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Abstract

We formulate and prove a generalization of Hardy’s inequality [27] in terms of random
variables and show that it contains the usual (or familiar) continuous and discrete
forms of Hardy’s inequality. Next we improve the recent version by Li and Mao
[42] of Hardy’s inequality with weights for general Borel measures and mixed norms
so that it implies the discrete version of Liao [43] and the Hardy inequality with
weights of Muckenhoupt [48] as well as the mixed norm versions due to Hardy and
Littlewood [29], Bliss [8], and Bradley [14]. An equivalent formulation in terms of
random variables is given as well. We also formulate a reverse version of Hardy’s
inequality, the closely related Copson inequality, a reverse Copson inequality and
a Carleman-Pólya-Knopp inequality via random variables. Finally we connect our
Copson inequality with counting process martingales and survival analysis, and briefly
discuss other applications.
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1 Introduction

The classical Hardy inequality is often presented as the following pair of inequalities:
the continuous (or integral form) inequality says, if p > 1 and ψ is a nonnegative
p-integrable function on (0,∞), then∫ ∞

0

(
1

x

∫ x

0

ψ(y)dy

)p
dx ≤

(
p

p− 1

)p ∫ ∞
0

ψp(y) dy, (1.1)
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Hardy’s inequalities

while the discrete (or series form) inequality says, if p > 1 and {cn}∞1 is a sequence of
nonnegative real numbers, then

∞∑
n=1

(
1

n

n∑
k=1

ck

)p
≤
(

p

p− 1

)p ∞∑
k=1

cpk. (1.2)

For example, see pp. 239–243 of [30], Exercises 3.14 and 3.15 of [55], [41], or [59],
Chapter 9.

As Hardy [27] mentions in his Section 5, Landau pointed out that the discrete
inequality follows from the integral one by noting that c1 ≥ c2 ≥ · · · may be assumed,
and by choosing an appropriate step function as ψ; see Section 8 of [39].

Our main objective here is to give a unified formulation and proof of the inequalities
(1.1) and (1.2) using the notation and language of probability theory. Along the way we
will obtain a large family of other corollaries related to weighted Hardy inequalities (as
given in [39] and in the book-length treatments [41] and [40]); see Section 2.

There is a vast literature on Hardy’s inequality with weights with Muckenhoupt [48],
building on [61] and [62], as a milestone. Versions of this inequality are useful in the
study of differential equations ([11], [3]); the stability of stochastic processes ([17], [46]);
functional inequalities, e.g. Poincaré and log-Sobolev inequalities, ([9], [10], [4], [26],
and [2]).

Such versions usually involve two arbitrary Borel measures. A very recent result
by Li and Mao [42] is not optimal yet, because it does not contain the discrete version
as given by Liao [43]. In Section 3 we shall formulate an improvement of the result by
[42] that contains the discrete version by [43] as a special case. Actually our proof of
this improvement is based on the discrete result of [43]. An equivalent formulation of
our version of Hardy’s inequality with weights in terms of random variables will also be
given.

Furthermore, we apply our methods from Section 2 to Copson’s inequality ([18])
in Section 5 and to the reverse Hardy inequality in Section 4; cf. [53] and [6]. We
treat reverse Copson inequalities in the same style in Section 6, and we provide a
probabilistic version of the inequalities of Carleman, Pólya, and Knopp in Section 7. In
Section 8 we connect our new versions of Copson’s inequality formulated in probability
terms with counting process martingales arising in survival analysis and reliability
theory. The appendix, Section 12, elaborates on survival analysis by briefly explaining
connections with the forward (and backward) versions of the Kaplan – Meier estimators
appearing in right (and left) censored survival data, including a short description of the
analysis of data arising from the question of “when do the baboons come down from the
trees”. Other applications are presented briefly in Section 11 and a summary of the new
inequalities is given in Section 10. Most of the proofs are collected in Section 9.

2 Hardy’s inequality

Here is our version of Hardy’s inequality that implies both (1.1) and (1.2).

Theorem 2.1. Hardy’s inequality
Let X and Y be independent random variables with distribution function F on (R,B),
and let ψ be a nonnegative measurable function on (R,B). For p > 1

E

([
E
(
ψ(Y )1[Y≤X] | X

)
F (X)

]p)
≤
(

p

p− 1

)p
E (ψp(Y )) (2.1)

holds. For continuous distribution functions F this inequality may be rewritten as∫ 1

0

[
1

u

∫ u

0

ψF (v)dv

]p
du ≤

(
p

p− 1

)p ∫ 1

0

ψpF (v)dv (2.2)
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Hardy’s inequalities

with ψF (v) = ψ(F−1(v)), 0 < v < 1, and for such F the constant (p/(p − 1))p is the
smallest possible one.

The strength of this inequality (2.1) lies in the fact that it implies both the continuous
and the discrete version of Hardy’s inequality.

Corollary 2.2.

(i) For any p > 1 and nonnegative ψ ∈ Lp, inequality (1.1) holds.

(ii) For any p > 1 and nonnegative sequence {cn}∞n=1 ∈ `p, inequality (1.2) holds.

Proof. (i) and (ii) follow from Theorem 2.1 by taking F to be the distribution function cor-
responding to the uniform probability measure on [0,K] and on {1, . . . ,K}, respectively,
multiplying by K, and taking limits as K →∞.

Translating Theorem 2.1 from random variable notation back into analysis yields the
following corollary.

Corollary 2.3. For any p > 1, distribution function F on R, and ψ ∈ Lp(F ) we have∫
R

|HFψ(x)|pdF (x) ≤
(

p

p− 1

)p ∫
R

|ψ(y)|pdF (y)

where HF is the F -averaging operator defined for x ∈ R and ψ ∈ Lp(F ) by

HFψ(x) ≡

∫
(−∞,x] ψ(y)dF (y)

F (x)
= E (ψ(Y ) | Y ≤ x) . (2.3)

Note that HF generalizes both the discrete and the continuous Hardy averaging
operators; see e.g. [39], page 715. Observe that |HFψ| ≤ HF |ψ| holds for all measurable
ψ with equality if ψ is nonnegative F -a.e. This shows the equivalence of Theorem 2.1
and Corollary 2.3.

Remark 2.4. If we replace (1[Y≤X], F (X)) in (2.1) by (1[Y <X], F (X−)) with the conven-
tion 0/0 = 0, then the inequality does not hold anymore for some distribution functions
with jumps. In particular, for X and Y Bernoulli with success probability P (X = 1) = q

and with ψ(0) = 1, ψ(1) = 0 we get

E

([
E
(
ψ(Y )1[Y <X] | X

)
F (X−)

]p)
= q (2.4)

and (
p

p− 1

)p
E (ψp(Y )) =

(
p

p− 1

)p
(1− q). (2.5)

Consequently, inequality (2.1) with (1[Y≤X], F (X)) replaced by (1[Y <X], F (X−)) does
not hold here for

1

1 +
(

1− 1
p

)p < q < 1. (2.6)

Remark 2.5. There are distributions for which the constant in (2.1) is not optimal for
any p > 1. This is the case for all Bernoulli distributions. Let X and Y have a Bernoulli
distribution with P (X = 1) = q = 1−P (X = 0). Then with ψ(0) = a ≥ 0 and ψ(1) = b ≥ 0

our Hardy inequality (2.1) becomes

(1− q)ap + q ((1− q)a+ qb)
p ≤

(
p
p−1

)p
((1− q)ap + qbp) . (2.7)
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However, by convexity

(1− q)ap + q ((1− q)a+ qb)
p ≤ (1− q)ap + q ((1− q)ap + qbp)

≤ (1 + q) ((1− q)ap + qbp) (2.8)

holds. Consequently, for the Bernoulli distribution with success probability q the optimal
constant in our Hardy inequality equals at most 1 + q, for which

1 + q ≤ 2 < e = inf
p>1

(
1 + 1

p−1

)p
(2.9)

holds.

Remark 2.6. Since −X has distribution function P (X ≥ −x) = 1 − F−(−x) where
F−(x) ≡ F (x−) denotes the left limit of F at x, Theorem 2.1 immediately implies

E

([
E
(
ψ(Y )1[Y≥X] | X

)
1− F (X−)

]p)
≤
(

p

p− 1

)p
E (ψp(Y )) . (2.10)

Note that (2.10) can be rewritten as∫
R

|HFψ(x)|pdF (x) ≤
(

p

p− 1

)p ∫
R

|ψ(y)|pdF (y)

where HF is the (right-tail) F -averaging operator defined for x ∈ R and ψ ∈ Lp(F ) by

HFψ(x) ≡

∫
[x,∞)

ψ(y)dF (y)

1− F (x−)
= E (ψ(Y ) | Y ≥ x) ≡ Ψ(x). (2.11)

Thus
E (ψ(Y )− ψ(x) | Y ≥ x) = HFψ(x)− ψ(x)

is the “mean residual life of ψ(Y )” given [Y ≥ x]. In particular, with ψ(x) = x,

E (Y − x | Y ≥ x) ≡ Ψ(x)− ψ(x)

is the “mean residual life function” corresponding to the distribution function F . It turns
out that for ψ(Y ) ∈ L2(F ) and F continuous

Var(ψ(Y )) = E
(
{ψ(Y )−Ψ(Y )}2

)
,

so that the conditional centering operator I −HF is an isometry. For more on this and
connections to counting process martingales and survival analysis see [54], [22], and
[7]. [60] studies I −H and I −H∗ as operators on Lp(R+, λ) where λ denotes Lebesgue
measure.

Remark 2.7. Since the conditional distribution of X given X ≤ c has distribution
function F (·)/F (c) for c ∈ R and the same holds for Y , we have the following conditional
version of (2.1)

E

([
E
(
ψ(Y )1[Y≤X] | X

)
F (X)

]p ∣∣∣∣∣X ≤ c
)

= E

([
E
(
ψ(Y )1[Y≤X] | Y ≤ c,X

)
F (X)/F (c)

]p ∣∣∣∣∣X ≤ c
)

(2.12)

≤
(

p

p− 1

)p
E (ψp(Y ) | Y ≤ c) ,
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where the inequality stems from (2.1) itself.
Similarly, we have

E

([
E
(
ψ(Y )1[Y≥X] | X

)
1− F (X−)

]p ∣∣∣∣∣X > c

)

= E

([
E
(
ψ(Y )1[Y≥X] | Y > c,X

)
(1− F (X−))/(1− F (c))

]p ∣∣∣∣∣X > c

)
(2.13)

≤
(

p

p− 1

)p
E (ψp(Y ) | Y > c) .

Together (2.12) and (2.13) improve the generalization given in Theorem 3.2 of [56]
from continuous distribution functions to arbitrary distributions, namely to

E

([
E
(
ψ(Y )1[Y≤X] | X

)
F (X)

]p
1[X≤c]

)

+ E

([
E
(
ψ(Y )1[Y≥X] | X

)
1− F (X−)

]p
1[X>c]

)

= F (c)E

([
E
(
ψ(Y )1[Y≤X] | X

)
F (X)

]p ∣∣∣∣∣X ≤ c
)

+ (1− F (c))E

([
E
(
ψ(Y )1[Y≥X] | X

)
1− F (X−)

]p ∣∣∣∣∣X > c

)
(2.14)

≤
(

p

p− 1

)p
[F (c)E (ψp(Y ) | Y ≤ c) + (1− F (c))E (ψp(Y ) | Y > c)]

=

(
p

p− 1

)p
E (ψp(Y )) .

Remark 2.8. The Hardy inequality for weighted Lp spaces on (0,∞), such as Theorem
1.2.1 of [3], also follows from our Hardy inequality for random variables. With 0 ≤ ε <
(p − 1)/p and K a large constant, we choose F (x) = (x/K)1−εp/(p−1) ∧ 1, x ≥ 0. This
results in the inequality[

1− εp

p− 1

]p+1 ∫ K

0

[∫ x

0

ψ(y)y−εp/(p−1)dy

]p
xp(ε−1)dx (2.15)

≤
[
1− εp

p− 1

](
p

p− 1

)p ∫ K

0

ψp(y)y−εp/(p−1)dy.

Taking limits as K →∞ and writing Ψ(y) = ψ(y)y−εp/(p−1) we arrive at∫ ∞
0

[∫ x

0

Ψ(y)dy

]p
xp(ε−1)dx ≤

[
p− 1

p
− ε
]−p ∫ ∞

0

Ψp(y)ypεdy, (2.16)

which is inequality (1.2.1) combined with (1.2.3) of [3]. Note that by choosing ε = 0 the
inequality in the last display reduces to (1.1).

3 Hardy’s inequality with weights and mixed norms

To the best of our knowledge the most recent and most general versions of Hardy’s
inequalities with weights and mixed norms are presented by Liao [43] and Li and Mao
[42]. We shall improve the result of [42] so that it contains the discrete version of [43] as
a special case. To this end we prove the result of [42] with (−∞, x) in the inner integral
replaced by (−∞, x], i.e.

EJP 26 (2021), paper 142.
Page 5/34

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP711
https://imstat.org/journals-and-publications/electronic-journal-of-probability/
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Theorem 3.1. Hardy’s Inequality with Weights and Mixed Norms
Let 1 < p ≤ q <∞, and suppose that µ and ν are σ-finite Borel measures on R. Then[∫

R

(∫
(−∞,x]

ψdν

)q
dµ(x)

]1/q
≤ kq,pB

[∫
R

ψpdν

]1/p
(3.1)

holds for all measurable ψ : R→ [0,∞), where kq,p and B are defined by

B ≡ sup
x∈R

µ([x,∞))1/qν((−∞, x])(p−1)/p (3.2)

and, with Beta(a, b) =
∫ 1

0
ta−1(1− t)b−1dt and r ≡ (q − p)/p,

kq,p ≡
(

r

Beta(1/r, (q − 1)/r)

)r/q
and kp,p = p(p− 1)(1−p)/p. (3.3)

Remark 3.2. With the help of Theorem 1.4 of [43] we shall prove our Theorem 3.1 in
Section 9. In fact these theorems are equivalent, since our theorem implies his. For
nonnegative ai, ui, vi, i = 1, . . . , N , let µ and ν be measures on {1, . . . , N} that have

densities ui and v−1/(p−1)i , respectively, at i with respect to counting measure, and let

ψ(i) = aiv
1/(p−1)
i , i = 1, . . . , N . With these choices Theorem 3.1 yields (9.20) and (9.21),

and hence Theorem 1.4 of [43].

Remark 3.3. Let C be the smallest constant such that[∫
R

(∫
(−∞,x]

ψdν

)q
dµ(x)

]1/q
≤ C

[∫
R

ψpdν

]1/p
(3.4)

holds in the situation of Theorem 3.1. With ψ(y) = 1[y≤z] this yields

ν((−∞, z]) [µ((z,∞))]
1/q ≤

[∫
R

(ν((−∞, x ∧ z]))q dµ(x)

]1/q
(3.5)

≤ C [ν((−∞, z])]1/p ,

which implies the well known inequality B ≤ C. By Theorem 3.1 we also have C ≤ kq,pB
so C <∞ if and only if B <∞. The constants kq,p first appeared via a (1923) conjecture
of Hardy and Littlewood [29] which was later confirmed by Bliss [8]. See Chapter 5 of
[40] for a very complete history of these developments and further results.

Theorem 3.1 and Remark 3.3 may be reformulated in terms of random variables as
follows.

Theorem 3.4. Probability Version of Hardy’s Inequality with Weights and Mixed
Norms
Let X and Y be independent random variables with distribution functions F and G

respectively, let 1 < p ≤ q < ∞, and let U and V be nonnegative measurable functions
on (R,B). Furthermore let C ∈ [0,∞] be the smallest constant such that{

E
([
E
(
ψ̃(Y )1[Y≤X] | X

)]q
U(X)

)}1/q

≤ C
{
E
(
ψ̃p(Y )V (Y )

)}1/p

(3.6)

holds for all nonnegative measurable functions ψ̃ on (R,B). With

B = sup
x∈R

[∫
[x,∞)

UdF

]1/q [∫
(−∞,x]

V −1/(p−1)dG

](p−1)/p
, (3.7)
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the string of inequalities

B ≤ C ≤ kq,pB (3.8)

holds, even for B =∞.

Proof. Theorem 3.4 is implied by Theorem 3.1 via the choices µ([x,∞)) =
∫
[x,∞)

UdF,

ν((−∞, x]) =
∫
(−∞,x] V

−1/(p−1)dG and ψ = ψ̃V 1/(p−1).

With µ a σ-finite measure and ∪∞i=1Ai = (0,∞) a partition with 0 < µ(Ai) < ∞, i =

1, 2, . . . , the measure P (B) =
∑∞
i=1 2−iµ(B ∩Ai)/µ(Ai), B ∈ B, is a probability measure

dominating µ. Let F and G be the distribution functions of probability measures dominat-
ing the measures µ and ν, respectively, from Theorem 3.1. The choices U(x) = dµ/dF (x)

and V (y) = (dν/dG(y))1−p show that Theorem 3.4 implies Theorem 3.1.

Following the arguments of Muckenhoupt [48], in Section 9 we prove the following
generalization of his result, which is the special case q = p of our Theorems 3.1 and 3.4.

Theorem 3.5. Probability Version of Muckenhoupt’s Inequality
Let X and Y be independent random variables with distribution functions F and G

respectively, let p > 1, and let U and V be nonnegative measurable functions on (R,B).
Furthermore let C ∈ [0,∞] be the smallest constant such that

E
([
E
(
ψ(Y )1[Y≤X] | X

)]p
U(X)

)
≤ C E (ψp(Y )V (Y )) (3.9)

holds for all nonnegative measurable functions ψ on (R,B). With

B = sup
x∈R

∫
[x,∞)

UdF

[∫
(−∞,x]

V −1/(p−1)dG

]p−1
, (3.10)

the string of inequalities

B ≤ C ≤ pp

(p− 1)p−1
B (3.11)

holds, even for B =∞.

Remark 3.6. With U = G−p, V = 1 and G = F the second inequality in (3.11) does
not imply our Hardy inequality (2.1). Indeed, for Bernoulli random variables with
P (X = 1) = 1/p = 1 − P (X = 0) the factor B equals 1 + (p − 1)p−1/pp then and hence
the upper bound on C equals 1 + pp/(p − 1)p−1, which is larger than (p/(p − 1))p for
p ≥ p0 ≈ 1.77074.
However, with U = G−p, V = 1 and G = F a continuous distribution function the factor
B equals 1/(p − 1), which shows that (3.11) does imply our Hardy inequality (2.1) for
this case.

If X is stochastically larger than Y, Y � X, and they have no point masses at the
same location, then Theorem 3.5 yields an inequality very similar to (2.1). A comparable
result is obtained for X � Y .

Corollary 3.7. Stochastic ordering
Let X and Y be independent random variables with distribution functions F and G

respectively, let p > 1, and let ψ be a nonnegative measurable function on (R,B).
(a) If P (X = Y ) = 0 and F (x) ≤ G(x), x ∈ R, hold, then

E

([
E
(
ψ(Y )1[Y≤X] | X

)
G(X)

]p)
≤
(

p

p− 1

)p
E (ψp(Y )) (3.12)

is valid.
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(b) If F is continuous and F (x) ≥ G(x), x ∈ R, holds, then

E

([
E
(
ψ(Y )1[Y≤X] | X

)
F (X)

]p)
≤
(

p

p− 1

)p
E (ψp(Y )) (3.13)

is valid.

Proof. In case (a) we apply Theorem 3.5 with U = G−p and V = 1. Then B from (3.10)
equals

B = sup
r∈R

Gp−1(r)

∫
[r,∞)

G−pdF. (3.14)

If F has no point mass at r, then the stochastic ordering Y � X implies∫
[r,∞)

G−pdF =

∫
(r,∞)

G−pdF ≤
∫
(r,∞)

G−pdG

=

∫
G−1(u)>r

(G(G−1(u)))−pdu ≤
∫
[G(r),1)

(G(G−1(u)))−pdu (3.15)

≤
∫
[G(r),1)

u−pdu =
1

p− 1

[
G1−p(r)− 1

]
≤ G1−p(r)

p− 1
.

In the first line of the last display and in the second line below we use the characterization
Y � X if and only if Eh(Y ) ≤ Eh(X) for all bounded and non-decreasing functions h;
see e.g. [49] Theorem 1.2.8 (ii), page 5, or [57] (1.A.7), page 4.

If F has a point mass at r then G has not and the stochastic ordering Y � X implies∫
[r,∞)

G−pdF ≤
∫
[r,∞)

G−pdG (3.16)

=

∫
(r,∞)

G−pdG =
1

p− 1

[
G1−p(r)− 1

]
≤ G1−p(r)

p− 1
.

Combining (3.14)–(3.16) and (3.9)–(3.11) we arrive at (3.12).
In case (b) we apply Theorem 3.5 with U = F−p and V = 1. Then the continuity of F and
G ≤ F imply that B from (3.10) satisfies

B = sup
r∈R

Gp−1(r)

(∫
[r,∞)

F−pdF

)
= sup
r∈R

1

p− 1

[
F 1−p(r)− 1

]
Gp−1(r)

≤ sup
r∈R

1

p− 1

[
G(r)

F (r)

]p−1
=

1

p− 1
(3.17)

and hence that (3.13) holds.

4 A reverse Hardy inequality

There are also reversed versions of the classical Hardy inequality: the continuous (or
integral form) inequality says, if p > 1 and ψ is a nonnegative, nonincreasing p-integrable
function on (0,∞), then∫ ∞

0

(
1

x

∫ x

0

ψ(y)dy

)p
dx ≥ p

p− 1

∫ ∞
0

ψp(y)dy, (4.1)

while the discrete (or series form) inequality says, if p > 1 and {cn}∞1 is a nonincreasing
sequence of nonnegative real numbers, then

∞∑
n=1

(
1

n

n∑
k=1

ck

)p
≥ ζ(p)

∞∑
k=1

cpk. (4.2)
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Here, ζ(·) is the zeta function. These inequalities have been obtained independently
by Renaud [53] and Bennett [6]; see also Lemma 2.1 of [47]. By taking ψ the indicator
function of the unit interval we see that (4.1) is sharp and by taking c1 = 1, c2 = c3 =

· · · = 0 that (4.2) is sharp.
Here are our random variable versions of (4.1) and (4.2).

Theorem 4.1. Reverse Hardy inequality
Let X and Y be independent random variables both with distribution function F on
(R,B), and let ψ be a nonnegative, nonincreasing function on (R,B). For p > 1 and F

absolutely continuous

E

([
E
(
ψ(Y )1[Y≤X] | X

)
F (X)

]p)
≥ p

p− 1
E
(
ψp(Y )

[
1− F p−1(Y )

])
≥ E (ψp(Y )) (4.3)

holds with equalities if ψ is constant.
For p ≥ 1 and F general

E

([
E
(
ψ(Y )1[Y≤X] | X

)
F (X)

]p)
≥ E (ψp(Y )) (4.4)

holds with equalities if ψ is constant.
If F is general, but p ≥ 2 is an integer, then, with X,Y,X1, . . . , Xp independent and

identically distributed and with X(p) = max{X1, . . . , Xp}, we have

E

([
E
(
ψ(Y )1[Y≤X] | X

)
F (X)

]p)
≥ E

(
ψp(X(p))E

(
F−p(Y )1[Y≥X(p)] | X(p)

))
(4.5)

with equality if ψ is constant.

The continuous version (4.1) of the reverse Hardy inequality is contained in (4.3) and
the discrete version (4.2) for integer p follows from (4.5).

Corollary 4.2.
(i) For any p > 1 and nonnegative, nonincreasing ψ ∈ Lp, inequality (4.1) holds.
(ii) For any integer p > 1 and nonnegative, nonincreasing sequence {cn}∞n=1 ∈ `p,
inequality (4.2) holds.

For further developments concerning reverse Hardy type inequalities, see [24].

5 Copson’s inequality

Copson [18] presented the following pair of inequalities: the continuous (or integral
form) inequality says, if p > 1 and ψ is a nonnegative p-integrable function on (0,∞),
then ∫ ∞

0

(∫ ∞
x

ψ(y)

y
dy

)p
dx ≤ pp

∫ ∞
0

ψp(y)dy (5.1)

holds, while the discrete (or series form) inequality says, if p > 1 and ai and λi, i =

1, 2, . . . , are nonnegative numbers and Λi =
∑i
j=1 λj , i = 1, 2, . . . , is positive, then

∞∑
i=1

 ∞∑
j=i

aj
λj
Λj

p λi ≤ pp ∞∑
j=1

apjλj (5.2)

holds. We generalize Copson’s inequalities as follows.
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Theorem 5.1. Copson’s inequality

Let X and Y be independent random variables with distribution function F on (R,B),
and let ψ be a nonnegative measurable function on (R,B). For p ≥ 1

E

([
E

(
ψ(Y )

F (Y )
1[Y≥X] | X

)]p)
≤ ppE (ψp(Y )) (5.3)

holds. For absolutely continuous distribution functions F the constant pp is the smallest
possible one.

The strength of this inequality (5.3) lies in the fact that it implies both the continuous
and the discrete version of Copson’s inequality.

Corollary 5.2.

(i) For any p ≥ 1 and nonnegative ψ ∈ Lp, inequality (5.1) holds.

(ii) For any p ≥ 1 and nonnegative sequences {an}∞n=1, {λn}∞n=1 ∈ `p with λ1 > 0,
inequality (5.2) holds.

Proof. By Tonelli’s theorem (Fubini) equality holds in (5.1) and (5.2) for p = 1. Let p > 1.

(i) can be seen by choosing X and Y uniform on (0,K) and taking limits with K →∞.

(ii) needs a longer argument. For p > 1 define Λi =
∑i
j=1 λj , pi = λi/ΛK , i = 1, . . . ,K,

for some natural number K and define the bounded continuous function ψ such that
ψ(i) = ai holds for i = 1, . . . ,K. With F (x) =

∑K∧bxc
i=1 pi Theorem 5.1 yields

E

([
E

(
ψ(Y )

F (Y )
1[Y≥X] | X

)]p)
=

K∑
i=1

 K∑
j=i

aj
Λj/ΛK

pj

p pi (5.4)

=

K∑
i=1

 K∑
j=i

aj
λj
Λj

p λi
ΛK
≤ pp

K∑
j=1

apj
λj
ΛK

= ppE (ψp(Y )) .

For K1 ≤ K2 this implies

K1∑
i=1

K2∑
j=i

aj
λj
Λj

p λi ≤ pp K2∑
j=1

apjλj . (5.5)

Taking limits here for K2 →∞ and subsequently K1 →∞ we arrive at (5.2).

Comparison of the left side of (5.3) with the left side of (2.1) and the definition of HF

in (2.3) leads us to define the Copson (or dual) operator H∗F as follows: for x ∈ R and
ψ ∈ Lp(F )

H∗Fψ(x) ≡
∫
[x,∞)

ψ(y)

F (y)
dF (y) =

∫
[x,∞)

ψ(y)dΛ(y) (5.6)

where Λ(x) ≡
∫
[x,∞)

dF (y)/F (y) is the reverse (or backward) hazard function corre-

sponding to F . (We will introduce and discuss the forward hazard function Λ(x) ≡∫
(−∞,x] dF (x)/(1− F (x−)) in connection with the inequalities of Carleman, Pólya, and

Knopp in Section 7.)

As pointed out by Hardy in [28], the discrete Copson inequality is a “reciprocal” or
“dual” inequality of the discrete Hardy inequality (1.2), in the sense that one implies the
other. But this holds in other senses as well. For a treatment of (1.1) and (5.1) based on
the duality of Lp and Lq with 1/p+ 1/q = 1, see [25], section 6.3, especially his Theorem
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6.20 and Corollary 6.2.1. In particular when viewed as operators on L2(F ), HF and H∗F
are adjoint operators: for ψ and χ in L2(F ) we have

E

([
E
(
ψ(Y )1[Y≤X] | X

)
F (X)

]
χ(X)

)
= E

(
ψ(Y )χ(X)

F (X)
1[Y≤X]

)
= E

([
E

(
χ(X)

F (X)
1[Y≤X] | Y

)]
ψ(Y )

)
. (5.7)

So, HF and H∗F have the same norms for p = 2, and indeed the bounds in (10.1) and
(10.2) are the same for p = 2. Applying Hardy’s approach we obtain the equivalence of
(2.1) and (5.3).

Theorem 5.3. Equivalence of Hardy’s and Copson’s inequality
Let X and Y be independent random variables with distribution function F on (R,B).
For p > 1 and all nonnegative measurable functions ψ on (R,B) (2.1) holds if and only
if for p > 1 and all nonnegative measurable functions ψ on (R,B) (5.3) holds.

Although this Theorem 5.3 (formally) renders one of our proofs of Hardy’s and
Copson’s inequality superfluous, we have included both proofs in Section 9 to illustrate
the different methods.

Remark 5.4. For p > 1 there are distributions for which the constant pp in (5.3) is not
optimal. This is the case for all Bernoulli distributions. Let X and Y have a Bernoulli
distribution with P (X = 1) = q = 1− P (X = 0). Then with ψ(0) = a and ψ(1) = b the left
hand side of our Copson inequality (5.3) equals

(1− q)(a+ qb)p + q(qb)p = (1− q)(1 + q)p
(

1

1 + q
a+

q

1 + q
b

)p
+ qp+1bp

≤ (1− q)(1 + q)p−1 (ap + qbp) + qp+1bp (5.8)

= (1 + q)p−1 ((1− q)ap + qbp) + q2
(
qp−1 − (1 + q)p−1

)
bp

≤ (1 + q)p−1 ((1− q)ap + qbp) ,

where the first inequality follows from Jensen’s inequality and the convexity of x 7→
xp, x ≥ 0. The right hand side of (5.8) is bounded by

2p−1 ((1− q)ap + qbp) < pp ((1− q)ap + qbp) , (5.9)

where the strict inequality holds since p 7→ p log p− (p− 1) log 2 is strictly increasing on
[1,∞) with value 0 at p = 1 and where the last expression is the upper bound in (5.3).

Remark 5.5. Theorem 5.3 gives a qualitative connection between Hardy’s inequality
and Copson’s inequality (or the “dual Hardy inequality”). The papers by [38], [35], and
[36] quantify these connections. These results are strongly related to further work on
the connections between the I−HF and I−H∗F operators on the one hand, and between
the I −HF and I −H∗F operators on the other hand. Also see [12]. Recall that

HFψ(x) ≡

∫
(−∞,x] ψ(y)dF (y)

F (x)
, HFψ(x) ≡

∫
[x,∞)

ψ(y)dF (y)

1− F (x−)
,

H∗Fψ(x) ≡
∫
[x,∞)

ψ(y)

F (y)
dF (y) H

∗
Fψ(x) ≡

∫
(−∞,x]

ψ(y)

1− F (y−)
dF (y)

= −
∫
[x,∞)

ψ(y)dΛ(y), =

∫
(−∞,x]

ψ(y)dΛ(y),

where

Λ(x) ≡
∫
[x,∞)

dF (y)

F (y)
, Λ(x) ≡

∫
(−∞,x]

1

1− F (y−)
dF (y). (5.10)
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are the backward cumulative hazard function and the (forward ) cumulative hazard
functions of survival analysis.

6 A reverse Copson inequality

Reversed versions of the classical Copson inequality are given in Theorems 2 and 4
of Renaud (1986) [53]. His continuous (or integral form) inequality may be rephrased as
follows. If p ≥ 1 holds and ψ is a nonnegative p-integrable function on (0,∞) such that
x 7→ ψ(x)/x is nonincreasing, then∫ ∞

0

(∫ ∞
x

ψ(y)

y
dy

)p
dx ≥

∫ ∞
0

ψp(y)dy (6.1)

holds. His discrete form says: if p ≥ 1 holds and a1/1 ≥ a2/2 ≥ · · · are nonnegative
numbers, then

∞∑
i=1

 ∞∑
j=i

aj
j

p ≥ ∞∑
i=1

api (6.2)

holds.
It seems natural to consider a reverse Copson inequality formulated in terms of

random variables. Here is our result in this direction.

Theorem 6.1. Reverse Copson inequality
Let X and Y be independent random variables both with distribution function F on
(R,B) and let ψ be a nonnegative p-integrable function on (R,B) with p ∈ [1,∞). If the
distribution function F is continuous and x 7→ ψ(x)/F (x) is nonincreasing, then

E

([
E

(
ψ(Y )

F (Y )
1[Y≥X] | X

)]p)
≥ E (ψp(Y )) (6.3)

holds with equality if ψ = F or p = 1 holds.
If the distribution function F is continuous, ψ is nonincreasing, and p is an integer,

then

E

([
E

(
ψ(Y )

F (Y )
1[Y≥X] | X

)]p)
≥ p!E (ψp(Y )) (6.4)

holds with equality if ψ is constant or p = 1 holds.
If the distribution function F is arbitrary, ψ is nonincreasing, and p is an integer,

then

E

([
E

(
ψ(Y )

F (Y )
1[Y≥X] | X

)]p)
≥ E (ψp(Y )) (6.5)

holds with equality if ψ equals 0, or F is degenerate (i.e. F is concentrated at one point),
or p = 1 holds.

We conjecture that (6.4), with p! replaced by Γ(p+ 1), and (6.5) hold for all p ≥ 1, but
we have no proof. Note that for F continuous (6.5) with p ∈ [1,∞) follows from (6.3). For
the situations of the continuous and discrete versions of the original Copson inequality
our reverse Copson inequality implies:

Corollary 6.2.
(i) With p ∈ [1,∞) and ψ nonnegative p-integrable on (0,∞) such that x 7→ ψ(x)/x is
nonincreasing (6.1) holds.
(ii) If p ≥ 1 is an integer and ψ is a nonnegative, nonincreasing, p-integrable function
on (0,∞), then ∫ ∞

0

(∫ ∞
x

ψ(y)

y
dy

)p
dx ≥ p!

∫ ∞
0

ψp(y)dy (6.6)
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holds.
(iii) If p ≥ 1 is an integer and a1 ≥ a2 ≥ · · · and λi, i = 1, 2, . . . , are nonnegative numbers
and Λi =

∑i
j=1 λj , i = 1, 2, . . . , is positive, then

∞∑
i=1

 ∞∑
j=i

aj
λj
Λj

p λi ≥ ∞∑
j=1

apjλj (6.7)

holds.

The proof of this corollary is almost the same as the proof of Corollary 5.2 in Section 5
(but with the inequality signs reversed and the constants changed), and therefore it is
omitted.

Remark 6.3. Without continuity of F inequality (6.3) is not generally valid for p > 1.
Again a counterexample is provided by the Bernoulli distribution. Take ψ = F and
F (x) = (1 − q)1[x≥0] + q1[x≥1]. Now, as a function of the success probability q the left
minus the right hand side of (6.3) equals

E ([1− F (X−)]p)− E ([F (X)]p) = (1− 2q) + [qp − (1− q)p] , (6.8)

which takes on both positive and negative values on [0, 1] for p 6= 2.

7 The Carleman and Pólya - Knopp inequalities

Another classical pair of inequalities in this family of inequalities are those associated
with the names of Pólya and Knopp in the continuous (or integral) case, and Carleman in
the discrete case: for a positive function ψ in L1(R+, λ),∫ ∞

0

exp

(
1

x

∫ x

0

logψ(y)dy

)
dx ≤ e ·

∫ ∞
0

ψ(y)dy (7.1)

and, for a sequence of constants {ck},

∞∑
k=1

 k∏
j=1

cj

1/k

≤ e ·
∞∑
j=1

cj ; (7.2)

see e.g. [39] section 9, [31], [32], and [50]. By now the reader will anticipate our impulse
to reformulate and unify these two inequalities in a more probabilistic vein involving
random variables and distribution functions as follows:

Theorem 7.1. Let ψ be a positive valued function on R and let X,Y be independent
random variables with distribution function F . If ψ ∈ L1(F ) then

E

{
exp

(
E
(
1[Y≤X] logψ(Y )|X

)
F (X)

)}
≤ e · Eψ(Y ).

Corollary 7.2.
(i) For any nonnegative ψ ∈ L1, inequality (7.1) holds.
(ii) For any positive sequence {ck} ∈ `1 the inequality (7.2) holds

The proof of Corollary 2.2 is applicable to Corollary 7.2 as well.

Kaijser et al. [33] rewrite the classical integral version of the Carleman inequality as
follows: replacing ψ(y) in (7.1) by ψ(y)/y yields∫ ∞

0

exp

(
1

x

∫ x

0

logψ(y)dy

)
dx

x
≤
∫ ∞
0

ψ(x)
dx

x
. (7.3)
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This follows by elementary manipulations together with the identity
∫ x
0

log ydy = x(log x−
1). [33] prove (7.1) with strict inequality by proving (7.3) with strict inequality via the
following simple convexity argument. By convexity of exp, it follows from Jensen’s
inequality followed by Fubini’s theorem that∫ ∞

0

exp

(
1

x

∫ x

0

logψ(y)dy

)
dx

x
≤

∫ ∞
0

1

x2

{∫ x

0

ψ(y)dy

}
dx

=

∫ ∞
0

ψ(y)

{∫ ∞
y

1

x2
dx

}
dy =

∫ ∞
0

ψ(y)
dy

y
.

Strict inequality follows because equality in Jensen’s inequality almost everywhere forces
ψ to be constant a.e., but this contradicts finiteness of

∫∞
0
ψ(y)/y dy.

Now several questions arise: is there a corresponding rewrite of our probabilistic
version of the inequalities of Carleman and Pólya – Knopp? The answer is clearly “yes”
for continuous distribution functions F . Replacing ψ by ψ/F in (7.1) and arguing as
above, but using the identity

∫
(−∞,x] logF (y)dF (y) = F (x)(logF (x)− 1), yields

∫
R

exp

(
1

F (x)

∫
(−∞,x]

logψ(y)dF (y)

)
dF (x)

F (x)
<

∫
R

ψ(y)
dF (y)

F (y)
=

∫
R

ψ(y)d(−Λ(y))

where Λ(x) ≡
∫
[x,∞)

dF (y)/F (y). This is a “left tail inequality” with motivations from
survival analysis.

For the corresponding “right tail inequality” we instead replace ψ by ψ/(1−F ). Then
reasoning as above yields, for continuous F ,∫

R

exp

(
1

1− F (x−)

∫
[x,∞)

logψ(y)dF (y)

)
dΛ(x) ≤

∫
R

ψ(y)dΛ(y)

where Λ(x) ≡
∫
(−∞,x] dF (y)/(1− F (y−)).

Note: This notation goes against the classical notation of survival analysis but is in
keeping with the current notation of our paper. The usual notation for the “right side” or
forward cumulative hazard function is simply Λ(x) =

∫
(−∞,x] dF (y)/(1− F (y−)).

8 Martingale connections and the H operators

In this section we expand on the comments in Sections 2, 5, and 7 concerning
martingales, counting processes, and the residual life and dual Hardy operators.

First recall the operators HF , HF , H∗F and H
∗
F introduced in Section 5. With I the

identity operator and F the continuous distribution function of X, Fubini’s theorem
yields

(I −HF )(I −H∗F )ψ = ψ, (I −H∗F )(I −HF )ψ = ψ − Eψ(X). (8.1)

We will also need the classical Hardy operators H and H∗ defined by

Hψ(x) ≡ 1

x

∫ x

0

ψ(y)dy, and H∗ψ(x) ≡
∫ ∞
x

ψ(y)

y
dy.

for ψ ∈ Lp(R+, λ) where λ denotes Lebesgue measure. Krugliak et al. [37] (see also
[38]), showed that

(I −H)−1ψ(x) = ψ(x)−H∗ψ(x) = ψ(x)−
∫ ∞
x

ψ(y)

y
dy. (8.2)

It is well known (see e.g. [16]) that I −H is an isometry on L2(R+, λ).
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[54] showed that R ≡ I −HF is an isometry of L2(R, F ); see also [7] Appendix A.1,
pages 420 – 424. These authors also showed that with R ≡ I −HF and L ≡ I −H∗F we
have

R ◦ Lψ = ψ and L ◦Rψ = ψ − EFψ(X)

for ψ ∈ L2(F ). Thus R−1 = L on L0
2(F ) ≡ {ψ ∈ L2(F ) : EFψ(X) = 0}, and we see that

the analogue of the identity (8.2) becomes

Lψ(x) = R−1ψ(x) = (I −HF )−1ψ(x)

= (I −H∗F )ψ(x) = ψ(x)−
∫
(−∞,x]

ψ(y)dΛ(y) (8.3)

where Λ is as defined in (5.10).
To see that this is fundamentally linked to counting process martingales, let X have

distribution function F on R+, and define a one-jump counting process {N(t) : t ≥ 0} by

N(t) = 1[X≤t].

This process is (trivially) seen to be nondecreasing in t with probability 1, and hence
is a sub-martingale (a process increasing in conditional mean). By the Doob-Meyer
decomposition theorem there is an increasing predictable process {A(t) : t ≥ 0} such
that

N(t) = M(t) +A(t)

where {M(t) : t ≥ 0} is a mean−0 martingale. In fact for this simple counting process it
is well-known that

A(t) =

∫
[0,t]

1[X≥s]dΛ(s)

(see e.g. Appendix B of [58], or Chapter 18 of [44]), and hence we see that

M(t) = N(t)−
∫
[0,t]

1[X≥s]dΛ(s).

Comparing this with the identity (8.3) rewritten for a distribution function F on R+ we
see that with ψt(x) = 1[x≤t] and evaluating the resulting identity at x = X we get

Lψt(X) = 1[X≤t] −
∫ t

0

1[X≥y]dΛ(y) = M(t)

where Λ(x) ≡
∫
[0,x]

(1− F (y−))−1dF (y) is the cumulative hazard function corresponding
to F on R+.

But there are still more martingales in this setting which can be represented in terms
of the martingale M by bringing in the residual life operator R = I −HF . Consider the
increasing family of σ-fields {Ft : t ≥ 0} given by Ft ≡ σ{1[X≤s] : 0 ≤ s ≤ t}. Now let
ψ ∈ L0

2(F ) and consider the process

Y(t) ≡ E{ψ(X)|Ft}, t ≥ 0.

Since the σ-fields {Ft}t≥0 are nested, {Y(t) : t ≥ 0} is a martingale (and it is often
called “Doob’s martingale”). Furthermore, it can be represented in terms of the basic
martingale M using the fundamental identity L ◦R = I on L0

2(F ) discussed above: since
ψ = L ◦Rψ we see that

Y(t) = E{ψ|Ft} = E{L ◦Rψ|Ft} =

∫
[0,t]

Rψ(s)dM(s).
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This set of connections deserves to be explored further. In particular we conjecture
that many of the interesting properties of the classical Hardy operator H and the dual
Hardy operator H∗ established in the series of papers by [37], [38], [12], [35], [13],
[36], and [60] will have useful analogues for HF and H

∗
F in the probability setting for

Hardy’s inequalities which we have considered here. On the other hand, the martingale
connections of the operators L and R perhaps deserve to be better known in the world
of classical Hardy type inequalities.

For further explanation of the connections of these processes with right and left
censored data problems in survival analysis, see the Appendix, Section 12.

If X1, . . . , Xn are i.i.d. with (continuous distribution function) F , then

Nn(t) ≡
n∑
i=1

1[Xi≤t] = nFn(t)

is a counting process which is simply the sum of independent counting processes and
the sum of the corresponding counting process martingales is again a counting process
martingale:

Mn(t) ≡
n∑
i=1

Mi(t) = Nn(t)−
∫ t

0

Yn(s)Λ(s)

where Yn(t) ≡
∑n
i=1 1[Xi≥t] is the number of Xi’s “at risk” at time t.

9 Proofs

9.1 Proofs for Section 2

In order to prove our random variable version of Hardy’s inequality we need a
Lemma. The proof of this Lemma has the same structure as Broadbent’s proof of Hardy’s
inequality (1.2), which is a slightly improved version of Elliot’s proof; see [15], [23], and
[30], page 240.

Lemma 9.1. Let ai and pi be nonnegative numbers for i = 1, . . . ,m, with p1 > 0. For
p > 1 the inequality

m∑
n=1

(∑n
i=1 aipi∑n
i=1 pi

)p
pn ≤

(
p

p− 1

)p m∑
n=1

apnpn (9.1)

holds.

With pi = 1 this inequality is a finite sum version of the discrete Hardy inequality
(1.2). Taking limits as m→∞ first on the right hand side and subsequently on the left
hand side of (9.1) with pi = 1 we obtain the discrete Hardy inequality itself.

Proof of Lemma 9.1. With the notation Pn =
∑n
i=1 pi, An =

∑n
i=1 aipi, Bn = An/Pn, n =

1, . . . ,m,

A0 = B0 = P0 = 0 we rewrite

anpnB
p−1
n = (An −An−1)Bp−1n = (PnBn − Pn−1Bn−1)Bp−1n (9.2)

into
PnB

p
n = anpnB

p−1
n + Pn−1Bn−1B

p−1
n . (9.3)

By Young’s inequality (uv ≤ up/p + vp
′
/p′ with 1/p + 1/p′ = 1 and p, p′, u, v ≥ 0), this

implies

PnB
p
n ≤ anpnBp−1n + Pn−1

(
1

p
Bpn−1 +

p− 1

p
Bpn

)
(9.4)
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and hence (
Pn −

p− 1

p
Pn−1

)
Bpn ≤ anpnBp−1n +

1

p
Pn−1B

p
n−1. (9.5)

Summing this inequality over n we obtain

m∑
n=1

PnB
p
n −

p− 1

p

m∑
n=1

Pn−1B
p
n ≤

m∑
n=1

anpnB
p−1
n +

1

p

m−1∑
n=1

PnB
p
n, (9.6)

which is equivalent to

1

p
PmB

p
m +

p− 1

p

m∑
n=1

(Pn − Pn−1)Bpn ≤
m∑
n=1

anpnB
p−1
n . (9.7)

By Hölder’s inequality this yields

p− 1

p

m∑
n=1

pnB
p
n ≤

(
m∑
n=1

apnpn

)1/p( m∑
n=1

Bpnpn

)(p−1)/p

(9.8)

and hence (
m∑
n=1

Bpnpn

)1/p

≤ p

p− 1

(
m∑
n=1

apnpn

)1/p

(9.9)

and (9.1).

Proof of Theorem 2.1. Let F−1(u) ≡ inf{x : F (x) ≥ u} denote the quantile function
corresponding to F . For large N we define yN,i = F−1(i/N), i = 0, . . . , N − 1, yN,N =∞,
and we apply Lemma 9.1 with m = N and

pn =

∫
(yN,n−1,yN,n]

dF, an =

∫
(yN,n−1,yN,n]

ψdF/pn, n = 1, . . . , N. (9.10)

By Jensen’s inequality we have

apn ≤
∫
(yN,n−1,yN,n]

ψpdF/pn, n = 1, . . . , N, (9.11)

and hence
N∑
n=1

apnpn ≤
N∑
n=1

∫
(yN,n−1,yN,n]

ψpdF = E (ψp(Y )) . (9.12)

For any x ∈ R there exists an index n(N, x) with x ∈ (yN,n(N,x)−1, yN,n(N,x)]. Consequently
we have

N∑
n=1

(∫
(−∞,yN,n]

ψdF/F (yN,n)

)p
1(yN,n−1,yN,n](x) (9.13)

=

(∫
(−∞,yN,n(N,x)]

ψdF/F (yN,n(N,x))

)p
≥

(∫
(−∞,x]

ψdF/F (yN,n(N,x))

)p
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and hence by Tonelli’s theorem, Fatou’s lemma and the right continuity of F

lim inf
N→∞

N∑
n=1

(∑n
i=1 aipi∑n
i=1 pi

)p
pn (9.14)

= lim inf
N→∞

N∑
n=1

∫
R

(∫
(−∞,yN,n]

ψdF/F (yN,n)

)p
1(yN,n−1,yN,n](x)dF (x)

= lim inf
N→∞

∫
R

N∑
n=1

(∫
(−∞,yN,n]

ψdF/F (yN,n)

)p
1(yN,n−1,yN,n](x)dF (x)

≥
∫
R

lim inf
N→∞

N∑
n=1

(∫
(−∞,yN,n]

ψdF/F (yN,n)

)p
1(yN,n−1,yN,n](x)dF (x)

≥
∫
R

lim inf
N→∞

(∫
(−∞,x]

ψdF/F (yN,n(N,x))

)p
dF (x)

=

∫
R

(∫
(−∞,x]

ψdF/F (x)

)p
dF (x) = E

([
E
(
ψ(Y )1[Y≤X] | X

)
F (X)

]p)
.

Combining (9.14), Lemma 9.1 and (9.12) we arrive at a proof of (2.1) from Theorem 2.1.
Let U be uniformly distributed on the unit interval. Since F−1(U) has distribution

function F and F (F−1(u)) = u holds for continuous F , inequality (2.1) can be rewritten
as (2.2). With 0 < ε small we choose ψF (u) = u−(1−ε)/p, 0 < u < 1, and we see that (2.2)
is equivalent to the inequality (p/(p− 1 + ε))p ≤ (p/(p− 1))p. Since 0 < ε may be chosen
arbitrarily small, this proves the optimality of the constant in (2.1) and (2.2).

9.2 Proofs for Section 3

Proof of Theorem 3.1. If B equals infinity, inequality (3.1) is trivial. So, we may assume
that B is finite and hence for any r ∈ R that µ([r,∞)) =∞ implies ν((−∞, r]) = 0. Define

R = {r : µ([r,∞)) <∞, r ∈ R}, R0 = infR (9.15)

and choose R ≥ R0. If R = [R0,∞) holds, then without loss of generality we may assume
that µ is a finite Borel measure and we take R = R0. However, if R = (R0,∞) holds,
then we have µ([R0,∞)) =∞ and we take R > R0. Furthermore, define

S0 = sup{s : µ([s,∞)) > 0, s ∈ R} (9.16)

and note that S0 =∞ might hold. If S0 = −∞ holds, µ is the null measure and inequality
(3.1) is trivial. Let S ≤ S0 be such that MS = µ([S,∞)) > 0 holds.

We introduce the finite measure µR,S that has no mass on (−∞, R) ∪ (S,∞), equals µ
on the interval [R,S) and has mass MS at the point S. It has total mass MR,S = µ([R,∞))

and “scaled” distribution function

FR,S(x) = µ([R, x])/MR,S1[x<S] + 1[x≥S], x ∈ R, (9.17)

with inverse
F−1R,S(u) = inf{x : FR,S(x) ≥ u}, u ∈ [0, 1]. (9.18)

For 0 < ε < 1 we define δ = εMS/(MR,S ∨ 1). With N = d1/δe we choose

yn = F−1R,S(n/N), 1 ≤ n ≤ N − 1, y0 = R, yN =∞. (9.19)

Note that (yn−1, yn) might be empty, i.e. yn−1 = yn.
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In view of 1/N ≤ δ = εMS/(MR,S ∨ 1) < MS = µR,S({S}) we have yN−1 = S and hence
µR,S((yN−1,∞)) = µR,S((S,∞)) = 0.

By Theorem 1.4 of [43] we have for nonnegative ai, ui, vi, i = 1, . . . , N ,{
N∑
n=1

(
n∑
i=1

ai

)q
un

}1/q

≤ kq,pBd

{
N∑
i=1

api vi

}1/p

(9.20)

with

Bd = max
1≤n≤N

 N∑
j=n

uj

1/q (
n∑
i=1

v
−1/(p−1)
i

)(p−1)/p

. (9.21)

With R = y0 ≤ y1 ≤ · · · ≤ yN =∞ as in (9.19) we choose ai =
∫
(yi−1,yi]

ψdν,

ui =
∫
(yi−1,yi]

dµR,S , vi =
(∫

(yi−1,yi]
dν
)1−p

with vi = 0 if
∫
(yi−1,yi]

dν = 0, i = 2, . . . , N ,

and a1 =
∫
[R,y1]

ψdν, u1 =
∫
[R,y1]

dµR,S , v1 =
(∫

[R,y1]
dν
)1−p

with v1 = 0 if
∫
([R,y1]

dν = 0.

With these choices the left hand side of (9.20) to the power q satisfies

N∑
n=1

(
n∑
i=1

ai

)q
un =

N∑
n=2

∫
(yn−1,yn]

(∫
[R,yn]

ψdν

)q
dµR,S

+

∫
[R,y1]

(∫
[R,y1]

ψdν

)q
dµR,S (9.22)

≥
N∑
n=2

∫
(yn−1,yn]

(∫
[R,x]

ψdν

)q
dµR,S(x) +

∫
[R,y1]

(∫
[R,x]

ψdν

)q
dµR,S(x)

=

∫
[R,∞)

(∫
[R,x]

ψdν

)q
dµR,S(x) =

∫
R

(∫
[R,x]

ψdν

)q
dµR,S(x)

=

∫
R

(∫
[R,x∧S]

ψdν

)q
dµR,S(x) =

∫
R

(∫
[R,x∧S]

ψdν

)q
dµ(x).

Furthermore, by Jensen’s inequality (or Hölder) the third factor at the right hand side of
(9.20) to the power p satisfies

N∑
i=1

api vi =

N∑
i=2

(∫
(yi−1,yi]

ψdν

)p
vi +

(∫
[R,y1]

ψdν

)p
v1 (9.23)

≤
N∑
i=2

∫
(yi−1,yi]

ψpdν

(∫
(yi−1,yi]

dν

)p−1
vi +

∫
[R,y1]

ψpdν

(∫
[R,y1]

dν

)p−1
v1

=

∫
[R,∞)

ψpdν ≤
∫
R

ψpdν,

where the last expression equals the third factor at the right hand side of (3.1) to the
power p. With these choices Bd from (9.21) becomes

Bd = B(y0, . . . , yN )

= max
{

(µR,S([R,∞))
1/q

(ν(−∞, y1]))
(p−1)/p

, (9.24)

max
2≤n≤N

(µR,S((yn−1,∞))
1/q

(ν(−∞, yn]))
(p−1)/p

}
.
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For 2 ≤ n ≤ N − 1 we have

µR,S((yn−1,∞)) = µR,S([yn,∞)) + µR,S((yn−1, yn)) (9.25)

≤ µR,S([yn,∞))

[
1 +

µR,S((yn−1, yn))

MS

]
≤ µR,S([yn,∞))

[
1 +

MR,S

NMS

]
≤ µR,S([yn,∞))[1 + ε]

and analogously we obtain

µR,S([R,∞)) ≤ µR,S([y1,∞))[1 + ε]. (9.26)

This implies that Bd from (9.24) becomes [recall µR,S((yN−1,∞)) = 0]

Bd = B(y0, . . . , yN )

≤ [1 + ε] max
1≤n≤N−1

(µR,S([yn,∞)))1/q (ν((−∞, yn]))
(p−1)/p (9.27)

≤ [1 + ε] sup
R≤x≤S

(µ([x,∞)))1/q (ν((−∞, x]))
(p−1)/p ≤ [1 + ε]B,

where B is as in (3.2). Since ε may be chosen arbitrarily close to 0, this implies together
with (9.17) through (9.23) that inequality (3.1) holds with the left hand side replaced by
the right hand side of (9.22) to the power 1/q.

In the case of R > R0 we have µ([R0,∞)) = ∞ and hence ν((−∞, R0]) = 0 and
monotone convergence shows that the right hand side of (9.22) satisfies

lim
R↓R0

∫
R

(∫
[R,x∧S]

ψdν

)q
dµ(x) =

∫
R

(∫
(R0,x∧S]

ψdν

)q
dµ(x)

=

∫
R

(∫
(−∞,x∧S]

ψdν

)q
dµ(x). (9.28)

In the case of R = R0 we have ν((−∞, R0)) = 0 and hence the right hand side of (9.22)
equals ∫

R

(∫
[R0,x∧S]

ψdν

)q
dµ(x) =

∫
R

(∫
(−∞,x∧S]

ψdν

)q
dµ(x). (9.29)

In the case of µ([S0,∞)) = µ({S0}) > 0 we may choose S = S0 and the right hand side of
(9.29) equals ∫

R

(∫
(−∞,x∧S0]

ψdν

)q
dµ(x) =

∫
R

(∫
(−∞,x]

ψdν

)q
dµ(x). (9.30)

In the case of S0 = ∞ or S0 < ∞, µ([S0,∞)) = 0 we choose S < S0 and monotone
convergence shows that the right hand side of (9.29) satisfies

lim
S↑S0

∫
R

(∫
(−∞,x∧S]

ψdν

)q
dµ(x) = lim

S↑S0

∫
R

(∫
(−∞,x]∩(−∞,S]

ψdν

)q
dµ(x)

=

∫
R

(∫
(−∞,x]∩(−∞,S0)

ψdν

)q
dµ(x) =

∫
R

(∫
(−∞,x]

ψdν

)q
dµ(x). (9.31)

Since inequality (3.1) holds with the left hand side replaced by the right hand side of
(9.22) to the power 1/q, the above argument involving (9.28) through (9.31) completes
the proof of (3.1) and the theorem.
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For the proof of Theorem 3.5 we need the following Lemma.

Lemma 9.2. For F and G distribution functions, χ a nonnegative measurable function
and 0 < γ < 1 we have

γ

∫
(−∞,x]

χ(y)

[∫
(−∞,y]

χdG

]γ−1
dG(y) ≤

[∫
(−∞,x]

χdG

]γ
(9.32)

and

γ

∫
[y,∞)

χ(x)

[∫
[x,∞)

χdF

]γ−1
dF (x) ≤

[∫
[y,∞)

χdF

]γ
. (9.33)

Proof. By symmetry it suffices to prove (9.32), which with the distribution function
Gx(y) =

∫
(−∞,y∧x] χdG/

∫
(−∞,x] χdG is equivalent to

γ

∫ ∞
−∞

Gγ−1x dGx ≤ 1. (9.34)

With the random variable U uniformly distributed on the unit interval the left hand side
of this inequality equals and satisfies

γE
([
Gx
(
G−1x (U)

)]γ−1) ≤ γE (Uγ−1) = 1. (9.35)

Proof of Theorem 3.5. The choice ψ(y) = V −1/(p−1)(y)1[y≤x] in inequality (3.9) leads to
the string of (in)equalities[∫

(−∞,x]
V −1/(p−1)dG

]p ∫
[x,∞)

UdF

= E
([
E
(
V −1/(p−1)(Y )1[Y≤x]

)]p
U(X)1[X≥x]

)
(9.36)

≤ E
([
E
(
V −1/(p−1)(Y )1[Y≤x]1[Y≤X] | X

)]p
U(X)

)
≤ C E

(
V −1/(p−1)(Y )1[Y≤x]

)
= C

∫
(−∞,x]

V −1/(p−1)dG, x ∈ R,

which implies the first inequality in (3.11). With

h(y) = V 1/p(y)

[∫
(−∞,y]

V −1/(p−1)dG

](p−1)/p2
(9.37)

inequality (9.32) of Lemma 9.2 with χ = V −1/(p−1) and γ = 1− 1/p = (p− 1)/p yields

E
(
h−p/(p−1)(Y )1[Y≤x]

)
=

∫
(−∞,x]

V −1/(p−1)(y)

[∫
(−∞,y]

V −1/(p−1)dG

]−1/p
dG(y)

≤ p

p− 1

[∫
(−∞,x]

V −1/(p−1)dG

](p−1)/p
. (9.38)

EJP 26 (2021), paper 142.
Page 21/34

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP711
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Hardy’s inequalities

By Hölder’s inequality this implies

E
([
E
(
ψ(Y )1[Y≤X] | X

)]p
U(X)

)
= E

([
E
(
ψ(Y )h(Y )(h(Y ))−11[Y≤X] | X

)]p
U(X)

)
≤ E

(
E
(
ψp(Y )hp(Y )1[Y≤X] | X

)
[
E
(
h−p/(p−1)(Y )1[Y≤X] | X

)]p−1
U(X)

)
(9.39)

≤
(

p

p− 1

)p−1
E

(
E
(
ψp(Y )hp(Y )1[Y≤X] | X

)
[∫

(−∞,X]

V −1/(p−1)dG

](p−1)2/p
U(X)


=

(
p

p− 1

)p−1
E

ψp(Y )hp(Y )E

[∫
(−∞,X]

V −1/(p−1)dG

](p−1)2/p

U(X)1[Y≤X] | Y

))
.

By the definition of B in (3.10) the right hand side of (9.39) is bounded from above by

(
p

p− 1

)p−1
B(p−1)/pE

ψp(Y )V (Y )

[∫
(−∞,Y ]

V −1/(p−1)dG

](p−1)/p

E

[∫
[X,∞)

UdF

](1/p)−1
U(X)1[Y≤X] | Y

) (9.40)

≤ pp

(p− 1)p−1
B(p−1)/pE

ψp(Y )V (Y )

[∫
(−∞,Y ]

V −1/(p−1)dG

](p−1)/p
[∫

[Y,∞)

UdF

]1/p)
,

where the inequality follows from (9.33) of Lemma 9.2. By the definition of B the last
expression is bounded by the right hand side of (3.11), which completes the proof of
(3.11).

9.3 Proofs for Section 4

Proof of Theorem 4.1. Let f be a density of F . The monotonicity of ψ implies

d

dx

[∫ x

−∞
ψ(y)dF (y)

]p
= p

[∫ x

−∞
ψ(y)dF (y)

]p−1
ψ(x)f(x)

≥ pψp(x)F p−1(x)f(x) (9.41)

for Lebesgue almost all x ∈ R. So we have[∫ x

−∞
ψ(y)dF (y)

]p
≥ p

∫ x

−∞
ψp(y)(F (y))p−1dF (y) (9.42)
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and hence

E

([
E
(
ψ(Y )1[Y≤X] | X

)
F (X)

]p)

≥ p
∫ ∞
−∞

∫ x

−∞
ψp(y)F p−1(y)dF (y)F−p(x)dF (x)

= p

∫ ∞
−∞

∫ ∞
y

F−p(x)f(x)dxψp(y)(F (y))p−1dF (y) (9.43)

=
p

p− 1

∫ ∞
−∞

[
F 1−p(y)− 1

]
ψp(y)(F (y))p−1dF (y)

=
p

p− 1
E
(
ψp(Y )

(
1− F p−1(Y )

))
,

which is the first inequality of (4.3). Since ψp and 1 − F p−1 are both nonincreasing,
ψp(Y ) and 1− F p−1(Y ) are nonnegatively correlated and consequently their covariance
is nonnegative implying

E
(
ψp(Y )

(
1− F p−1(Y )

))
≥ E (ψp(Y ))E

(
1− F p−1(Y )

)
=

p− 1

p
E (ψp(Y )) . (9.44)

This results in the second inequality of (4.3).
Note that inequality (4.4) and hence the inequality between the left hand side and

the right hand side of (4.3) is obvious as ψ is nonincreasing.
Let F be general and p integer. As X1, . . . , Xp are independent and identically

distributed and ψ(·)1[·≤x] is nonincreasing, we have

E

(
p∏
i=1

ψ(Xi)1[Xi≤x]

)
≥ E

(
ψp(X(p))1[X(p)≤x]

)
(9.45)

and hence

E

([
E
(
ψ(Y )1[Y≤X] | X

)
F (X)

]p)
≥ E

(
ψp(X(p))1[X(p)≤X]F

−p(X)
)
, (9.46)

which implies (4.5).

Proof of Corollary 4.2. Let X and Y be uniformly distributed on the interval (0,K). Our
reverse Hardy inequality (4.3) becomes

1

K

∫ K

0

[
1

x

∫ x

0

ψ(y)dy

]p
dx ≥ p

p− 1

1

K

∫ K

0

ψp(y)

(
1−

( y
K

)p−1)
dy, (9.47)

which for 0 < ε ≤ 1 implies∫ K

0

[
1

x

∫ x

0

ψ(y)dy

]p
dx ≥ p

p− 1

∫ εK

0

ψp(y)
(
1− εp−1

)
dy, (9.48)

Taking limits for K →∞ and subsequently ε ↓ 0 we arrive at (4.1).
For the second part of the corollary we take X and Y uniformly distributed on

{1, . . . ,K}. In view of P (X(p) ≤ n) = (n/K)p our inequality (4.5) with ψ(k) = ck becomes

1

K

K∑
n=1

[ 1
K

∑n
k=1 ck

n/K

]p
≥

K∑
n=1

cpn

[( n
K

)p
−
(
n− 1

K

)p]
1

K

K∑
k=n

(
k

K

)−p
, (9.49)
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which implies
K∑
n=1

[
1

n

n∑
k=1

ck

]p
≥

K∑
n=1

cpn [np − (n− 1)p]

K0∑
k=n

1

kp
(9.50)

for any integer K0 ≤ K and the corresponding sum vanishing for n > K0. Taking limits
as K →∞ and subsequently K0 →∞ we obtain

∞∑
n=1

[
1

n

n∑
k=1

ck

]p
≥
∞∑
n=1

cpn [np − (n− 1)p]

∞∑
k=n

1

kp
. (9.51)

Lemma 2 of [53] shows

[np − (n− 1)p]

∞∑
k=n

1

kp
≥ ζ(p) (9.52)

for n ≥ 2. As for n = 1 equality holds in (9.52), the proof that for integer p inequality
(4.2) can be obtained from our inequality (4.5), is complete.

9.4 Proofs for Section 5

We will use the following Lemma, which shows the structure of Copson’s proof of his
Theorem B with sums over infinitely many terms replaced by finite sums; see [18].

Lemma 9.3. Let ai and pi be nonnegative numbers for i = 1, . . . ,m, with p1 > 0. For
p > 1 the inequality

m∑
n=1

(
m∑
i=n

aipi∑i
j=1 pj

)p
pn ≤ pp

m∑
n=1

apnpn (9.53)

holds.

Note that part of Theorem B of [18] follows from this inequality by taking limits for
m→∞, first at the right hand side, subsequently within the p-th power at the left hand
side, and finally for the first sum at the left hand side.

Proof of Lemma 9.3. With the notation

Pn =

n∑
i=1

pi, An =

m∑
i=n

aipi
Pi

, n = 1, . . . ,m, P0 = Am+1 = 0, (9.54)

Young’s inequality (as in the proof of Lemma 9.1) yields

Apnpn − pAp−1n anpn = Apnpn − pAp−1n Pn (An −An+1) (9.55)

≤ (pn − pPn)Apn + Pn
(
(p− 1)Apn +Apn+1

)
= PnA

p
n+1 − Pn−1Apn

for n = 1, . . . ,m. Summing this inequality over n we obtain

m∑
n=1

Apnpn − p
m∑
n=1

anA
p−1
n pn ≤ 0. (9.56)

By Hölder’s inequality the second sum in (9.56) is bounded as follows(
m∑
n=1

anA
p−1
n pn

)p
≤

m∑
n=1

apnpn

(
m∑
n=1

Apnpn

)p−1
. (9.57)

Together with (9.56) this implies(
m∑
n=1

Apnpn

)p
≤ pp

(
m∑
n=1

anA
p−1
n pn

)p
≤ pp

m∑
n=1

apnpn

(
m∑
n=1

Apnpn

)p−1
(9.58)

and hence (9.53).
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Proof of Theorem 5.1. As in the proof of Theorem 2.1 we define yN,i = F−1(i/N), i =

0, . . . , N − 1, yN,N =∞, for large N and we apply Lemma 9.3 with m = N , but this time
we choose

pn =

∫
[yN,n−1,yN,n)

dF, an =

∫
[yN,n−1,yN,n)

ψdF/pn, n = 1, . . . , N. (9.59)

By Jensen’s inequality we have

apn ≤
∫
[yN,n−1,yN,n)

ψpdF/pn, n = 1, . . . , N, (9.60)

and hence
N∑
n=1

apnpn ≤
N∑
n=1

∫
[yN,n−1,yN,n)

ψpdF = E (ψp(Y )) . (9.61)

Observe that F (yN,i−) ≤ F (y) + 1/N holds for y ∈ [yN,i−1, yN,i). Consequently we have

N∑
i=n

aipi∑i
j=1 pj

=

N∑
i=n

∫
[yN,i−1,yN,i)

ψ(y)

F (yN,i−)
dF (y) (9.62)

≥
N∑
i=n

∫
[yN,i−1,yN,i)

ψ(y)

F (y) + 1/N
dF (y) =

∫
[yN,n−1,∞)

ψ(y)

F (y) + 1/N
dF (y)

and hence by Fatou’s lemma

lim inf
N→∞

N∑
n=1

(
N∑
i=n

aipi∑i
j=1 pj

)p
pn

≥ lim inf
N→∞

N∑
n=1

∫
[yN,n−1,yN,n)

(∫
[yN,n−1,∞)

ψ(y)

F (y) + 1/N
dF (y)

)p
dF (x)

≥ lim inf
N→∞

N∑
n=1

∫
[yN,n−1,yN,n)

(∫
[x,∞)

ψ(y)

F (y) + 1/N
dF (y)

)p
dF (x) (9.63)

= lim inf
N→∞

∫
R

(∫
[x,∞)

ψ(y)

F (y) + 1/N
dF (y)

)p
dF (x)

≥
∫
R

(∫
[x,∞)

lim inf
N→∞

ψ(y)

F (y) + 1/N
dF (y)

)p
dF (x)

= E

([
E

(
ψ(Y )

F (Y )
1[Y≥X] | X

)]p)
.

Combining (9.63), Lemma 9.3 and (9.61) we arrive at a proof of Theorem 5.1.

Proof of Theorem 5.3. Let η be a nonnegative measurable function. Hölder’s inequality
and subsequently Hardy’s inequality (2.1) yield

E

(
E

(
ψ(Y )

F (Y )
1[Y≥X] | X

)
η(X)

)
= E

(
ψ(Y )

E
(
η(X)1[X≤Y ] | Y

)
F (Y )

)

≤ [E (ψp(Y ))]
1/p

E
[E (η(X)1[X≤Y ] | Y

)
F (Y )

]p/(p−1)(p−1)/p

(9.64)

≤ [E (ψp(Y ))]
1/p

[(
p/(p− 1)

p/(p− 1)− 1

)p/(p−1)
E
(
ηp/(p−1)(X)

)](p−1)/p
= p [E (ψp(Y ))]

1/p
[
E
(
ηp/(p−1)(X)

)](p−1)/p
.
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Taking

η(X) =

[
E

(
ψ(Y )

F (Y )
1[Y≥X] | X

)]p−1
(9.65)

we obtain Copson’s inequality (5.3) from (9.64). Similarly, Hölder’s inequality and
subsequently Copson’s inequality (5.3) yield

E

(
E
(
ψ(Y )1[Y≤X] | X

)
F (X)

η(X)

)
= E

(
ψ(Y )E

(
η(X)

F (X)
1[X≥Y ] | Y

))

≤ [E (ψp(Y ))]
1/p

[
E

([
E

(
η(X)

F (X)
1[X≥Y ] | Y

)]p/(p−1))](p−1)/p
(9.66)

≤ [E (ψp(Y ))]
1/p

[(
p

p− 1

)p/(p−1)
E
(
ηp/(p−1)(X)

)](p−1)/p
=

p

p− 1
[E (ψp(Y ))]

1/p
[
E
(
ηp/(p−1)(X)

)](p−1)/p
.

Taking

η(X) =

[
E
(
ψ(Y )1[Y≤X] | X

)
F (X)

]p−1
(9.67)

we obtain Hardy’s inequality (2.1) from (9.66).

9.5 Proof for Section 6

Proof of Theorem 6.1. First we prove that for p ∈ [1,∞), for arbitrary F and for x 7→
ψ(x)/F (x) nonincreasing

E

([
E

(
ψ(Y )

F (Y )
1[Y≥X] | X

)]p)
≥ E

(
ψp(Y )

[
F (Y−)

F (Y )

]p)
(9.68)

holds. Observe that for continuous F this implies (6.3). To prove (9.68) we follow the
line of argument in the proof of Theorem 4 of Renaud [53]. For x < y the monotonicity
of ψ/F implies ∫

[x,y)

ψ

F
dF ≥ ψ(y)

F (y)
[F (y−)− F (x−)] (9.69)

and hence

p

[∫
[x,y)

ψ

F
dF

]p−1
ψ(y)

F (y)
≥ p

[
ψ(y)

F (y)

]p
[F (y−)− F (x−)]p−1 (9.70)

and

∫
R

∫
[x,∞)

p

[∫
[x,y)

ψ

F
dF

]p−1
ψ(y)

F (y)
dF (y) dF (x) (9.71)

≥
∫
R

∫
[x,∞)

p

[
ψ(y)

F (y)

]p
[F (y−)− F (x−)]p−1 dF (y) dF (x).
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In view of F (F−1(u)−) ≤ u and since u ≤ F (y−) implies F−1(u) ≤ y, Fubini’s theorem
shows that the right hand side of (9.71) equals and satisfies∫

R

[
ψ(y)

F (y)

]p ∫
(−∞,y]

p[F (y−)− F (x−)]p−1 dF (x) dF (y)

=

∫
R

[
ψ(y)

F (y)

]p ∫ 1

0

p[F (y−)− F (F−1(u)−)]p−11[F−1(u)≤y] du dF (y) (9.72)

≥
∫
R

[
ψ(y)

F (y)

]p ∫ 1

0

p[F (y−)− u]p−11[u≤F (y−)] du dF (y)

=

∫
R

[
ψ(y)

F (y)

]p
[F (y−)]p dF (y) = E

(
ψp(Y )

[
F (Y−)

F (Y )

]p)
.

Furthermore, for fixed x we define the distribution function

Gx(y) =
∫
[x,y)

(ψ/F ) dF /
∫
[x,∞)

(ψ/F ) dF and we obtain

∫ ∞
−∞

p[Gx(y−)]p−1dGx(y) =

∫ 1

0

p[Gx(G−1x (u)−)]p−1du ≤
∫ 1

0

pup−1du = 1. (9.73)

This shows that the left hand side of (9.71) is bounded from above by∫
R

[∫
[x,∞)

ψ/F dF

]p
dF (x) = E

([
E

(
ψ(Y )

F (Y )
1[Y≥X] | X

)]p)
. (9.74)

Combining this with (9.71) and (9.72) we arrive at (9.68) and hence at (6.3).

To prove (6.4) and (6.5) we restrict attention to integer p and let X,Y, Y1, . . . , Yp be
independent random variables all with distribution function F .

If F is continuous, the monotonicity of ψ implies that

E

([
E

(
ψ(Y )

F (Y )
1[Y≥X] | X

)]p)
= E

(
p∏
i=1

[
E

(
ψ(Yi)

F (Yi)
1[X≤Yi] | X

)])

= E

(
E

(
p∏
i=1

ψ(Yi)

F (Yi)
1[X≤Yi] | X

))
= E

(
p∏
i=1

ψ(Yi)

F (Yi)
1[X≤Yi]

)

= p!E

([
p∏
i=1

ψ(Yi)

F (Yi)

]
1[X≤Y1≤···≤Yp]

)
≥ p!E

(
ψp(Yp)

1[X≤Y1≤···≤Yp]

F (Y1) · · ·F (Yp)

)
= p!E

(
ψp(Yp)

1[Y1≤Y2≤···≤Yp]

F (Y2) · · ·F (Yp)

)
= p!E (ψp(Y )) , (9.75)

where equality holds if ψ is constant.

Similarly, if F is arbitrary, we derive

E

([
E

(
ψ(Y )

F (Y )
1[Y≥X] | X

)]p)
= E

(
p∏
i=1

ψ(Yi)

F (Yi)
1[X≤Yi]

)

≥ E

([
p∏
i=1

ψ(Yi)

F (Yi)

]
1[X≤Y1≤···≤Yp]

)
≥ E

(
ψp(Yp)

1[X≤Y1≤···≤Yp]

F (Y1) · · ·F (Yp)

)
= E

(
ψp(Yp)

1[Y1≤Y2≤···≤Yp]

F (Y2) · · ·F (Yp)

)
= E (ψp(Y )) . (9.76)

One may check that equalities in (9.76) hold if F is degenerate.
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9.6 Proofs for Section 7

Proof of Theorem 7.1. By Hardy’s inequality in the probability form (2.1) with ψ replaced
by ψ1/p we have

E

([
E(ψ1/p(Y )1[Y≤X]|X)

F (X)

]p)
≤
(

p

p− 1

)p
E(ψ(Y )).

The left hand side equals

E ([E (exp {1/p logψ(Y )} |Y ≤ X,X)]
p
)

≥ E ([exp {1/pE (logψ(Y )|Y ≤ X,X)}]p) (9.77)

= E

(
exp

{
E
(
1[Y≤X] logψ(Y )|X

)
F (X)

})
,

where the inequality holds in view of Jensen’s inequality for conditional expectations and
the convexity of exp. The right hand side of (2.9) completes the proof.

10 Summary

Our sharp inequalities related to Hardy’s inequality read as follows.

E (ψp(Y )) ≤ E

([
E
(
ψ(Y )1[Y≤X] | X

)
F (X)

]p)
≤
(

p

p− 1

)p
E (ψp(Y )) , (10.1)

where the first inequality holds if F is absolutely continuous and ψ is nonincreasing.
Our sharp inequalities related to Copson’s inequality are the following.

E (ψp(Y )) ≤ E
([
E

(
ψ(Y )

F (Y )
1[Y≥X] | X

)]p)
≤ ppE (ψp(Y )) , (10.2)

where the first inequality holds if F is continuous and x 7→ ψ(x)/F (x) is nonincreasing.
Our Hardy inequality with weights and mixed norms is{

E
([
E
(
ψ(Y )1[Y≤X] | X

)]q
U(X)

)}1/q
≤
(

(q − p)/p
Beta(p/(q − p), (q − 1)p/(q − p))

)(q−p)/pq

(10.3)

sup
x∈R

[∫
[x,∞)

UdF

]1/q [∫
(−∞,x]

V −1/(p−1)dG

](p−1)/p
{E (ψp(Y )V (Y ))}1/p .

Detailed conditions are given in the respective Theorems.

11 Applications and Related Work

We close with a few brief comments concerning applications and related work.
As noted by Diaconis [21], Hardy’s inequality (1.2), and especially the weighted

version thereof due to Muckenhoupt [48], has been applied by Miclo [46] to obtain
useful bounds for the spectral gap for birth-and-death Markov chains. He provides a
nice overview of alternative methods and their potential drawbacks. Bobkov and Götze
[10] extend the methods of [48] to study optimal constants in log-Sobolev inequalities
on R. Because log-Sobolev inequalities are preserved by the formation of products of
independent distributions (i.e. tensorization), their results yield log-Sobolev inequalities
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for product measures. Their results have been refined by Barthe and Roberto [4] who
go on in [5] to study modified log-Sobolev inequalities. Saumard and Wellner [56]
use the “two-sided” Hardy inequality given by (2.14) to give an alternative proof of
Cheeger’s inequality. Applications of the Hardy inequality (2.1) with F continuous to
semiparametric models for survival analysis were given by Ritov and Wellner [54] and
Bickel et al. [7]. As noted in Sections 2, 5, 7, and 8, these results yield martingale
connections with the operators HF and H

∗
F .

There has been some related work on Hardy type inequalities with similar unification
(of continuous and discrete cases) as an explicit goal: for example, see Kaijser et al. [33]
and Evans et al. [24], page 45. Li and Mao [42], pages 257-258, refer to Prokhorov [52].
They all study general measures.

What about related work on formulating probabilistic versions of Hardy type inequal-
ities? We have not found any results in this direction. Despite the many applications
of Hardy and Muckenhoupt type inequalities in probability theory over the past 30
years, we are unaware of any explicit mention of these inequalities in terms of random
variables. It seems to us that these inequalities should be better known in both the
probability and statistics communities, and the probability versions may stimulate both
further applications and further theoretical developments. In any case, it seems to be
worthwhile to understand when several different formulations can be unified.

In Section 8 we sketched the connection between the operatorsH∗F andH
∗
F appearing

in our probabilistic version of Copson’s dual inequality and a simple counting process
martingale. The key functions ΛF (x) and ΛF (x) appearing in those operators (recall
(5.10) for the explicit definitions) play an extremely important role in survival analysis and
reliability theory. Also note that they do not appear without the probabilistic perspective
adopted in our approach. In the Appendix (Section 12) we discuss how these functions
arise in connection with left and right censored survival data.

12 Appendix

Here we go further with the discussion concerning the forward and backward hazard
functions connected with our random variable versions of the Copson inequalities.

12.1 Censored survival data: from the right and from the left

Suppose that X1, . . . , Xn are i.i.d. survival times with d.f. F on [0,∞). Furthermore,
suppose that Y1, . . . , Yn are i.i.d. censoring times (independent of X1, . . . , Xn) with
distribution function G. Unfortunately we do not get to observe the Xi’s. Instead, for
each individual we observe

(Zi, δi) ≡ (Xi ∧ Yi, δi) ≡ (Xi ∧ Yi,1[Xi≤Yi]).

Nevertheless, our goal is to estimate the cumulative hazard function

ΛF (t) =

∫
[0,t]

(1− F (s−))−1dF (s)

and the survival function 1− F nonparametrically. Actually, once we have an estimator

Λ̂F,n of ΛF , then estimation of 1− F (and hence also F ) is immediate since

1− F (t) = exp(−Λc(t))
∏
s≤t

(1−∆Λ(s)),

where ∆Λ(s) ≡ Λ(s) − Λ(s−) and Λc(t) ≡ Λ(t) −
∑
s≤t ∆Λ(s). This is the setting of

(random, right) – censored survival data, and the (nonparametric) maximum likelihood
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estimators of Λ and 1− F are the famous Nelson-Aalen estimators Λ̂ of Λ and Kaplan-
Meier estimator 1− F̂n of 1−F . This is the random censorship version of right-censored
survival data. For treatments of fixed (i.e. deterministic) censoring times, see Pollard
[51] and Meier [45].

Before discussing right-censoring further, suppose instead that we observe

(Wi, γi) ≡ (Ui ∨ Vi,1[Ui≥Vi])

where the Ui’s are i.i.d. with d.f. F , and the Vi’s are i.i.d. G (and independent of the Ui’s).
The goal again is to estimate the (reverse or backwards) cumulative hazard function
ΛF (t) ≡

∫
[t,∞)

dF (s)/F (s) and the d.f. F . This is left-censored survival data. Note that
ΛF is the function which arose naturally in the random variable version of Copson’s
inequality in Section 8. A famous example of left-censored data is the data which arose
in a study of the descent times of baboons in the Amboseli Reserve, Kenya. See [63],
[64], [19], [20].

In this study the Ui’s represent the times when the baboons descended from the trees
in the morning while the Vi’s represent the times at which the investigators arrived at
the study site. If a baboon descended before its observer arrived at the study site, then
that baboon’s Ui is regarded as being “left – censored”. Again the goal is nonparametric
estimation of the d.f. of the Ui’s.

In this setting, once we have an estimator Λ̂F,n of ΛF , then estimation of F is
immediate since

F (t) = exp (−Λc(t))
∏
s≥t

∆Λ(s)

where

∆Λ(s) ≡ Λ(s)− Λ(s−), Λc(t) ≡ Λ(t)−
∑
s≥t

∆Λ(s).

12.2 Nonparametric estimation for right or left censored survival data

First the classical and frequently occurring censoring from the right. To see that
ΛF and 1− F can be estimated nonparametrically from the observed data, consider the
following empirical distributions:

Hucn (t) = Pn(δ1[Z≤t]) = n−1
n∑
i=1

δi1[Zi≤t],

Hcn(t) = Pn((1− δ)1[Z≤t]) = n−1
n∑
i=1

(1− δi)1[Zi≤t],

Hn(t) = Pn1[Z≤t] = n−1
n∑
i=1

1[Zi≤t]

where “uc” stands for “uncensored” observations and “c” stands for “censored” observa-
tions. By the strong law of large numbers,

Hucn (t) →a.s. E(δ1[Z≤t]) =

∫
[0,t]

(1−G(s−))dF (s) = Huc(t),

Hcn(t) →a.s. E((1− δ)1[Z≤t]) =

∫
[0,t]

(1− F (s))dG(s) = Hc(t),

Hn(t) →a.s. P (Z ≤ t) = 1− (1− F (t))(1−G(t)) = H(t).
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Now note that

ΛF (t) =

∫
[0,t]

1

1− F−
dF =

∫
[0,t]

1−G−
(1−G−)(1− F−)

dF

=

∫
[0,t]

1−G−
(1−H−)

dF =

∫
[0,t]

1

1−H(s−)
dHuc(s),

so we can estimate ΛF by

Λ̂n(t) ≡
∫
[0,t]

1

1−Hn(s−)
dHucn (s).

Then 1− F̂n(t) =
∏
s≤t(1−∆Λ̂n(s)) is the Kaplan-Meier [34] estimator of 1− F .

Now for estimation in the presence of censoring from the left. To see that ΛF and ΛF
can be estimated nonparametrically from the observed (left-censored) data, consider the
following empirical distributions:

Hucn (t) = Pn(γ1[W≤t]) = n−1
n∑
i=1

γi1[Wi≤t],

Hcn(t) = Pn((1− γ)1[W≤t]) = n−1
n∑
i=1

(1− γi)1[Wi≤t],

Kn(t) = Pn1[W≤t].

Now

Kucn (t) →a.s. E(γ1[W≤t]) =

∫
[0,t]

G(s)dF (s) ≡ Kuc(t),

Kcn(t) →a.s. E((1− γ)1[W≤t]) =

∫
[0,t]

F (s−)dG(s) ≡ Kc(t),

Kn(t) →a.s. P (W ≤ t) = F (t)G(t) = K(t).

Now note that

ΛF (t)=

∫
[s≥t]

1

F (s)
dF (s)=

∫
[s≥t]

G(s)

G(s)F (s)
dF (s)=

∫
[s≥t]

G(s)

K(s)
dF (s)=

∫
[s≥t]

1

K(s)
dKuc(s),

so we can estimate the “backwards” Nelson-Aalen hazard function ΛF by

Λ̂n(t) ≡
∫
[s≥t]

1

Kn(s)
dKucn (s).

Then F̂n(t) =
∏
s≥t ∆Λ̂n(s) is the “reverse” or “backwards” Kaplan – Meier estimator of

F ; see e.g. [64] and [19], [20].
For more on left-censoring, the data in the baboon study, and a plot of the resulting

backwards Kaplan-Meier estimator, see Andersen et al. [1], pages 24, 162-165, and
273-274.
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