'(]R"><U)

where we used result (A.6) and the fact that the terms starting with ﬁ 25\21 go to
zero because (f!, f2, g) are bounded.

,e)g(t,e)Tye (de, P(C™ x U))dt7

Next, for all ¢ € [0, T, using Lipshitz property, there exists a constant C' > 0 (which
changes from line to line)

E]P{ sup |X1N XZ‘ }
s€[0,t]

~ t .
< CEP[/ sup ’X’N Xﬁ|p
0 r€l0,s]

N
+rzl[10ps]w MT7N;6X1N —|—W m z:: (XN QN S:|

—~ t ) e . ) R
< OEP[ / sup | XN — X7+ Wy (7 (XY, 0l [GN), B )pds],
0

relo,s]
recall that ()?1, ...,)A(N) are defined in equation (5.17) (in Theorem 5.6), and m} =

LP(XN,aN|GN) and @ := P (XN |GN).
Then by Gronwall Lemma, we find

]Ef){ su Xi’N—)A(ip}<OEf’{ ! rP((xiN QN |GN 2N\p
p |X] I = . W, (L8 (Xgns, ab™|GY ), By ) ds].

s€[0,T]
As,
~ T 1 N
P ~N . ‘ p
E |:/0 Wp(ms 7N gé(X;’N,o/S’N)) d8:|
- T 1
SE]P|:/ AN Z(S(XqNazN pd8:|
0 ,Os
sl T 1 1
P p
+E |:/0 WP(N;(S(X:‘,N7Q‘1’S,N),N;(S(X‘vz,N7aé,N)) d3:|
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~ T = . . ~ — S T . )
< C(EPU Wp(cP((X;x.V,a;’Nyg;V),ﬁf)pds} +1EPU | xoN —X;\pds])
0 0
[T o .
< OB | [ W (€P (O ot 62), Y.
0
therefore, by taking the sub-sequence corresponding to the lim sup, by result (A.7),
7 T
Jim sup P [/ W (" Za conaony) s+ sup W (¢t(ﬁNl),¢t(uNl)] ~o.
l—o0 0 te[0,T]
From all previous results, it is straightforward to check that
lim W, (E’P (AN, CN Sy oy (dm, dp)ds, BY), L8 (FY, ¢V 8 g v, (dm, d)ds, BN))
= 07
where 7V .= L SV § iy and 6, = LN, §(gim 4. Consequently, by Theorem 5.6
lim £P (AMe, ¢Nk 6 w iy (dm, di)ds, BN
k—o0 )

(s

= lim c’P( Nie Nk 85k pw(dm, dD)ds, BY¥) = £, ¢, A, B),

recall that m}Y := EP(Xt ,aN|GN) and i := K]?’(XtN@tN). O

Proof of Theorem 5.9. The proof of this Proposition is exactly the same as Proposition
5.6, we essentially recall the main step.

Approximation by SDE : Tightness and identification of the limit process:

We denote by Z5" the unique strong solution of:

t
€, 7€ “N €
2N =g+ [ BB o), ¢V A ) 25
0
t
4 @B, o). Y K ) Z2V) W, £ € (0.7, Bae.
0

And for all (t,w) € [0, T] x , denote 95 (w) = £F (25N |GN) (w), and
P i P (9N, B o(u™), N K ) € P(Chy x € x Gy x Gy x M((P)?))-

As [55, a¢] are bounded, again it is straightforward to check that (P*")ycy- is rela-
tively compact for the Wasserstein metric W,. Denote by P*°° the limit of a sub-sequence
of (P*")yen~. Therefore, under Theorem 2.1, by applying similar techniques to those
used in step 2.2 of proof of Theorem 5.6, one gets for all (f,t) € CZ(R™;R) x [0,T], one
gets

t
(f:Be) = f(y)V(dy)+/ ALf (B, 8", B, B] ()8, (dx)dr, P**-ae.,  (A.8)
R" 0 Jrn

where (3, B, 3", 3%, B) is the canonical element on C}}, x C* x Cp3, x C35, x M((Pg)?. Using
a countable family of (f,t), we can deduce P5**°-a.e. equation (A.8) is true for all
(f,t) € CZ(R™;R) x [0,T]. By Theorem A.6, one has 3 = ®°(B, g*, 3¢, 3) where ®¢ is the
function used in equation (5.20). Also

LB g, 50, B) = Jim L7 (B, B", 5, )
= lim £P(B, (), ¢V, KY) = LB, ¢(1), ¢, A).

N—oc0
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Then £ (8, B, B*, 8, B) = LR(p%, B, ¢(11), ¢, A). This result is true for any limit of any
sub-sequence of (P*") ycn+, consequently (P"V) ycn- converges and

dim £ (02N, BN g(u™), N K) = L2, B, ¢(n), ¢, K).

Last approximation: Let us consider for all (¢, N) € (0,00) x IN*, the F-adapted
R"-valued continuous process X" := X strong solution of: X, = ¢, for all s € [0, 7]

dX, =

/ / b(s, Xs, BN, o), N, msN [m], v, u) HE (25, m)(du)Kiv(dm, dv)ds + R,dW,
P2 Ju

with

R, :=

1/2
([ [ 607X B 0l ), ¢ s ) 2 25 ) )R ()
Py Ju

where recall that He(z,m)(du) = [p, m(du,dy)m and

@5 [m](dz, du) := EF [Hs(Zf.’N, m)(du)d - (dz)

GN| and ™ = £P (X2 IGY).
Combining Proposition A.5 and the techniques applied in step 3 of Proof of Proposition
5.6, one gets

lim lim IEIAP{ sup |X§’NZf’N|”] =0
e—=0 N—o0 t€[0,T)

and .
i i B[ [ w0 )Y P | =
o Jpp

e—0 N—oo

Similarly, lim sup lim sup IE]?[ sup Wp(gb(ﬁs*N),@(uN))} = 0. X5V is the process we
e—=0 N—oo s€[0,T]
are looking for.

O

A.2 Regularization by convolution and consequence

This part presents results about the approximation of Borel measurable functions
through a sequence of “smooth” functions. The main point is that this approximation
is achieved via a convolution. The convolution is realized by a probability measure
constructed by an SDE process. Before presenting the main results, we start by recalling
an equivalence result coming from [18, Proposition 4.2].

Let (Q,IF, F,P) be a filtered probability space supporting W a R"-valued F-Brownian
motion and ¢ a Fy-random variable verifying E" [|£[P] < 0o, (bs, 0¢)tepo, 7] R™ x $" bounded
predictable process such that there exists § > 0 satisfying [o¢][o¢]"T > 01,,x,. For all
t € [0,T], denote by

t t
Xt:§+/ bsds+/ o dW;, P-a.e.
0 0

the following proposition is just an application of [18, Proposition 4.2] (see also [21])

Proposition A.1 (equivalence of measures). With the previous considerations, the
measure n on R"™ x [0,T] defined by

n(dz,dt) := P o (X;) "' (dx)dt

is equivalent to the Lebesque measure on R™ x [0, T].
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Approximation by convolution We set G € C*°(R";R) with compact support sat-
isfying G > 0, G(z) = G(—xz) for € R", and [;, G(y)dy = 1. Let us introduce
G.(r) := e "G(e ') for all x € R".

Let X* be the process defined by

t t
=¢ +/ brdr +/ okdW, for all t € [0, 7], P-a.e.,
0 0
of| +|bF| < D, P-a.e., [oF][cF]T > 0L,xn,

P-a.e. In addition E*[|¢[P] < oo where p > 1. Also, we take (ny);ejo,7] € C}, such that
n;(dz)dt is equivalent to the Lebesgue measure on [0, 7] x R", and for the weak topology,

lim £P(XF) =n, foreacht e [0,T].

k—o0

The following proposition shows that it is possible to approach some bounded measur-
able functions via smooth functions (bounded derivative functions) by using the marginal
distributions of X*. We consider (g;)ren~ C (0,00) such that klim er = 0. We pose

— 00
Gr(z) = G., (x) and for 7 € P(R™), (¥ (z) := Jgn Gi(x —y)m(dy), for all z € R™.
Proposition A.2 (regularization by convolution). For any bounded Borel measurable
function ¢ : [0,T] x R™ x R™ — RY, such that for all (t,z) € [0,T] x R", ¢(t,.,z) : y €
R" — ¢(t,y,2) € R? is continuous, one has

y)

. Gr(t,x
len;OA /n /}Rn (t,z,y)——= = )(k)( ) n;(dy) — cp(t,x,z)‘nt(da:)dt =0 (A.9)
and
. r (;l(t?‘X)gC - y) _
Jm ; EP{/nw(t,Xf,y)Wmnt(dy)] —/n o(t, x,z)n;(dz)|dt = 0.

Proof. Mention that, as n;(dx)dt is equivalent to the Lebesgue measure on [0,7] x R",
there exists Borel measurable function ¢ : [0,7] x R™ — R such that ¢(s, z) > 0 dt @ dz
a.e. (s,2) € [0,T] x R™, and n;(dz)dt = ¢(t, z)dxdt.

First, let us prove the result (A.9). If

v,

one finds that
T
-
0 n
L
<K‘/ / Gr(z—y tydy‘ et ’k —l‘dxdt‘
n JRn nt
7K‘/ / n,)®)( C(’k —1‘dxdt‘
n nt) Jf
[ f
0 n
T
=[],
0 n
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- {o(t,z,y) — o(t, =, x)}Gk(x - y)c(t,y)dy‘ (m - 1)dxdt‘
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where the first inequality is true because ¢ is bounded and the last result is obtained by
the classical result of approximation by convolution.

Now, for all (t,y,0) € [0,7] x R" x R%, v(t,y,0) := sup,,_.<s [¢(t, 4, y) — ¢(t, 2,9)
notice that lims_,o v(¢,y,d) = 0. Observe that

[
L1

T
< / / ’U(t, Y, 5) / 1|m—y|§5Gk(x - y)C(t7 y)dyditdt
0 n R"™

’

[ {ettm9) — elty )} Grl = y)elt ) dy|dad

A {o(t,z,y) — ot y,9) } (Lamyi<s + Lio—y|>s) Gr(z — y)c(t, y)dy|dzdt

T
+ K/ / / Lg—y>sGr(z — y)e(t, y)dydedt
O n n
T
< / / v(t,y,0) Gr(r —y)c(t,y)dydedt + K T/ 1)2)>6Gr(2)dz
0 n R R™
T
<[] et det it + KT [ 10560
0 n R7L
it is well known, for each § > 0, limy_, oo f]Rn 112)>5Gr(2)dz = 0, one gets that

T
lim sup / /
k—o0 0 w

T
< lim / / v(t,x,0)e(t,x)dzxdt = 0, (A.11)
O ”n.

T §—0

Rn{<p(t7 €T, y) - gp(t, Y, y)}Gk (33 - y)c(t, y)dy dzdt

the last inequality is true because of Lebesgue’s dominated convergence theorem. Finally,
one has that

limsup Ay,
k—o0

T
~timsup [ [ [ {ott.2.9) = olt.2.2)) Gl ety daa
O n n

k—o0

T
~ limsup / / / olt, 2, y)c(t, ) Ci(x — y)dy — / olt, 2, 0)C( — y)elt, )y dadt
— 00 0 n n n

T
~ limsup / / / o(t, 9, y)clt, )G — y)dy — / plt, 2, 0)C( — y)elt, )y dadr
—>OO 0 n n n

T
< lim sup/ / / o(t,y,y)e(t,y)Gr(z — y)dy — o(t, z, z)c(t, x)‘dxdt
O n n

k—o0

T
} limsup / / [t 2)elt,2) - / ol )Gl — y)et,y)dy|ddr
O n n

k—o0

T
<timsup [ [ | [ ottt 0)Gule — y)dy - ot 00t )| o
k—oo Jo nl Jrn

T
+ lim sup K / /

k—o0 0 n

where the first equality derived from (A.10), the third equality follows from (A.11) and

we find 0 because of approximation by convolution result. Therefore limy_,., Ay = 0,
then the first assertion is proved.

c(t,z) — Gr(x — y)c(t, y)dy’dmdt =0,
R’!L
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For the second point, let kg € IN*, one has that

N e R R
<

/

dt

- K
IW[/nﬂtXﬁwGMtXtwnN@%—/ﬂMtXﬁwG%ugnZ”m@@”&

(ne)® (XF) (n) ) (xF)
T C;(ko(t’)()gc _y)
+ E[ N w(t,Xf,mWWnt(dy)] - [ etta ) at

By [21, Chapter 2 Section 3 Theorem 4] and Markov inequality, for each R > 0, there
exists a constant C' > 0 depending only on (D, 0, T, R) satisfying

SW@

C/ Jo

E” [SU-pte[mT] |Xt 7]
Rp

T
/
0

By using the first statement of the proposition (see proof above), there exists a sub-
sequence (k;)jen- C IN* such that: a.e. (s,z) € [0,T] x R™,

Gi(t,x —y)
L, et G e
G O(t T —y)
/]Rnso (t,2,y) k )(ko)( ) (dy)‘ 1jz|<rdxdt

+T

G, (t, XF —
EF |:/n @(t,Xf,y)Mnt(dy)] — /n o(t, z, x)n(dz)|dt.

G, (t,x —
lim ] [ ot S () il 2,20 = 0, maanr

j—o0 (nt)(kj)(l‘>

As n;(dz)dt is equivalent to the Lebesgue measure on [0,7] x R™,

t —
lim / (s,2,y) ( —y) n,(dy) — ¢(s, z,2)| =0, dt ® dza.e.(s,z) € [0,T] x R".
P e )@@

All these observations allow us to say, by Lebesgue’s dominated convergence theorem
Gk(t T — )
(t,z,y)— 7 e (dy)
An (ny) ™) (z)

G, (t,x — n
_/n @(t7$7y)wnt(dy) Lg|<gdadt = 0.

lim sup lim sup / /
ko—o0  k—oo n

Finally, combining the previous result with the weak convergence, klim ¥ (Xf) =1y
— 00

for each ¢ € [0,T], and an obvious application of the first statement of the proposition,
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one gets
lim sup S*(¢p)
k— o0
. Gi(t,x —y)
< limsu C/ / / (t,x d
Him sup - ) ST ERIGIE ny(dy)
Gkg (tv xr — y) n
_/nh(t’x’y)(nt)(’%)(x)nt(dy)‘ 1jz<pdzdl
t,
—|—limsup/ ’/ h(t,z y)GlO( lx v) n, (dy)n;(dz)dt
lo—o0 n JRrn (n) (o) (z)

- / h(t,x, m)nt(dx)‘dt
0o Jre

TSUPk>o E” [Supte[O,T] | X F[P] < TSUPk>o EP[SUPte[o,T] | XFIP]
RpP - RP ’

as supy...o B [sup,e (o, [XFP] < oo, by taking R — oo, we deduce the result.

O

The next result is essentially an application of Theorem A.2. It states the result
of Theorem A.2 under a form usually used in the paper. Let us consider the map
(b,6) : [0,T] x R" x P x Pt x U — R™ x $" and § € M((P2)?) s.t. q;(Zn, x PE) =1
dt—for almost every t € [0,7]. Recall that kli)lrolo L(XF) =n;in W, for all t € [0,T]. We

pose nf := L(X}).
Corollary A.3. One has that

T
lim [/ / [/ ‘Kk(r,x,m,m ‘ n”(dz)
k—o00 0 ( 5)2 n
p
+W, (Hk(z,m)(du)nff(dz),m(du,dz)) }qr(dm, dm’)dr] —0,

where

Kk(s,x,m, v)

/ [i), 65’T] (8, Y, m, D,u)ﬁk(a:,m)(dy,du) - / [i), 65’T] (8, T, m, D,u)Hk(m, m)(du),
R xU U

with
7k Gr(z —y)
H (z,m)(dy,du) := m(dy,du)(m([}idw
and
HY(z,m)(du) := - Fk(:c,m)(du,dy).

Proof. As q;(Zn, x Pj;) = 1 dt-almost surely ¢ € [0,7], using convex inequality and

Proposition A.2,

lim / / Kk (ryx,m,v | k(dz)q, (dm, do)dr
TI R7l

k—o0
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< limsup/ / / /
k— 00 n)2 n nwU

[l; 66" (r,y,m, v, u)

(rmmuu)

PGz —y)

() By ™" () (A (d2)G, (drm, d7)dr

=0.

For all bounded continuous function & : R” x U — R, using Proposition A.2 again,
h(z,w)H* (z,m)(du)nk (dz)

T
lim/ /
k—oo Jo (Pp)2 nx U
—/ h(z,u)m(dz,du)
Rm»xU

T
com [ [ ] Guly
k—o0 Jq ( 5)2 n

4, (dm,dv)dr

Y(du) o =2 x)n
| henmtan TS ay)

—/ h(z,u)m(dz, du)
R xU

similarly to [34, Theorem 1.1.2.], one finds a countable family of bounded continu-
ous functions (h*)yen~ characterizing the weak convergence, therefore by Lebesgue’s
dominated convergence,

T
1
lim / / —‘/ h9(x, u)H* (2, m)(du)n¥ (dz
IS0 [ ] 0 ) )

- / hi(z,u)m(dz, du)
Rn xU

then lim e i [ipss A(Hk(z,m)(du)nff(dz),m(du,dz))qr(dm,dD)dr = 0, where A is

n”(dz)q,(dm, dp)dr = 0,

q,(dm,dp)dr = 0,

the metric characterizing the weak convergence on Pj;. As [b,6] are bounded and
v € Py (R™), for (r,m) € [0,T] x Pf,

lim sup / |2|P + p(ug,u)? H"(z,m)(du)n’(dz) = 0.
K =00 keN* J 2|+ p(uo,u)>K

This is enough to conclude that

T
khj{:o / P Wy (Hk(z, m)(du)n’ﬁ(dz),m(du,dz))qr(dm,dﬂ)dr =0. O
Consequence of the regularization: a continuity property Now, we want to pro-
vide some properties satisfying by a regularized map. Let ¢ : [0, T] x R™ x C* x (C}},)?
(Pr)? x U — R’ be a Borel function, with j € IN*. For each ¢ > 0, one defines
the function ¥*° : C* x (C}},)? x P((PR)?) x [0,T] x R® — R/ as follows: for every
(t,z,b,m,B,q) €[0,T] x R™ x C* x (C,)? x P((PR)?)

Ye[b,m, B, q](t, x)
Ge(r —y) _
/ - // Y(t, ¥, bea., e, Bin., M, U, U)Wm(du,dy)ﬂdm,du),
where for every m € P, (m(dz,U)) f]R” m(dy, U).

Notice that

"(/)E[b,ﬂ',ﬂ,q](t,x)‘ S sup |w(taZlvb/aclvm/aljl7ul)|7

!’ / ! ! ’ !’
z',b’ (' m/ v
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for all (b, 7, 3,q,t,x). Then if ¥ is bounded, ¥° is bounded uniformly in € > 0. Also, given
(t,b, 7, 3,q), for each € > 0, the function R" > x — v°[b,, 3,4](t,z) € R’ belongs to
Cp°(R™), hence the name of regularization.

Under additional conditions, we have shown in the previous Theorem A.2, in some
sense, “lim._,o1° = 1" (see Proposition A.2 for more details). The next result checks
that given € > 0, the map v° satisfies a general continuity property.

Proposition A.4. For any ¢ : [0,T] x R" x C* x (C}4,)* x (P3)> x U — R and ¢ :
[0,T] x R™ — R two bounded continuous functions. For each ¢ > 0, the function

T

(b,9,7,8,q) € C* x (C})* x M((P3)?) — / Ve[b, 7, B, qi)(t, x)p(t, )0 (dw)dt € R
0o JR»

is continuous.

Proof. Let (b*, 9%, 7%, % ¢*)en C CEx(C,)3 xM((PR)?) and (b, ¥, , 8,q) € C*x (Ci3,) x
M((Pg)?) verifying lilgn(bk,ﬁk,wk,ﬂk,qk) = (b,¥,, 3,q). Notice that,

T
/ b, B4l (t,2)6 (1, )0 ()

L

G.(x —
Q/Jty7btA77TtA7ﬁtA,mVU)( (Gt

(m(d=,U)® (x)
S S

U(t,y,g,e.€',m, v, u)d(t, x) HE (x, m)(du, dy) g (dm, dv)d; (dz) ¥ (dg, de, de’)dt,

m(du, dy) g (dm, dD)é(t, ) (dz)de

where

G.(x —y)

(@, m){du, dy) 2= T T o @)

m(du, dy)

and
W, (dg, de,de’)dt := 0w, xon. 5,0y (dg, de, de’)dt.
Next, we define
Z*(du, dy, dm, d7, dg, de, de’, dz, dt)

1
= — H(x,m)(du, dy)q (dm, dv)9¥ (dz)d ek

T dg, de, de’)dt

k) (
tA- 77"t/\- BER.)

and
Z(du, dy, dm, dv,dg, de, de’, dz, dt)
1
= THE(l‘, m)(du, dy)q:(dm, dv)d;(dz)¥,(dg, de, de”)dt.

Then (Z*),cn is a sequence of probability measures belonging to P(U x R™ x (Py)?

Clx (C)2 x R™ x [0,T]). As liin(bk, 9% 7k gE ¢F) = (b,9,7, B, q), it is straightforward to
see that (Z%);cn is relatively compact in P(U x R" x (P§)? x C* x (Cjh,)* x R™ x [0, T]) and
each sub-sequence converges to Z, therefore (Z*),cn converges to Z in a weak sense.
As the function (t,y,b,e,e/,m,v,u,z) € [0,T] x R" x C* x (C}3,)? x (PR)? x U x R™ —
Y(t,y,bin., e, m, v, u)p(t, x) € R™ is bounded continuous, we can conclude. O
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A.3 Some properties of Fokker-Planck equation

Let us recall a useful result on square root of matrices. Denote by $; the set of
symmetric positive definite matrices of dimension n € IN*. The principal square root
function is denoted by: f: Q € S — £(Q) := Q'/? € S.

Proposition A.5. [19, Theorem 6.2] There exists a constant C'(n) depending only of the
dimension n € IN* such that for any (A, B) € $;} x $;}

[F(A) = F(B)] < C(n) Panin(A)2 + Auin (B)/2] 1A = B,

where Amin(+) is the smallest eigenvalue.
Let F and E’ be two Polish spaces and [b,a] : [0,7] x R" x C([0,T]; E) x M(E') —
R™ x $"*" be a bounded Borel functions s.t.: for all (¢, 7, §) € [0,T] x C([0,T]; E) x M(E"),

the function 2 € R" — [b,a|(t, 2, Tia., Gein.) € R™ x $"%" belongs to CZ(R") and @ > pl,,,
(A.12)

for a certain p > 0.

Also, let us introduce, for all ¢ € C*(R"), Lyp[r, §)(z) := LTr[a(t,z, 7, Gin. ) Vip(2)] +
b(t,z, T, Gin.) " V().
Lemma A.6. Let v € P,(R"). There exists a Borel function Z : C([0,T]; E) x M(E') — Cy},
s.t. if (Q,F, F,P) is a filtered probability space supporting (1t )eefo,r) @ E-valued TF-

adapted continuous process and (A:):co,1] @ P(E')-valued F-predictable process, then,
the unique P(R")-valued (a{um.,/A\M.})te[o,;p]—adapted continuous process (Vt):e(o,1)
solution of: ¥ € C)yF, and for all (t, f) € [0,T] x CZ(R"),

00 = [ vy + / T, fl Al(@)0,(dz)dr, P-ae.  (A13)
R® o Jrn

satisfies
V¢ = Zi(jugn., Aip.), forallt € [0,T], P-a.e.

Proof. For the uniqueness of (A.13), as the coefficients [5, a] verify (A.12), by a slight
extension of (proof of) Theorem 5.2, one gets that equation (A.13) has at most one
solution.

Let W be a R"-valued (PP, ') Brownian motion and ¢ be a Fy-random variable of law
v, in addition, (¢, W) are P-independent of (1, A). Next, let us show the existence and
find the function Z. Combining (A.12) and Theorem A.5, for any (¢, 7, ), the application
z € R" = (a(t,z, ma., (jt/\.))l/z € §"*" is Lipshitz, with a Lipschitz constant depends only
on a. Therefore, there exists the R"-valued F-adapted process X unique strong solution
of

Xs=§+ / b(r, X, p1, A)dr + / (a(r, Xr,u,f\))w
0 0

dW, forall s € [0, T].

It is well known that X; = H,(&, Wyn., ien., Asn.), for all ¢ € [0,T], P-a.e. where
H:R"xC"x C([0,T]; E) x M(E") — C™ is a Borel function (independent of P).

Denote by G := (G;).c[0,r the filtration defined by G; := o{pa., Aip}, forall ¢ € [0, 7).
As (£,W) are P-independent of (4, A), one has that: for all ¢t € [0,7], LF(Xn.|G:) =
LY (X.|Gr), P-a.e. then by [10, Lemma A.1], the process (8;):cp,7] is a P(R™)-valued
G-adapted continuous process where 8 : (t,w) € [0,7] x Q — LFP(X;|G;)(w) € P(R"),
and by It6’s formula (3;);c[o,7] is solution of equation (A.13). In addition, there exists a
Borel function (independent of P) Z : C([0,T]; E) x M(E’) — Cy}, such that: P-a.e., for
allt €[0,T), B = Zi(puun., Aen.).- O
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