

Electron. J. Probab. 26 (2021), article no. 127, 1-4. ISSN: 1083-6489 https://doi.org/10.1214/21-EJP714

Erratum to: Coalescence estimates for the corner growth model with exponential weights*

Timo Seppäläinen ${ }^{\dagger} \quad$ Xiao Shen ${ }^{\ddagger}$

Abstract

We fix a mistake in the previously published paper Electron. J. Probab. 25: 1-31 (2020). The corrected version of the paper can also be found at arXiv:1911.03792.

Keywords: coalescence exit time; fluctuation exponent; geodesic; last-passage percolation; Kardar-Parisi-Zhang; random growth model. MSC2020 subject classifications: 60 K 35 ; 60 K 37 . Submitted to EJP on August 9, 2021, final version accepted on October 5, 2021.

We made a mistake in the proof of Theorem 4.1, and we gratefully thank Manan Bhatia for pointing this out to us. In the original paper, the mistake appeared in (4.9), and we provide correct proof for it here.

Recall the beginning part of the proof from the original paper, and we continue from equation (4.8), with a weaker estimate:

$$
\begin{equation*}
\widetilde{\mathbb{P}}\left\{\exists z \text { outside } \llbracket 0, v_{N} \rrbracket \text { such that }\left|\mathbf{Z}^{0 \rightarrow z}\right|<\left\lfloor\operatorname{ar} N^{2 / 3}\right\rfloor\right\} \leq C r^{-3} \tag{4.8}
\end{equation*}
$$

Here $\widetilde{\mathbb{P}}$ is the modified environment defined above (4.5), and $\mathbf{Z}^{0 \rightarrow z}$ is the exit time for the geodesic, which is define in the text between (3.4) and (3.5). Note the upper bound above is weaker than the one stated in (4.8) of the original paper, but it is enough for showing (4.5).

We treat the case $1 \leq \mathbf{Z}^{0 \rightarrow z}<\left\lfloor a r N^{2 / 3}\right\rfloor$ of (4.8). The same arguments give the analogous bound for the case $-\left\lfloor a r N^{2 / 3}\right\rfloor<\mathbf{Z} \leq-1$. Start by perturbing the endpoint $v_{N}=\left(\left\lfloor N(1-\rho)^{2}\right\rfloor,\left\lfloor N \rho^{2}\right\rfloor\right)$ to a new point w_{N} as was done in Lemma 4.2:

$$
w_{N}=v_{N}-\left\lfloor\frac{1}{10}(1-\rho) r N^{2 / 3}\right\rfloor e_{1}
$$

Break up the northeast boundary of $\llbracket 0, v_{N} \rrbracket$ into two regions \mathcal{L} and \mathcal{D} as in the diagram on the right of Figure 4.3. Recall the parameter $\lambda=\rho+\frac{r}{N^{1 / 3}}$ defined at the beginning of the proof, and note that the $\left(-(1-\lambda)^{2},-\lambda^{2}\right)$-directed ray started from w_{N} still goes through

[^0]
Erratum

the interval $\left[\operatorname{ar} N^{2 / 3}, b r N^{2 / 3}\right]$ on the e_{1}-axis. We now require $0<a<\frac{1}{10}(1-\rho)<10 \frac{2}{\rho^{2}}<b$ for a, b in order to apply Lemma 4.2 directly in the later part of the proof.

First consider geodesics that hit \mathcal{D}. In the remainder of this erratum, we will show

$$
\begin{equation*}
\widetilde{\mathbb{P}}\left\{\exists z \in \mathcal{D}: 1 \leq \mathbf{Z}^{0 \rightarrow z}<\left\lfloor\operatorname{ar} N^{2 / 3}\right\rfloor\right\} \leq C r^{-3} \tag{4.9}
\end{equation*}
$$

and this replaces the estimate (4.9) in the original paper.
Let $\sigma_{1}^{0 \rightarrow x}$ denote the exit time of the optimal path among those $0 \rightarrow x$ paths whose first step is e_{1}. Then we have

$$
\begin{align*}
\widetilde{\mathbb{P}}\left\{\exists z \in \mathcal{D}: 1 \leq \mathbf{Z}^{0 \rightarrow z}<\left\lfloor\operatorname{ar} N^{2 / 3}\right\rfloor\right\} & \leq \widetilde{\mathbb{P}}\left\{\exists z \in \mathcal{D}: \sigma_{1}^{0} \rightarrow z<\left\lfloor\operatorname{ar} N^{2 / 3}\right\rfloor\right\} \tag{4.10}\\
& \leq \widetilde{\mathbb{P}}\left\{\sigma_{1}^{0 \rightarrow w_{N}}<\left\lfloor\operatorname{ar} N^{2 / 3}\right\rfloor\right\}
\end{align*}
$$

The second inequality comes from the uniqueness of maximizing paths: the maximizing path to w_{N} cannot go to the right of a maximizing path to \mathcal{D}.

The task is to bound $\widetilde{\mathbb{P}}\left\{\sigma_{1}^{0} \rightarrow w_{N}<\left\lfloor a r N^{2 / 3}\right\rfloor\right\}$. Define an environment with \mathbb{P}^{λ} distribution by multiplying the \mathbb{P}^{ρ} boundary weights by $\frac{1-\rho}{1-\lambda}$ on the e_{1}-axis and by $\frac{\rho}{\lambda}$ on the e_{2}-axis. We have now three coupled weight configurations with marginal distributions $\widetilde{\mathbb{P}}, \mathbb{P}^{\rho}$ and \mathbb{P}^{λ}. Denote their joint distribution by \mathbb{P}. Let \widetilde{G}, G^{ρ}, and G^{λ} denote the lastpassage values under these three environments. Additionally, let $\widetilde{G}_{0, w_{N}}(I)$ denote the last-passage value restricted to paths that exit through the set I.

To obtain

$$
\widetilde{\mathbb{P}}\left\{\sigma_{1}^{0 \rightarrow w_{N}}<\left\lfloor\operatorname{ar} N^{2 / 3}\right\rfloor\right\} \leq C r^{-3}
$$

we show

$$
\begin{equation*}
\mathbb{P}\left\{\widetilde{G}_{0, w_{N}}\left(\llbracket e_{1},\left\lfloor\operatorname{ar} N^{2 / 3}-1\right\rfloor e_{1} \rrbracket\right)<\widetilde{G}_{0, w_{N}}\left(\llbracket\left\lfloor\operatorname{ar} N^{2 / 3}\right\rfloor e_{1},\left\lfloor b r N^{2 / 3}\right\rfloor e_{1} \rrbracket\right)\right\} \geq 1-C r^{-3} \tag{4.11}
\end{equation*}
$$

By Lemma 4.2 there exists an event A_{1} with $\mathbb{P}\left(A_{1}\right) \geq 1-e^{-C r^{3}}$ such that on this event the geodesic of $G_{0, w_{N}}^{\lambda}$ exits inside $\llbracket\left\lfloor a r N^{2 / 3}\right\rfloor e_{1},\left\lfloor b r N^{2 / 3}\right\rfloor e_{1} \rrbracket$. The following equality holds on A_{1} :

$$
\widetilde{G}_{0, w_{N}}\left(\llbracket\left\lfloor\operatorname{ar} N^{2 / 3}\right\rfloor e_{1},\left\lfloor b r N^{2 / 3}\right\rfloor e_{1} \rrbracket\right)+\sum_{k=1}^{\left\lfloor\operatorname{ar} N^{2 / 3}-1\right\rfloor}\left(\frac{1-\rho}{1-\lambda}-1\right) \omega_{k e_{1}}=G_{0, w_{N}}^{\lambda}
$$

Together with the fact that

$$
\widetilde{G}_{0, w_{N}}\left(\llbracket e_{1},\left\lfloor\operatorname{ar} N^{2 / 3}-1\right\rfloor e_{1} \rrbracket\right) \leq G_{0, w_{N}}^{\rho}
$$

the probability in (4.11) can be lower bounded as

$$
\begin{equation*}
(4.11) \geq \mathbb{P}\left(\left\{G_{0, w_{N}}^{\rho}<G_{0, w_{N}}^{\lambda}-\sum_{k=1}^{\left\lfloor\operatorname{ar} N^{2 / 3}-1\right\rfloor}\left(\frac{1-\rho}{1-\lambda}-1\right) \omega_{k e_{1}}\right\} \cap A_{1}\right) . \tag{4.12}
\end{equation*}
$$

Up to a ρ-dependent constant

$$
\begin{equation*}
\mathbb{E}\left[\sum_{k=1}^{\left\lfloor\operatorname{ar} N^{2 / 3}-1\right\rfloor}\left(\frac{1-\rho}{1-\lambda}-1\right) \omega_{k e_{1}}\right] \sim a r^{2} N^{1 / 3} \tag{4.13}
\end{equation*}
$$

and recall that the parameter a can be fixed arbitrarily small. On the other hand, a computation in eqn. (5.53) in the arXiv version of [1] with $\kappa_{N}^{1}=-\left\lfloor\frac{1}{10}(1-\rho) r N^{2 / 3}\right\rfloor$ and $\kappa_{N}^{2}=0$ gives

$$
\begin{equation*}
\mathbb{E}\left[G_{0, w_{N}}^{\lambda}\right]-\mathbb{E}\left[G_{0, w_{N}}^{\rho}\right] \geq c_{1} r^{2} N^{1 / 3} \tag{4.14}
\end{equation*}
$$

Erratum

where c_{1} is another ρ-dependent constant. Hence for small $a>0$ the event inside the braces in (4.12) should occur with high probability. This we now demonstrate.

Let

$$
A_{2}=\left\{G_{0, w_{N}}^{\lambda}>\mathbb{E}\left[G_{0, w_{N}}^{\rho}\right]+\frac{1}{2} c_{1} r^{2} N^{1 / 3}\right\}
$$

We show that $\mathbb{P}\left(A_{2}\right) \geq 1-C r^{-3}$. First we estimate the variance $\operatorname{Var}\left[G_{0, w_{N}}^{\rho}\right]$. The first equality below is Theorem 5.6 in the arXiv version of [1]:

$$
\begin{align*}
\operatorname{Var}\left[G_{0, w_{N}}^{\rho}\right] & =-\frac{\left\lfloor(1-\rho)^{2} N\right\rfloor-\left\lfloor\frac{1}{10}(1-\rho) r N^{2 / 3}\right\rfloor}{(1-\rho)^{2}}+\frac{\left\lfloor\rho^{2} N\right\rfloor}{\rho^{2}}+\frac{2}{1-\rho} \mathbb{E}\left[\sum_{k=1}^{0 \vee \mathbf{Z}^{0 \rightarrow w_{N}}} \omega_{k e_{1}}^{\rho}\right] \\
& \leq C r N^{2 / 3}+\frac{2}{1-\rho} \mathbb{E}\left[\sum_{k=1}^{0 \vee \mathbf{Z}^{0 \rightarrow v_{N}}} \omega_{k e_{1}}^{\rho}\right] \leq C r N^{2 / 3}+C^{\prime} N^{2 / 3} \tag{4.15}
\end{align*}
$$

Shifting the endpoint from w_{N} back to v_{N} inside the expectations increases the expected value because $\mathbf{Z}^{0 \rightarrow w_{N}} \leq \mathbf{Z}^{0 \rightarrow v_{N}}$ almost surely. This gives the inequality between the two expectations. The last expectation is of order $N^{2 / 3}$ as shown through Lemma 5.8 and Proposition 5.9 in the arXiv version of [1]. Now we can bound:

$$
\begin{aligned}
\mathbb{P}\left(A_{2}^{c}\right) & =\mathbb{P}\left(G_{0, w_{N}}^{\lambda} \leq \mathbb{E}\left[G_{0, w_{N}}^{\rho}\right]+\frac{c_{1}}{2} r^{2} N^{1 / 3}\right) \\
(\operatorname{using}(4.14)) & \leq \mathbb{P}\left(G_{0, w_{N}}^{\lambda} \leq \mathbb{E}\left[G_{0, w_{N}}^{\lambda}\right]-\frac{c_{1}}{2} r^{2} N^{1 / 3}\right) \\
& \leq \frac{c_{2}}{r^{4} N^{2 / 3}} \operatorname{Var}\left[G_{0, w_{N}}^{\lambda}\right] \\
\text { (Lemma 5.7, arXiv version of [1]) } & \leq \frac{c_{2}}{r^{4} N^{2 / 3}}\left(\operatorname{Var}\left[G_{0, w_{N}}^{\rho}\right]+c_{3} r N^{-1 / 3}(1-\rho)^{2} N\right) \leq C r^{-3} .
\end{aligned}
$$

For the last inequality we take $r \geq C^{\prime}$ from the last line of (4.15). We have the further lower bound
(4.12) $\geq \mathbb{P}\left(\left\{G_{0, w_{N}}^{\rho}<\mathbb{E}\left[G_{0, w_{N}}^{\rho}\right]+\frac{c_{1}}{2} r^{2} N^{1 / 3}-\sum_{k=1}^{\left\lfloor\operatorname{arN} N^{2 / 3}-1\right\rfloor}\left(\frac{1-\rho}{1-\lambda}-1\right) \omega_{k e_{1}}\right\} \cap A_{1} \cap A_{2}\right)$.

We handle the i.i.d. sum above using large deviation of i.i.d. exponential random variables. Let $I(\cdot)$ denote the Cramér rate function of the $\operatorname{Exp}(1-\rho)$ distribution. Then

$$
\mathbb{P}\left\{\left(\frac{1-\rho}{1-\lambda}-1\right) \sum_{k=1}^{\left\lfloor a r N^{2 / 3}-1\right\rfloor} \omega_{k e_{1}}>\frac{c_{1}}{4} r^{2} N^{1 / 3}\right\} \leq e^{-a r N^{2 / 3} I\left(c_{5} / a\right)} \leq e^{-c_{6} r N^{2 / 3}}
$$

where c_{5} is a certain constant, and for small enough $a>0, I\left(c_{5} / a\right) \geq c_{6} / a$. Thus the event

$$
A_{3}=\left\{\left(\frac{1-\rho}{1-\lambda}-1\right) \sum_{k=1}^{\left\lfloor a r N^{2 / 3}-1\right\rfloor} \omega_{k e_{1}} \leq \frac{c_{1}}{4} r^{2} N^{1 / 3}\right\}
$$

satisfies $\mathbb{P}\left(A_{3}\right) \geq 1-e^{-c_{6} r N^{2 / 3}}$. Continuing the lower bound,

$$
\begin{equation*}
(4.16) \geq \mathbb{P}\left(\left\{G_{0, w_{N}}^{\rho}<\mathbb{E}\left[G_{0, w_{N}}^{\rho}\right]+\frac{c_{1}}{4} r^{2} N^{1 / 3}\right\} \cap A_{1} \cap A_{2} \cap A_{3}\right) \tag{4.17}
\end{equation*}
$$

The variance bound from (4.15) gives

$$
\mathbb{P}\left\{G_{0, w_{N}}^{\rho}-\mathbb{E}\left[G_{0, w_{N}}^{\rho}\right] \geq \frac{c_{1}}{4} r^{2} N^{1 / 3}\right\} \leq \frac{c_{2}}{r^{4} N^{2 / 3}} \operatorname{Var}\left[G_{0, w_{N}}^{\rho}\right] \leq C r^{-3}
$$

All four events inside the probability in (4.17) have probability at least $1-\mathrm{Cr}^{-3}$, and this verifies (4.9).

Erratum

References

[1] Timo Seppäläinen, The corner growth model with exponential weights, Random growth models, Proc. Sympos. Appl. Math., vol. 75, Amer. Math. Soc., Providence, RI, 2018, arXiv:1709.05771, pp. 133-201. MR3838898

[^0]: *Corrected article: https://doi.org/10.1214/20-EJP489.
 ${ }^{\dagger}$ University of Wisconsin-Madison. E-mail: seppalai@math.wisc.edu
 ${ }^{\ddagger}$ University of Wisconsin-Madison. E-mail: xshen@math.wisc.edu

