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The Wright–Fisher model
for class–dependent fitness landscapes
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Abstract

We consider a population evolving under mutation and selection. The genotype of
an individual is a word of length ` over a finite alphabet. Mutations occur during
reproduction, independently on each locus; the fitness depends on the Hamming
class (the distance to a reference sequence w∗). Evolution is driven according to the
classical Wright–Fisher process. We focus on the proportion of the different classes
under the invariant measure of the process. We consider the regime where the length
of the genotypes ` goes to infinity, and

population size ∼ ` , mutation rate ∼ 1/` .

We prove the existence of a critical curve, which depends both on the population
size and the mutation rate. Below the critical curve, the proportion of any fixed class
converges to 0, whereas above the curve, it converges to a positive quantity, for which
we give an explicit formula.
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1 Introduction

Most of the living populations share, among others, these three main features:
genomes are long, populations are large, and mutations are rare. Nevertheless, when
modeling a living population, different relations between those three parameters will
lead to different conclusions. We focus here on a situation which is most appropriate for
living beings of small complexity, as RNA viruses, or replicating macromolecules: we aim
to model a population in which both the population size and the inverse mutation rate are
of the same order as the length of the genome [10]. The main forces that will drive the
evolution of such a population are, of course, mutation, but also selection, and genetic
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drift. Selection is introduced via a fitness function on the genotypes, which encodes the
average number of offspring of an individual carrying a particular genotype. Genetic
drift is introduced by considering a finite population of constant size. This modeling
situation is known to lead to very particular and interesting phenomena:

Error threshold. There is a critical mutation rate separating two different regimes.
Above the critical mutation rate, all genetic information is eventually lost, while below
the critical mutation rate, an equilibrium state is reached in which the fittest genotype
(the master sequence) is present in a positive proportion.

Quasispecies. The equilibrium that is reached below the error threshold consists of
a positive proportion of the fittest genotype, which may be very low, and mutants that
are a few mutations away from the master sequence may appear in high proportions.
Thus, the genetic heterogeneity of such an equilibrium state is huge, and we might as
well not be able to identify the master sequence. Such a population is often referred to
as a quasispecies.

Population threshold. A low mutation rate is not enough for a quasispecies to form.
Indeed, if the population is too small, it is likely that the master sequences present
in the population mutate all at once or in a few generations, thus loosing the driving
force of the quasispecies. This event becomes more and more unlikely as the population
size grows, thus giving rise to a second threshold phenomenon, namely a population
threshold.

The first two phenomena where first observed by Eigen, in a mathematical model for
prebiotic populations [7]. The concept of quasispecies was later popularized by Eigen
and Schuster [8]. The model considered by Eigen takes the population size to be infinite,
and models the evolution via a system of differential equations. The system is studied in
the long chain regime, i.e., when the length of the genomes goes to infinity. It is in this
regime that the error threshold and quasispecies phenomena arise. In order to observe
the population threshold, it is necessary to consider a model where the population is
finite. This phenomenon has first been observed in [1] for the Moran model and [2]
for the Wright–Fisher model. A nice account of the error threshold and quasispecies
phenomena, the main models where they arise, and their applications can be found in [6].
We refer the reader to [1] for a more detailed exposition of the different attempts to
build finite population models that present the error threshold and the quasispecies.

Most of the works that show the above three phenomena deal with the simplest
possible fitness landscape, namely the sharp–peak landscape: there is a single fittest
genotype, the master sequence, and all the other genotypes share the same fitness. The
works [2, 4] show how, in the sharp–peak landscape, the Wright–Fisher model presents
all three of the above phenomena. Our objective is to extend these results to more
general fitness landscapes. We focus in the present paper on the case of class–dependent
fitness functions: there is a single fittest genotype, and the fitness of any other genotype
is a function of its Hamming distance to the fittest genotype. We present the model in
Section 2.1, while the main result is presented in Section 2.6, along with a sketch of the
proof in Section 2.8. The remaining sections are devoted to the proof of the main result.

2 Model and results

2.1 Genotypes, fitness and mutation

Let A be a finite alphabet of cardinality κ ≥ 2, and let ` ≥ 1 represent the length
of the genome. We consider individuals whose genotypes are elements of A`. Each
genotype u ∈ A` has a fitness Â(u) associated to it, which should be interpreted as the
mean number of children of an individual carrying the genotype u. When a reproduction
occurs, the newborn child is subject to mutations. We suppose that mutations happen
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independently over each site of the genotype, with probability q ∈ (0, 1). When a
particular site mutates, the present letter is replaced with a uniformly chosen letter from
the κ− 1 remaining ones. Thus, the probability of mutating from a chain u to another
chain v is given by

M̂(u, v) :=
( q

κ− 1

)d(u,v)

(1− q)`−d(u,v) ,

where d(u, v) represents the Hamming distance between u and v, or equivalently, the
number of digits the two sequences differ in.

The evolution will be guided by the classical Wright–Fisher process. Nevertheless,
the analysis of the Wright–Fisher process for an arbitrary fitness function Â is far
too complicated. We focus here on fitness functions of a particular form, namely the
class–dependent fitness functions. We make the following assumptions on Â.

Master sequence. We assume the existence of a genotype w∗ ∈ A` with maximal
fitness, which we call the master sequence.

Class–dependence. We assume further that the fitness of a genotype u depends
only on the number of point mutations away from the master sequence. In other words,
all the sequences at Hamming distance k from the master sequence form the Hamming
class k, and they all share the same fitness.

Eventually constant. Finally we assume that there is a Hamming class K ≥ 0 such
that the genotypes in the classes beyond K have fitness 1.

The idea behind this assumptions is that the master sequence is the most adapted
genotype to the actual environment (which is constant), and that fitness decreases with
accumulating errors, up to a certain number of errors K. Once this number of errors is
reached, accumulating errors changes the fitness by so little that we approximate all the
fitnesses of all the subsequent Hamming classes by 1. We do not assume that the fitness
function is decreasing, because our main result and proofs work in the more general
case where the fitness is not necessarily decreasing. The genotypes carrying more than
K errors will be called neutral genotypes, and the genotypes carrying K or less errors
will be called non–neutral. Under the above assumptions, we can define:

Definition 2.1. Let A : N → R+ be the function such that for all u ∈ A` we have
Â(u) =: A

(
d(u,w∗)

)
.

Note that the function A satisfies:
• A(0) > A(k) for all k ≥ 1.
• A(K) 6= 1 and A(k) = 1 for all k ≥ K + 1.
When K = 0, all the genotypes other than the master sequence have fitness 1. This

particular case is referred to as the sharp–peak landscape; the Wright–Fisher model on
the sharp peak landscape has been studied in detail in [2, 4]. Our aim is to generalize the
results therein to class–dependent fitness functions which are eventually constant. One
of the main advantages of working with class–dependent fitness functions is that we can
break the space A` into Hamming classes (sets of sequences sharing the same distance
to w∗). This is possible because the mutation matrix M̂ respects the Hamming classes
(cf. the Lemma 6.1 in [1] for a proof): fix 0 ≤ k, l ≤ ` and let X ∼ Bin(k, q/(κ − 1)),
Y ∼ Bin(`− k, q) be independent random variables, then for any u ∈ A` in the class k,

M(k, l) :=
∑

v:d(v,w∗)=l

M̂(u, v) = P (k −X + Y = l) . (2.1)

We call M the lumped mutation matrix, and A the lumped fitness function.

2.2 The Wright–Fisher model

We consider a population of size m ≥ 1 evolving according to the classical Wright–
Fisher process with mutation and selection. Informally, the transition from the population
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at time n, to the population at time n+ 1 is done as follows: m individuals are sampled
from the population at time n, with replacement. At each of the m trials, the probability
for a given individual to be chosen is

fitness of the individual

sum of all fitnesses in the population
.

Each of the m chosen individuals reproduces, giving birth to one child each, and the
offspring mutate. The ensemble of the m offspring, after mutation, form the population at
time n+1. We will only be interested in the proportions of the different Hamming classes,
and not on the distribution of the different genotypes inside the classes themselves;
the only information we actually need about the population at time n, is the number
of individuals in each of the Hamming classes. Indeed, this information is enough to
determine the number of individuals in each class at time n+ 1. The process that keeps
this information is the occupancy process (On)n≥0 (which we will define shortly) and
it will be the starting point of our study. It is obtained from the original Wright–Fisher
process by using a technique known as lumping; for a formal definition of the original
Wright–Fisher process, as well as for a formal derivation of the occupancy process from
it, we refer the reader to Sections 2 and 4 of [2]. Let Pm`+1 be the set of the ordered
partitions of the integer m in at most `+ 1 parts:

Pm`+1 :=
{

(o(0), . . . , o(`)) ∈ N`+1 : o(0) + · · ·+ o(`) = m
}
, (2.2)

(we assume that 0 ∈ N). A partition (o(0), . . . , o(`)) is interpreted as an occupancy
distribution, i.e. a population with o(l) individuals in the Hamming class l = 0, . . . , `.
Note that the number of Hamming classes is equal to the length of the genome, hence
the use of the parameter ` here.

Definition 2.2. The occupancy process (On)n≥0 is a Markov chain with values in Pm`+1

and transition matrix given by: for o, o′ ∈ Pm`+1,

pO(o, o′) :=
m!

o′(0)! · · · o′(`)!
∏

0≤h≤`

(∑
k∈{ 0,...,` } o(k)A(k)M(k, h)

o(0)A(0) + · · ·+ o(`)A(`)

)o′(h)

Let S` denote the `–dimensional unit simplex

S` :=
{
x ∈ [0, 1]`+1 : |x|1 = 1

}
.

We define the function F : S` −→ S` by setting

∀x ∈ S` ∀ k ∈ { 0, . . . , ` } Fk(x) :=

∑
0≤h≤`

xhA(h)M(h, k)

1 +
∑

0≤h≤K

xh(A(h)− 1)
(2.3)

In view of the expression of the transition matrix, for all o ∈ Pm`+1 and n ≥ 0, given
that On = o, the random vector On+1 follows a multinomial law with parameters m and
F (o/m).

Notation. The expression appearing in the denominator of the function F (x) rep-
resents the mean fitness of the population x. Since it will recurrently appear in the
subsequent formulas, for any k ≥ K and x ∈ Rk+1, we denote

φ(x) := 1 +
∑

0≤h≤K

xh(A(h)− 1) . (2.4)
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2.3 Asymptotic regime

A straightforward treatment of the occupancy process is hardly tractable. Lucky for
us, in most living populations, genomes are long, populations large, and mutations rare.
We will thus carry out the study of the occupancy process by sending the length of the
genomes ` and the population size m to infinity, and sending the mutation probability q
to 0, as follows:

`→ +∞ , m→ +∞ , q → 0 ,

`q → a ∈ ]0,+∞[ ,
m

`
→ α ∈ ]0,+∞[ .

(2.5)

The parameter a represents the mean number of mutations per genome per reproduction
cycle, while α can be thought of as a rescaled population size.

Notation. In the sequel, when the notation limm,`,q appears, we will mean that we
take the limit in the asymptotic regime (2.5). Likewise, we will denote by lim`,q the limit

`→ +∞ , q → 0 , `q → a . (2.6)

The asymptotic regime (2.5) has two main consequences on the normalized occupancy
process (On/m)n≥0,
• Since m → ∞, the multinomial law involved in the transition mechanism of the

process concentrates around its mean, which is given by the mapping F , and the
trajectories of the process tend to be close to those of the discrete dynamical system
given by the iterations of F .
• Under (2.6), the mutation matrix M converges to an infinite upper diagonal matrix

M∞; the probability of mutating to a lower class converges to 0, and the probability of
jumping forward converges to a Poisson law of parameter a (cf. Lemma 2.3 in the next
section).

2.4 Properties of the mutation matrix

In order to clarify how the mutation matrix behaves in the asymptotic regime, as well
as for further reference, we state here the properties of the mutation matrix (M(i, j), 0 ≤
i, j ≤ `) that are relevant to our case. The i–th row of the lumped mutation matrix is
given by the difference of two independent binomial laws, i.e., if X ∼ Bin(i, q/(κ− 1))

and Y ∼ Bin(`− i, q) are independent random variables, then

M(i, j) = P (i−X + Y = j) .

Fix i and j and let ` go to infinity, q go to 0, and `q go to a; the first of the binomial laws
converges to a Dirac mass at 0, while the second one converges to a Poisson random
variable of parameter a. This is summarized in the following lemma.

Lemma 2.3. For every i, j ≥ 0, we have the following convergence:

lim
`→∞, q→0
`q→a

M(i, j) = M∞(i, j) :=

e−a
aj−i

(j − i)!
if j ≥ i ,

0 otherwise .

In particular, in the limit, there is no back mutation.

Let us fix k ≥ 0. For ` large enough, q small enough and `q close enough to a, we have

M(k + 2, k) ≥ M(j, k) for any j ≥ k + 2 .

Moreover, under (2.6),

lim
`,q

M(k + 1, k) = 0 and lim
`,q

M(k + 2, k)

`
= 0 .
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In particular,
lim
`,q

∑
k+1≤h≤`

M(h, k) = 0 . (2.7)

2.5 Associated dynamical system

As stated above, when the population is large, the Wright–Fisher process can be
viewed as a perturbation of the dynamical system given by the iterations of the mapping
F (cf. the formula (2.3)). Nevertheless, in our asymptotic regime (2.5), not only the
population is large. The convergence of the mutation matrix M to its infinite version
M∞ (cf. the Lemma 2.3) has an important impact on the dynamical system associated to
F . Let k ≥ K and define the set Dk by

Dk :=
{
r ∈ [0, 1]k+1 : |r|1 ≤ 1

}
.

The first k + 1 coordinates of F converge to a mapping G : Dk −→ Dk given by: for
r ∈ Dk and i ∈ { 0, . . . , k },

Gi(r) := φ(r)−1
i∑

h=0

rhA(h)e−a
ai−h

(i− h)!
. (2.8)

Lemma 2.4. For every r ∈ Dk and x ∈ S` satisfying (x0, . . . , xk) = (r0, . . . , rk) we have
the convergence

lim
`→∞, q→0
`q→a

(
F1(x), . . . , Fk(x)

)
= G(r) . (2.9)

The above follows from the convergence of the mutation matrix combined with the
facts (cf. formula (2.7))∑

0≤h≤`

xh = 1 and lim
`,q

∑
h>k

M(h, k) = 0.

Asymptotically, the coordinates 0, . . . , k of the normalized occupancy process (On/m)n≥0

can be seen as a random perturbation of the discrete dynamical system given by the
iterates of G:

r0 ∈ Dk , rn = G(rn−1) = Gn(r0) , n ≥ 1 . (DSk)

In fact, this dynamical system will play a key role in our analysis. The mapping G

and the dynamical system (DSk) have extendedly been studied in the works [3] and [5].
The main results concerning the fixed points of G are given in Proposition 2.2 of [5],
while the results concerning the stability of the fixed points and the convergence of the
dynamical system are given in Theorems 3.1 and 4.1 in [5]. We summarize these results
in the upcoming propositions. Consider the following set of indexes,

IA :=
{
b ≤ K

∣∣∣A(b)e−a > 1 and A(b) > A(j) for all j > b
}
∪
{
K + 1

}
.

Proposition 2.5. The mapping G has as many fixed points in Dk as there are elements
in IA. For each b ∈ IA, the associated solution ρb is given by ρb0 = · · · = ρbb−1 = 0 and for
0 ≤ j ≤ k − b,

ρbb+j :=

(
1

A(b)
+

∑
h≥1

0=i0<···<ih

aih

A(b+ ih)

h∏
t=1

A(b+ it)

(it − it−1)!(A(b)−A(b+ it))

)−1

×

(
1

A(b)
1j=0 +

aj

A(b+ j)

∑
1≤h≤j

0=i0<···<ih=j

h∏
t=1

A(b+ it)

(it − it−1)!(A(b)−A(b+ it))

)
.
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Note that in the case b = K + 1 the sum in the denominator diverges and therefore
the solution ρK+1 is identically 0. Moreover the trivial solution 0 is the only fixed point
of G if and only if A(0)e−a ≤ 1. Even if we are defining the ρb only inside Dk, we can
actually consider the infinite sequence (ρbb+k)k≥0; except for the trivial solution ρK+1,
the other ρb all sum up to 1, and therefore give rise to probability distributions. Let
IA = { b1, . . . , bN } and note that N = 1 corresponds to 0 being the only fixed point of G.
Define, for b ∈ IA, the set Db ⊂ Dk by

Db :=
{
r ∈ Dk : r0 + · · ·+ rb−1 = 0

}
.

We have the following result.

Proposition 2.6. Let r ∈ Dk \ { 0 }. For every i ∈ { 1, . . . N},

lim
n→∞

Gn(r) = ρbi

if and only if

r0 = · · · = rbi−1 = 0 and max
bi−1<k≤bi

rk > 0 .

Moreover, the map G is contracting in a small enough neighborhood of ρb intersected
with Db.

Consider for example the following fitness function:

A(0) = 5 , A(1) = 2 , A(2) = 4 , A(3) = A(4) = · · · = 1 .

In this case K = 2. Suppose further that a is such that 4e−a > 1 > 2e−a. Then, the
mapping G = (G0, G1, G2) has three fixed points in the set D2 = { r ∈ R3 : r0, r1, r2 ≥
0 and r0 + r1 + r2 ≤ 1 }. The point 0 is always a fixed point, and in this case, its basin of
attraction is just { 0 }. We have two other fixed points, ρ0 and ρ2. The basin of attraction
of ρ2 is the set { r ∈ D2 : r0 = 0 } \ { 0 }, and the basin of attraction of ρ0 is the set
{ r ∈ D2 : r0 > 0 }. In fact, if A(0)e−a > 1, the fixed point ρ0 always exists, and its basin
of attraction is always the set { r ∈ D2 : r0 > 0 }. Moreover, the mapping G is contracting
in a small enough neighborhood of ρ0.

2.6 Main result

Our main result concerns the invariant probability measure of the Wright–Fisher
process. Recall the definition of the occupancy process (On)n≥0 (Definition 2.2). The
process (On)n≥0 is recurrent and aperiodic, in fact, it can jump from any possible
population to any other in just one step. Thus, it has a unique invariant probability
measure. Let us denote by µ the invariant probability measure of the process (On)n≥0.
For any 0 ≤ k ≤ l we denote by πk the mapping Rl+1 → Rk+1 that projects onto the the
first k + 1 coordinates, i.e.

∀x ∈ Rl+1 πk(x) := (x0, . . . , xk) . (2.10)

For k ≥ 0, let us denote by νk the image of the measure µ through the mapping
o 7→ πk(o/m). Our main result states that there is a dichotomy for the behavior of the
measure νk. Depending on the values of the mean mutation rate per individual per
reproduction cycle a and the rescaled population size α, the process will concentrate
around the quasispecies fixed point ρ0 or the disorder fixed point 0. Recall that the
following limits are taken in the asymptotic regime (2.5). Recall also the definitions of A
(Definition 2.1) and ρ0 (Proposition 2.5).
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Theorem 2.7. There exists a function ψ : ]0,+∞[→ [0,+∞[ , which is finite on ]0, lnA(0)[

and vanishes on [lnA(0),+∞[ , such that:
• If αψ(a) < lnκ, then, for every k ≥ 0, the measure νk converges weakly to the

measure δ0, i.e.,
lim
`,m,q

νk → δ0 .

• If αψ(a) > lnκ, then, for every k ≥ 0, the measure νk converges weakly to the
measure δ(ρ00,...,ρ0k), i.e.,

lim
`,m,q

νk → δ(ρ00,...,ρ0k) .

In terms of the occupancy process (On)n≥0, the above result can be restated as
follows.

Corollary 2.8. Let (On)n≥0 be the occupancy process started from any configuration
o ∈ Pm`+1. We have the following dichotomy, with the same function ψ as in Theorem 2.7:
• If αψ(a) < lnκ then

∀ k ≥ 0 lim
`,m,q

lim
n→∞

E

(
On(k)

m

)
= 0 .

• If αψ(a) > lnκ then

∀ k ≥ 0 lim
`,m,q

lim
n→∞

E

(
On(k)

m

)
= ρ0

k .

Moreover, in both cases,

∀ k ≥ 0 lim
`,m,q

lim
n→∞

V ar

(
On(k)

m

)
= 0 .

Note that the phenomenon described by theorem 2.5 is a generalization of the
corresponding dichotomy in the deterministic setting, and presents a richer behavior
than its discrete counterpart. Indeed, as we can see from Theorem 3.3 in [5], whenever
A(0)e−a > 1, the unique fixed point of the mapping F converges to ρ0, whereas when
A(0)e−a ≤ 1, the unique fixed point of F converges to 0. In the deterministic setting, the
population size is effectively infinite, whereas for the Wright–Fisher model, the extra
parameter α corresponding to the population size comes into play. When A(0)e−a ≤ 1,
the invariant measure of the Wright–Fisher model converges to δ0, which is similar to
the deterministic case. However, when A(0)e−a > 1, the Wright–Fisher model possesses
a richer behavior than its deterministic counterpart. When the population is below
the threshold given by the curve αφ(a) = lnκ, the invariant measure converges to δ0,
whereas when the population is above the threshold, the invariant measure converges to
δρ0 .

2.7 The phase transition

In the above theorem we can observe a phase transition given by the curve αφ(a) =

lnκ. The function ψ is defined as the solution to a variational problem, which in turn
arises from a Large Deviations estimate for the occupancy process. For p, t ∈ D, define
the quantity IK(p, t) as follows (cf. equation (3.1)):

IK(p, t) :=

K∑
k=0

tk ln
tk
pk

+ (1− |t|1) ln
1− |t|1
1− |p|1

.

We make the convention that 0 ln 0 = 0 ln(0/0) = 0. Define further ρ(a) to be the quantity

ρ(a) :=

{
(ρ0

0, . . . , ρ
0
K) if A(0)e−a > 1 ,

(0, . . . , 0) if A(0)e−a ≤ 1 .
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We can define the function ψ as

ψ(a) := inf

{
l∑

k=0

IK
(
G(sk), sk+1

)
:

s0 = ρ(a), sl = 0,

sk ∈ DK for 0 ≤ k ≤ l

}
. (2.11)

We refer the reader to the Definition 9.1 and the comment thereafter for a more detailed
explanation of this definition. Note that the dependence of the function ψ on a is through
both the mapping G and the fixed point ρ(a). When A(0)e−a ≤ 1, we have ρ(a) = 0, which
is the unique stable fixed point of the mapping G, so that in this case, the infimum above
is just 0. Proceeding as in Lemma 7.4 of [2], it ca be shown that when A(0)e−a > 1, the
value ψ(a) is strictly positive. In the case of the sharp peak landscape (i.e. K = 0) we
are able to exploit the monotonicity of the model and prove that the function ψ(a) is
decreasing in a, but unfortunately, right now we are not able to say the same for the
general case.

2.8 Overview of the proof

Recall that the occupancy process can be seen as a random perturbation of the
discrete–time dynamical system (DSk). When A(0)e−a ≤ 1, the mapping G has 0 as its
only fixed point, and the result readily follows (we may write down the equation for the
invariant measure of the Wright–Fisher model, and pass to the limit there, obtaining
that the limiting measure must be invariant with respect to the action of G; the only
such measure in the case A(0)e−a ≤ 1 is the Dirac mass at 0). On the contrary, when
A(0)e−a > 1, there are at least two fixed points, ρ0 and 0, and the behavior of the process
is much more intricate. Let us call these two points the main fixed points. We will
refer to all other fixed points as the intermediate ones. The dichotomy presented in the
theorem reflects a competition between the two main fixed points. The core of the proof
of Theorem 2.7 lies in proving

time(ρ0 → 0) ∼ emψ(a) ,

time(0→ ρ0) ∼ κ` ∼ emα
−1 lnκ ,

along with showing that the time spent by the process away from the two main fixed
points is negligible with respect to the above times. In the above formula the function ψ
is the same as in Section 2.7. Recall that we have called the genotypes in the classes
beyond K the neutral genotypes, and the ones in the classes 0, . . . ,K the non–neutral
ones. The behavior of the process is radically different according to whether there are
non–neutral genotypes present in the population or not. Let us denote byW∗ the set of
populations containing at least one non–neutral individual, and by N the complementary
set of populations, the all–neutral populations. The fixed point ρ0, along with any existing
intermediate fixed point, lies in the setW∗, while the fixed point 0 lies in the set N . In
order to evaluate the above times, we carry out the same kind of estimations in both
sets:

Time to the fixed point. We estimate the time that it takes to reach a neighborhood of
the main fixed point (ρ0 inW∗ or 0 in N ), we develop this estimation uniformly on
the starting population.

Time to leave the set. We estimate the time that the process needs to leave the set,
and enter its complementary (W∗ or N ). Once again, the estimation is developped
uniformly on the strating population.

Excursions. We estimate the length and the frequency of the excursions outside a
neighborhood of the main fixed point.
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Even if the estimations we need are of the same nature for both sets and both main
fixed points, the behavior of the process is very different in the neutral set and in the
non–neutral one. As long as the process remains in the set N , there is no selection, and
the process behaves the same as if the function A were constant. In order to study this
phase we will rely on the results found in [2] for the sharp–peak landscape, and we will
show in Section 8 that the mean time needed to exit the neutral phase is of the order of
κ`. The non–neutral phase consists of the populations where at least one of the classes
0, . . . ,K is present. In the set of non–neutral populations, the process (On)n≥0 will tend
to behave as the dynamical system associated to G, this fact will be rigorously stated
thanks to a large deviations principle, which we develop in Section 3. Inspired by the
theory of Freidlin and Wentzell for random perturbations of dynamical systems [9], we
exploit the large deviations principle in order to control several quantities associated
with the process (On)n≥0:

• We show that the process is very unlikely to stay away from a neighborhood of all
of the fixed points for a long time (Section 4).

• We show that the process enters the basin of attraction of the main fixed point ρ0 in
a few steps with reasonable probability. In fact, this is one of the most technical parts of
the proof, since the large deviations principle is of little help. Indeed, we need to control
the probability for the process to create ηm master sequences out of 1 master sequence,
for some η > 0 (Section 5).

• We estimate the mean time that the process needs to exit the set of non–neutral
populations, which turns out to be of the order of emψ(a). The function ψ(a) represents
the quasipotential linking the points ρ0 and 0, or otherwise stated, the “energy” of the
most likely path the process is to follow when going from ρ0 to 0 (Section 6).

• We show that when inside the set of non–neutral populations, the process spends
most of its time in a neighborhood of ρ0 (Section 7).

Finally, we put all the above estimates together, and we use them to show the main
theorem, with help of the Ergodic Theorem for Markov chains (Section 9). The case
K = 0 corresponds to the sharp–peak landscape, and has been treated in [2, 4]. The
generalization to the class–dependent case is not straightforward. Indeed, the proofs
in [2, 4] rely strongly on coupling and monotonicity arguments, which cease to work for
arbitrary class–dependent functions. In addition, the behavior of the dynamical system
associated to G is richer; in the sharp peak landscape, the only possible fixed points
are ρ0 and 0, while for more general fitness functions intermediate fixed points appear.
When the occupancy process is in the set N , the results in [2, 4] carry over to our case,
however, when the occupancy process is in the set W∗, this is no longer the case. To
simplify the analysis when the process is inW∗, we introduce a truncated process in the
next subsection, and subsequently we develop new proofs for this truncated process.
The new proofs rely on finding estimates that are uniform with respect to the initial
points, and are therefore more robust than the original proofs in [2, 4].

2.9 Truncated process

Since our aim is to send the length of the sequences ` to infinity, the number of
coordinates of the occupancy process will grow to infinity with `. In order to deal
with this inconvenience, we will truncate the process (On)n≥0 so that the number of
coordinates is fixed. Let k be an integer larger or equal to K. Recall the definitions of
the process (On)n≥0 (Definition 2.2) and of the mapping πk (equation (2.10)). We define
the truncated process (Zn)n≥0 by setting

∀n ≥ 0 Zn := πk
(
On
)
.
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The process (Zn)n≥0 takes values in the set

Dk :=
{
z ∈ Nk+1 : z0 + · · ·+ zk ≤ m

}
.

The process (Zn)n≥0 is not Markovian, since the coordinates that we are leaving out
in its definition cannot be ignored when computing the transition probabilities of the
process (Zn)n≥0. Indeed, for any o ∈ Pm`+1, z ∈ Dk and n ≥ 0 we have

P
(
Zn+1 = z

∣∣On = o
)

=
m!

z1! · · · zk!(m− |z|1)!

× F0

( o
m

)z0
· · ·Fk

( o
m

)zk(
1−

∣∣∣∣πk(F( om)
)∣∣∣∣

1

)m−|z|1
. (2.12)

However, in the asymptotic regime we consider, the process (Zn)n≥0 behaves as a
small random perturbation of the dynamical system associated to the mapping G, and
therefore, the process (Zn)n≥0 can be seen as being “asymptotically Markovian”. There
is an exception to this, which is when the occupancy process in in the set N (c.f. the
Section 2.8). However, as long as the process remains in N , the occupancy process
(On)n≥0 behaves as if the evolution was neutral (A ≡ 0). This situation has been
thoroughly studied in Section 8 of [2], and most of the results therein carry over to
our case, as we discuss in the Section 8. In the remaining subsequent sections the
process (Zn)n≥0 will be the main object of our study. We develop next a Large Deviations
Principle for the transition probabilities of the process (Zn)n≥0.

2.10 Notation

In defining (Zn)n≥0 we have fixed a coordinate k ≥ K, but since the treatment is the
same for all k ≥ K, in the sequel, we assume that k = K.

• For k ≥ K we define the set Dk :=
{
r ∈ [0, 1]k+1 : |r|1 ≤ 1

}
.

• For a subset B of Dk, we denote by B the set mB ∩ D.

• We denote the sets DK and DK simply by D and D.

• We denote the mapping πK(·) by π(·).
• Dγ denotes the set { r ∈ D : r0 ≥ γ }, and Dγ denotes its discrete counterpart
mDγ ∩D.

• For r ∈ Rd, we denote by |r|1 the 1–norm of r.

• For r ∈ Rd, we denote by brc the vector brc = (br0c, . . . , brdc).
• For x ∈ D and δ > 0 we denote Uδ(x) or U(x, δ) the δ–neighborhood of x in D.

• For b ∈ IA we use the shorthand U bδ = Uδ(ρ
b).

• We write Uδ for ∪b∈IAU bδ , and Wδ for Uδ \ (Uδ(ρ
0) ∪ Uδ(0)).

• We write φ(B) and φ(B) for the maximum and minimum fitness over r ∈ B ⊂ D.

We use the shorthand φ
b

δ := φ(U bδ ) and φb
δ

:= φ(U bδ ).

• For any set B ∈ D we write τ(B) for the hitting time of B by the process (Zn)n≥0.

In the sequel, by asymptotically we mean: for `,m large enough, q small enough, `q close
enough to a and m/` close enough to α. All subsequent statements and inequalities need
not be true for all values of `,m and q, but only asymptotically, even if we do not state so
explicitly. For o ∈ Pm`+1 or z ∈ D, we use the notation

Eo(·) := E(· |O0 = o) , Ez(·) := Ez(· |Z0 = z) .
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Note that in general the state of the process Z1 given Z0 = z is not well defined, it
depends on the missing coordinates too, thus, expressions of the sort

Pz(Z1 = 0) ≥ p ,

should be interpreted as

Po(Z1 = 0) ≥ p for all o such that π(o) = z .

3 Large deviations principle

In the asymptotic regime (2.5), the trajectories of the process (Zn)n≥0 (cf. the
Section 2.9 for its definition) follow closely the trajectories of the dynamical system (DSk).
In order to quantify what “follows closely” means, we develop here a Large Deviations
Principle for the process (Zn)n≥0. For p, t ∈ D, we define the quantity IK(p, t) as follows:

IK(p, t) :=

K∑
k=0

tk ln
tk
pk

+ (1− |t|1) ln
1− |t|1
1− |p|1

, (3.1)

We make the convention that 0 ln 0 = 0 ln(0/0) = 0. The function IK(p, ·) is the rate
function governing the large deviations of a multinomial distribution (see for exam-
ple [11]) with parameters n and p0, . . . , pK , 1− |p|1. We have the following estimate for
the multinomial coefficients:

Lemma 3.1. Let n ≥ N ≥ 1, and i1, . . . , iN ∈ N be such that i1 + · · ·+ iN = n. We have∣∣∣∣∣ ln n!

i1! · · · iN !
+

N∑
k=1

ik ln
ik
n

∣∣∣∣∣ ≤ N lnn+ 2N .

The proof is similar to that of Lemma 7.1 of [2]. Taking logarithms in (2.12), we
obtain

ln Po
(
Zn+1 = z

)
= ln

m!

z1! · · · zn!(m− |z|1!)
+
∑

0≤i≤k

zi lnFi

( o
m

)
+ (m− |z|1) ln

(
1−

∣∣∣π(F (o/m)
)∣∣∣

1

)
= ln

m!

z1! · · · zn!(m− |z|1!)

−mIK
(
π
(
F (o/m)

)
, z/m

)
+
∑

0≤i≤k

zi ln zi +
(
m− |z|1

)
ln
(
m− |z|1

)
.

Thanks to the lemma, for o ∈ Pm`+1 and z ∈ D

lnPo
(
Zn+1 = z

)
= −mIK

(
π
(
F (o/m)

)
, z/m

)
+ Φ(o, z) . (3.2)

The error term Φ(o, z) satisfies, for m large enough,

∀ o ∈ Pm`+1 ∀ z ∈ D
∣∣Φ(o, z)

∣∣ ≤ C(K) lnm, (3.3)

where C(K) is a constant that depends on K but not on m. We define a function
V1 : D ×D → [0,∞] by setting, for r, t ∈ D,

V1(r, t) := IK
(
G(r), t

)
. (3.4)

Since the Fi converge to the Gi (cf. (2.9)), we have,

∀x ∈ S` ∀t ∈ D lim
`,q

IK

(
π
(
F (x)

)
, t
)

= V1(π(x), t) .
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Proposition 3.2. The one step transition probabilities of the Markov chain (Zn)n≥0

satisfy the large deviations principle governed by V1:
• For any subset B of D and for any r ∈ D, we have, for n ≥ 0,

− inf
{
V1(r, t) : t ∈ B

o }
≤ lim inf

`,m,q

1

m
lnP

(
Zn+1 ∈ B

∣∣Zn = bmrc
)
.

• For any subsets B,B′ of D, we have, for n ≥ 0,

lim sup
`,m,q

1

m
ln sup

z∈B
Pz
(
Zn+1 ∈ B′) ≤ − inf

{
V1(r, t) : r ∈ B, t ∈ B′

}
.

This result is similar to the well known Gärtner–Ellis Theorem. Nevertheless, in our
case we have three parameters instead of one, and a series of measures that depend
on the the states z ∈ D and r ∈ D. In order to deal with this particularities, we deem it
necessary to prove this proposition from the scratch.

Proof. We begin by showing the large deviations upper bound. Let B,B′ be two subsets
of D and notice that, for all z ∈ D and n ≥ 0

Pz
(
Zn+1 ∈ B′

)
≤ sup

o:π(o)=z

Po
(
Zn+1 ∈ B′

)
.

Let o ∈ Pm`+1 be such that π(o) ∈ B. For n ≥ 0, we have

Po
(
Zn+1 ∈ B′

)
=
∑
z′∈B′

Po
(
Zn+1 = z′

)
.

The number of elements in the sum is of polynomial order in m, the exponent of m
depending on K only. Indeed, |B′| ≤ |D| < mK+1. Thus, thanks to the estimates (3.2)
and (3.3) on the transition probabilities for the process (Zn)n≥0, we have, for m large
enough,

sup
o:π(o)∈B

Po
(
Zn+1 ∈ B′

)
≤ mC(K) sup

o:π(o)∈B
z′∈B′

Po
(
Zn+1 = z′

)
≤ mC′(K) exp

(
−m min

o:π(o)∈B
z′∈B′

IK

(
π
(
F (o/m)

)
, z′/m

))
.

where C(K) and C ′(K) are constants that depend on K but not on m. Define the
mappings F , F : D −→ D by setting, for all r ∈ D and k ∈ { 0, . . . ,K }

F k(r) :=
1

φ(r)

∑
0≤i≤k

riA(i)M(i, k), (3.5)

F k(r) :=
1

φ(r)

( ∑
0≤i≤k

riA(i)M(i, k)+
(
1−|πk(r)|1

)
A(0)M(k + 1, k)

)
. (3.6)

Asymptotically, for 0 ≤ k < j ≤ `, we have M(j, k) ≤M(k + 1, k) (cf. the Subsection 2.4).
Thus, asymptotically, for all x in the unit simplex S`, and for all k ∈ { 0, . . . ,K },

F k
(
π(x)

)
≤ Fk(x) ≤ F k

(
π(x)

)
.

Define next the function V : D ×D −→ [0,+∞] by

∀ r, t ∈ D V (r, t) :=

K∑
i=0

ti ln
ti

F i(r)
+
(
1− |t|1

)
ln

1− |t|1
1−

∣∣π(F (r))
∣∣
1

.
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Asymptotically, the function V satisfies

∀x ∈ S` ∀ t ∈ D V
(
π(x), t

)
≤ IK

(
π(F (x)), t

)
.

Moreover, asymptotically, for r, t ∈ D, we have V (r, t) −→ V1(r, t). Thus,

sup
o:π(o)∈B

Po
(
Zn+1 ∈ B′

)
≤ (m+ 1)C

′(K) exp

(
−m min

z∈B,z′∈B′
V
( z
m
,
z′

m

))
.

For each m ≥ 1, let zm, z′m ∈ D, be two terms that realize the above minimum. Up to the
extraction of a subsequence, we can suppose that when m→∞,

zm
m
→ r ∈ B , z′m

m
→ t ∈ B′ .

Thus,

lim sup
`,m,q

−V
(zm
m
,
zm
m

)
≤ −V1(r, t) .

Optimizing with respect to r, t, we obtain the upper bound of the large deviations
principle. Let r, t ∈ D and notice that, for all z ∈ D and n ≥ 0

Pz
(
Zn+1 = bmtc

)
≥ inf

o:π(o)=z
Po
(
Zn+1 = bmtc

)
.

let o ∈ Pm`+1 be such that π(o) = bmrc. We have

Po
(
Zn+1 = bmtc

)
≥ m−C(K) exp

(
−mIK

(
π
(
F (o/m)

)
, bmtc/m

))
,

where C(K) is a constant depending onK but not onm. Define the function V : D×D −→
[0,+∞] by

∀ r, t ∈ D V (r, t) :=

K∑
i=0

ti ln
ti

F i(r)
+
(
1− |t|1

)
ln

1− |t|1
1−

∣∣π(F (r))
∣∣
1

.

Asymptotically, the function V satisfies

∀x ∈ S` ∀ t ∈ D V
(
π(x), t

)
≥ IK

(
π(F (x)), t

)
.

Moreover, asymptotically, for r, t ∈ D,

V (r, t) −→ V1(r, t) .

Thus, for every o ∈ Pm`+1 such that π(o) = bmrc,

Po
(
Zn+1 = bmtc

)
≥ m−C(K) exp

(
−mV

(
bmrc
m

,
bmtc
m

))
.

We take the logarithm and we send m, ` to∞ and q to 0. We obtain then

lim inf
`,m,q

1

m
lnP

(
Zn+1 = btmc

∣∣Zn = brmc
)
≥ −V1(r, t) .

Moreover, if t ∈ U
o
, for m large enough, btmc belongs to B. Therefore,

lim inf
`,m,q

1

m
lnP

(
Zn+1 ∈ B

∣∣Zn = bmrc
)
≥ −V1(r, t) .

We optimize over t and we obtain the large deviations lower bound.
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The l–step transition probabilities of (Zn)n≥0 also satisfy a large deviations principle.
For l ≥ 2, we define a function Vl on D ×D as follows:

Vl(r, t) := inf
{ l−1∑
k=0

V1(sk, sk+1) : s0 = r, sl = t, sk ∈ D for 0 ≤ k ≤ l
}
. (3.7)

Corollary 3.3. For l ≥ 1, the l–step transition probabilities of (Zn)n≥0 satisfy the large
deviations principle governed by Vl:
• For any subset B of D and for any r ∈ D, we have, for n ≥ 0,

− inf
{
Vl(r, t) : t ∈ B

o }
≤ lim inf

`,m,q

1

m
lnP

(
Zn+l ∈ B

∣∣Zn = bmrc
)
.

• For any subsets B,B′ of D, we have, for n ≥ 0,

lim sup
`,m,q

1

m
ln sup
z∈B

P
(
Zn+l ∈ B′

∣∣Zn = z
)
≤ − inf

{
Vl(r, t) : r ∈ B, t ∈ B′

}
.

We omit the proof of the corollary, since it is similar to that of the Theorem 3.2,
combined with an induction argument based on the Markov property. The rate function
V1(r, t) is equal to 0 if and only if t = G(r). Thus, the Markov chain (Zn/m)n≥0 can be
seen as a random perturbation of the dynamical system associated to the map G (cf.
Section 2.1). The next sections study the consequences of the large deviations principles
of Proposition 3.2 and Corollary 3.3 on the asymptotic behavior of the process (Zn)n≥0.

4 Time spent away from the fixed points

The aim of this section is to show that the process (Zn)n≥0 has a small probability
of staying away from a neighborhood of the fixed points for a long time. We begin by
giving a useful lemma. We have discussed the behavior of the dynamical system (DSk)
in Section 2.5, we recall that the set Uδ is a union of δ–neighborhoods of the fixed points
(cf. Section 2.10). The set D \ Uδ is compact and for every r ∈ D \ Uδ,

lim
n→∞

Gn(r) ∈ Uδ .

Lemma 4.1. Let δ > 0. There exist h ∈ N and c > 0 (depending on δ) such that,
asymptotically, for every point z ∈ D \Uδ

Pz

(
Z1 6∈ Uδ, . . . , Zh 6∈ Uδ

)
≤ e−cm .

Proof. Recall that for r ∈ D we denote by rn the n–th iterate of r by the map G. By
continuity of the map G, for every r ∈ D\Uδ, there exists h(r) ∈ N and 0 < ηr0, . . . , η

r
h(r) <

ε such that, for all 0 ≤ n ≤ h(r)− 1,

G
(
U(rn, ηrn)

)
⊂ U(rn+1, ηrn+1/2) and U(rh(r), ηrh(r)) ⊂ Uδ (4.1)

The family {U(r, ηr0) : r ∈ D \ Uδ } forms an open cover of the compact D \ Uδ. Thus,
there exist r1, . . . , rM ∈ D \ Uδ such that

D \ Uδ ⊂
⋃

1≤i≤M

U(ri, η
ri
0 ) .

Set
h := max

1≤i≤M
h(ri) .
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Let t ∈ D \ Uδ and let i ∈ { 1, . . . ,M } be such that t ∈ U(ri, η
ri
0 ). We denote the quantity

h(ri) simply by h(i), the open ball U(rni , η
ri
n ) by Un, and we set Un = mUn ∩D. We have

then,

Pz
(
Z1 6∈ Uδ, . . . , Zh 6∈ Uδ

)
≤ Pz

(
Zn 6∈ Un for some 1 ≤ n ≤ h(i)

)
≤

∑
1≤n≤h(i)

Pz
(
Z1 ∈ U1, . . . , Zn−1 ∈ Un−1, Zn 6∈ Un

)
≤

∑
1≤n≤h(i)

∑
z′∈Un−1

Pz
(
Zn 6∈ Un

∣∣Zn−1 = z′
)
Pz
(
Zn−1 = z′

)
.

The large deviations principle for the transitions of (Zn)n≥0 yields the following bound,

lim sup
`,m,q

1

m
lnPz′

(
Zn 6∈ Un

)
≤ − inf

{
V1(ρ, ρ′) : ρ ∈ Un−1, ρ

′ 6∈ Un
}

= −cni .

Since G(Un−1) ⊂ Un, the constant cni is strictly positive. The number of constants
(cni )1≤n≤h(i),1≤i≤M is finite. Let 0 < η < mini,n c

n
i . From the above inequalities, we

conclude that, asymptotically,

Pbtmc
(
Z1 6∈ Uδ, . . . , Zh 6∈ Uδ

)
≤

∑
1≤n≤h(i)

exp
(
−m(cni − η)

)
Pz
(
Zn−1 ∈ Un−1

)
≤
∏

1≤n≤h(i)

exp
(
−m(cni − η)

)
.

Since h(i) ≤ h and h is fixed, and since the number of constants cni is finite, the above
probability is bounded by e−mc, for c > 0 independent of t.

We use the lemma to prove the following corollary.

Corollary 4.2. There exist h ∈ N and c > 0 such that, asymptotically, for every z ∈ D\Uδ
and n ∈ N,

Pz

(
Zt 6∈ Uδ, 0 ≤ t ≤ n

)
≤ exp

(
−mc

⌊n
h

⌋)
.

Proof. Divide the interval { 0, . . . , n } into subintervals of length h. Using iteratively the
previous lemma, we have, for i ≥ 1,

Pz
(
Zt 6∈ Uδ, 0 ≤ t ≤ (i+ 1)h

)
=
∑

z′∈D\Uδ

Pz
(
Zt 6∈ Uδ, 0 ≤ t ≤ (i+ 1)h, Zih = z′

)
=

∑
z′∈D\Uδ

Pz
(
Zt 6∈ Uδ, 0 ≤ t ≤ ih, Zih = z′

)
× Pz

(
Zt 6∈ Uδ, ih < t ≤ (i+ 1)h

∣∣Zih = z′
)
≤ Pz

(
Zt 6∈ Uδ, 0 ≤ t ≤ ih

)
e−mc.

Iterating this procedure we get

Pz
(
Zt 6∈ Uδ, 0 ≤ t ≤ (i+ 1)h

)
≤ e−mc(i+1) .

Taking i+ 1 = bn/hc gives the desired result.

Recall the definitions of Dγ , U0
δ and τ(·) from Section 2.10. Let γ, δ > 0. In view of

Proposition 2.6, for any r ∈ Dγ , the trajectory Gn(r) converges to ρ0, and does so without
getting close to 0. We have results analogous to Lemma 4.1 and Corollary 4.2 for this
case.
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Lemma 4.3. Let δ, γ > 0,. There exist h ∈ N and c > 0 (depending on δ, γ) such that,
asymptotically, for every point z ∈ Dγ \U0

δ

Pz

(
τ(U0

δ ∪ {0}) ≤ h, Zτ(U0
δ∪{0}) 6= 0

)
≥ 1− e−cm .

Corollary 4.4. There exist h ∈ N and c > 0 such that, asymptotically, for every z ∈
Dγ \U0

δ and n ∈ N,

Pz

(
τ(U0

δ ∪ {0}) ≤ n, Zτ(U0
δ∪{0}) 6= 0

)
≥ 1− exp

(
−mc

⌊n
h

⌋)
.

The proofs of these two results are straightforward modifications of the proofs of
Lemma 4.1 and Corollary 4.2, so we omit them.

5 Creating enough master sequences

Throughout this whole section we assume that A(0)e−a > 1. The aim of this section is
to show that starting from any point of D \ { 0 }, the process (Zn)n≥0 creates a number of
master sequences of order m with a reasonable probability, within a time of order lnm.

Theorem 5.1. Let ε > 0. There exist positive constants γ and C such that for every
z ∈ D \ { 0 },

lim inf
`,m,q

1

m
lnPz

(
τ(Dγ ∪ {0}) ≤ C lnm, Zτ(Dγ∪{0}) 6= 0

)
≥ −ε .

Assume first that the process (Zt)t≥0 starts from a neighborhood of one of the fixed
points. More precisely, let b ∈ IA \ { 0 } and assume that the starting point is in a small
neighborhood of ρb and is of the form

z = (w, 0, . . . , 0, zb, . . . , zK) .

Since, for δ small enough, G is contracting in the intersection of the set Db = { r ∈ D :

r0 + · · ·+ rb−1 = 0 } with a sufficiently small neighborhood of ρb, the process (Zt)t≥0 will
stay inside such a neighborhood for a long time. Note that for some ε > 0 depending on
the neighborhood,

G0

( z
m

)
≥ wA(0)e−a

A(b)e−a + ε
.

A similar inequality holds for points close to z, so that if the neighborhood is small
enough, as long as the process is inside it, the number of master sequences will tend to
increase geometrically. This is the key idea of the proof of the theorem, which will be
carried out in a few different steps:
• First we show that from any starting point, the process jumps to a point of the form

of z in a finite number of steps, with probability higher than e−εm, for every ε > 0.
• Then we build a deterministic trajectory that, starting from a point of the form of z,

creates γm master sequences in a time of order lnm.
• Finally we show that the process is likely enough to follow the deterministic

trajectory.
This strategy will be implemented in a series of lemmas, which we state next. The

proofs of the lemmas will be carried out after we give the proof of the Theorem 5.1.
Recall the definitions of U bδ , Uδ and τ(·) from Section 2.10.

Lemma 5.2. Let δ > 0. There exist h ∈ N and c > 0 such that, asymptotically, for every
z ∈ D \ {0},

Pz
(
τ(Uδ) ≤ h, Zτ(Uδ) 6= 0

)
≥ 1− e−cm .
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We omit the proof of this lemma due to its similarity with Lemma 4.1. Indeed, the
only difference between this lemma and Lemma 4.1, is the fact that here we don’t want
the chain to hit 0. Since G(z) = 0 if and only if z = 0, it is enough to modify slightly
the proof of Lemma 4.1 (by replacing Uδ by Uδ \ {0} in (4.1) and where subsequently
needed).

Lemma 5.3. Let ε > 0 and w ∈ N. Taking δ small enough, for any b ∈ IA and z ∈ Ubδ \{0},

lim
`,q,m

1

m
lnPz

(
Z1 = (w, 0, . . . , 0, zb, . . . , zK)

)
≥ −ε .

Suppose next that
z = (w, 0, . . . , 0, zb, . . . , zK) ∈ Ubδ/2 .

We build a deterministic trajectory (zn)n≥0 such that z0 = z and for δ small enough, w
large enough, the number of master sequences grows geometrically. In order to do so
we use the auxiliary mapping F defined in (3.5). The deterministic trajectory is built by
setting z0 = z and for n ≥ 1,

zn =

⌊
mF

(zn−1

m

)⌋
.

Recall the definition of φbδ from Section 2.10. Take δ small enough and w large enough
so that, asymptotically,

ρ :=
A(0)M(0, 0)

φ
− 1

w
> 1 .

Note that letting δ go to zero, ` to infinity, q to 0 and `q to a, the quantity ρ converges
to A(0)/A(b) − 1/w. So that asymptotically, for δ below a certain threshold δ0 and w

above a certain threshold w0, the quantity ρ is always bounded below by some quantity
ρ > 1. Moreover, the conditions δ < δ0 and w > w0 are not contradictory, since as long
as w ≤ δm/2, the point z will remain inside Ubδ. We define by N b

δ the first time of exit of
the dynamical system zn from Ubδ:

N b
δ := inf

{
n ≥ 0 : zn 6∈ Ubδ

}
.

Lemma 5.4. The sequence (z0
n)0≤n≤Nbδ

is increasing, and bounded below by a geometric
sequence with ratio ρ.

Proof. Note first that

z1
0 =

⌊
wA(0)M(0, 0)

φ(z0/m)

⌋
≥ w

(
A(0)M(0, 0)

φ
b

δ

− 1

w

)
= ρw .

Then, by induction, for any n ≤ N b
δ ,

zn0 =

⌊
zn−1

0 A(0)M(0, 0)

φ(zn−1/m)

⌋
≥ zn−1

0

(
A(0)M(0, 0)

φ
b

δ

− 1

w

)
= ρzn−1

0 .

Let γ > 0, then, ρnw is larger than γm if

n ≥ n(γ) :=
(

ln ρ
)−1

ln
γm

w
.

Note that as mentioned before ρ is bounded below by ρ > 1, and that w is of order one
while m is going to infinity. So that for any fixed γ > 0, the quantity n(γ) also goes
to infinity with m. The deterministic trajectory needs n(γ) steps to create γm master
sequences. But the bound zn0 ≥ ρnw only works as long as the trajectory remains inside
the set Ubδ, therefore, we need to ensure that the trajectory has the time to take n(γ)

steps before exiting Ubδ.
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Lemma 5.5. Let δ > 0 and b ∈ IA. For γ small enough, n(γ) ≤ N b
δ .

Finally, we need a lemma ensuring that our process is likely to follow the deterministic
trajectory we have just built.

Lemma 5.6. Let δ > 0, z0 = (w, 0, . . . , zb, . . . , zK) ∈ Ubδ/2 and let (zn)n≥0 be the trajectory

built from z0 by setting zn = bmF (zn−1/m)c. Then, for γ small enough, we have,

lim inf
`,q

1

m
lnPz0

(
Zn(γ) = zn(γ), . . . , Z1 = z1

)
= 0 .

Let us show next how to combine the previous lemmas in order to prove Theorem 5.1.

Proof of Theorem 5.1. Let ε > 0 as in Lemma 5.3. Take δ, γ > 0 and w ∈ N so that they
meet the requirements of Lemmas 5.3, 5.4 and 5.5. We define the following events:

E1(δ) :=
{
τ(Uδ) ≤ h, Zτ(Uδ) 6= 0

}
,

E2(δ, w) := E1 ∩
{
Zτ(Uδ)+1 = (w, 0, . . . , 0, zb, . . . , zK) for some b ∈ IA

}
,

E3(δ, w, γ) := E2 ∩
{
Zτ(Uδ)+2 = z1, . . . , Zτ(Uδ)+1+n(γ) = zn(γ)

}
.

Note that if E3 is realized, we have Zτ(Uδ)+1+n(γ) ≥ γm. Let C be such that

C lnm ≥ h+ 1 + n(γ) .

Then,
Pz
(
τ(Dγ ∪ {0}) ≤ C lnm

)
≥ Pz

(
E3
∣∣ E2)Pz(E2 ∣∣ E1)Pz(E1) .

Now, by Lemma 5.2, for any δ > 0

lim inf
`,m,q

1

m
lnPz

(
E1
)

= 0 .

Moreover, by Lemma 5.3, for any ε > 0 and w ∈ N, we can choose δ small enough so that

lim inf
`,m,q

1

m
lnPz

(
E2
∣∣ E1) ≥ −ε .

Finally, by Lemma 5.6, choosing γ small enough,

lim inf
`,m,q

1

m
lnPz

(
E3
∣∣ E2) = 0 .

Combining these three limits we get the desired result.

Once the process Zn has γm master sequences, it will converge to ρ0 in a few steps,
as shown in the following corollary.

Corollary 5.7. Let ε, δ > 0. There exists a positive constant C such that for every
z ∈ D \ { 0 }

lim inf
`,m,q

1

m
lnPz

(
τ(U0

δ ∪ {0}) ≤ C lnm, Zτ(U0
δ∪{0}) 6= 0

)
≥ −ε .

Proof. Let ε, δ > 0, and let γ,C ′ > 0 associated to ε as in Theorem 5.1. Then, for any
C > C ′ and z ∈ D \ { 0 }, we have,

Pz

(
τ(U0

δ ∪ {0}) ≤ C lnm,

Zτ(U0
δ∪{0}) 6= 0

)
≥

∑
z′∈D:z′(0)≥γm

Pz

(
Zτ(Dγ∪{0}) = z′,

τ(Dγ ∪ {0}) < C ′ lnm

)

× Pz
(
τ(U0

δ ∪ {0}) ≤ C lnm,

Zτ(U0
δ∪{0}) 6= 0

∣∣∣∣ Zτ(Dγ∪{0}) = z,

τ(Dγ ∪ {0}) < C ′ lnm

)
.
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By Lemma 4.3, there exist h ∈ N and c > 0 such that, asymptotically, for every z′ ∈ D
satisfying z′0 ≥ γm

Pz′
(
τ(U0

δ ∪ {0}) ≤ h, Zτ(U0
δ∪{0}) 6= 0

)
≥ 1− e−cm .

Thus, taking C such that bC lnmc − bC ′ lnmc > h, and in view of Theorem 5.1, we obtain
the result of the corollary.

It remains to prove Lemmas 5.3, 5.5 and 5.6. Before we do so, let us introduce some
preliminary notation and results. We will make use of the mappings F , F defined in (3.5)
and (3.6). Recall that the mappings F and F satisfy, asymptotically,

∀x ∈ S` ∀ k ∈ { 0, . . . ,K } F k
(
π(x)

)
≤ Fk(x) ≤ F k

(
π(x)

)
.

Proposition 5.8. We have,

lim
`,q

sup
r∈D

∣∣F (r)−G(r)
∣∣
1

= 0 , lim
`,q

sup
r∈D

∣∣F (r)−G(r)
∣∣
1

= 0 .

Proof. Recall that M∞ represents the limit mutation matrix (cf. the Subsection 2.4). Let
r ∈ D and k ∈ { 0, . . . ,K }, we have∣∣Gk(r)− F k(r)

∣∣ ≤ φ(r)−1
∑

0≤i≤k

riA(i)
∣∣M∞(i, k)−M(i, k)

∣∣ ≤
sup
r∈D

(
φ(r)−1

∑
0≤i≤k

riA(i)

)
max

0≤i,k≤K

∣∣M∞(i, k)−M(i, k)
∣∣ .

This last quantity converges to 0 asymptotically, uniformly on r ∈ D. The rest of the
lemma can be shown in a similar way.

Results similar to Propositions 2.5 and 2.6 hold for the mapping F . The proofs are
exactly the same, even if the form of the fixed points is different. More precisely, we
have the following result.

Proposition 5.9. Asymptotically, the mapping F has as many fixed points in D as
there are elements in IA. For each b ∈ IA, the associated fixed point ηb satisfies
ηb0 = · · · = ηbb−1 = 0 and ηbb ∧ · · · ∧ ηbK > 0. The mapping F restricted to Db is contracting
in a neighborhood of ηb, and

lim
`,q

ηb = ρb .

The last convergence is a direct consequence of Proposition 5.8. Let ε > 0. The
mapping G is continuous on the compact set D, it is therefore uniformly continuous on
D. In view of the Proposition 5.8, δ can be chosen small enough so that for all b ∈ IA,
asymptotically, ∣∣F (r)− ηb

∣∣+
∣∣F (r)− ηb

∣∣ < ε .

Proof of Lemma 5.3. Let ε > 0. Suppose now that z ∈ Ubδ for some b ∈ IA, fix w ∈ N and
set z′ = (w, 0, . . . , 0, zb, . . . , zK). We wish to show that, for δ small enough,

lim
`,q

1

m
lnPz

(
Z1 = z′

)
≥ −ε .

Note that for any o ∈ Pm`+1 satisfying π(o) = z ∈ D\{0}, we have the following asymptotic
bound on the probability of creating a master sequence,

F0

( o
m

)
≥ φ

( z
m

)−1 ∑
0≤h≤K

zh
m
A(h)M(h, 0) ≥ m−M ,
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for some M > 0, which is uniform over z ∈ D \ {0}. This bound comes from the fact
that M(h, 0) is of order qh ∼ m−h. Thus, we obtain the following lower bound on the
probability of jumping from z to z′,

m!

w!z′b! · · · z′K !(m− |z′|1)!
m−Mw

K∏
i=b

F i

( z
m

)z′i
×
(

1−
∣∣∣F( z

m

)∣∣∣
1

)m−|z′|1
.

We use now the Lemma 3.1 in order to obtain the following asymptotic bound,

1

m
lnP

(
Z1 = z′

∣∣Z0 = z
)
≥ − 1

m
(K + 1)(2 + lnm)− w

m
ln
w/m

m−M

−
K∑
i=b

z′i
m

ln
z′i/m

F i(z/m)
− m− |z′|1

m
ln

(m− |z′|1)/m

1− |F (z/m)|1
.

The first two quantities go to 0, when m goes to infinity, so that the sum of both is
eventually larger that −ε/2. Since z/m ∈ U bδ , we have∣∣∣ z

m
− F

( z
m

)∣∣∣
1
≤
∣∣∣ z
m
− ηb

∣∣∣+
∣∣∣ηb − F( z

m

)∣∣∣ < δ + ε .

Furthermore, for b ≤ i ≤ K, the function F i(r) is bounded below by a positive constant c
when r ∈ U bδ , we conclude that

K∑
i=b

zi
m

ln
zi/m

F i(z/m)
≤ K ln

(
1 +

δ + ε

c

)
.

We choose δ small enough so that this last quantity is smaller than ε/4. A similar
argument shows that δ can be chosen small enough so that the last term is also bounded
below by −ε/4, thus giving the desired bound.

In order to prove Lemma 5.5, it is enough to ensure that while the number of master
sequences is growing, the rest of the coordinates don’t change too fast, so that the
trajectory can remain inside Ubδ for more than n(γ) steps. In order to do so, we show in
the next lemma that the coordinates (znk )0≤k<b cannot grow at a faster rate than zn0 . We
prove afterwards that the same thing holds for the difference |znk − ηbk|, where b ≤ k ≤ K.
Let us choose ε > 0 small enough so that, asymptotically,

∀ k ∈ { 1, . . . ,K } A(k)M(k, k)

A(0)M(0, 0)− ε
< 1 ,

and let w be such that φ
b

δ/w < ε, where φ
b

δ denotes the maximum fitness in U bδ (cf. the
Section 2.10). We prove next the following lemma.

Lemma 5.10. There exist positive constants c0, . . . , cb−1 such that for 0 ≤ k < b, asymp-
totically, znk ≤ ckzn0 , for all n ≤ N b

δ .

Proof. We will prove the lemma by induction on k. The case k = 0 is obviously true.
Set k ∈ { 1, . . . , b − 1 } and suppose that the statement of the theorem holds for the
coordinates 0, . . . , k − 1. Then, we have

znk
zn0
≤

φ(zn−1/m)−1
∑

0≤i≤k

zn−1
i A(i)M(i, k)

φ(zn−1/m)−1zn−1
0 A(0)M(0, 0)− 1

≤
∑

0≤i≤k

zn−1
i A(i)M(i, k)

zn−1
0 A(0)M(0, 0)− φbδ

.
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The sequence (zn0 )0≤n≤Nbδ
is increasing, and thus, φ

b

δ/z
n−1
0 < φ

b

δ/w < ε. Therefore,

znk
zn0
≤

∑
0≤i≤k

zn−1
i

zn−1
0

(
A(i)M(i, k)

A(0)M(0, 0)− ε

)
.

By the induction hypothesis

znk
zn0
≤

∑
0≤i≤k−1

ci

(
A(i)M(i, k)

A(0)M(0, 0)− ε

)
+
zn−1
k

zn−1
0

A(k)M(k, k)

A(0)M(0, 0)− ε
.

Iterating this inequality, and noting that z0
k = 0, we obtain

znk
zn0
≤

∑
0≤i≤k−1

ci

(
A(i)M(i, k)

A(0)M(0, 0)− ε

) n−1∑
t=0

(
A(k)M(k, k)

A(0)M(0, 0)− ε

)t
.

Yet, asymptotically,

dk :=
A(k)M(k, k)

A(0)M(0, 0)− ε
< 1 ,

and thus,
znk
zn0
≤ 1

1− dk

∑
0≤i≤k−1

ci

(
A(i)M(i, k)

A(0)M(0, 0)− ε

)
.

We take ck to be equal to the right hand side of this inequality, which fulfills the proof of
the lemma.

Let us introduce the following notation, for any x ∈ RK+1 we denote by x̃ the vector
x where the coordinates 0, . . . , b− 1 have been set to 0, i.e.,

x̃ := (0, . . . , 0, xb, . . . , xK) .

Lemma 5.11. There exist constants cb > 0 and 0 < cδ < 1 such that for n ≤ N b
δ ,

asymptotically, we have ∣∣z̃n −mηb∣∣
1
≤ cbz

n
0 + cnδ

∣∣z̃0 −mηb
∣∣
1
.

Proof. For n ≥ 0 and b ≤ k ≤ K, we have, noting that ηb is a fixed point of the mapping
F , ∣∣znk −mηbk∣∣ ≤ 1 +m

∣∣F k(zn−1/m)− F k(ηb)
∣∣ .

Yet, for all r ∈ D

F k(r) =

b−1∑
i=0

ri
A(i)M(i, k)

φ(r)
+ F k(r̃)

φ(r̃)

φ(r)
.

Thus,

∣∣znk −mηbk∣∣ ≤ 1 +

b−1∑
i=0

zn−1
i

A(i)M(i, k)

φ(zn−1/m)
+m

∣∣F k(z̃n−1/m)− F k(ηb)
∣∣

+ F k(z̃n−1/m)
|φ(z̃n−1/m)− φ(zn−1/m)|

φ(zn−1/m)
.

We have, ∣∣φ(z̃n−1/m)− φ(zn−1/m)
∣∣ ≤ b−1∑

j=0

zn−1
j

m
|A(j)− 1|
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Reporting back in the inequality for |znk −mηbk|, we get,

∣∣znk −mηbk∣∣ ≤ 1 +m

∣∣∣∣F k(z̃n−1/m)− F k(ηb)

∣∣∣∣
+

b−1∑
j=0

zn−1
j

(
A(j)M(j, k) + |A(j)− 1|F k(z̃n−1/m)

φ(zn−1/m)

)
.

Summing from k = b to K, and recalling that, asymptotically, F is contracting on the set
U bδ ∩ Db, we deduce the existence of a constant cδ < 1 such that

∣∣z̃n −mηb∣∣
1
≤ K + cδ

∣∣z̃n−1 −mηb
∣∣
1

+

b−1∑
j=0

zn−1
j

A(j)
∑

b≤k≤K

M(j, k) + |A(j)− 1|

φ
b

δ

.

Using the previous lemma, we get that, asymptotically,∣∣z̃n −mηb∣∣
1
≤ Czn0 + cδ

∣∣z̃n−1 −mηb
∣∣
1
,

for some constant C depending on δ only. Iterating this inequality, and noting that for
t ≤ n, we have zn−t0 ≤ ρ−tzn0 , we conclude that

∣∣z̃n −mηb∣∣
1
≤ C

n−1∑
t=0

ctδz
n−t
0 + cnδ

∣∣z̃0 −mηb
∣∣
1

≤ Czn0

n−1∑
t=0

(cδ/ρ)t + cnδ
∣∣z̃0 −mηb

∣∣
1
≤ C

(
1− cδ/ρ

)−1
zn0 + cnδ

∣∣z̃0 −mηb
∣∣
1
.

The proof is concluded by taking cb = C(1− cδ/ρ)−1.

Proof of Lemma 5.5. As a consequence of Lemmas 5.10 and 5.11, as long as n ≤ N b
δ , we

have

zn0 ≥
zn1
c1
∨ · · · ∨

znb−1

cb−1
∨ |z̃

n −mηb|1 − |z̃0 −mηb|1
cb

.

Thus, taking γ(K + 1) < min { δ/c1, . . . , δ/2cb }, then N b
δ ≥ n(γ), as wanted.

Proof of Lemma 5.6. We have,

Pz0
(
Zn(γ) = zn(γ), . . . , Z1 = z1

)
=

n(γ)−1∏
n=0

Pz0
(
Zn+1 = zn+1

∣∣Zn = zn
)
.

For any 0 ≤ n ≤ n(γ), as in the proof of the Large Deviations Principle 3.2,

Pz0
(
Zn+1 = zn+1

∣∣Zn = zn
)
≥ inf

o:π(0)=zn
P
(
Zn+1 = zn+1

∣∣On = o
)
.

Let o ∈ Pm`+1 be such that π(o) = zn. We have,

P
(
Zn+1 = zn+1

∣∣On = o
)

=
m!

zn+1
0 ! · · · zn+1

K !(m− |zn+1|1)!

× F0

( o
m

)zn+1
0

· · ·FK
( o
m

)zn+1
K

(
1−

∣∣∣∣π(F( om))
∣∣∣∣)m−|zn+1|1

.
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Thus,

lnP
(
Zn+1 = zn+1

∣∣On = o
)

= −mIK
(
π
(
F
( o
m

))
,
zn+1

m

)
+ Φ(o, zn+1) ,

where the error term Φ(o, zn+1) satisfies∣∣Φ(o, zn+1)
∣∣ ≤ C(K)(lnm+ 1) ,

C(K) being a constant that depends on K but not on m (c.f. the formulas (3.2) and (3.3)).
Next we bound the quantity involving the rate function I. Recall that

mIK

(
π
(
F
( o
m

))
,
zn+1

m

)
=

K∑
k=0

zn+1
k ln

zn+1
k /m

Fk(o/m)
+
(
m− |zn+1|1

)
ln

1− |zn+1|1/m
1− |π(F (o/m))|1

.

The function F has been defined so that for all x ∈ S`, F k
(
π(x)

)
≤ Fk(x), for 0 ≤ k ≤ K.

Therefore, for all o ∈ Pm`+1 such that π(o) = zn,

zn+1
k

m
=

1

m

⌊
mF k

(zn
m

)⌋
≤ F k

(zn
m

)
≤ Fk

( o
m

)
.

Thus,

mIK

(
π
(
F
( o
m

))
,
zn+1

m

)
≤
(
m− |zn+1|1

)
ln

1− |zn+1|1/m
1− |π(F (o/m))|1

.

The argument of the logarithm is larger than 1, and for all x ≥ 0, ln(x) ≤ x−1. Therefore,
the above quantity is bounded by

(
m− |zn+1|1

) ∣∣π(F (o/m)
)∣∣

1
− |zn+1|1/m

1−
∣∣π(F (o/m)

)∣∣
1

≤ m− |zn+1|1
1−

∣∣π(F (o/m)
)∣∣

1

K∑
k=0

∣∣∣∣ 1

m

⌊
mF k

(zn
m

)⌋
− Fk

( o
m

)∣∣∣∣
≤ m− |zn+1|1

1−
∣∣π(F (o/m)

)∣∣
1

K∑
k=0

(∣∣∣∣F k(znm )− Fk( om)
∣∣∣∣+

1

m

)
.

For any x ∈ S` ∣∣π(F (x)
)∣∣

1
= φ

(
π(x)

)−1 ∑̀
h=0

xhA(h)

K∑
k=0

M(h, k) .

On one hand, for any h ∈ { 0, . . . , ` } the sum M(h, 0) + · · · + M(h,K) is bounded by a
constant c which is strictly smaller than 1. Thus, |π(F (x))|1 is bounded above by this same
constant c, uniformly on x ∈ S`. Therefore, (m− |zn+1|1)/(1− |π(F (o/m))|1) ≤ m/(1− c).
On the other hand, for 0 ≤ k ≤ K, since π(o) = zn,∣∣∣∣F k(znm )− Fk( om)

∣∣∣∣ = φ(zn/m)−1
∑̀

h=k+1

oh
m
A(h)M(h, k) .

Yet, there exists a positive constant c′ such that asymptotically, M(h, k) ≤ c′/m, for
0 ≤ k < h ≤ `. Therefore, the above quantity is bounded by c′/m. We conclude that

IK

(
π
(
F
( o
m

))
,
zn+1

m

)
≤ (1 + c′)(K + 1)

m(1− c)
.
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Therefore,

1

m
lnPz0

(
Zn(γ) = zn(γ), . . . , Z1 = z1

)
≥ −

n(γ)−1∑
n=0

inf
o:π(o)=zn

(
IK

(
π
(
F
( o
m

))
,
zn+1

m

)
+

1

m
Φ(o, zn+1)

)
≥ −n(γ)(1 + c′)(K + 1)

m(1− c)
− n(γ)C(K)(lnm+ 1)

m
.

Since n(γ) is of the order of lnm, we see that this last quantity goes to 0 when m goes to
infinity, as wanted.

6 Persistence time

We assume throughout this whole section that A(0)e−a > 1. The aim of this section is
to compute the expected hitting time of 0 for the process (Zn)n≥0. The relevant quantity
for the computation is the quasipotential

V (r, t) := inf
l≥1

Vl(r, t) , (6.1)

where the quantity Vl has been defined in (3.7). Let us denote τ0 = τ({0}) the hitting
time of 0.

Theorem 6.1. For all z ∈ D \ {0},

lim
`,m,q

1

m
lnEz(τ0) = V (ρ0, 0) .

In order to ease the readability of the upcoming formulas, we denote the quantity
V (ρ0, 0) simply as V .

Proof. We begin by showing the upper bound: for any ε > 0, we have

∀ z ∈ D \ { 0 } lim sup
`,m,q

1

m
lnEz(τ0) ≤ V + ε .

Let ε > 0. We first show that there exists a constant C > 0 such that

∀ z ∈ D \ { 0 } Pz
(
τ0 ≤ bC lnmc

)
≥ e−m(V+2ε)

Let γ > 0, z ∈ D \ { 0 }, and assume first that z0 > γm. Define the sequence (rn)n≥0 by
setting r0 = z/m and

rn = Gn(r0) , n ≥ 1 .

The mapping V1 is continuous on the first argument in a neighborhood of ρ0; let us
choose δ small enough so that

|r − ρ0|1 < δ ⇒ V1(r, ρ0) < ε/3 . (6.2)

Moreover, for δ small enough there exists h ∈ N such that for all r ∈ Dγ , and for all
n ≥ h, we have ∣∣Gn(r)− ρ0

∣∣
1
< δ .

Indeed, by the Proposition 2.6, δ can be chosen sufficiently small so that the δ–neighbor-
hood of ρ0 is contracting. By continuity of the map G, for all r ∈ Dγ , there exists δr > 0

and h(r) ∈ N such that if

|r − t| < δr =⇒
∣∣Gh(r)(t)− ρ0

∣∣ < δ .

EJP 26 (2021), paper 151.
Page 25/44

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP704
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


The WF model for class–dependent landscapes

The set Dγ is compact and the family {U(r, δr) : r ∈ Dγ } is an open cover of the set Dγ .
Thus, there exist r1, . . . , rN ∈ Dγ such that

Dγ ⊂
N⋃
i=1

U(ri, δri) .

Set h to be the maximum of h(r1), . . . , h(rN ). Then, for all r ∈ Dγ and n ≥ h, we have
|Gn(r)− ρ0| < δ. Let h′ ≥ 0 and let (ti)0≤i≤h′ be a sequence in D satisfying

t0 = ρ0 , th
′

= 0 ,

h′−1∑
i=0

V1(ti, ti+1) ≤ V +
ε

3
. (6.3)

Consider next the sequence (si)0≤i≤h+h′+1 defined by

s0 = r0 , s1 = r1 , . . . , sh = rh ,

sh+1 = t0 = ρ0 , sh+2 = t1 , . . . , sh+h′+1 = th
′

= 0 .

Set L = h+h′+ 1. Combining (6.2) and (6.3) we see that the sequence (si)0≤i≤L satisfies

L−1∑
i=0

V1(si, si+1) ≤ V + 2ε/3 .

Proceeding as in the proof of the Large Deviations Principle 3.2, we obtain

Pz
(
ZN = 0

)
≥

L−1∏
t=0

Pz
(
Zt+1 = bst+1mc

∣∣Zt = bstmc
)
.

Then,

lim inf
`,m,q

1

m
lnPz

(
ZL = 0

)
≥ −V + 2ε/3 .

Thus, asymptotically,

Pz
(
ZL = 0

)
≥ e−m(V+ε) ,

uniformly on z ∈ Dγ . Suppose now that z 6∈ Dγ . By Theorem 5.1, there exist C ′ > 0 such
that

∀ z ∈ D \ { 0 } Pz
(
ZbC′ lnmc ≥ γm

)
≥ e−εm .

Thus, for every z ∈ D \ { 0 },

Pz
(
ZbC′ lnmc+L = 0

)
≥

∑
z′∈Dγ

Pz
(
ZbC′ lnmc+L = 0, ZbC′ lnmc = z′

)
≥

∑
z′∈Dγ

Pz′
(
ZL = 0

)
Pz
(
ZbC′ lnmc = z′

)
≥ e−m(V+2ε) .

Taking C such that bC lnmc ≥ bC ′ lnmc+ L, we conclude that for every z ∈ D,

Pz
(
τ0 ≤ bC lnmc

)
≥ e−m(V+2ε) . (6.4)

Proceeding as in Corollary 4.2 we obtain that, for every h ≥ 1 and z ∈ D \ { 0 },

Pz
(
τ0 ≥ hbC lnmc

)
≤
(
1− e−m(V+2ε)

)h
.
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Thus,

Ez(τ0) =
∑
n≥0

Pz
(
τ0 ≥ n

)
=
∑
h≥0

(h+1)bC lnmc−1∑
n=hbC lnmc

Pz
(
τ0 ≥ n

)
≤
∑
h≥0

bC lnmcPz
(
τ0 ≥ hbC lnmc

)
≤ bC lnmcem(V+2ε) .

We conclude that, for every z ∈ D,

lim sup
`,m,q

1

m
lnEz(τ0) ≤ V + 2ε .

We send ε to 0 and we obtain the desired upper bound. We proceed now to the proof of
the lower bound. We will make use of the following inequality: let ε > 0., for all T > e2εm

and for all z ∈ D \ { 0 }, we have, asymptotically,

Pz
(
Zt 6∈ Uδ(ρ0) ∪Uδ(0), 0 ≤ t ≤ T

)
≤ e−εm . (6.5)

In order to prove this inequality we use the estimate of Corollary 5.7 and proceed exactly
as in the proof of Corollary 4.2. Due to the similarity with the proof of Corollary 4.2, we
omit the proof of the inequality. In order to prove the lower bound, we define τδ to be
the hitting time of the δ–neighborhood of 0,

τδ := inf
{
n ≥ 0 : Zn ∈ Uδ(0)

}
.

Obviously, τδ ≤ τ0. We will first show that for every z ∈ Uδ(ρ0),

lim inf
`,m,q

1

m
lnEz(τδ) ≥ inf

{
V (r, t) : r ∈ Uδ(ρ0), t ∈ Uδ(0)

}
− δ .

In order to ease the notation in the sequel, we set V δ to be the infimum appearing in the
above formula. Using Markov’s inequality, for all T ≥ 0

Ez(τδ) ≥ TPz(τδ ≥ T ) .

Thus, we set T ≥ 0 and we bound the probability of the event { τδ < T }. Let us denote
by T0 the last time before τδ that the process is in Uδ(ρ0), i.e.,

T0 := max
{
n ≤ τδ : Zn ∈ Uδ(ρ0)

}
.

We will bound the probability of the event { τδ < T } by studying the trajectory of the
process (Zn)n≥0 between T0 and τδ. The idea is the following, either the trajectory
(Zn)T0<n<τδ spends a long time outside a neighborhood of ρ0 and 0, which is very unlikely
(Lemmas 4.1, 5.1 and Corollary 4.2), or it jumps in a few steps from one fixed point
to another until reaching 0, in which case the lower bound of the Large Deviations
Principle 3.2 will give us the desired estimate. We have, for T ≥ 0, z ∈ Uδ(ρ0), and
k ≤ T ,

Pz(τδ < T ) =
∑

0≤t0<t∗<T

Pz(T0 = t0, τδ = t∗)

=
∑

0≤t0<t∗<T
t∗−t0≤k

Pz(T0 = t0, τδ = t∗) +
∑

0≤t0<t∗<T
t∗−t0>k

Pz(T0 = t0, τδ = t∗) . (6.6)
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The first of the terms in the right–hand side of (6.6) can be bounded thanks to the Large
Deviations Principle 3.3. Indeed, if 0 ≤ t0 < t∗ < T and t∗ − t0 < k, we have

Pz
(
T0 = t0, τδ = t∗

)
=

∑
z′∈Uδ(ρ0)

Pz
(
T0 = t0, τδ = t∗, Zt0 = z′

)
≤

∑
z′∈Uδ(ρ0)

Pz′
(
Zt∗−t0 ∈ Uδ(0)

)
≤ mC(K) sup

z′∈Uδ(ρ0)

Pz′
(
Zt∗−t0 ∈ Uδ(0)

)
,

where C(K) is a positive constant that depends on K but not on m. We have then,

∑
0≤t0<t∗<T
t∗−t0≤k

Pz
(
T0 = t0, τδ = t∗

)
≤ TmC(K)

k∑
h=0

sup
z′∈Uδ(ρ0)

Pz′
(
Zh ∈ Uδ(0)

)
.

Yet, thanks to the large deviations principle of Corollary 3.3,

lim sup
`,m,q

1

m
ln

k∑
h=0

sup
z′∈Uδ(ρ0)

Pz′
(
Zh ∈ Uδ(0)

)
≤ − min

0≤h≤k
inf
{
Vh(x, y) : x ∈ Uδ(ρ0), y ∈ Uδ(0)

}
≤ −V δ . (6.7)

We deal next with the second term in the right–hand side of (6.6). Recall from Sec-
tion 2.10 that Uδ represents the union of the δ–neighborhoods of all the fixed points and
Wδ represents this same union where the neighborhoods of ρ0 and 0 have been left out.
We define the random time T ∗1 by

T ∗1 := min
{
n ≥ T0 : Zn ∈Wδ

}
.

We break the second term of the right–hand side of (6.6) as follows,∑
0≤t0<t∗<T
t∗−t0>k

Pz
(
T0 = t0, τδ = t∗

)
=

∑
0≤t0<t∗<T
t∗−t0>eεm

Pz
(
T0 = t0, τδ = t∗

)
+

∑
0≤t0<t∗<T
k<t∗−t0<eεm

Pz
(
T0 = t0, τδ = t∗, Zt 6∈ Uδ, t0 < t < t∗

)
+

∑
0≤t0<t∗1<t

∗<T
k<t∗−t0<eεm

Pz
(
T0 = t0, T

∗
1 = t∗1, τδ = t∗

)
. (6.8)

The first of the sums in the right–hand side of (6.8) can be bounded thanks to the
inequality (6.5). Indeed, if t∗ − t0 > eεm, then

Pz
(
T0 = t0, τδ = t∗

)
=

∑
z′∈Uδ(ρ0)

Pz
(
T0 = t0, Zt0 = z′, τδ = t∗

)
≤

∑
z′∈Uδ(ρ0)

Pz′
(
Zt 6∈ Uδ(ρ0) ∪Uδ(0), 0 ≤ t ≤ t∗ − t0

)
≤ mC(K) sup

z′∈Uδ(ρ0)

Pz′
(
Zt 6∈ Uδ(ρ0) ∪Uδ(0), 0 ≤ t ≤ t∗ − t0

)
≤ mC(K)e−εm/2 . (6.9)

The second of the sums in the right–hand side of (6.8) can be bounded thanks to
Corollary 4.2. Let h and c be as in Corollary 4.2. Then, we have, for 0 ≤ t0 < t∗ < T and
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t∗ − t0 > k,

Pz
(
T0 = t0, τδ = t∗, Zt 6∈ Uδ, t0 < t < t∗

)
=

∑
z′∈D\Uδ

Pz
(
T0 = t0, Zt0+1 = z′, τδ = t∗, Zt 6∈ Uδ, t0 < t < t∗

)
≤

∑
z′∈D\Uδ

Pz′
(
Zt ∈ D \Uδ, 0 ≤ t < t∗ − t0

)
≤ mC′(K) exp

(
−mc

⌊ t∗ − t0
h

⌋)
, (6.10)

where C ′(K) is a positive constant that depends on K but not on m. Thus,∑
0≤t0<t∗<T
t∗−t0>k

Pz

(
T0 = t0, τδ = t∗,

Zt 6∈ Uδ, t0 < t < t∗

)
≤ T 2mC′(K) exp

(
−mc

⌊k
h

⌋)
.

In order to bound the last sum in (6.8), we introduce, for b ∈ I(A), the random time

T b1 := sup
{
n ≤ t∗ : Zn ∈ Uδ(ρb)

}
.

We decompose the last term in (6.8) as follows,∑
0≤t0<t∗1<t

∗<T
k<t∗−t0<eεm

Pz
(
T0 = t0, T

∗
1 = t∗1, τδ = t∗

)
=

∑
b∈I(A)
b 6=0,K+1

∑
0≤t0<t∗1<t1<t

∗<T
k<t∗−t0<eεm

Pz

(
T0 = t0, T

∗
1 = t∗1,

Zt∗1 ∈ Uδ(ρ
b), T b1 = t1, τδ = t∗

)
.

For a given b ∈ I(A) \ { 0,K + 1 }, we decompose further the above sum, by considering
the three following cases:
• If t∗1 − t0 > k, then, for some positive constant C(K) that depends on K only, the

above sum can be bounded by

Te3εmmC(K) exp

(
−m

⌊
k

h

⌋)
.

• If t∗1−t0 < k and t∗−t1 < k, then the sum can be bounded thanks to the large deviations
principle in Corollary 3.3, which gives the following bound:

Teεm exp

(
−m

(
inf
{
V (x, y) : x ∈ Uδ(ρ0), y ∈ Uδ(ρb)

}
− ε
))
×

exp

(
−m

(
inf
{
V (x, y) : x ∈ Uδ(ρb), y ∈ Uδ(0)

}
− ε
))

< Te−m(V δ−3ε) .

• If t∗1 − t0 < k and t∗ − t1 > k, then we define the set W−bδ by

W−bδ :=
⋃

b′∈I(A)
b′ 6=0,b,K+1

Uδ(ρ
b) ,

and we define the hitting time of W−bδ after the time T1 by

T ∗2 := inf
{
n ≥ T1 : Zn ∈W−bδ

}
.
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Then, the sum can be bounded by∑
0≤t0<t∗1<t1<t

t∗−t1>k, t∗−t0<eεm

Pz

(
T0 = t0, T

∗
1 = t∗1, Zt∗1 ∈ Uδ(ρ

b),

T1 = t1, τδ = t∗, Zt 6∈ Uδ, t1 < t < t∗1

)

+
∑

0≤t0<t∗1<t1<t
∗
2<t

t∗1−t0<k, t∗−t0<eεm

Pz

(
T0 = t0, T

∗
1 = t∗1, Zt∗1 ∈ Uδ(ρ

b),

T1 = t1, T
∗
2 = t2, τδ = t∗

)

The first of the sums is again bounded by

Te3εmmC(K) exp

(
−mc

⌊
k

h

⌋)
.

In order to bound the second sum, we can break it again in three different cases, and
iterate this same procedure until we exhaust the fixed points in the set I(A). We will
then get 3|I(A)| summands, each of them being bounded by

max

{
TeM(K)εmmC(K) exp

(
−mc

⌊
k

h

⌋)
, T e−m(V δ−M(K)ε)

}
, (6.11)

where M(K) is a natural number depending on K only. We choose k large enough so
that

c
⌊k
h

⌋
> inf

{
V (x, y) : x ∈ Uδ(ρ0), y ∈ Uδ(0)

}
.

We set

T := exp

(
m
(

inf
{
V (x, y) : x ∈ Uδ(ρ0), y ∈ Uδ(0)

}
− δ
))

.

Then, taking ε small enough so that M(K)ε < δ, and combining the estimates (6.7), (6.9),
(6.10), and (6.11), we conclude that, asymptotically,

Pz(τδ ≤ T ) ≤ e−m(Vδ−M(K)ε) . (6.12)

We deduce from here that, for every z ∈ Uδ(ρ0),

lim inf
`,m,q

1

m
lnEz(τδ) ≥ inf

{
V (x, y) : x ∈ Uδ(ρ0), y ∈ Uδ(0)

}
− δ .

Now let z ∈ D \ { 0 } and note that, from Corollary 5.7, we can deduce that there exists
C > 0 such that

Pz
(
ZbC lnmc ∈ Uδ(ρ0), Zt 6= 0, 0 ≤ t ≤ bC lnmc

)
≥ e−δm .

Therefore, for every T ≥ bC lnmc, we have

Pz(τ0 > T ) ≥
∑

z′∈Uδ(ρ0)

Pz
(
τ0 > T,ZbC lnmc = z′

)
≥

∑
z′∈Uδ(ρ0)

Pz
(
ZbC lnmc = z′, Zt 6= 0, 0 ≤ t ≤ bC lnmc

)
Pz′
(
τ0 > T − bC lnmc

)
.

Thus, for any z ∈ D \ { 0 }

Ez(τ0) =
∑
T≥0

Pz(τ0 > T ) ≥
∑

T≥bC lnmc

Pz(τ0 > T )

≥
∑

z′∈Uδ(ρ0)

Pz
(
ZbC lnmc = z′, Zt 6= 0, 0 ≤ t ≤ bC lnmc

)
×

∑
T≥bC lnmc

Pz′
(
τ0 > T − bC lnmc

)
≥ e−εm inf

z′∈Uδ(ρ0)
Ez′(τ0) .
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Yet, τδ < τ0 by definition. Thus, for any z ∈ D \ { 0 },

lim inf
`,m,q

1

m
lnEz(τ0) ≥ inf

{
V (x, y) : x ∈ Uδ(ρ0), y ∈ Uδ(0)

}
− 2δ .

We let δ go to zero and we get the desired result.

In fact, in view of (6.12), we can further establish the following concentration result
for the time τ0.

Corollary 6.2. For every δ > 0, there exists ε > 0 such that asymptotically,

∀ z ∈ D \ { 0 } , Pz
(
τ0 ≥ em(V (ρ0,0)−δ)) > 1− e−εm .

7 Concentration near ρ0

We assume throughout this whole section that A(0)e−a > 1. Our purpose is to study
the behavior of the process (Zn)n≥0 inside the set D, in order to show that it spends
most of its time close to the fixed point ρ0. We introduce the following stopping times:
set T0 := 0 and

T ∗1 := inf
{
n ≥ T0 : Zn ∈ U0

δ

}
T1 := inf

{
n ≥ T ∗1 : Zn 6∈ U0

2δ

}
...

...

T ∗i := inf
{
n ≥ Ti−1 : Zn ∈ U0

δ

}
Ti := inf

{
n ≥ T ∗i : Zn 6∈ U0

2δ

}
...

...

Set also

τ0 := inf
{
n ≥ 0 : Zn = 0

}
,

ι(n) := max
{
i ≤ n : Ti−1 < n

}
.

Our purpose is to show the following result.

Theorem 7.1. For any ε > 0, we have

E

( ι(τ0)∑
i=0

(T ∗i ∧ τ0 − Ti−1)

)
≤ em(V−ε) .

Before jumping to the proof of the theorem, let us give a couple of auxiliary lemmas.

Lemma 7.2. Let δ, ε > 0. There exists C = C(δ, ε) > 0 such that, asymptotically, for
every z ∈ D \ { 0 },

∀n ≥ 0 Pz
(
T ∗1 ∧ τ0 ≥ nbC lnmc

)
≤ (1− e−εm)n .

The proof is similar to that of Corollary 4.2, using the estimate of Corollary 5.7.
Let τ denote the exit time of the process (Zn)n≥0 from the set U0

2δ, i.e.,

τ := inf
{
n ≥ 0 : Zn 6∈ U0

2δ

}
.

We have the following bound on τ .

Lemma 7.3. There exist γ, γ′ > 0 such that, asymptotically, for all z ∈ U0
δ,

Pz
(
τ ≤ emγ

)
< e−γ

′m .
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Proof. Define S to be the last time before τ that the process is in U0
δ, i.e.,

S := sup
{

0 ≤ n ≤ τ : Zn ∈ U0
δ

}
.

For any n ≥ 1,
Pz
(
τ ≤ n

)
=

∑
0≤s<t≤n

Pz
(
S = s, τ = t

)
.

Let h = h ≥ 2 and c = c > 0 be as in Corollary 4.2. For a given value of s, we split the
sum over t in two parts:∑

t:s<t≤n

Pz
(
S = s, τ = t

)
=

∑
t:t>s+h+1

· · · +
∑

t:s<t≤s+h+1

· · · .

We study next the first sum, when t > s+ h+ 1. We condition on the state of the process
at time s+ 1. By the Markov property,∑

t:t>s+h+1

· · · =
∑

t:t>s+h+1
z′∈U0

2δ\U
0
δ

Pz
(
S = s, Zs+1 = z′, τ = t

)

=
∑

t:t>s+h+1
z′∈U0

2δ\U
0
δ

Pz

(
S = s, Zs+1 = z′, τ = t,

Zs+1, . . . , Zt−1 ∈ U0
2δ \U0

δ

)

≤
∑

t:t>s+h+1
z′∈U0

2δ\U
0
δ

Pz
(
Zs+1 = z′

)
Pz′
(
Z1, . . . , Zt−s−2 ∈ U0

2δ \U0
δ , Zt−s−1 6∈ U0

2δ

)
.

Since the set U0
2δ \ U0

δ contains none of the fixed points, and since t > s + h + 1, by
Corollary 4.2, this last probability is smaller than exp(−mcb(t− s− 2/h)c). Therefore,∑

t:t>s+h+1

· · · ≤
∑
t≥h

e−mcb
t
hc =

he−mc

1− e−mc
.

We bound next the second sum. Conditioning on the state at time s:∑
t:s<t≤s+h+1

· · · =
∑

t:s<t≤s+h+1
z′∈U0

δ

Pz
(
S = s, Zs = z′, τ = t

)
≤

∑
t:s<t≤s+h+1

z′∈U0
δ

Pz′
(
Zt 6∈ U0

2δ

)
Pz
(
Zs = z′

)
=

∑
t:1≤t≤h+1
z′∈U0

δ

Pz′
(
Zt 6∈ U0

2δ

)
Pz
(
Zs = z′

)
.

Using the large deviation principle of Corollary 3.3, since h is fixed, for any t ≤ h+ 1

lim sup
`,m,q

sup
z′∈U0

δ

Pz′
(
Zt 6∈ U0

2δ

)
≤ − inf

{
V (x, y) : x ∈ U0

δ , y 6∈ U0
2δ

}
.

Recall that δ has been chosen small enough so that G(U0
δ ) ⊂ U0

δ . Thus, the above infimum
is strictly positive. We deduce that there exists c′ > 0 (depending on δ) such that∑

t:1≤t≤h

Pz′
(
Zt 6∈ U0

2δ

)
≤ e−c

′m ,

the bound being uniform over z′ ∈ U0
δ. Finally, we obtain, for any n ≥ 1,

Pz(τ ≤ n) ≤
∑

1≤s≤n

he−mc

1− e−mc
+
∑

1≤s≤n

e−c
′m ≤ ne−c

′′m ,
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for some c′′ > 0. Picking γ so that γ′ + γ − c′′ < 0, we have

Pz(τ ≤ eγm) ≤ e−γ
′m ,

as wanted.

Proof of Theorem 7.1. Note that the argument in the expectation is bounded by τ0, so
for any i∗ ∈ N, we can break the above expectation as follows:

E

( ι(τ0)∑
i=1

(T ∗i ∧ τ0 − Ti−1)

)
≤

i∗∑
i=1

E
(
1i≤ι(τ0)(T

∗
i − Ti−1)

)
+ E(τ01ι(τ0)>i∗) .

If 1 ≤ i ≤ ι(τ0), then Ti−1 ≤ τ0 and ZTi−1 6= 0, so that, using the Markov property,

E
(
1i≤ι(τ0)(T

∗
i − Ti−1)

)
≤ sup

z∈D\{0}
Ez
(
T ∗1 ∧ τ0

)
.

Thanks to the bound in Lemma 7.2, asymptotically, for any z ∈ D \ { 0 }

Ez
(
T ∗1 ∧ τ0

)
=
∑
k≥1

Pz
(
T ∗1 ∧ τ0 ≥ k

)
≤
∑
n≥0

(n+1)bC lnmc∑
k=nbC lnmc+1

Pz
(
T ∗1 ∧ τ0 ≥ nbC lnmc

)
≤ bC lnmc

∑
n≥0

(1− e−εm)n ≤ e2εm .

We conclude that, for any i∗ ∈ N and ε > 0,

E

( ι(τ0)∑
i=0

(T ∗i ∧ τ0 − Ti−1)

)
≤ i∗eεm + E

(
τ01ι(τ0>i∗)

)
.

Let η > 0 and define tηm = em(V+η). Then,

E
(
τ01ι(τ0)>i∗

)
= E

(
τ01ι(τ0)>i∗1τ0>tηm

)
+ E

(
τ01ι(τ0)>i∗1τ0≤tηm

)
≤ E

(
τ01τ0>tηm

)
+ tηmP

(
ι(tηm) > i∗

)
(7.1)

Let us begin by bounding the first term on the right–hand side of this inequality. We
have, for every n ∈ N and z ∈ D \ { 0 },

Ez
(
τ01τ0>n

)
=
∑
k≥0

Pz
(
τ01τ0>n > k

)
=
∑
k≥0

Pz
(
τ0 > k ∨ n

)
≤ nPz

(
τ0 > n

)
+
∑
k≥n

Pz
(
τ0 > k

)
.

From inequality (6.4), for every γ > 0, there exists C > 0 such that

∀h ≥ 1 ∀ z ∈ D \ { 0 } Pz
(
τ0 > hbC lnmc

)
≤
(

1− e−m(V+γ)
)h
.

Using this inequality with γ = η/2, and setting n = hbC lnmc, we get

Ez
(
τ01τ0>n

)
≤ hbC lnmc

(
1− e−m(V+η/2)

)h
+
∑
i≥h

bC lnmcPz
(
τ0 > ibC lnmc

)
≤ hbC lnmc

(
1− e−m(V+η/2)

)h
+ bC lnmc

(
1− e−m(V+η/2)

)h
em(V+η/2) .
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Yet, if h =
⌊
tηm/bC lnmc

⌋
, and since for m large bC lnmc ≤ eηm/2, we have, asymptotically,

Ez
(
τ01τ0>tηm

)
≤ 2em(V+η)

(
1− e−m(V+η/2)

)h
≤ 2em(V+η)e−h exp(−mV−mη/2).

And since

he−m(V+η/2) ≥
(
em(V+η)

bC lnmc
− 1

)
e−m(V+η/2) ≥ emη/2

bC lnmc
− 1 ,

the above expectation goes to 0 when m goes to infinity. We deal now with the second
term in (7.1). We set i∗ = 2em(V+η−γ). Then, combining Lemma 7.3 and Lemma A.1,
there exists C > 0 such that

tηmP
(
ι(tηm) > i∗

)
= tηmP

(
ι(
i∗

2
eγm) > i∗

)
< tηme

−(i∗−1)C ,

which goes to 0 when m goes to infinity. We conclude, by choosing η, γ, ε such that
η − γ + ε < −ε, that

E

( ι(τ0)∑
i=0

(T ∗i ∧ τ0 − Ti−1)

)
≤ em(V−ε) .

8 The neutral phase

The aim of this section is to study the process (On)n≥0 when none of the classes
0, . . . ,K are present in the population. Nevertheless, instead of using the occupancy
process (On)n≥0 for our study, we will use a related process, namely the distance
process (Dn)n≥0. The distance process is a Markov chain on { 0, . . . , ` }m; an element
d ∈ { 0, . . . , ` }m, is a vector that represents the distances to the master sequence of the
m individuals present in the population. The transition matrix pH of the distance process
is given by

∀d, e ∈ { 0, . . . , ` }m

pH(d, e) :=
∏

1≤i≤m

( ∑
1≤j≤m

A(d(j))M(d(j), e(i))

A(d(1)) + · · ·+A(d(m))

)
. (8.1)

The distance process and the occupancy process are related by a standard lumping
procedure (cf. Section 4 of [2]). Let k ≥ 0 We are interested in measuring the hitting
time τ∗k of the set of populations containing the classes 0, . . . , k. Let us define, with a
slight abuse of notation,

W∗k :=
{
d ∈ { 0, . . . , ` }m : d(i) ≤ k for some 1 ≤ i ≤ m

}
,

Nk :=
{
d ∈ { 0, . . . , ` }m : d(i) > k for all 1 ≤ i ≤ m

}
.

The hitting time τ∗k is then defined by

τ∗k := inf
{
n ≥ 0 : Dn ∈ W∗k

}
.

The dynamics of the process Dn, started form any point in the set NK , and until the
time τ∗K , is the same as if the fitness landscape were neutral. Since we are ultimately
interested in the hitting time τ∗k for k ≥ K, we will assume throughout the rest of this
section that the fitness function A is constant and equal to 1.

Neutral hypothesis. Throughout this section we assume that A(k) = 1 for all k ≥ 0.
The distance process has been studied in detail in Section 8 of [2]. Next we summarize

the results therein that are of pertinent to our case.
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Let (Yn)n≥0 be the Markov chain with state space { 0, . . . , ` } and transition matrix
the mutation matrix M defined in (2.1). The Markov chain (Yn)n≥0 is monotone. Let us
denote by B the binomial law B(`, 1− 1/κ), i.e.

∀b ∈ { 1, . . . , ` } B(b) :=

(
`

b

)(
1− 1

κ

)b( 1

κ

)`−b
. (8.2)

The Markov chain (Yn)n≥0 is reversible with respect to the binomial law B. The binomial
law B concentrates exponentially fast around its mean `κ := `(1 − 1/κ). We have the
following results.

Lemma 8.1. For all b < `/2, we have

1

κ`

( `
2b

)b
≤ B(b) ≤ `b

κ`−b
.

This is Lemma 8.1 in [2].

Proposition 8.2. For all n ≥
√
`, we have

P
(
Yn ≥ ln `

∣∣Y0 = k + 1
)
≥ 1− exp

(
− 1

2
(ln `)2

)
.

Proposition 8.2 in [2], states the same result except for the starting point k + 1

replaced by 0. Our proposition follows by the monotonicity of the chain (Yn)n≥0.
Let us come back to the distance process (Dn)n≥0, whose state space is { 1, . . . , ` }m

an its transition matrix is given by (8.1). We consider the following partial order on
{ 1, . . . , ` }m,

d � e ⇔ d(i) ≤ e(i) for all i ∈ { 1, . . . ,m } .

Proposition 8.3. Under the neutral hypothesis:

• The distance process is monotone with respect to the partial order �.

• If the law of D0 has positive correlations, the law of Dn does too.

We refer the reader to Section 5.2 in [2] for the details concerning the monotonicity
of the distance process. In particular, the above results are proved in Corollary 5.6 and
Proposition 5.8 therein. We have the following result concerning the discovery time of
the master sequence.

Lemma 8.4. For any d ∈ N0,

lim
`,m,q

1

`
lnE(τ∗0 |D0 = d) = lnκ .

This is Proposition 8.6 of [2]. Finally, we will need the following upper bound on the
hitting time τ∗k .

Lemma 8.5. If ` is large enough, for any b ∈ {k + 1, . . . , `},

P
(
τ∗k ≤ n

∣∣D0 = (b)m
)
≤ nm

B(0) + · · ·+ B(k)

B(b)
≤ nm(k + 1)

B(k)

B(b)
.

The proof of the first inequality is very similar to the proof of Lemma 10.15 of [1].
The second inequality is a consequence of B(k) being the largest term in the numerator,
when ` is large enough.

Since for any k ≥ 0, the setW∗0 is contained in the setW∗k , the hitting time τ0 must
be larger than the hitting time τk. The following lemma is an immediate consequence of
these observations.
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Lemma 8.6. Asymptotically, for any k ≥ 0, ε > 0 and d ∈ Nk,

E(τ∗k |D0 = d) ≤ κ`(1+ε) .

Our next purpose is to find a lower bound for τ∗k .

Lemma 8.7. For any k ≥ 0, ε > 0 and d ∈ Nk,

lim inf
`,m,q

1

`
lnP (τ∗k > κ`(1−ε) |D0 = d) = 0 .

Proof. The distance process is monotone, so we may suppose without loss of generality
that the process starts from (k+1)m. In the sequel, we follow closely the proof of the lower
bound in the Proposition 8.6 in [2]. We may couple the mutation events of the distance
process (c.f. Section 5.1 in [2]) with an array

{
U i,jn , 1 ≤ i ≤ m, 1 ≤ j ≤ `, n ≥ 1

}
via

the mapping
MH : { 0, . . . , ` } × [0, 1]` −→ { 0, . . . , ` }

defined by

∀ b ∈ { 0, . . . , ` } ∀u1, . . . , u` ∈ [0, 1]`

MH(b, u1, . . . , u`) = b−
b∑

k=1

1uk<q/(κ−1) +
∑̀
k=b+1

1uk>1−q .

The mappingMH is such that if U1, . . . , U` are i.i.d. random variables with distribution
Unif([0, 1]), then

b, c ∈ { 0, . . . , ` } P
(
MH(b, U1, . . . , U`) = c

)
= M(b, c) .

Here, the random variables U i,1n , . . . , U i,`n are responsible for the individual i in the
population mutation (or not) in the step n− 1→ n. We define the following “good event”:

E :=
{
∀n ≤ `3/4 ∀i ∈ { 1, . . . ,m }, U i,1n >

q

κ− 1
, . . . , U i,kn >

q

κ− 1

}
(8.3)

If the event E occurs, until time `3/4 none of the mutation events will create a sequence
belonging toW∗k . Proceeding as in [2], we have

P
(
τ∗k > κ`(1−ε)

∣∣D0 = (k + 1)m
)
≥ P

(
τ∗k > κ`(1−ε)

∣∣D0 = (ln `)m
)

× P
(
D`3/4 ≥ (ln `)m, E

∣∣D0 = (k + 1)m
)
. (8.4)

Using the FKG inequality, the fact that the distance process started from (k + 1)m has
positive correlations, and Proposition 8.2, we can bound the second probability on the
right hand side of (8.4) as follows

P
(
D`3/4 ≥ (ln `)m, E

∣∣D0 = (k + 1)m
)
≥ P

(
D`3/4 ≥ (ln `)m

)
P
(
E
)

≥ P
(
Y`3/4 ≥ ln `

)m
P
(
E
)
≥
(

1− e− 1
2 (ln `)2

)m(
1− q

κ− 1

)km`3/4
. (8.5)

As for the first probability on the right hand side of (8.4), let ε′ > 0 and condition on the
population at time `2:

P
(
τ∗k > κ`(1−ε)

∣∣D0 = (ln `)m
)
≥ P

(
τ∗k > κ`(1−ε)

∣∣D0 = (`k(1− ε′))m
)

× P
(
τ∗k > `2, D`2 ≥ (`k(1− ε′))m

∣∣D0 = (ln `)m
)
, (8.6)
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where `κ = `(1− 1/κ) is the mean of the binomial law B. For the second probability on
the right hand side of (8.6), we have

P
(
τ∗k > `2, D`2 ≥ (`k(1− ε′))m

∣∣D0 = (ln `)m
)

≥ P
(
D`2 ≥ (`k(1− ε′))m

∣∣D0 = (ln `)m
)
− P

(
τ∗k ≤ `2,

∣∣D0 = (ln `)m
)
. (8.7)

As in [2], there exists some c(ε′) > 0 such that the first probability on the right hand side
of (8.7) is bounded below by

P
(
D`2 ≥ (`k(1− ε′))m

∣∣D0 = (ln `)m
)
≥
(
1− e−c(ε

′)`
)m

. (8.8)

Using Lemma 8.5 along with Lemma 8.1, we have

P
(
τ∗k ≤ `2

∣∣D0 = (ln `)m
)
≤ (k + 1)`2m

B(k)

B(ln `)
≤ (k + 1)κk`k+2m

(2 ln `

`

)ln `

. (8.9)

As for the first probability on the right hand side of (8.6), we use Lemma 8.5 with
n = κ`(1−ε) and b = `κ(1− ε), along with a standard large deviations estimate in order to
conclude that, if ε′ is chosen small enough, there exists c(ε) > 0 such that, for ` large
enough

P
(
τ∗k ≤ κ`(1−ε)

∣∣D0 = (`κ(1− ε′))m
)

≤ (k + 1)κ`(1−ε)m
B(k)

B(`κ(1− ε′))
≤ (k + 1)me−c(ε)` . (8.10)

Combining (8.5), (8.8), (8.9) and (8.10), we get

P
(
τ∗k > κ`(1−ε)

∣∣D0 = (k + 1)m
)
≥
(

1− e− 1
2 (ln `)2

)m(
1− q

κ− 1

)km`3/4
(

1− (k + 1)me−c(ε)`
)((

1− e−c(ε
′)`
)m − (k + 1)κk`k+2m

(2 ln `

`

)ln `
)
.

Finally, taking logarithms, dividing by ` and sending ` to infinity gives the desired
result.

9 Proof of Theorem 2.7

The aim of this section is to prove the Theorem 2.7. Recall that V (ρ0, 0) represents
the quasipotential from ρ0 to 0 (cf. the formula (6.1)).

Definition 9.1. Define the function a 7→ ψ(a) to be equal to V (ρ0, 0) on ]0, lnA(0)[ , and
to be equal to 0 elsewhere.

Note that this definition of the mapping ψ corresponds to the one given in Subsec-
tion 2.7; on one hand, when a ∈ ]0, lnA(0)[ we have ρ(a) = ρ0 and (2.11) is just the
quasipotential V (ρ0, 0). On the other hand, when a ∈ ] lnA(0),∞[ we have ρ(a) = 0 so
that we in (2.11) we have both s0 = 0 and sl = 0, so that ψ(a) = 0 follows from the
identity IK(0, 0) = 0.

We will first look at the subcritical case, i.e. the case αψ(a) > lnκ, and we’ll deal with
the supercritical case afterwards.

9.1 The subcritical case

We suppose that αψ(a) > lnκ, so that in particular, A(0)e−a > 1, and ρ0 is well
defined. Recall that the aim is to show that, for any continuous and bounded function
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f : RK+1 −→ R

lim
`,m→∞, q→0
`q→a,m/`→α

∣∣∣∣∣
∫
Pm`+1

f

(
πk(o)

m

)
dµ(o)− f(ρ0)

∣∣∣∣∣ = 0 .

Let f : RK+1 −→ R be a continuous, bounded function. By the Ergodic Theorem for
Markov chains,∣∣∣∣∣

∫
Pm`+1

f

(
πk(o)

m

)
dµ(o)− f(ρ0)

∣∣∣∣∣ ≤ lim
n→∞

1

n

n−1∑
t=0

∣∣∣∣∣f
(
πK(Ot)

m

)
− f(ρ0)

∣∣∣∣∣ . (9.1)

Let ε > 0. We will prove that this last quantity is smaller than ε, for m, ` large enough,
q small enough, and `q,m/` close enough to a, α. We break the state space Pm`+1 into
two disjoint subsets, W∗K (the populations containing at least an individual in one of
the classes 0, . . . ,K) and NK (the populations containing no individuals in any of the
classes 0, . . . ,K). The process (On)n≥0 will jump between these two sets. We define the
following sequence of stopping times, we set τ0 := 0 and

τ∗1 := inf
{
n ≥ 0 : On ∈ W∗K

}
τ1 := inf

{
n ≥ τ∗1 : On ∈ NK

}
...

...

τ∗k := inf
{
n ≥ τk−1 : On ∈ W∗K

}
τk := inf

{
n ≥ τ∗k : On ∈ NK

}
...

...

Recall from Section 2.10 that U0
δ represents the δ–neighborhood of ρ0. The set D being

compact, the function f is uniformly continuous on D. We choose δ small enough so that
for every r ∈ U0

2δ, ∣∣f(r)− f(ρ0)
∣∣ < ε ,

and so that the set U0
δ satisfies G(U0

δ ) ⊂ U0
δ (cf. Proposition 2.6). For each k ≥ 0 we

define the following sequence of stopping times, we set Tk,0 := τ∗k and

T ∗k,1 := inf
{
n ≥ Tk,0 : Zn ∈ U0

δ

}
Tk,1 := inf

{
n ≥ T ∗k,1 : Zn 6∈ U0

2δ

}
...

...

T ∗k,i := inf
{
n ≥ Tk,i−1 : Zn ∈ U0

δ

}
Tk,i := inf

{
n ≥ T ∗k,i : Zn 6∈ U0

2δ

}
...

...

We distinguish between three different situations: either On is in NK , or On is in W∗K
and πK(On) is inside U0

2δ, or On is inW∗K and πK(On) is outside U0
2δ. We bound the sum

in (9.1) by breaking it according to these three situations, which gives the following
bound,

n−1∑
t=0

∣∣∣∣∣f
(
πK(Ot)

m

)
− f(ρ0)

∣∣∣∣∣ ≤ 2||f ||∞
∑
k≥1

(
τ∗k ∧ n− τk−1 ∧ n

)
+ εn+ 2||f ||∞

∑
k≥1

∑
i≥1

(
T ∗k,i ∧ τk ∧ n− Tk,i−1 ∧ τk ∧ n

)
. (9.2)

The next step is to bound the above sums. We start with the first one of them. We define,
for n ≥ 1, the random variable ι(n) by

ι(n) := max
{
k ≥ 0 : τk−1 < n

}
.
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We can rewrite the sum with the help of this new random variable as

∑
k≥1

(τ∗k ∧ n− τk−1 ∧ n) =

ι(n)∑
k=1

(τ∗k ∧ n− τk−1) . (9.3)

Define by τ(NK) the hitting time of NK , i.e.,

τ(NK) := inf
{
n ≥ 0 : On ∈ NK

}
.

By Corollary 6.2, there exists a number γ > 0 such that,

max
o∈W∗K

Po
(
τ(NK) < em(V−ε)) ≤ e−γm .

Thus, applying Lemma A.1 with A = B = W∗K , N = em(V−ε), p = e−γm and λ = 1/2, it
follows that, for every h ≥ 2,

P
(
ι
(h

2
em(V−ε)) ≥ h) ≤ e−(h−1)c ,

where c is a positive constant, independent of h. The next step is to bound the quantity
on the right hand side of (9.3). Since this quantity is obviously bounded by n, for any
i ≥ 0, we can decompose it according to whether ι(n) is greater or smaller than i and
bound it as follows,

E

(
ι(n)∑
k=1

(τ∗k ∧ n)− τk−1

)
≤ nP

(
ι(n) ≥ i

)
+

i∑
k=1

E
(
τ∗k − τk−1

)
.

In view of the Lemma 8.6, asymptotically, for every o ∈ Nk, we have Eo(τ∗k − τk−1) ≤
κ`(1+ε); we deduce that

E

(
ι(n)∑
k=1

(τ∗K ∧ n)− τk−1

)
≤ nP

(
ι(n) ≥ i

)
+ iκ`(1+ε) .

Let us set

in := min
{
i : n ≤ iem(V−ε)

2

}
.

On one hand, for i = in we get

nP
(
ι(n) ≥ in

)
≤ nP

(
ι
( inem(V−ε)

2

)
≥ in

)
≤ ine

m(V−ε)

2
e−(in−1)c .

This quantity goes to 0 as n goes to∞. On the other hand,

1

n
inκ

`(1+ε) ≤ 2inκ
`(1+ε)

(in − 1)em(V−ε) .

When n goes to∞, this last quantity converges to

2
κ`(1+ε)

em(V−ε) = 2 exp
(
−m

(
V − ε− `

m
(1 + ε) lnκ

))
,

which, since we are looking at the subcritical case αψ(a) > lnκ, for ε small enough, goes
to 0 when `,m go to ∞ and q goes to 0. We proceed next to bound the second of the
sums in (9.2). For n, k ≥ 1, we define the following random variables:

ι∗(n) := max
{
k ≥ 0 : τ∗k ≤ n

}
,

ιk(n) := max
{
i ≥ 0 : Tk,i−1 < n

}
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We can rewrite the sum with the help of these new random variables as follows:

∑
k≥1

∑
i≥1

(
T ∗k,i ∧ τk ∧ n− Tk,i−1 ∧ τk ∧ n

)
=

ι∗(n)−1∑
k=1

(
ιk(τk)∑
i=1

(
T ∗k,i ∧ τk − Tk,i−1

))

+

ιι∗(n)(τι∗(n))∑
i=1

(
T ∗ιι∗(n),i

∧ τι∗n ∧ n− Tιι∗(n),i−1 ∧ n
)
.

Taking the expectation, the above sum can be bounded by

nP
(
ι∗(n) ≥ in

)
+

in∑
k=1

E

(
ιk(τk)∑
i=1

(
T ∗k,i ∧ τk − Tk,i−1

))
.

Noting that ι∗(n) ≤ ι(n), the first term can be shown to converge to 0 as n goes to∞, as
in the previous section. Let us deal with the expectation. We introduce the following
stopping times: set T0 = 0 and

T ∗1 := inf
{
n ≥ T0 : Zn ∈ U0

δ

}
T1 := inf

{
n ≥ T ∗1 : Zn 6∈ U0

2δ

}
...

...

T ∗i := inf
{
n ≥ Ti−1 : Zn ∈ U0

δ

}
Ti := inf

{
n ≥ T ∗i : Zn 6∈ U0

2δ

}
...

...

Set also

τ0 := inf
{
n ≥ 0 : Zn = 0

}
,

ι(n) := max
{
i ≤ n : Ti−1 < n

}
.

Fix k ∈ { 1, . . . , in }. By the Markov property,

E

(
ιk(τk)∑
i=1

(
T ∗k,i ∧ τk − Tk,i−1

))

=
∑

z∈D\{0}

E

(
ιk(τk)∑
i=1

(
T ∗k,i ∧ τk − Tk,i−1

) ∣∣∣∣∣Zτ∗k = z

)
P
(
Zτ∗k = z

)

≤ sup
z∈D\{0}

Ez

(
ι(τ0)∑
i=1

(
T ∗i ∧ τ0 − Ti−1

))
.

Yet, by Theorem 7.1, the last expectation is bounded by em(V−γ), for any γ > 0. Therefore,

1

n

∑
1≤k≤in

E

(
ιk(τk)∑
i=1

(
T ∗k,i ∧ τk − Tk,i−1

))
≤ in

n
em(V−γ)

≤ in − 1

n
em(V−γ) +

em(V−γ)

n
≤ 2em(V−γ)

em(V−ε) +
em(V−γ)

n
.

The last term goes to 0 when n goes to∞. And choosing ε < γ, the first one converges
to 0 when m goes to∞.
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9.2 The supercritical case

We suppose that αψ(a) < lnκ. Recall that the aim is to show that, for any continuous
and bounded function f : RK+1 −→ R

lim
`,m→∞, q→0
`q→a,m/`→α

∣∣∣∣∣
∫
Pm`+1

f

(
πk(o)

m

)
dµ(o)− f(0)

∣∣∣∣∣ = 0 .

Let f : RK+1 −→ R be a continuous, bounded function. By the Ergodic Theorem for
Markov chains,∣∣∣∣∣

∫
Pm`+1

f

(
πk(o)

m

)
dµ(o)− f(0)

∣∣∣∣∣ ≤ lim
n→∞

1

n

n−1∑
t=0

∣∣∣∣∣f
(
πK(Ot)

m

)
− f(0)

∣∣∣∣∣ .
Proceeding as in the subcritical case, we obtain the following bound:

n−1∑
t=0

∣∣∣∣∣f
(
πK(Ot)

m

)
− f(0)

∣∣∣∣∣ ≤ 2||f ||∞
( ι(n)−1∑

k=1

(τk − τ∗k ) + n− τ∗ι(n)

)
.

Denote by τ(W∗K) the hitting time of the setW∗K , i.e.,

τ(W∗K) :=
{
n ≥ 0 : On ∈ W∗K

}
.

In view of Lemma 8.7, for every ε, γ > 0, we have

max
o∈NK

Po
(
τ(W∗K) > κ`(1−ε)

)
≥ e−γm .

Thus, using Lemma A.1 with A = B = Nk, λ = 1− e−γm/2 and N = κ`(1−ε), we conclude
that, for all h ≥ 2,

P
(
ι
(
h(1− e−γm/2)κ`(1−ε)

)
≥ h

)
< e−(h−1)c , (9.4)

where c is a positive constant which does not depend on h. The next step is to bound the
quantity

E

(
ι(n)−1∑
k=1

(
τk − τ∗k

)
+ n− τ∗ι(n)

)
.

Let i ≥ 1. Since this quantity is obviously bounded by n, we can decompose it as
according to whether ι(n) is greater or smaller than i and bound it as follows

E

(
ι(n)−1∑
k=1

(
τk − τ∗k

)
+ n− τ∗ι(n)

)
≤ nP

(
ι(n) ≥ i

)
+

i∑
k=1

E
(
τk − τ∗k

)
.

Since for every o ∈ W∗K , by Theorem 6.1,

E
(
τ1
∣∣O0 = o

)
≤ exp

(
m(V + ε)

)
,

we deduce that

E

(
ι(n)−1∑
k=1

(
τk − τ∗k

)
+ n− τ∗ι(n)

)
≤ nP

(
κ(n) ≥ i

)
+ i exp

(
m
(
ψ(a) + ε

))
.

Let us set
in := min

{
i : n ≤ i(1− e−γm/2)κ`(1−ε)

}
.
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On one hand, for i = in, using (9.4), we get

nP
(
ι(n) ≥ in

)
≤ in(1− e−γm/2)κ`(1−ε)

× P
(
ι
(
in(1− e−γm/2)κ`(1−ε)

)
≥ in

)
≤ in(1− e−γm/2)κ`(1−ε)e−(in−1)c .

This quantity goes to 0 as n goes to infinity. On the other hand,

in
n
em(V+ε) ≤ in

(in − 1)(1− e−γm/2)κ`(1−ε)
em(V+ε) .

When n goes to infinity, this last quantity converges to

em(V+ε)

(1− e−γm/2)κ`(1−ε)

= exp
(
− `
(

lnκ− αψ(a)− ε− ε lnκ+ (ln(1− e−γm/2))/`
))
,

which, for ε small enough, goes to 0 with `,m, q.

A Bounds on hitting times

Let E be a finite set and (Xn)n≥0 a recurrent Markov chain on E. For a set A ⊂ E we
denote by τA the hitting time of A, i.e.,

τA := inf
{
n ≥ 0 : Xn ∈ A

}
.

Let A ⊂ B ⊂ E and define the following sequence of stopping times, we set T0 = 0 and

T ∗1 := inf
{
n ≥ 0 : Xn ∈ A

}
T1 := inf

{
n ≥ T ∗1 : Xn 6∈ B

}
...

...

T ∗k := inf
{
n ≥ Tk−1 : Xn ∈ A

}
Tk := inf

{
n ≥ T ∗k : Xn 6∈ B

}
...

...

Define, for n ≥ 1, the random variable ι(n) by

ι(n) := max
{
k ≥ 0 : Tk−1 < n

}
.

Our objective is to give a bound on the random variable ι(n). Let us assume that there
exist N, p > 0 such that

max
z∈A

P
(
τE\B ≤ N

∣∣X0 = z
)
< p .

Lemma A.1. For any h ≥ 1 and λ > p, there exists c > 0 (depending on λ but not on h),
such that

P
(
ι
(
hλN

)
≥ h

)
< e−(h−1)c .

Proof. Let us assume that hλ is an integer number (otherwise we may replace it by bhλc).
From the definition of ι(n), we see that

ι
(
hλN

)
≥ h ⇔ Th−1 < hλN .

We define the random variables (Yi)i≥1 by setting

Yi := Ti − T ∗i , i ≥ 1 .
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Then,

Th−1 ≥ Y1 + · · ·+ Yh−1 .

In view of the assumption on τE\B, for every i ≥ 1,

P
(
Yi ≤ N

)
< p .

We define the following sequence of Bernoulli random variables

εi := 1Yi≤N , i ≥ 1 .

Thus, if Th−1 < hλN , at least (h− 1)λ of the random variables Y1, . . . , Yh−1 must satisfy
Yi ≤ N . Whence,

P
(
Th−1 < hλN

)
≤ P

(
ε1 + · · ·+ εh−1 ≥ (h− 1)λ

)
.

We use the exponential Chebyshev inequality in order to bound the last probability: for
any β > 0 we have

P
(
ε1 + · · ·+ εh−1 ≥ (h− 1)λ

)
≤ e−βλE

(
eβε1/(h−1) · · · eβεh−1/(h−1)

)
.

The random variables ε1, . . . , εh−2 are measurable with respect to
(
Xn, 0 ≤ n ≤ T ∗h−1

)
.

Thus, thanks to the strong Markov property,

E
(
εβε1/(h−1) · · · eβεh−1/(h−1)

)
= E

(
E
(
eβε1/(h−1) · · · eβεh−1/(h−1)

∣∣X0, . . . , XT∗h−1

))
= E

(
eβε1/(h−1) · · · eβεh−2/(h−1)E

(
eβεh−1/(h−1)

∣∣X0, . . . , Xτ∗h−1

))
.

Yet, for all x ∈ A,

E
(
eβε1/(h−1)

∣∣X0 = z
)
≤ eβ/(h−1)p+ 1− p .

Iterating, this procedure, we obtain

E
(
eβε1/(h−1) · · · eβεh−1/(h−1)

)
≤
(
eβ/(h−1)p+ 1− p

)h−1
.

We make the change of variables β → (h− 1)β in order to obtain

P
(
ε1 + · · · + εh−1 ≥ (h − 1)λ

)
≤ exp

(
− (h − 1)

(
βλ − ln(eβp + 1 − p)

))
.

Denote by Λ∗(t) the Cramèr transform of the Bernoulli law with parameter p,

Λ∗(t) := sup
β≥0

(
βt− ln(eβp+ 1− p)

)
= t ln

t

p
+ (1− t) ln

1− t
1− p

.

Optimizing the previous inequality over β, we obtain

P
(
ε1 + · · ·+ εh−1 ≥ (h− 1)λ

)
≤ exp

(
− (h− 1)Λ∗(λ)

)
,

where Λ∗(λ) > 0 is independent of h. It follows that

P
(
ι(hλN) ≥ h

)
≤ e−(h−1)Λ∗(λ) ,

as wanted.
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