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Abstract

In this paper we analyze metastability and nucleation in the context of a local version
of the Kawasaki dynamics for the two-dimensional strongly anisotropic Ising lattice gas
at very low temperature. Let Λ = {0, 1, .., L}2 ⊂ Z2 be a finite box. Particles perform
simple exclusion on Λ, but when they occupy neighboring sites they feel a binding
energy −U1 < 0 in the horizontal direction and −U2 < 0 in the vertical one. Thus the
Kawasaki dynamics is conservative inside the volume Λ. Along each bond touching the
boundary of Λ from the outside to the inside, particles are created with rate ρ = e−∆β ,
while along each bond from the inside to the outside, particles are annihilated with
rate 1, where β is the inverse temperature and ∆ > 0 is an activity parameter. Thus,
the boundary of Λ plays the role of an infinite gas reservoir with density ρ. We consider
the parameter regime U1 > 2U2 also known as the strongly anisotropic regime. We
take ∆ ∈ (U1, U1 + U2) and we prove that the empty (respectively full) configuration
is a metastable (respectively stable) configuration. We consider the asymptotic regime
corresponding to finite volume in the limit of large inverse temperature β. We
investigate how the transition from empty to full takes place. In particular, we
estimate in probability, expectation and distribution the asymptotic transition time
from the metastable configuration to the stable configuration. Moreover, we identify
the size of the critical droplets, as well as some of their properties. For the weakly
anisotropic model corresponding to the parameter regime U1 < 2U2, analogous results
have already been obtained. We observe very different behavior in the weakly and
strongly anisotropic regimes. We find that the Wulff shape, i.e., the shape minimizing
the energy of a droplet at fixed volume, is not relevant for the critical configurations.
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Metastability for strongly anisotropic lattice gas under Kawasaki dynamics

1 Introduction

Metastability is a dynamical phenomenon that occurs when a system is close to first
order phase transition, i.e., a crossover that involves a jump in some intrinsic physical
parameter such as the energy density or the magnetization. The phenomenon of metasta-
bility occurs when a system is trapped for a long time in a state (the metastable state)
different from the equilibrium state (the stable state) for specific values of the thermody-
namical parameters, and subsequently at some random time the system undergoes a
sudden transition from the metastable to the stable state. So we call metastability or
metastable behavior the transition from the metastable state to the equilibrium state.
Investigating metastability, researches typically address three main question:

1. What are the asymptotic properties of the first hitting time of the stable states for
a process starting from a metastable state?

2. What is the set of critical configurations that the process visits with high probability
before reaching the set of stable states?

3. What is the tube of typical trajectories that the process follows with high probability
during the crossover from the metastable states to the stable states?

In this paper we study the metastable behavior of the two-dimensional strongly
anisotropic Ising lattice gas that evolves according to Kawasaki dynamics, i.e., a discrete
time Markov chain defined by the Metropolis algorithm with transition probabilities
given precisely later in (2.9) (see in subsections 2.1 and 2.2 for more precise definitions).
We consider the local version of the model, i.e., particles live and evolve in a conservative
way in a box Λ ⊂ Z2 and are created and annihilated at the boundary of the box Λ in
a way that reflects an infinite gas reservoir. More precisely, particles are created with
rate ρ = e−∆β and are annhilated with rate 1, where β is the inverse temperature of
the gas and ∆ > 0 is an activity parameter. When two particles occupy horizontal (resp.
vertical) neighbouring sites, each one feels a binding energy −U1 < 0 (resp. −U2 < 0).
Without loss of generality we assume U1 ≥ U2 and we choose ∆ ∈ (U1, U1 + U2), so that
the system is in the metastable regime. For this value of the parameters the totally
empty (resp. full) configuration can be naturally related to metastability (resp. stability).
We consider the asymptotic regime corresponding to finite volume in the limit of large
inverse temperature β.

In this work we study the strong anisotropic case, i.e., the parameters U1, U2 and ∆

are fixed and such that U1 > 2U2 and ε := U1 + U2 −∆ > 0 sufficiently small. A special
feature of Kawasaki dynamics is that in the metastable regime (see (2.36)) particles
move along the border of a droplet more rapidly than they arrive from the boundary of
the box. More precisely, single particles attached to one side of a droplet tipycally detach
before the arrival of the next particle (because eU1β � e∆β and eU2β � e∆β), while bars
of two or more particles tipycally do not detach (because e∆β � e(U1+U2)β).

The goal of the paper is to investigate the critical configurations and the tunnelling
time between 0 (empty box) and 1 (full box) for this model, answering questions 1 and 2

above. In subsection 2.4 we give four main results: Theorem 2.2 states that the empty
box is the metastable state and the full box is the stable state. Theorem 2.3 states that
the random variable Xβ := 1

β log(τ
0
1 ) converges in probability to Γ as β tends to infinity,

where Γ > 0 is a suitable constant that is computed in (2.35) and τ0
1 is the first hitting

time to 1 starting from the metastable state 0. Moreover, in the same theorem there is
also its asymptotic behavior in L1 and in law in the limit as β →∞. In particular, after
a suitable rescaling, the tunnelling time from 0 to 1 follows an exponential law. This
is typical for models where a success occurs only after many unsuccessfull attempts.
Theorem 2.4 states that some set of configurations P, which we define precisely in (2.32)
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Metastability for strongly anisotropic lattice gas under Kawasaki dynamics

Figure 1: Typical path for strong anisotropy (on the left hand-side) and weak anisotropy
(on the right hand-side).

(see also Figure 2), has a domino shape with l1 ∼ 2l2 (see (2.25), (2.26) and (2.27) for
rigorous definitions) and it is a gate for the nucleation, a set with the property that has
to be crossed during the transition (see subsection 2.3.1 for the definition of a gate).
Theorem 2.5 states that with probability tending to 1 the configurations contained in
R(2l∗2 − 3, l∗2) or R(2l∗2 − 1, l∗2 − 1) are subcritical, in the sense that they shrink to 0 before
growing to 1, and those containing R(2l∗2 − 2, l∗2) are supercritical, in the sense that they
grow to 1 before shrinking to 0.

In the regime with exponentially small transition probabilities, it is natural to call
Wulff shape the one minimizing the energy of a droplet at fixed volume. Indeed at low
temperature it is possible to show that only the energy is relevant, and the entropy
is negligible. An interesting question is then how relevant is the Wulff shape in the
nucleation pattern: is the shape of critical configurations Wulff? As mentioned above, if
the evolution is according to Kawasaki dynamics, it turns out that particles can move
along the border of a droplet more rapidly than they can arrive from the boundary of
the container. For this reason particles will be rearranged before the growth of the
droplet. Thus one could be tempted to conjecture that this displacement along the
border of the growing droplet should establish the equilibrium shape at fixed volume,
i.e., the Wulff shape. However, in Section 2.5 we give an heuristic discussion based on a
careful comparison between time scales of contraction, of growth and of different types
of movements on the border of a droplet (see (2.49)), which indicates that the above
conjecture is false. Indeed, as shown in Figure 1 on the left hand-side, the critical droplet
is not Wulff (see Theorem 2.4) and the Wulff shape is a supercritical configuration (see
Theorem 2.5 and Remark 2.6). When growing a nucleus of plus ones the system follows
domino shapes up to the critical droplet P and thus in this case the ratio between the
side lengths is approximatively 2. In the Wulff shape the ratio between the side lengths
is of order U1

U2
, so we come to the conclusion that the critical droplets are not Wulff

shape. In Section 2.5, we let l̂1, l∗2 be the horizontal and vertical sides, respectively,
of the critical droplet (l̂1 ∈ {2l∗2 − 2, 2l∗2 − 1}, see (2.33) and (2.34)). In the strongly
anisotropic case, the supercritical growth follows a sequence of rectangles with l2 = l∗2
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and l1 = l̂1 + m, with m = 1, 2, ... up to l1 = L, the side of the container. During this
epoch, the nucleation pattern crosses the Wulff shape with sides (l∗1, l

∗
2) (see (2.43) and

Remark 2.6). Finally, after the formation of a strip l∗2 × L the system starts growing in
the vertical direction up to the full configuration. Similarly, for any anisotropic Glauber
dynamics the critical configurations are not Wulff-shaped and the tube of typical paths
crosses the Wulff shape only during the supercritical growth (see [42]). Indeed the
tube of typical paths evolves along squared-shaped configurations in the subcritical part,
along horizontal-growing rectangles until they wrap around the torus, and then stripes
growing in vertical direction up to the configurations with all pluses.

On the one hand, if we change the definition of a gate not imposing that the energy
of its configurations is Γ, but requiring only that every optimal path must cross it,
heuristically we have that the Wulff shape has a gate property. On the other hand, we
want to underline that Theorem 2.5 can not be extended for the Wulff shape, since it is
not true that all the configurations with rectangle smaller than Wulff shape are subritical
(see Remark 2.6). Moreover, Theorem 2.3 can not be adapted to the Wulff shape because
in our paper we fix the values of the parameters U1, U2 and ∆ such that (2.36) holds.
The most interesting results are obtained in the cases when ε is small, in which we have
that the critical configurations are large. In our regime the energy of the Wulff shape is
different from Γ and this holds also in the case in which ∆→ U1 + U2 that corresponds
to ε→ 0.

1.1 Comparison with models subject to Kawasaki dynamics

In this subsection we make a comparison between the model considered in this paper
and other models that also consider Kawasaki dynamics and were already studied in
literature.

The bidimensional isotropic case U1 = U2 has already been studied using the pathwise
approach in [40] with results concerning question 1 giving estimates in probability, law
and distribution and, concerning question 2, giving intrinsically the critical configurations
without their geometrical description. In [33] the authors investigated question 3
identifying the tube of typical trajectories, again using the pathwise approach. For the
three-dimensional case, in [35] there are results concerning questions 1 and 2. It is
interesting that, concerning the asymptotic expectation of the tunnelling time as in
(2.38), using the pathwise approach, it is not possible to distinguish the presence of
a certain function f(β) such that log f(β)/β → 0 in the limit as β → +∞ and E0τ1 =

f(β)eΓβ(1 + o(1)), or the presence of a constant factor. To this end, a more detailed study
of the so-called pre-factor f(β) is given in [9] for two and three dimensions, using the
potential theoretic approach. In [9] the authors estimated the constant pre-factor and
found that it does not depend on the parameter β, but on the size of the box and the
cardinality of the set of critical droplets with size lc. These estimates of the pre-factor
are possible once the geometrical description of the critical configurations and of its
neighborhood are found. See also [34], where [1] is applied to derive again results for
this model. Furthermore, in the three-dimensional case similar results are obtained but
with less control over the geometry and the constant. Since in the isotropic models the
Wulff-shape concides with the critical shape, it is not possible to distinguish among them.
This motivates together with applications the study of anisotropic models.

The weak anisotropic case U2 < U1 < 2U2 − ε has already been studied in [50]. We
observe very different behavior with respect to (w.r.t.) strong anisotropy. Indeed for
weak anisotropy, as we can see in Figure 1 on the right hand-side, after the growth
along domino shapes with l1 ∼ 2l2 (see (2.25),(2.26) and (2.27)) during the early stage of
nucleation, the nucleation pattern consists of a growing sequence of a certain class of
rectangles, called standard rectangles (see (2.44) and (2.45) for a rigorous definition).
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In this regime we have that l∗1 and l∗2 are the critical sizes (see (2.43) and (2.30) for
the definition). In [50] it is proved that the critical droplet is close to the Wulff shape,
whereas during the other stages of nucleation the shape of the growing droplet is not
Wulff, but standard (see [50, Theorems 2,3]). This argument leads to say that in both
strong and weak anisotropy the Wulff shape is not relevant in the nucleation pattern as
for anisotropic Glauber dynamics (see [42]). Our choice to work with Kawasaki dynamics
rather than Glauber in this very low temperature regime is a first step in showing
the robustness of the argument rooted in the dynamical nature of metastable systems.
The locally conservative dynamics and the movement of particles along the border of
the droplet give a regularization effect. Surprisingly, as mentioned above, this effect
does not drive the nucleation process along Wulff-shaped configurations especially in
the assumption of strong anisotropy. More precisely, for weak anisotropy the critical
configuration is Wulff-shaped but the tube of typical paths is evolving via domino and
standard configurations while for strong anisotropy the critical configurations are not
Wulff-shaped and the tube of typical paths is evolving via domino rectangles in the
subcritical part and via horizontal-growing rectangles in the supercritical part.

Results similar to the ones obtained in this paper were given in [37, 38, 39] where
two types of particles are present in Λ. In particular, the authors analyzed the two-
dimensional lattice gas subject to Kawasaki dynamics, where neighboring particles
have negative binding energy if and only if their types are different. The authors
obtained results regarding the identification of the critical droplets and their geometrical
properties, i.e., question 2, in [39]. With this knowledge they studied the transition time
from the metastable state to the stable state in [37] in law and in distribution (question
1), using the potential-theoretic approach. In particular, they were able to identify the
pre-factor.

It turns out that a complete description of the tube of typical trajectories (question 3),
as given in [42] for the anisotropic Ising model evolving under Glauber dynamics, is much
more complicated when we consider Kawasaki dynamics. Using Kawasaki dynamics,
the tube of typical trajectories is analyzed only in [33] for the two-dimensional isotropic
case. There are no known results for three dimensions, either for the anisotropic
model or for the two-particle-types model. We remark that in many previous papers
([3, 18, 26, 35, 42, 43, 49]) the asymptotic of the tunnelling time and the tube of typical
trajectories realizing the transition were treated simultaneously by exploiting a detailed
control of the energy landscape in connection with the paths allowed by the dynamics.

1.2 State of the art

A mathematically description was first attempted in [45, 41] inspired on Gibbsian
equilibrium Statistical Mechanics. A more faithful approach, known as pathwise ap-
proach, was initiated in 1984 [12] and was developed in [55, 56, 57]. This approach
focuses on the dynamics of the transition from metastable to stable state. Independently,
a graphical approach was introduced in [14] and later used for Ising-like models [15].
With the pathwise approach they obtained a detailed description of metastable behavior
of the system and it made possible to answer the three questions of metastability. By
identifying the most likely path between metastable states, the time of the transition and
the tube of typical trajectories can be determined. A modern version of the pathwise
approach containing the information about time and critical droplets disentangled w.r.t.
the tube of typical trajectories can be found in [46, 20, 21, 53]. This approach developed
over the years has been extensively applied to study metastability in Statistical Mechan-
ics lattice models. In this context, this approach and the one that follows ([7, 46, 57])
have been developed with the aim of finding answers valid with maximal generality
and to reduce as much as possible the number of model dependent inputs necessary to
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describe the metastable behavior of any given system.
Another approach is the potential-theoretic approach, initiated in [7]. We refer to [8]

for an extensive discussion and applications to different models. In this approach, the
metastability phenomenon is interpreted as a sequence of visits of the path to different
metastable sets. This method focuses on a precise analysis of hitting times of these sets
with the help of potential theory. In the potential-theoretic approach the mean transition
time is given in terms of the so-called capacities between two sets. Crucially capacities
can be estimated by exploiting powerful variational principles. This means that the
estimates of the average crossover time that can be derived are much sharper than those
obtained via the pathwise approach. The quantitative success of the potential-theoretic
approach is however limited to the case of reversible Markov processes.

These mathematical approaches, however, are not completely equivalent as they
rely on different definitions of metastable states (see [20, Section 3] for a comparison)
and thus involve different properties of hitting and transition times. The situation is
particularly delicate for evolutions of infinite-volume systems, for irreversible systems,
and degenerate systems, i.e., systems where the energy landscape has configurations
with the same energy (as discussed in [20, 21, 25]). More recent approaches are
developed in [1, 2, 4].

Statistical mechanical models for magnets deal with dynamics that do not conserve
the total number of particles or the total magnetization. They include single spin-
flip Glauber dynamics and many probabilistic cellular automata (PCA), that is parallel
dynamics. The pathwise approach was applied in finite volume at low temperature in
[12, 54, 15, 42, 43, 26, 49, 17] for single-spin-flip Glauber dynamics and in [18, 22, 23, 24]
for parallel dynamics. The potential theoretic approach was applied to models at
finite volume and at low temperature in [11, 9, 38, 37, 51, 36]. The more involved
infinite volume limit at low temperature or vanishing magnetic field was studied in
[27, 28, 58, 59, 47, 48, 40, 30, 32, 10, 16, 31] for Ising-like models under single-spin-flip
Glauber and Kawasaki dynamics.

1.3 Outline of the paper

The outline of the paper is as follows. In Section 2 we define the model, give some
definitions in order to state our main theorems (see Theorems 2.2, 2.3, 2.4 and 2.5),
give a comparison between strong and weak anisotropy and a heuristic discussion of
the dynamics. In Section 3 we obtain our main model-dependent results regarding the
metastable and stable states (Theorem 2.2), tunnelling time (Theorem 2.3) and the gate
of the transition (Theorem 2.4). In Section 4 we give the proof of Theorem 3.7, which
consists in a careful analysis of the minimal energy along all the possible communicating
configurations from a particular set B to Bc (see (3.29) for the precise definition). In
Section 5 we prove an important result that allows us to deduce Theorem 2.5. In the
Appendix we give additional explicit computations.

2 Model and results

2.1 Definition of the model

Let Λ = {0, .., L}2 ⊂ Z2 be a finite box centered at the origin. The side length L is
fixed, but arbitrary, and later we will require L to be sufficiently large. Let

∂−Λ := {x ∈ Λ: ∃ y /∈ Λ: |y − x| = 1}, (2.1)

be the interior boundary of Λ and let Λ0 := Λ \ ∂−Λ be the interior of Λ. With each x ∈ Λ

we associate an occupation variable η(x), assuming values 0 or 1. A lattice configuration
is denoted by η ∈ X = {0, 1}Λ.
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Each configuration η ∈ X has an energy given by the following Hamiltonian:

H(η) := −U1

∑
(x,y)∈Λ∗0,h

η(x)η(y)− U2

∑
(x,y)∈Λ∗0,v

η(x)η(y) + ∆
∑
x∈Λ

η(x), (2.2)

where Λ∗0,h (resp. Λ∗0,v) is the set of the horizontal (resp. vertical) unoriented bonds
joining nearest-neighbors points in Λ0. Thus the interaction is acting only inside Λ0; the
binding energy associated to a horizontal (resp. vertical) bond is−U1 < 0 (resp. −U2 < 0).
We may assume without loss of generality that U1 ≥ U2. (Note that H −∆

∑
x∈∂−Λ η(x)

can be viewed as the Hamiltonian, in lattice gas variables, for an Ising system enclosed
in Λ0, with 0 boundary conditions.)

The grand-canonical Gibbs measure associated with H is

µ(η) :=
e−βH(η)

Z
η ∈ X , (2.3)

where

Z :=
∑
η∈X

e−βH(η) (2.4)

is the so-called partition function.

2.2 Local Kawasaki dynamics

Next we define Kawasaki dynamics on Λ with boundary conditions that mimic the
effect of an infinite gas reservoir outside Λ with density ρ = e−∆β . Let b = (x→ y) be an
oriented bond, i.e., an ordered pair of nearest neighbour sites, and define

∂∗Λout := {b = (x→ y) : x ∈ ∂−Λ, y 6∈ Λ},
∂∗Λin := {b = (x→ y) : x 6∈ Λ, y ∈ ∂−Λ},
Λ∗,orie := {b = (x→ y) : x, y ∈ Λ},

(2.5)

and put Λ̄∗,orie := ∂∗Λout ∪ ∂∗Λin ∪ Λ∗, orie. Two configurations η, η′ ∈ X with η 6= η′ are
said to be communicating states if there exists a bond b ∈ Λ̄∗,orie such that η′ = Tbη,
where Tbη is the configuration obtained from η in any of these ways:

• for b = (x → y) ∈ Λ∗, orie, Tbη denotes the configuration obtained from η by
interchanging particles along b:

Tbη(z) =


η(z) if z 6= x, y,

η(x) if z = y,

η(y) if z = x.

(2.6)

• For b = (x→ y) ∈ ∂∗Λout we set:

Tbη(z) =

{
η(z) if z 6= x,

0 if z = x.
(2.7)

This describes the annihilation of particles along the border;

• for b = (x→ y) ∈ ∂∗Λin we set:

Tbη(z) =

{
η(z) if z 6= y,

1 if z = y.
(2.8)

This describes the creation of particles along the border.
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The Kawasaki dynamics is the discrete time Markov chain (ηt)t∈N on state space X
given by the following transition probabilities: for η 6= η′:

P(η, η′) :=

{
|Λ̄∗, orie|−1

e−β[H(η′)−H(η)]+ if ∃b ∈ Λ̄∗,orie : η′ = Tbη

0 otherwise
(2.9)

and P(η, η) := 1−
∑
η′ 6=η P(η, η′), where [a]+ = max{a, 0}. This is a standard Metropolis

dynamics with an open boundary: along each bond touching ∂−Λ from the outside,
particles are created with rate ρ = e−∆β and are annihilated with rate 1, while inside Λ0

particles are conserved. Note that an exchange of occupation numbers η(x) for any x
inside the ring Λ \ Λ0 does not involve any change in energy.

Remark 2.1. The stochastic dynamics defined by (2.9) is reversible w.r.t. Gibbs measure
(2.3) corresponding to H.

2.3 Definitions and notations

We will use italic capital letters for subsets of Λ, script capital letters for subsets
of X , and boldface capital letters for events under the Kawasaki dynamics. We use
this convention in order to keep the various notations apart. We will denote by Pη0 the
probability law of the Markov process (ηt)t≥0 starting at η0 and by Eη0 the corresponding
expectation.

In order to formulate our main results in Theorem 2.2, Theorem 2.3, Theorem 2.4
and Theorem 2.5, we first need some definitions.

2.3.1 Model-independent definitions and notations

1. Paths, boundaries and hitting times.

• A path ω is a sequence ω = ω1, . . . , ωk, with k ∈ N, ωi ∈ X and P (ωi, ωi+1) > 0 for
i = 1, . . . , k − 1. We write ω : η → η′ to denote a path from η to η′, namely with
ω1 = η, ωk = η′. A set A ⊂ X with |A| > 1 is connected if and only if for all η, η′ ∈ A
there exists a path ω : η → η′ such that ωi ∈ A for all i.

• Given a non-empty set A ⊂ X , define the first-hitting time of A as

τA := min{t ≥ 0: ηt ∈ A}. (2.10)

2. Min-max and gates

• The bottom F(A) of a non-empty set A ⊂ X is the set of global minima of the
Hamiltonian H in A:

F(A) := {η ∈ A : H(η) = min
ζ∈A

H(ζ)}. (2.11)

With an abuse of notation, for a set A whose points have the same energy we
denote this energy by H(A).

• The communication height between a pair η, η′ ∈ X is

Φ(η, η′) := min
ω : η→η′

max
ζ∈ω

H(ζ). (2.12)

• We call stability level of a state ζ ∈ X the energy barrier

Vζ := Φ(ζ, Iζ)−H(ζ), (2.13)
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where Iζ is the set of states with energy below H(ζ):

Iζ := {η ∈ X : H(η) < H(ζ)}. (2.14)

We set Vζ :=∞ if Iζ is empty.

• We call set of V -irreducible states the set of all states with stability level larger
than V :

XV := {η ∈ X : Vη > V }. (2.15)

• The set of stable states is the set of the global minima of the Hamiltonian:

X s := F(X ). (2.16)

• The set of metastable states is given by

Xm := {η ∈ X : Vη = max
ζ∈X\β

Vζ}. (2.17)

We denote by Γm the stability level of the states in Xm.

• We denote by (η → η′)opt the set of optimal paths, i.e., the set of all paths from η to
η′ realizing the min-max in X , i.e.,

(η → η′)opt := {ω : η → η′ such that max
ξ∈ω

H(ξ) = Φ(η, η′)}. (2.18)

• The set of minimal saddles between η, η′ ∈ X is defined as

S(η, η′) := {ζ ∈ X : ∃ω ∈ (η → η′)opt, ω 3 ζ such that max
ξ∈ω

H(ξ) = H(ζ)}. (2.19)

Given two non-empty sets A,B ⊆ X , put

S(A,B) :=
⋃

η∈A, η′∈B : Φ(η,η′)=Φ(A,B)

S(η, η′). (2.20)

• Given a pair η, η′ ∈ X , we say thatW ≡W(η, η′) is a gate for the transition η → η′

ifW(η, η′) ⊆ S(η, η′) and ω ∩W 6= ∅ for all ω ∈ (η → η′)opt.

• We say thatW is a minimal gate for the transition η → η′ if it is a gate and for any
W ′ ⊂ W there exists ω′ ∈ (η → η′)opt such that ω′ ∩W ′ = ∅. In words, a minimal
gate is a minimal subset of S(η, η′) by inclusion that is visited by all optimal paths.

2.3.2 Model-dependent definitions and notations

We briefly give some model-dependent definitions and notations in order to state our
main theorems. For more details see subsection 3.1.

• For x ∈ Λ0, let nn(x) := {y ∈ Λ0 : |y − x| = 1} be the set of nearest-neighbor sites
of x in Λ0.

• A free particle in η ∈ X is a site x such that either x ∈ η ∩ ∂−Λ or x ∈ η ∩ Λ0, and∑
y∈nn(x)∩Λ0

η(y) = 0.

We denote by ηfp the union of free particles in ∂−Λ and free particles in Λ0 and by
ηcl the clusterized part of η

ηcl := η ∩ Λ0 \ ηfp. (2.21)

We denote by |ηfp| the number of free particles in η and by |ηcl| the cardinality of
the clusterized part of η.
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• Given a configuration η ∈ X , consider the set C(ηcl) ⊂ R2 defined as the union of
the 1× 1 closed squares centered at the occupied sites of ηcl in Λ0.

• For η ∈ X , let |η| be the number of particles in η, γ(η) the Euclidean boundary of
C(ηcl), γ(η) = ∂C(ηcl); we denote by g1(η) (resp. g2(η)) one half of the horizontal
(resp. vertical) length of γ(η).

• Let p1(η) and p2(η) be the total lengths of horizontal and vertical projections of
C(ηcl) respectively.

• We define g′i(η) := gi(η) − pi(η) ≥ 0; we call monotone a configuration such that
gi(η) = pi(η) for i = 1, 2.

• We write
s(η) := p1(η) + p2(η),

v(η) := p1(η)p2(η)− |ηcl|,
n(η) := |ηfp|.

(2.22)

• We denote by R(l1, l2) the set of configurations whose single contour is a rectangle
R(l1, l2), with l1, l2 ∈ N. For any η, η′ ∈ R(l1, l2) we have immediately:

H(η) = H(η′) = H(R(l1, l2)) = U1l2 + U2l1 − εl1l2, (2.23)

where

ε := U1 + U2 −∆. (2.24)

• Let l2 ≥ 2. A rectangle R(l1, l2) with l1 = 2l2 is called 0-domino rectangle and in
this case we have [s]3 = [0]3 with s = l1 + l2, where for x ∈ Z, n ∈ N we denote
[x]n := x mod n. Thus we define the set of 0-domino rectangles as R0−dom(s) =

R(l1(s), l2(s)) with

l1(s) :=
2s

3
, l2(s) :=

s

3
for [s]3 = [0]3. (2.25)

If l1 = 2l2 − 2, we have [s]3 = [1]3, so we define the set of 1-domino rectangles as
R1−dom(l1(s), l2(s)) with

l1(s) :=
2s− 2

3
, l2(s) :=

s+ 2

3
for [s]3 = [1]3. (2.26)

If l1 = 2l2 − 1, we have [s]3 = [2]3, so we define the set of 2-domino rectangles as
R2−dom(l1(s), l2(s)) with

l1(s) :=
2s− 1

3
, l2(s) :=

s+ 1

3
for [s]3 = [2]3. (2.27)

2.4 Main results

Let

0 := {η ∈ X : η(x) = 0 ∀x ∈ Λ} (2.28)

be the configuration empty. By (2.2) and (2.28) we have that H(0) = 0. Let

1 := {η ∈ X : η(x) = 1 ∀x ∈ Λ0, η(x) = 0 ∀x ∈ Λ\Λ0} (2.29)

be the configuration that is full in Λ0 and empty in Λ\Λ0.

Theorem 2.2. If the side L of the box Λ is sufficiently large, then Γm = V0 = Φ(0, 1) = Γ

and 1 = X s and 0 = Xm.
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l∗2

2l∗2 − 1

l∗2

2l∗2 − 2

Figure 2: Configurations in P: on the left hand-side is represented a configuration in P1

and on the right hand-side a configuration in P2.

The proof of Theorem 2.2 is analogue to the one in [50, Proposition 15] for a different
value of L (say L > dU1+U2

ε e) once we have given a specific upper bound V ∗ for the
stability levels of the configurations different from 0 and 1 (see Proposition 3.10) and
proved Φ(0, 1) = Γ (see Corollary 3.9).

We define the critical vertical length

l∗2 :=

⌈
U2

U1 + U2 −∆

⌉
=

U2

U1 + U2 −∆
+ δ, (2.30)

where d e denotes the integer part plus 1, and 0 < δ < 1 is fixed. Furthermore we set the
critical value of s and the critical configurations P as

s∗ := 3l∗2 − 1, (2.31)

P := P1 ∪ P2, (2.32)

where

P1 := {η : n(η) = 0, v(η) = `1(s∗)− 1, ηcl is connected, g′1(η) = 0, g′2(η) = 1,

with circumscribed rectangle in R(`1(s∗), `2(s∗))}, (2.33)

P2 := {η : n(η) = 1, v(η) = `2(s∗ − 1)− 1, ηcl is connected, monotone,
with circumscribed rectangle in R(`1(s∗ − 1), `2(s∗ − 1))}, (2.34)

with li(s), i = 1, 2 defined as in (2.25), (2.26) and (2.27) (recall (2.22)). See Figure 2 for
an example of configurations in P.

From (3.11) below, it follows that H(η) is constant on P. We write

Γ := H(P)−H(0) = H(P) = H(R(2l∗2 − 2, l∗2)) + ε(l∗2 − 1) + ∆ =

= H(R(2l∗2 − 1, l∗2 − 1)) + ∆− U2 + U1. (2.35)

The behavior of the model strongly depends on the different values of the parameters. We
will not consider all the possible regimes and we will not be interested in characterizing
the broadest parameter regime for which our results hold. We will assume

0 < ε� U2 and U1 > 2U2, (2.36)

where� means sufficiently smaller; for instance ε ≤ U2

100 is enough.
The main results about the asymptotics of the tunnelling time is contained in the

following:

EJP 26 (2021), paper 137.
Page 11/66

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP701
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Metastability for strongly anisotropic lattice gas under Kawasaki dynamics

Theorem 2.3. Let U1, U2,∆ be such that U2/(U1 +U2−∆) is not integer and (2.36) holds.
Let Λ be a box with side L+ 2. For L sufficiently large and for any δ > 0,

lim
β→∞

P0

(
eβ(Γ−δ) ≤ τ1 ≤ eβ(Γ+δ)

)
= 1, (2.37)

lim
β→∞

1

β
logE0τ1 = Γ. (2.38)

Moreover, letting Tβ := inf{n ≥ 1 : P0(τ1 ≤ n) ≥ 1− e−1}, we have

lim
β→∞

P0(τ1 > tTβ) = e−t, (2.39)

and

lim
β→∞

E0(τ1)

Tβ
= 1. (2.40)

In words, Theorem 2.3 says that

– (2.37): For β → ∞ the transition time from 0 to 1 behaves asymptotically, in
probability, as eΓβ+o(β).

– (2.38) and (2.39): The mean value of the transition time from 0 to 1 is asymptotic to
eΓβ as β →∞. Moreover, the rescaled transition time converges to an exponential
distribution.

We refer to subsection 3.4 for the proof of Theorem 2.3. The main results about the gate
to stability are contained in the following:

Theorem 2.4. Let U1, U2,∆ be such that U2/(U1 +U2−∆) is not integer and (2.36) holds.
Let Λ be a box with side L+ 2. For L sufficiently large, P is a gate and there exists c > 0

such that, for sufficiently large β,

P0

(
τP > τ1

)
≤ e−βc. (2.41)

In words, Theorem 2.4 says that the set P is a gate for the nucleation; all paths from
the metastable state 0 to the stable state 1 go through this set with probability close to 1
as β →∞. Note that in this theorem we do not establish the minimality of the gate P
(see (2.32)), which would involve a much more detailed analysis.

We refer to subsection 3.4 for the proof of Theorem 2.4.

Theorem 2.5. Let U1, U2,∆ be such that U2/(U1 + U2 − ∆) is not integer and (2.36)
holds. Let Λ be a box with side L + 2 and let R≤(l1,l2) (resp. R≥(l1,l2)) be the set of
configurations whose single contour is a rectangle contained in (resp. containing) a
rectangle with sides l1 and l2. For L sufficiently large,

if η ∈ R≤(2l∗2−3,l∗2) or η ∈ R≤(2l∗2−1,l∗2−1) =⇒ lim
β→∞

Pη(τ0 < τ1) = 1,

if η ∈ R≥(2l∗2−2,l∗2) =⇒ lim
β→∞

Pη(τ1 < τ0) = 1.
(2.42)

In other words, 2l∗2 − 2 and l∗2 are the critical sizes, i.e., subcritical rectangles shrink
to 0, supercritical rectangles grow to 1. We refer to subsection 5.2 for the proof of
Theorem 2.5.

Remark 2.6. Theorem 2.5 implies that the Wulff shape is supercritical, indeed its
circumscribed rectangle is R(l∗1, l

∗
2) (see (2.43)), that is in R≥(2l∗2−2,l∗2). For example,

consider U1 = 10U2, the circumscribed rectangle of a Wulff-shaped configuration is
R(10l∗2, l

∗
2). We consider a rectangle strictly smaller η = R(10l∗2 − 1, l∗2) ∈ R≥(2l∗2−2,l∗2),

then by Theorem 2.5 it follows that η is supercritical (has tendency to grow) and not
subcritical (has not tendency to shrink).
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2.5 Comparison with weak anisotropy and dynamical heuristic discussion

In this subsection we provide a detailed comparison between the strongly and the
weakly anisotropic case. As we have already said, the behavior in the two regimes is
very different and now we elaborate on why. For weak anisotropy we need the following
additional definitions. Let

l∗1 :=

⌈
U1

U1 + U2 −∆

⌉
, l̄ :=

⌈
U1 − U2

U1 + U2 −∆

⌉
. (2.43)

For any s > l̄ + 2, if s has the same parity as l̄ i.e., [s− l̄]2 = [0]2, then we define the
set of 0-standard rectangles as R0−st(s) := R(`1(s), `2(s)) with side lengths

`1(s) :=
s+ l̄

2
`2(s) :=

s− l̄
2

, for [s− l̄]2 = [0]2. (2.44)

If s has the same parity as l̄ − 1 i.e., [s − l̄]2 = [1]2, we define the set of 1-standard
rectangles to be R1−st(s) := R(`1(s), `2(s)) with side lengths

`1(s) :=
s+ l̄ − 1

2
, `2(s) :=

s− l̄ + 1

2
for [s− l̄]2 = [1]2. (2.45)

For this value of s we define the set of quasi-standard rectangles asRq−st(s) := R(`1(s)+

1, `2(s)− 1). Finally, we set

Rst(s) :=

{
R0−st(s) if [s− l̄]2 = [0]2
R1−st(s) if [s− l̄]2 = [1]2.

(2.46)

What happens for weak anisotropy is that, after an initial stage of the nucleation
which consists of a growth along domino shapes (independently on the parameters of
the interaction), the nucleation pattern consists of a growing sequence of standard
rectangles up to configurations that have horizontal length equal to the side of the box
(see Figure 1 on the right hand-side). The critical droplet belongs to this sequence.
This is a crucial difference with the strongly anisotropic case, for which the nucleation
pattern follows the domino shape up to the critical droplet and then increases only
adding columns up to the configurations with horizontal length equal to the side of
the box (see Figure 8 in the middle), without involving the standard shape. In both
cases, when the horizontal side is the same as the side of the box, the nucleation pattern
grows in the vertical direction via the mechanisms “change one column in row” and “add
column” (see Figure 8 and 9 on the right hand-side).

In [50] and in the present paper we use the strategies suggested in [46, Section
4.2] points I) and II). The point II) is the so-called recurrence property and is similar
for the weak and strong anisotropic case (see [50, Section 3.5] and Proposition 3.10
proved in Section 5). Concerning point I), in both cases it is difficult to find a detailed
description of the energy landscape, so the authors follow a general criterion to find
a set B satisfying properties (a) and (b). One of the ideas that were used to carry out
this preliminary analysis in some cases consists of finding a suitable foliation of the
state space X into manifolds according to a certain parameter (for instance the value
of the semiperimeter s for our model). In [50] the authors introduced the foliation
Vs = {η ∈ X : p1(η) + p2(η) = s} and they characterized the main property of standard
rectangles Rst(s): configurations that minimize the energy in Vs for s fixed. For the
detailed result we refer to [50, Proposition 8].

For the strongly anisotropic case we can not use this foliation and this result, because
standard rectangles remain those minimizing the energy in the s-manifolds, but the
nucleation pattern does not involve the standard shape. Indeed the energy needed to

EJP 26 (2021), paper 137.
Page 13/66

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP701
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Metastability for strongly anisotropic lattice gas under Kawasaki dynamics

l∗2

l∗1

l∗2

l∗1

Figure 3: Configurations in P̃ for weak anisotropy.

change a column into a row (see (2.49) for the explicit formula) becomes much bigger
in the case of strong anisotropy. To establish properties (a) and (b) see Corollary 3.4,
Theorem 3.7 and Corollary 3.9. Thus, summarizing, the idea behind the definition of the
set B in the weak and strong regime is similar, even though the strategies used in the
proofs are quite different. Indeed without the tool of foliations and the identification of
configurations with minimal energy on them, we need to carefully subdivide the proof in
different cases.

In [50] the authors defined

P̃ := {η : n(η) = 1, v(η) = `2(l∗1 + l∗2 − 1)− 1, ηcl is connected, monotone,
with circumscribed rectangle in R(`1(l∗1 + l∗2 − 1) + 1, `2(l∗1 + l∗2 − 1))},

(2.47)
and proved that this set is a gate for the transition between 0 and 1 (see Figure 3 for an
example of configurations in P̃ for weak anisotropy).

Note that, except for the length of the vertical and horizontal sides, P̃ coincides with
P2. This feature is due to the definition of the set B. The other set of saddles P1 for the
strong anisotropic case is a peculiar feature of this model, because in this case we have
two minimal saddles at the same height from an energetical point of view.

Roughly speaking, the difference between the two parameter regimes depends on the
fact that in order to go up in energy by a factor U1 for weak anistropy it is sufficient to
go up by 2U2, since U1 < 2U2. For strong anisotropy this is not possible, since U1 > 2U2

and we have not an upper bound of U1 in terms of U2, so that more effort is needed: the
key strategy of our proof is to analyze in a very detailed way all the possible exit moves
from the set B, see (3.29).

For the anisotropic case in [50, Sections 2.1,2.2], the static and dynamic heuristics
are discussed as was done in [35, Sections 1.3,1.4]. Here we will summarize the key
ideas of the dynamical heuristic description for the strong anisotropy.

Key transitions

We start with a coarse-grained description: we will restrict ourselves to the determi-
nation of the sequence of rectangles visited by typical trajectories. By the continuity
properties of the dynamics it is reasonable to expect that only transitions between neigh-
boring rectangles have to be taken into consideration. More precisely, starting from a
configuration η ∈ R(l1, l2), with l1, l2 ≥ 2, the possible successive rectangles in the tube
have to belong to one of the following classes: R(l1 + 1, l2), R(l1, l2 + 1), R(l1 − 1, l2),
R(l1, l2 − 1), R(l1 − 1, l2 + 1) and R(l1 + 1, l2 − 1). So we shall consider the following
transitions:
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Figure 4: The procedure to grow a column.

• from R(l1, l2) to R(l1, l2 + 1), corresponding to vertical growth, that will be denomi-
nated add row and symbolically denoted by the arrow ↑ pointing north direction;

• from R(l1, l2) to R(l1 + 1, l2), corresponding to horizontal growth, that will be
denominated add column and denoted by the arrow→ pointing east;

• from R(l1, l2) to R(l1, l2 − 1), corresponding to vertical contraction, that will be
denominated remove row and denoted by the arrow ↓ pointing south;

• from R(l1, l2) to R(l1 − 1, l2), corresponding to horizontal contraction, that will be
denominated remove column and denoted by the arrow← pointing west;

• from R(l1, l2) to R(l1 − 1, l2 + 1), corresponding to a readjustment of the edges,
making higher and narrower the rectangle by removing a column and simultane-
ously adding a row. It will be denominated column to row and denoted by the
arrow↖ pointing northwest;

• from R(l1, l2) to R(l1 + 1, l2 − 1), corresponding to a readjustment opposite to the
previous one. It will be denominated row to column and denoted by the arrow↘
pointing southeast.

The transition from R(l1, l2) to R(l1− 1, l2− 1) and R(l1 + 1, l2 + 1) are not considered
as elementary since, as it can be easily seen, a suitable combination of two of the above
transitions takes place with larger probability.

At first sight the optimal interpolation paths realizing the above transitions between
contiguous rectangles are the ones depicted in Figures 4, 5 and 6. Let us call Ω(1) the
set of paths as the one depicted in Figure 4. They are the natural candidates to realize,
in an optimal way, the transition →. For the transition ↑ we have an analogous set of
paths that we call Ω(2).

Let us call B the time-reversal operator acting on finite paths; we have for ω =

ω1, . . . , ωT
Bω = ω′ with ω′i = ωT+1−i i = 1, . . . , T. (2.48)

For the transition ↓ we choose the set of paths Ω(3) obtained by time-reversal from the
paths, analogous to the ones in Ω(1), that realize the transition R(l1 − 1, l2) to R(l1, l2).
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Figure 5: A path in Ω(5).

Figure 6: A path in Ω̄(5).

Similarly, for the transition← we use the set of paths Ω(4) obtained by time-reversal
from the paths, analogous to the ones in Ω(2), that realize the transition R(l1, l2 − 1) to
R(l1, l2). The set of paths that we consider as the optimal interpolation for the transition
from R(l1, l2) to R(l1 − 1, l2 + 1) in the two cases l1 < l2 and l1 ≥ l2 are called Ω(5) and
Ω̄(5) respectively. A path in Ω(5) is represented in figure 5 where each arrow corresponds
to a move and the quantities under the arrows represent the corresponding energy
barriers ∆H. Dotted arrows indicate sequences of moves. The maximal energy along
the path is reached in the configuration (2). A path in Ω̄(5) is represented in figure 6
where to simplify we indicate under the dotted arrows the sum of the corresponding ∆H.
Along this path the maximal energy is reached in configuration (5). In a similar way we
define the optimal interpolation paths Ω(6) and Ω̄(6) for the transition from R(l1, l2) to
R(l1 + 1, l2 − 1). We call canonical the paths in the above sets.

Given (l1, l2), in order to determine the most probable transition between R(l1, l2)

and one of the previous six contiguous rectangles, we will use the criterion of the
smallest energy barrier, defined as the difference between the communication height and
H(R(l1, l2)). We call energy barrier from η to η′ along the path ω = (ω1 = η, . . . , ωn = η′)

the difference between the maximal height reached along this path and H(η). We
compute the energy barriers along the canonical paths and we use them to estimate the
true energy barriers. We denote by ∆H(add row) the energy barrier along the paths in
Ω(1); similarly for the other transitions.
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From Figures 4, 5 and 6 via easy computations, we get:

∆H(add row) = 2∆− U2

∆H(add column) = 2∆− U1

∆H(remove row) = ε(l1 − 2) + U1 + U2

∆H(remove column) = ε(l2 − 2) + U1 + U2

∆H(row to column) = ∆ if l1 < l2
∆H(row to column) = U1 + U2 + ε(l1 − l2) if l1 ≥ l2
∆H(column to row) = ∆− U2 + U1 if l1 > l2
∆H(column to row) = ∆− U2 + U1 + ε(l2 − l1 + 1) if l1 ≤ l2

(2.49)

These estimated energy barriers are, of course, larger than or equal to the true ones;
the equality does not hold in general, since the above canonical paths sometimes happen
to be non-optimal. For example a deeper analysis leads to the conclusion that to add a
row, instead of using a path in Ω(1), it is more convenient to compose Ω(2) and Ω(5), resp.
Ω̄(5), when l1 < l2, resp. l1 ≥ l2.

Let us now make a comparison between the estimated energy barriers appearing in
equation (2.49). For l1 ≤ l2, we can easily check that ∆H(row to column) ≤ U1 + U2 =

∆ + ε is the smallest estimated energy barrier. So in the sequel we will consider only the
case l1 > l2. For l1 > l2, since in the strongly anisotropic case U1 > 2U2 and

2∆− U1 < 2∆− U2, 2∆− U1 < ∆− U2 + U1 and

U1 + U2 + ε(l2 − 2) < U1 + U2 + ε(l1 − 2), (2.50)

by (2.49), we deduce that we have only to compare ∆H(remove column),
∆H(add column) and ∆H(row to column). We get

∆H(remove column) < ∆H(add column) ⇐⇒ l2 < l∗2, (2.51)

∆H(row to column) < ∆H(add column) ⇐⇒ l1 < l2 + l∗2 − 2. (2.52)

∆H(remove column) ≤ ∆H(row to column) ⇐⇒ 2l2 − 2 ≤ l1 (2.53)

Summarizing we have that:
• in the set A′ = {l2 ≤ l∗2 − 1, l1 > 2l2 − 2} the minimal estimated energy barrier is

∆H(remove column);
• in the set B′ = {l1 < l2 + l∗2 − 2, l1 < 2l2 − 2} the minimal estimated energy barrier

is ∆H(row to column) ;
• in the set C ′ = {l2 ≥ l∗2, l1 ≥ l2 + l∗2 − 2} the minimal estimated energy barrier is

∆H(add column).
• in the set D′ = {l2 ≤ l∗2 − 1, l1 = 2l2 − 2} we have degeneracy of the minimal

estimated estimated energy barrier: ∆H(remove column) = ∆H(row to column)

Note that B′ = {l2 ≤ l∗2 − 1, l1 < 2l2 − 2} ∪ {l2 ≥ l∗2, l1 < l2 + l∗2 − 2}, so that
A′ ∪B′ ∪ C ′ ∪D′ = {l1 > l2}.

In Figure 7 we represent R(l1, l2) as points in Z2 of coordinates l1, l2 (representing,
respectively, the horizontal and vertical edges). Emerging from any representative point,
we draw the arrows corresponding to transitions with minimal ∆H between R(l1, l2) and
contiguous rectangles.
Strongly anisotropic case
In the strongly anisotropic case, from Figure 7, it is evident that in the plane (l1, l2)

there is a connected region T ′, which is attractive in the sense that if we follow the
oriented paths given by the sequences of arrows emerging from every points outside
T ′ we end up inside T ′. It consists of three parts T ′1 = {(l1, l2) : l2 < l∗2 and 2l2 − 3 ≤
l1 ≤ 2l2 − 1} ∪ R(2l∗2 − 3, l∗2) containing domino shape rectangles, T ′2 = {(l1, l2) : l2 =

l∗2 and l2 + l∗2 − 2 ≤ l1 < L}, and T ′3 = {(l1, l2) : l∗2 ≤ l2 and L− 1 ≤ l1 ≤ L}.
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Figure 7: Strong anisotropy: minimal transitions and tube of typical trajectories. We
choose to indicate a few arrows to have a comprehensible picture.

Let us now consider the arrows inside the region T ′. From each η ∈ T ′1, with l1 =

2l2 − 2, as a consequence of the deneracy ∆H(remove column) = ∆H(row to column),
we have two arrows, one pointing to η′ ∈ R(l1 − 1, l2) and the other pointing to η′′ ∈
R(l1 + 1, l2 − 1). Subsequently, starting from η′ the minimal estimated ∆H is unique and
it corresponds to an arrow pointing to R(l1, l2 − 1); analogously starting from η′′ the
minimal ∆H is unique and it corresponds to an arrow also pointing to R(l1, l2 − 1) (see
Figure 8 on the left hand-side).

For every configuration in T ′2, the minimal estimated energy barrier is ∆H(add
column), which implies that the rectangles in T ′2 will grow in the horizontal direction
until they become a complete horizontal strip with length L (see Figure 8 in the middle).
In T ′3 the minimal estimated energy barrier is ∆H(add row), which implies that every
horizontal strip with l1 = L will grow in the vertical direction until it covers the whole
box (see Figure 8 on the right hand-side).

It is natural at this point to distinguish two parts in the set T ′: the subcritical part T ′sub
corresponding to T ′1 and the supercritical part T ′sup, corresponding to the configurations
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Figure 8: Minimal transition inside T ′1, T ′2 and T ′3.

in T ′2 and T ′3.

Let us now summarize our heuristic discussion in the strongly anisotropic case. We
expect that every rectangle outside T ′ is attracted by T ′; the configurations in T ′sub
are subcritical in the sense that they tend to shrink along T ′ following domino shapes;
configurations in T ′sup are supercritical in the sense that they tend to grow following
domino shapes in T ′2 and a sequences of rectangles with bases L − 1 or L in T ′3. The
nucleation pattern in the strongly anisotropic case contains a sequence of increasing
domino shaped rectangles up to R(2l∗2, l

∗
2); then a sequence of rectangles with l2 = l∗2 and

l1 going up to L (the size of the container); finally a sequences of horizontal strips whose
width grows from l∗2 to L. We note that the nucleation pattern in the strongly anisotropic
case is very similar to the one that we would have for non-conservative Glauber dynamics
for any anisotropy.

This heuristic discussion provides a description of the tube of the typical nucleating
path. Suppose first to consider the typical paths going from the maximal subcritical
rectangle to 0. From the discussion on the subcritical part, we have that the sequence of
cycles follows the arrows as in Figure 8. Looking at T ′1 we see that there are no loops
there, so we can associate to each rectangular configuration η in T ′1 the maximal cycle
containing η and not containing other rectangular configurations: by using the arrows
of the figure we obtain, in this way, a coarse-grained cycle path corresponding to the
first domino part of the tube. The coarse-grained of these cycle paths can be resolved by
introducing a suitable interpolation between rectangular configurations corresponding
to each arrow in the picture, obtaining, in this way, a family of true cycle paths T ′sub,
describing the tube of typical paths going from the maximal subcritical rectangle to 0.

A similar discussion can be applied to the study of the tube of typical paths going
from the minimal supercritical rectangle to 1 obtaining in the same way the family of
cycles T ′sup.

We expect that the first supercritical rectangle configuration is contained inR(2l∗2, l
∗
2):

we see in the next that it is R(2l∗2 − 2, l∗2).

The tube of the typical nucleating paths describing the first excursion from 0 to 1,
can be obtained by applying general arguments based on reversibility and by providing
a suitable interpolation between the maximal subcritical rectangle and the minimal
supercritical one. More precisely, to obtain the typical tube from 0 to 1 we apply the time
reversal operator B (see (2.48)), to the tube T ′sub and we join it to T ′sup by means of this
interpolation. These interpolations between rectangular configurations can be obtained
by using the reference path ω∗ described in subsection 3.2; ω∗ can be considered as a
representative of a typical nucleation path.

Some aspects of the behavior that we have heuristically described are rigorously
discussed in this work; in particular we determine a gate P for the transition between 0

and 1 (see Theorem 2.4), even though we say nothing about its minimality, and we give a
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Figure 9: Minimal transition inside T1, T2 with l2 < l∗2, T2 with l2 ≥ l∗2 and T3.

sufficient condition to discriminate subcritical and supercritical domino rectangles (see
Theorem 2.5).

Weakly anisotropic case

In the weakly anisotropic case the main difference is that ∆H(column to row) is smaller
than in the strong anisotropic case (since U1 < 2U2), thus it plays an important role.
In the region above A′ this saddle is the minimal up to the standard shape where
∆H(row to column) = ∆H(column to row). We refer to [50, Section 2.2] for a more
detailed discussion of the weak anisotropic case. The region T consists of three parts:
T1 = {(l1, l2) : l2 ≤ l̄ and 2l2 − 3 ≤ l1 ≤ 2l2 − 1} containing domino shape rectangles
and T2 = {(l1, l2) : l2 > l̄ and l2 + l̄ − 1 ≤ l1 ≤ l2 + l̄} containing standard rectangles
(see (2.44) and (2.45)) and T3 = {(l1, l2) : l1 = L and l2 ≥ L − l̄}. The properties of
T1 can be discussed in analogy with T ′1 (see Figure 9 on the left hand-side). In T2, for
each value of the semi-perimeter s, there are pairs of configurations (η, η′) such that
the minimal among the estimated energy barriers starting from η corresponds to the
transition from η to η′ and conversely the minimal estimated energy barrier from η′

corresponds to the transition from η′ to η. So inside T2 there are pairs of arrows forming
two-states loops that we represent as↘↖. This suggests that in T2 a more detailed study
is necessary, based on the analysis of suitable cycles containing the above described
loops. These cycles represent a sort of generalized basin of attraction of the standard
rectangles contained in the loops: they are the maximal cycles containing a unique
standard rectangle. These cycles contain, among others, rectangular configurations
and in each cycle all the rectangular configurations have the same semiperimeter s, i.e.,
belong to the same manifold Vs.

We draw in our picture the arrows between rectangular configurations corresponding
to these most probable exits. It turns out that these arrows are horizontal pointing east
if l2 ≥ l∗2 and pointing west if l2 < l∗2 (see Figure 9 in the middle). In both cases these
horizontal arrows point to configurations which are again in the set T , so that we can
iterate the argument to analyze all the arrows in T . Thus we associate to the loops↘↖
in the picture cycles containing rectangles in Vs and transitions given by the horizontal
arrows. In T3 we can argue like in T2 (see Fig. 9 on the right hand-side).

It is natural at this point to distinguish two parts in the set T : the subcritical part
Tsub corresponding to T1 plus the part of T2 with horizontal arrows pointing west, i.e.,
with l2 < l∗2 and the supercritical part Tsup, corresponding to the configurations in T2

with horizontal arrows pointing east, i.e., with l2 ≥ l∗2 and T3.

Let us now summarize our heuristic discussion in the weakly anisotropic case. We
expect that every rectangle outside T is attracted by T ; the configurations in Tsub tend
to shrink along T following either the standard or the domino shape, depending on l2;
configurations in Tsup tend to grow following standard shapes in T2 and a sequences of
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rectangles with bases L− 1 or L in T3.

3 Model-dependent results

3.1 Extensive model-dependent definitions and notations

In this subsection we extend the model-dependent definitions given in Subsec-
tion 2.3.2 following [50], that will be useful for characterizing configurations from
a geometrical point of view.

Clusters and projections.
Next we introduce a geometric description of the configurations in terms of contours.

• Given a configuration η ∈ X , consider the set C(ηcl) ⊂ R2 defined as the union of
the 1× 1 closed squares centered at the occupied sites of ηcl in Λ0. The maximal
connected components C1, . . . , Cm (m ∈ N) of C(ηcl) are called clusters of η. There
is a one-to-one correspondence between configurations ηcl ⊂ Λ0 and sets C(ηcl).
A configuration η ∈ X is characterized by a set C(ηcl), depending only on η ∩ Λ0,
plus possibly a set of free particles in ∂−Λ and in Λ0. We are actually identifying
three different objects: η ∈ X , its support supp(η) ⊂ Λ, and the pair (C(ηcl), ηfp);
we write x ∈ η to indicate that η has a particle at x ∈ Λ.

• For η ∈ X , let |η| be the number of particles in η, γ(η) the Euclidean boundary of
C(ηcl), γ(η) = ∂C(ηcl); we denote by g1(η) (resp. g2(η)) one half of the horizontal
(resp. vertical) length of γ(η), i.e., one half of the number of horizontal (vertical)
broken bonds in ηcl. Then the energy associated with η is given by

H(η) = −(U1 + U2 −∆)|ηcl|+ U1g2(η) + U2g1(η) + ∆|ηfp|. (3.1)

The maximal connected components of ∂C(ηcl) are called contours of η.

• Let p1(η) and p2(η) be the total lengths of horizontal and vertical projections of
C(ηcl) respectively. More precisely let rj,1 = {x ∈ Z2 : (x)1 = j} be the j-th column
and rj,2 = {x ∈ Z2 : (x)2 = j} be the j-th row, where (x)1 or (x)2 denote the first
or second component of x. We say that a line rj,1 (rj,2) is active if rj,1 ∩ C(ηcl) 6= ∅
(rj,2 ∩ C(ηcl) 6= ∅).
Let

π1(η) := {j ∈ Z : rj,1 ∩ C(ηcl) 6= ∅} (3.2)

and p1(η) := |π1(η)|. In a similar way we define the vertical projection π2(η) and
p2(η). We also call π1(η) and π2(η) the horizontal and vertical shadows of ηcl,
respectively.

Note that g1, g2, π1, π2, p1, p2 are actually depending on η only through ηcl, even
though, for notational convenience, we omit the subscript cl in their functional
dependence.

Note that ηcl is not necessarily a connected set and thus both the horizontal and
vertical projections π1(η), π2(η) are not in general connected. We have obviously:

g′i(η) := gi(η)− pi(η) ≥ 0. (3.3)

• A single cluster C is called monotone if gi(C) = pi(C) for i = 1, 2, i.e., g1 and
g2 equal respectively the horizontal and vertical side lengths of the rectangle
R(C) circumscribed to the unique cluster C. More generally, we call monotone a
configuration such that gi(η) = pi(η) for i = 1, 2.

Note that s(η) coincides with the semi-perimeter if η is a configuration with a single
monotone cluster. It is immediate to show that v(η) is a non negative integer and
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that it is equal to zero if ηcl has a unique rectangular cluster with semi-perimeter
s(η); it represents the number of vacancies in η. Define:

P1(η) :=
⋃

j∈π1(η)

rj,1 P2(η) :=
⋃

j∈π2(η)

rj,2 (3.4)

the minimal unions of columns and rows, respectively, in Z2 containing ηcl. By
definition we have

P1(η) ∩ P2(η) ⊇ ηcl, (3.5)

where P1(η)∩P2(η) is, in general, the union of rectangles such that |P1(η)∩P2(η)| =
p1(η)p2(η). The vacancies of η are the sites in P1(η) ∩ P2(η)\ηcl.
• Given a non-empty set A ⊂ X , define its external and internal boundary as,

respectively

∂+A := {ζ /∈ A : P (ζ, η) > 0 for some η ∈ A}, (3.6)

∂−A := {ζ ∈ A : P (ζ, η) > 0 for some η /∈ A}. (3.7)

Moreover, let

∂A := {(η̄, η) : η̄ ∈ ∂−A, η ∈ ∂+A with P (η̄, η) > 0}, (3.8)

be the set of moves exiting from A.

We define
Hmin(∂A) := min

(η̄,η)∈∂A
{max {H(η̄), H(η)}} (3.9)

and we denote by (∂A)min the subset of ∂A where this minimum is realized:

(∂A)min := {(η̄, η) ∈ ∂A : max {H(η̄), H(η)} = Hmin(∂A)}. (3.10)

3.2 Reference path

We recall (2.25), (2.26) and (2.27) for the definitions of domino rectangles.
We will construct a particular set Ω∗ whose elements are reference paths ω∗ : 0→ 1.

Each path will be given by a particular sequence of growing domino rectangles, followed
by a sequence of rectangles growing in the horizontal direction, followed by a sequence
of rectangles growing in the vertical direction. The maximum of the energy along ω∗,
{arg maxω∗H}, is reached on particular configurations given by circumscribed rectangle
R(2l∗2 − 1, l∗2 − 1) as in Figure 2 on the left hand-side.

We will prove in Corollary 3.4 that ω∗ ∈ (0→ 1)opt so that {arg maxω∗H} ∈ S(0, 1).
We want to recall that in this work we get only a partial solution to the problem of

determination of the tube of typical paths, i.e., the set of paths followed by the process
with high probability during the transition from 0 to 1. Note that this set is much larger
than Ω∗; in the construction of the paths ω∗ we have a lot of freedom, so we choose this
particular path from 0 to 1 that suggests the structure of the tube of typical paths. The
idea behind the construction of the reference path is the following: we first construct
a skeleton path {ω̄s}2Ls=0 given by a sequence of domino rectangles of semi-perimeter
s. We point out that the transition from ω̄s to ω̄s+1 can not be given in a single step,
since ω̄s and ω̄s+1 are rectangles and so this is not a path in that sense. Thus we have
to interpolate each transition of the skeleton path in order to obtain a path. This is
done in two different steps. First we introduce a sequence ω̃s,0, . . ., ω̃s,is between ω̄s
and ω̄s+1, given by ω̄s plus a growing column. There are some cases (for 0-domino
rectangles) in which growing a column is equivalent to the operation of column to row
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from an energetic point of view. Since we consider a specific path, we choose one of the
two operations arbitrarily. What we are doing is considering the time-reversal dynamic
in the subcritical region and the usual dynamics in the supercritical region. The last
interpolation consists of inserting between every pair of consecutive configurations in
ω̃, for which the cluster is increased by one particle, a sequence of configurations with
one new particle created at the boundary of the box and brought to the correct site with
consecutive moves of this free particle. In this way, from the sequence of configurations
ω̃s,i, we obtain a path ω∗, i.e., such that P(ω∗j , ω

∗
j+1) > 0.

Skeleton : ω̄

Let us construct a sequence of rectangular configurations ω̄ = {ω̄s}, with s = 0, . . . , L,
such that ω̄1 = 0, ω̄2 = {x0}, . . ., ω̄2L = F(X ) ∈ 1, where x0 is a given site in Λ0 and for
every s, ω̄s ⊂ ω̄s+1.

Step a. For any s < 3l∗2−2, {ω̄s} is a growing sequence of domino rectangles, depending
on the value of s. If [s]3 = [0]3, we have that ω̄s ∈ R(2l2, l2) is a 0-domino rectangle.
If [s]3 = [1]3 we have that ω̄s ∈ R(2l2 − 2, l2) is a 1-domino rectangle. If [s]3 = [2]3
we have that ω̄s ∈ R(2l2 − 1, l2) is a 2-domino rectangle.

Step b. For any 3l∗2 − 2 ≤ s ≤ l∗2 + L− 1, {ω̄s} ∈ R(s− l∗2, l∗2).

Step c. For any s ≥ l∗2 + L − 1, if l1 = L − 1 we have ω̄s ∈ R(L − 1, s − L + 1), and if
l1 = L we have ω̄s ∈ R(L, s− L)

First interpolation : ω̃

Given a choice for ω̄s, we can construct the path ω̃s,i such that ω̃s,0 = ω̄s and insert
between each pair (ω̄s, ω̄s+1) for any s a sequence composed by configurations ω̃s,i for
i = 0, 1, . . . , is.

Step a.1. If s < 3l∗2 − 2 and [s]3 = [1]3 add a column as in Figure 4, passing from
ω̃s,0 ∈ R(2l2, l2 + 1) to 2-domino rectangle ω̃s,is ∈ R(2l2 + 1, l2 + 1).

Step a.2. If s < 3l∗2 − 2 and [s]3 = [2]3 add a column as in Figure 4, passing from
ω̃s,0 ∈ R(2l2 − 1, l2) to 0-domino rectangle ω̃s,is ∈ R(2l2, l2).

Step a.3. If s < 3l∗2 − 2 and [s]3 = [0]3 add a column as in Figure 4, passing from
ω̃s,0 ∈ R(2l2, l2) to q-domino rectangle ω̃s,is ∈ R(2l2 + 1, l2). Then use the path
described in Figure 6 to define the path between ω̃s,l2 ∈ R(2l2 + 1, l2) to 1-domino
rectangle ω̃s,is ∈ R(2l2, l2 + 1).

Step b.1. If 3l∗2 ≤ s ≤ l∗2 + L − 1 add a column as in Figure 4, passing from ω̃s,0 ∈
R(s− l∗2, l∗2) to ω̃s,is ∈ R(s− l∗2 + 1, l∗2).

Step c.1. If s ≥ l∗2 + L − 1 and l1 = L − 1, add a column as in Figure 4, passing from
ω̃s,0 ∈ R(L− 1, s− L+ 1) to R(L− 1, s− L+ 1), so we have l1 = L. Then use the
path described in Figure 6 to obtain R(L− 1, s− L+ 2).

Second interpolation : ω∗

For any pair of configurations (ω̃s,i, ω̃s,i+1) such that |ω̃s,i| < |ω̃s,i+1|, by construction
of the path ω̃s,i the particles are created along the external boundary of clusters. Thus
there exists x1, . . . , xji connected chain of nearest-neighbor empty sites of ω̃s,i such that
x1 ∈ ∂−Λ and xji is the site where the additional particle in ω̃s,i+1 is located. Hence we
define ω∗s,i,0 = ω̃s,i and ω∗s,i,ji = ω̃s,i+1 for s = 0, . . . , 2(L+2). Otherwise, if |ω̃s,i| = |ω̃s,i+1|,
we define ω∗s,i,0 = ω̃s,i and ω∗s,i+1,0 = ω̃s,i+1.

We recall a useful lemma to compute the energy of different configurations:
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Lemma 3.1. [50, Lemma 7] For any configuration η:

H(η) = H(R(p1(η), p2(η))) + εv(η) + U1g
′
2(η) + U2g

′
1(η) + n(η)∆, (3.11)

with ε as in (2.24) and g′i as in (3.3).

Corollary 3.2. For L sufficiently large (say L >
⌊
U1+U2

ε

⌋
) we have H(1) < 0 = H(0).

The main property of the path ω∗ is the following.

Proposition 3.3. If U1 > 2U2 and L is large enough, we have that

{arg maxω∗H} ⊆ ω∗ ∩ P1. (3.12)

Proof. Let us consider the skeleton path {ω̄s}s=0,..,2(L+2) and let ω∗(ω̄s, ω̄s+1) be the part
of ω∗ between ω̄s and ω̄s+1. Letting

g(s) := max
η∈ω∗(ω̄s,ω̄s+1)

H(η), (3.13)

we have
max
η∈ω∗

H(η) = max
s=0,..,2(L+2)

g(s). (3.14)

For the values of s corresponding to steps a.1 (s ≤ 3l∗2 − 2 and [s]3 = [1]3), a.2 (s ≤ 3l∗2 − 2

and [s]3 = [2]3) and b.1 (s > 3l∗2 − 2), we can verify directly that g(s) = H(ω̄s) + 2∆− U1,
indeed 2∆− U1 is the energy barrier for adding a column. Now let us consider the case
s ≤ 3l∗2 − 2 and [s]3 = [0]3, then the path described in step a.3 has a first part going
from ω̄s to Rq−dom(s+ 1), reaching its maximal value of energy in H(ω̄s) + 2∆− U1. The
second part of the path in the step a.3 goes from Rq−dom(s+ 1) to ω̄s+1 ∈ R1−dom(s+ 1)

with the operation column to row, so it reaches its maximal value of energy in

H(Rq−dom(s+ 1)) + ∆− U2 + U1

= H(ω̄s) + 2∆− U1 + ∆− U2 + U1 − (U1 + U2 + ε(l2 − 2))

= H(ω̄s)− ε
(
s
3

)
+ ∆ + U1,

(3.15)

where U1 + U2 + ε(l2 − 2) is the energy barrier for removing a column and it consists in
the difference between H(ω̄s) + 2∆ − U1 and H(Rq−dom(s + 1) (see Figure 4). For the
last equality we use the fact that l2(s) = s

3 for a 0-domino rectangle.
Explicit computations show that

max{H(ω̄s) + 2∆− U1, H(ω̄s)− ε
s

3
+ ∆ + U1} = H(ω̄s)− ε

s

3
+ ∆ + U1. (3.16)

Indeed, since U1 − 2U2 > 0 and we can write s ≤ 3l∗2 − 3, because [s]3 = [0]3 and thus
s 6= 3l∗2 − 2, we have

H(ω̄s)− ε s3 + ∆ + U1 ≥ H(ω̄s)− ε
(

3l∗2−3
3

)
+ ∆ + U1 =

= H(ω̄s)− ε
(⌈

U2

ε

⌉)
+ ε+ ∆ + U1 ≥ H(ω̄s)− U2 + ∆ + U1 > H(ω̄s) + 2∆− U1

⇔ ∆ < 2U1 − U2 ⇔ U1 − 2U2 > −ε.

(3.17)

We obtain

g(s) =

{
H(ω̄s) + 2∆− U1 if s ≤ 3l∗2 − 2 and [s]3 6= [0]3, or s > 3l∗2 − 2,

H(ω̄s)− ε s3 + ∆ + U1 if s ≤ 3l∗2 − 2 and [s]3 = [0]3.
(3.18)

We want now to evaluate the maximal value of g(s) for s ≤ 3l∗2 − 2. Let us consider the
energy of domino configurations:
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h(0−dom)(n) := H(R0−dom(3n)) = U1n+ 2U2n− 2εn2, n = 0, .., l∗2 − 1,

h(1−dom)(n) := H(R1−dom(3n+ 1)) = U1(n+ 1) + 2U2n

−2εn(n+ 1), n = 0, .., l∗2 − 1,

h(2−dom)(n) := H(R2−dom(3n+ 2)) = U1(n+ 1) + U2(2n+ 1)

−ε(n+ 1)(2n+ 1), n = 0, .., l∗2 − 2.

(3.19)

We observe that h(0−dom)(n) is an increasing function of n, indeed

dh

dn

(0−dom)

(n) = U1 + 2U2 − 4εn > 0 ⇔ n <
U1 + 2U2

4ε
. (3.20)

In this case n ≤ l∗2 − 1 and, if n = l∗2 − 1, we have that

l∗2 − 1 < U1+2U2

4ε ⇔ 2U2−U1

ε < 4(1− δ).

Since U1 < 2U2 and δ < 1, we have proved (3.20). In a similar way we obtain that
h(1−dom)(n) and h(2−dom)(n) are also increasing function of n. This implies that

max
s≤3l∗2−2

g(s)=max{H(ω̄3l∗2−3)−ε(l∗2−1)+∆+U1, H(ω̄3l∗2−2)+2∆−U1, H(ω̄3l∗2−4)+2∆−U1}.

(3.21)
By a direct comparison we obtain immediately

max
s≤3l∗2−2

g(s) = H(ω̄3l∗2−3)− ε(l∗2 − 1) + ∆ + U1. (3.22)

Indeed, since ω̄3l∗2−2 ∈ R(2l∗2−2, l∗2), ω̄3l∗2−3 ∈ R(2l∗2−2, l∗2−1) and ω̄3l∗2−4 ∈ R(2l∗2−3, l∗2−1),
we can write

H(ω̄3l∗2−2) = U1l
∗
2 + 2U2(l∗2 − 1)− 2εl∗2(l∗2 − 1) = U1l

∗
2 + 2U2l

∗
2 − 2U2 − 2ε((l∗2)2 − l∗2),

H(ω̄3l∗2−3) = U1(l∗2−1)+2U2(l∗2−1)−2ε(l∗2−1)2 = U1l
∗
2−U1 +2U2l

∗
2−2U2−2ε((l∗2)2−

2l∗2 + 1),

H(ω̄3l∗2−4) = U1(l∗2− 1) +U2(2l∗2− 3)− 2ε(l∗2− 1)(2l∗2− 3) = U1l
∗
2−U1 + 2U2l

∗
2− 3U2−

ε(2(l∗2)2 − 5l∗2 + 3).

Since U1 > 2U2 and δ < 1, we get H(ω̄3l∗2−2) + 2∆− U1 > H(ω̄3l∗2−4) + 2∆− U1. Indeed

H(ω̄3l∗2−2) + 2∆− U1 < H(ω̄3l∗2−4) + 2∆− U1

⇔ −2U2 + 2εl∗2 < −U1 − 3U2 + 5εl∗2 − 3ε

⇔ l∗2 >
U1+U2

3ε + 1⇔ U2

ε + δ > U1+U2

3ε + 1⇔ U1−2U2

ε < 3(δ − 1).

(3.23)

Since δ > 0, we get H(ω̄3l∗2−3)+∆+U1−ε(l∗2−1) > H(ω̄3l∗2−2)+2∆−U1, which concludes
the proof of (3.22). Indeed

H(ω̄3l∗2−3) + ∆ + U1 − ε(l∗2 − 1) > H(ω̄3l∗2−2) + 2∆− U1

⇔ 4εl∗2 − 2ε+ ∆ + U1 − εl∗2 + ε > 2εl∗2 + 2∆

⇔ εl∗2 − ε > ∆− U1 ⇔ ε

(
U2

ε + δ

)
− ε > ∆− U1 ⇔ εδ > 0.

(3.24)

If s > 3l∗2 − 2 we have that g(s) = H(ω̄s) + 2∆− U1: for which value of s do we obtain
the maximum of the function g(s)?

Since ω̄s = R(s− l∗2, l∗2), we have that H(ω̄s) = H(R(s− l∗2, l∗2)) = U1l
∗
2 + U2(s− l∗2)−

εl∗2(s−l∗2). By a direct computation we observe that H(ω̄s) is a decreasing function of s, so

EJP 26 (2021), paper 137.
Page 25/66

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP701
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Metastability for strongly anisotropic lattice gas under Kawasaki dynamics

the maximum value is reached for the minimum possible value of s, i.e., s0 = 3l∗2 − 1 = s∗.
Indeed we have

dH

ds
(ω̄s) = U2 − εl∗2 < 0. (3.25)

Since the energy of the configurations in T ′3 can be made arbitrary small by choosing
L large enough, it remains only to compare the maximum values of g(s) for s ≤ 3l∗2 − 2

and s > 3l∗2 − 2.

maxs=0,..,2(L+2) g(s) = max
{

maxs≤3l∗2−2 g(s),maxs=3l∗2−1,..,2(L+2) g(s)
}

=

= max{H(ω̄3l∗2−3)− ε(l∗2 − 1) + ∆ + U1, H(ω̄s∗) + 2∆− U1} =

= H(ω̄3l∗2−3)− ε(l∗2 − 1) + ∆ + U1.

(3.26)

Since l∗2 =
⌈
U2

ε

⌉
, set ω̄s∗ = R(2l∗2 − 1, l∗2) and ω̄3l∗2−3 = R(2l∗2 − 2, l∗2 − 1), by a direct

computation we obtain that H(ω̄3l∗2−3)− ε(l∗2 − 1) + ∆ + U1 > H(ω̄s∗) + 2∆− U1. Indeed

H(ω̄3l∗2−3)− ε(l∗2 − 1) + ∆ + U1 > H(ω̄s∗) + 2∆− U1

⇔ 2U1 + 2U2 − 2ε− U2 + εl∗2 < −2U2 + 4εl∗2 − 2ε− εl∗2 + U1 + U2 + U1

⇔ 2U2 < 2εl∗2 ⇔ l∗2 >
U2

ε .

(3.27)

By the definition of ω∗ ∈ Ω∗, it is immediate to show that the configurations where
the maximum value of the energy is reached are the configurations in ω∗ ∩ P1.

Corollary 3.4. We have
Φ(0, 1) ≤ Γ.

Proof. By definition of communication height Φ(0, 1), given a path ω∗ ∈ Ω∗ by Proposi-
tion 3.3, (2.28) and the sentence below, we have immediately

Φ(0, 1) ≤ max
i
H(ω∗i ) = H(P1) = Γ, (3.28)

where P1 and Γ are defined in (2.33) and (2.35) respectively. The first inequality follows
because Φ(0, 1) is the minimum over all paths between 0 and 1, and we bound it by taking
the reference path ω∗.

3.3 Definition of the set B and exit from B
We give the definition of the set B that is a basin of attraction of 0 and satisfies the

strategy following [46, Section 4.2].

Definition 3.5. We define the set B as follows:

B :=

η :

s(η) ≤ s∗ − 2, or
s(η) ≥ s∗ − 1 and p2(η) ≤ l∗2 − 1, or
s(η) = s∗ − 1, p2(η) ≥ l∗2 and v(η) ≥ pmin(η)− 1, or
s(η) ≥ s∗, p2(η) = l∗2 and v(η) ≥ pmax(η)− 1

 , (3.29)

where s∗ is defined in (2.31), pmin(η)=min {p1(η), p2(η)} and pmax(η)=max {p1(η), p2(η)}.
In [45] there is the construction of the probability measure using the restricted

ensemble µR = µ(·|R) while in [12] and [57, Sections 4.2, 6.3] the authors consider the
restricted dynamics associated to the exit time TX\R for some R that can be thought
as basin of attraction of the metastable state. The set B defined in (3.29) satisfies the
hypotheses of this set R used in [5].

Lemma 3.6. For B as in (3.29) we get 0 ∈ B and 1 /∈ B.
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Proof. Since s(0) = 0 it immediately follows that 0 ∈ V≤s∗−2 and thus we get 0 ∈ B.
Similarly, since 1 ∈ V≥s∗ and p2(1) > l∗2, we get 1 /∈ B.

The main result of this subsection is given by the following:

Theorem 3.7. For Hmin(∂B) as in (3.9), (∂B)min as in (3.10), Γ as in (2.35) and P as in
(2.32), we have

Hmin(∂B) = Γ. (3.30)

In addition

(i) if (η̄, η) ∈ (∂B)min, then H(η̄) ≥ H(η) and η̄ ∈ P2;

(ii) if η̄ ∈ P1, there exists at least a path ω̄ ∈ (0→ 1)opt such that

ω̄ = (0, ω̄1, ..., ω̄j−1, η̄, ω̄j+1, ..., 1). (3.31)

Moreover, we have that ω̄j+1 ∈ B.

Corollary 3.8. For any path ω∗ ∈ Ω∗ we have

{arg maxω∗H} ∩ (∂B)min 6= ∅.

Proof. Combining Proposition 3.3 and Theorem 3.7, we directly get the conclusion.

Corollary 3.9. We have
Φ(0, 1) = Γ.

Proof. Since every path going from 0 to 1 has to leave B, we have by Theorem 3.7 that

Φ(0, 1) := min
ω:0→1

max
ζ∈ω

H(ζ) ≥ Hmin(∂B) = Γ. (3.32)

Combining (3.32) and Corollary 3.4, we get Φ(0, 1) = Γ.

Note that to prove Corollary 3.9 we have proposed a suitable set B (see (3.29)) and
we have applied the argument developed in [46, Section 4.2] with some small variations.
In [46] the set ∂+B (external boundary of B, see (3.6)) was considered, while here we
use the set ∂B (see (3.8)), so in the present case Hmin(∂B) substitutes H(F(∂+B)).

Proposition 3.10. There exists V ∗ < Γ such that XV ∗ ⊆ {0, 1}, i.e., ∀ η 6= 0, 1 there
exists η′ ∈ X and a path ω : η → η′ such that H(η′) < H(η) and Vη ≤ maxξ∈ωH(ξ) −
H(η) ≤ V ∗.

In this proposition we prove that that each configuration η /∈ {0, 1} is V ∗-reducible,
namely we can find a configuration η′ ∈ Iη with smaller energy and Φ(η, η′) ≤ H(η) +V ∗.
Thus V ∗ consists in an upper bound for the quantity Vη for any η /∈ {0, 1} and so we can
write V ∗ = max{Vη | η ∈ X \ {0, 1}}. In other words, we assert that there are no too deep
wells in the energy landscape, i.e., no deeper than the well with bottom 0. Moreover, we
observe that being a metastable state is equivalent to the absence of too deep energy.
For the proof of Proposition 3.10 we refer to subsection 5.1.

3.4 Proof of the main theorems 2.3 and 2.4

The proof of theorems 2.3 and 2.4 consist of an application of theorems [46, Theorem
4.1], [46, Theorem 4.9], [46, Theorem 4.15] for the asymptotics of the tunnelling time
and Theorem [46, Theorem 5.4] for the gates in the general setup of reversible Markov
chains.

Proof of Theorem 2.3. Combining theorems 2.2, [46, Theorem 4.1], [46, Theorem 4.9],
[46, Theorem 4.15] and Corollary 3.9, we get the conclusion.
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Figure 10: In order to help the reader we depict part of the configuration of η̄.

Proof of Theorem 2.4. Given any optimal path ω ∈ (0→ 1)opt, since 0 ∈ B and 1 /∈ B by
Lemma 3.6, ω has to leave the set B and this has to be done with a pair of configurations
(η̄, η) ∈ (∂B)min. If this is not satisfied, by Theorem 3.7 we would have maxiH(ωi) > Γ

and, since Φ(0, 1) = Γ, the path ω would not be optimal, which is a contradiction. By
Theorem 3.7 we obtain that ω must intersect the set P and, thus the set P is a gate for
the transition 0 → 1; see subsection 2.3.1 for the definition of a gate. Thus (2.41) is
proven using [46, Theorem 5.4].

4 Proof of the main Theorem 3.7

In this Section we give the proof of the main Theorem 3.7. In particular, in order to
analyze the exiting move from B, we prove preliminary results on single moves.

Definitions and notations. We first give important definitions and notations that
will be useful in the section.

Definition 4.1. We say that (η̄, η) is a move if (η̄, η) ∈ X × X and P (η̄, η) > 0.
We say that a move (η̄, η) is an exiting move from B if η̄ ∈ B, η /∈ B and P(η̄, η) > 0.
We define

∆s := s(η)− s(η̄) (4.1)

the variation of s in the move.

We recall the definition of active line that is in the bullet before (3.2). We say that a
line r (column or row in Z2) becomes active in the move from η̄ to η if it was not active in
η̄ (r ∩ η̄cl = ∅ see (2.21)) and it is active in η (r ∩ ηcl 6= ∅). Furthermore, we say that a line
r becomes inactive in the move from η̄ to η if it was active in η̄ and it is not active in η. If
a line does not become active nor inactive we say that it does not change its behavior.
We will call x1 the site containing the moving particle, x2 the site containing the particle
after the move and x3, x4 and x5 the nearest neighbor sites of x2 together with x1 (see
Figure 10). The sites y1, y2 and y3 are the nearest neighbors of the particle in x1 and z1,
z2 and z3 are the nearest neighbors of the site y3 together with the site x1. Furthermore
we set t the site above y1 and s the site under y2.

We will call r1 the line of the move, r2 the line orthogonal to it passing trough site x2,
and r3, r4 and r5 the lines passing through the three nearest neighbor sites of x2, i.e.,
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x3, x4 and x5 respectively. Furthermore we will call r6 the line orthogonal to r1 passing
trough the site x1 and r7 the line orthogonal to r1 passing trough the site y3.

In Figure 10 and consequently in the rest of the paper, we assume that the move
is horizontal, i.e., r1 is an horizontal line. Since the binding energies are not equal in
the vertical and horizontal directions, one could be tempted to consider also the case
r1 vertical, but in the latter we can conclude with analogue arguments, except in the
Proposition 4.10, where we distinguish r1 vertical or horizontal (case (h) and case (v)).
We observe that the horizontal case is the worst case scenario.

We recall a useful lemma.

Lemma 4.2. [50, Lemma 12] Let pmin(η) ≥ 4, we have

(i) |∆s| ≤ 5

(ii) if ∆s = 1 then v(η) ≥ pmin(η)− 3

if ∆s = 2 then n(η̄) ≥ 1 and v(η) ≥ 2pmin(η)− 5

if ∆s = 3 then n(η̄) ≥ 2 and v(η) ≥ 3pmin(η)− 6

if ∆s = 4 then n(η̄) ≥ 3 and v(η) ≥ 4pmin(η)− 7

if ∆s = 5 then n(η̄) ≥ 4 and v(η) ≥ 5pmin(η)− 8

(iii) if ∆s = 1 and v(η) < pmin(η)− 1 then n(η̄) ≥ 2

Remark 4.3. We note that if n(η̄) = 0 the unique line that can become active is r2 and
in this case in η̄ sites x3 and x4 are empty and x5 ∈ η̄cl, where x5 ∈ r1 (see Figure 10), so
that η̄ is not monotone, i.e., g′1(η̄) + g′2(η̄) ≥ 1.

Remark 4.4. We note that if n(η̄) = 0, g′1(η̄) = 1 and g′2(η̄) = 0 then the site x5 must be
empty, otherwise g′2(η̄) ≥ 1. Thus in this case we obtain that no lines can become active.

Now we give an estimate of s(η̄) for each possible value of ∆s ∈ {−5,−4, .., 4, 5}. This
will be useful for the entire section.

Remark 4.5. Let (η̄, η) ∈ ∂B be an exiting move from B (see definition 4.1):

• If ∆s = −5 the exiting move is admissible only in the case s(η̄) ≥ s∗ + 4. Indeed, if
s(η̄) ≤ s∗ + 3, then s(η) = s(η̄)− 5 ≤ s∗ − 2, which implies η ∈ B.

• If ∆s = −4 the exiting move is admissible only in the case s(η̄) ≥ s∗ + 3. Indeed, if
s(η̄) ≤ s∗ + 2, then s(η) = s(η̄)− 4 ≤ s∗ − 2, which implies η ∈ B.

• If ∆s = −3 the exiting move is admissible only in the case s(η̄) ≥ s∗ + 2. Indeed, if
s(η̄) ≤ s∗ + 1, then s(η) = s(η̄)− 3 ≤ s∗ − 2, which implies η ∈ B.

• If ∆s = −2 the exiting move is admissible only in the case s(η̄) ≥ s∗ + 1. Indeed, if
s(η̄) ≤ s∗, then s(η) = s(η̄)− 2 ≤ s∗ − 2, which implies η ∈ B.

• If ∆s = −1 the exiting move is admissible only in the case s(η̄) ≥ s∗. Indeed, if
s(η̄) ≤ s∗ − 1, then s(η) = s(η̄)− 1 ≤ s∗ − 2, which implies η ∈ B.

• If ∆s = 0 the exiting move is admissible only in the case s(η̄) ≥ s∗ − 1. Indeed, if
s(η̄) ≤ s∗ − 2, then s(η) = s(η̄) ≤ s∗ − 2, which implies η ∈ B.

• If ∆s = 1 the exiting move is admissible only in the case s(η̄) ≥ s∗ − 2. Indeed, if
s(η̄) ≤ s∗ − 3, then s(η) = s(η̄) + 1 ≤ s∗ − 2, which implies η ∈ B.

• If ∆s = 2 the exiting move is admissible only in the case s(η̄) ≥ s∗ − 3. Indeed, if
s(η̄) ≤ s∗ − 4, then s(η) = s(η̄) + 2 ≤ s∗ − 2, which implies η ∈ B.

• If ∆s = 3 the exiting move is admissible only in the case s(η̄) ≥ s∗ − 4. Indeed, if
s(η̄) ≤ s∗ − 5, then s(η) = s(η̄) + 3 ≤ s∗ − 2, which implies η ∈ B.

• If ∆s = 4 the exiting move is admissible only in the case s(η̄) ≥ s∗ − 5. Indeed, if
s(η̄) ≤ s∗ − 6, then s(η) = s(η̄) + 4 ≤ s∗ − 2, which implies η ∈ B.

• If ∆s = 5 the exiting move is admissible only in the case s(η̄) ≥ s∗ − 6. Indeed, if
s(η̄) ≤ s∗ − 7, then s(η) = s(η̄) + 5 ≤ s∗ − 2, which implies η ∈ B.

We can justify the previous remark looking at the definition of the set B.
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4.1 Main propositions

In this subsection we give the proof of the main Theorem 3.7, subdivided in the
several following propositions, where we emphasize the cases in which η is in B, or η is
not in B but H(η̄) > Γ, or the cases in which η is not in B but H(η̄) = Γ and η̄ ∈ P. We
recall (2.32), (3.29) and (4.1) for the definitions of P, B and ∆s respectively.

Proposition 4.6. Let (η̄, η) be a move with η̄ ∈ B. If ∆s ≤ −2, then either η ∈ B or η /∈ B
and H(η̄) > Γ.

We refer to subsection 4.3 for the proof of the Proposition 4.6.

Proposition 4.7. Let (η̄, η) be a move with η̄ ∈ B. If ∆s ≥ −1 and p2(η̄) ≤ l∗2 − 1, then
either η ∈ B or η /∈ B and H(η̄) > Γ.

We refer to subsection 4.4 for the proof of the Proposition 4.7.
The following results consider the case p2(η̄) ≥ l∗2, which we subdivide in different
propositions because of the lengthy proof. Note that in some of these propositions we
identify the set P.

Proposition 4.8. Let (η̄, η) be a move with η̄ ∈ B. If ∆s ≥ 3, pmin(η) ≥ 4 and p2(η̄) ≥ l∗2,
then either η ∈ B, or η /∈ B and H(η̄) > Γ.

We refer to subsection 4.5 for the proof of the Proposition 4.8.

Proposition 4.9. Let (η̄, η) be a move with η̄ ∈ B. If ∆s = −1 and p2(η̄) ≥ l∗2, then we
have one of the following:

(i) either η ∈ B;

(ii) or η̄ ∈ P1, H(η̄) = Γ and η ∈ B;

(iii) or η /∈ B and max{H(η̄), H(η)} > Γ, with η̄ /∈ P.

We refer to subsection 4.6 for the proof of the Proposition 4.9.

Proposition 4.10. Let (η̄, η) be a move with η̄ ∈ B. If ∆s = 0 and p2(η̄) ≥ l∗2, then we
have one of the following:

(i) either η ∈ B;

(ii) or η /∈ B and H(η̄) = Γ, with η̄ ∈ P2;

(iii) or η /∈ B and H(η̄) > Γ, with η̄ /∈ P.

We refer to subsection 4.7 for the proof of the Proposition 4.10.

Proposition 4.11. Let (η̄, η) be a move with η̄ ∈ B. If ∆s = 1 and p2(η̄) ≥ l∗2, then we
have one of the following:

(i) either η ∈ B;

(ii) or η /∈ B and H(η̄) = Γ, with η̄ ∈ P2;

(iii) or η /∈ B and H(η̄) > Γ, with η̄ /∈ P.

We refer to subsection 4.8 for the proof of the Proposition 4.11.

Proposition 4.12. Let (η̄, η) be a move with η̄ ∈ B; if ∆s = 2, pmin(η) ≥ 4 and p2(η̄) ≥ l∗2
then either η ∈ B or η /∈ B and max{H(η̄), H(η)} > Γ.

We refer to subsection 4.9 for the proof of the Proposition 4.12.

Proof of the main Theorem 3.7. Let (η̄, η) ∈ ∂B be the exiting move from B and ∆s be
its corresponding variation of s. If pmin(η) ≤ 3, for ε� U2, from explicit computations
follows that

H(η) > Γ. (4.2)
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From now on we assume that pmin(η) ≥ 4.
Combining Lemma 4.2 and Propositions 4.6, 4.7, 4.8, 4.9, 4.10, 4.11 and 4.12 we com-

plete the proof. In particular, using the proof of Proposition 4.9(ii) below, Remark 4.19
with the proof and Proposition 3.3, we can get point (i) and (ii).

4.2 Useful Lemmas

In this subsection we give some lemmas that will be useful for the proof of the
propositions reported in subsection 4.1. The proof of the lemmas is postponed to
subsection 4.10. Recall def. 4.1 for the definition of a move.

Lemma 4.13. Let (η̄, η) ∈ X × X be a move, then each horizontal (resp. vertical) line
becoming inactive decreases the vertical (resp. horizontal) projection p2(η̄) (resp. p1(η̄)).

Remark 4.14. With a similar argument as in the proof of Lemma 4.13, we note that each
horizontal (resp. vertical) line becoming active increases the vertical (resp. horizontal)
projection p2(η̄) (resp. p1(η̄)).

Lemma 4.15. In a single move the lines r2 and r5 can not become inactive and the lines
r6 and r7 can not become active.

Lemma 4.16. Let (η̄, η) be a move. We have

(i) if the line r1 becomes inactive with the move, then no line can become active;

(ii) if the line r1 becomes active with the move, then the lines that can become inactive
are r3 and r4.

Lemma 4.17. Let (η̄, η) be a move with η̄ ∈ B and ∆s be its corresponding variation of
s, with ∆s ≥ −2 and s(η) ≥ s∗ − 1. If p2(η) ≥ l∗2 and either the line r3 (respectively r4)
becomes active in the move or r1 becomes active in the move and x5 is empty, we have

(i) if s(η) = s∗ − 1, then η ∈ B;

(ii) if s(η) ≥ s∗ and p2(η) = l∗2, then η ∈ B.

Lemma 4.18. Let (η̄, η) be a move with η̄ ∈ B and ∆s be its corresponding variation of
s, with ∆s ≥ −2. If p2(η̄) ≤ l∗2 − 1, then

(i) if one line among r3 and r4 becomes active and the line r1 does not become active
in the move, then η ∈ B;

(ii) if only two horizontal lines become active in the move and either p2(η̄) ≤ l∗2 − 2 or
p2(η̄) = l∗2 − 1 and s(η) = s∗ − 1, then η ∈ B.

4.3 Proof of Proposition 4.6

Proof. By Lemma 4.2(i) we can distinguish four different cases corresponding to ∆s =

−5,−4,−3,−2. We analyze separately each case.

Case ∆s = −5. Let ∆s = −5 and (η̄, η) ∈ ∂B is the exiting move from B, i.e., η̄ ∈ B, η /∈ B
and P(η̄, η) > 0. By Remark 4.5 we may consider only the case s(η̄) ≥ s∗+ 4. Since η̄ ∈ B,
by (3.29) and s(η̄) ≥ s∗ + 4 we have only the following two cases:

(a) p2(η̄) = l∗2 and v(η̄) ≥ pmax(η̄)− 1;

(b) p2(η̄) ≤ l∗2 − 1.

Since by Lemma 4.15 the lines r2 and r5 cannot become inactive, in order to obtain
∆s = −5 necessarily five lines become inactive and these lines are r1, r3, r4, r6 and r7.
Among them, three are horizontal and two are vertical. By Lemma 4.13, we get{

p1(η) = p1(η̄)− 2,

p2(η) = p2(η̄)− 3.
(4.3)
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In both cases (a) and (b) we consider p2(η̄) ≤ l∗2, thus by (4.3) we obtain that p2(η) ≤
l∗2 − 3 ≤ l∗2 − 1. Thus we can conclude that η ∈ B, i.e., in this case it is impossible to leave
the set B.

Case ∆s = −4. Let ∆s = −4 and (η̄, η) ∈ ∂B is the exiting move from B. By Remark 4.5
we can consider only the case s(η̄) ≥ s∗+3. Again, since η̄ ∈ B, by (3.29) and s(η̄) ≥ s∗+3,
we only have the following two cases:

(a) p2(η̄) = l∗2 and v(η̄) ≥ pmax(η̄)− 1;

(b) p2(η̄) ≤ l∗2 − 1.

We observe that in order to obtain ∆s = −4 we have the two following possibilities:

Case I. four lines becoming inactive and no line become active;

Case II. five lines becoming inactive and one line becoming active.

Case I. By Lemma 4.15 we have that at least one horizontal line becomes inactive, so
by Lemma 4.13 in both cases (a) and (b) we get p2(η) ≤ p2(η̄)− 1 ≤ l∗2 − 1 and thus it is
impossible to leave B.

Case II. By Lemma 4.15 the lines becoming inactive are r1, r3, r4, r6 and r7, so the line
becoming active is either r2 or r5. If the line that becomes active is r5, then the site x5

must contain a free particle in η̄. Thus the line r1 can not become inactive, so this case
is not admissible (see Figure 10). If the line becoming active is r2, in at least one site
among x3, x4 and x5 there must be a free particle in η̄. If the free particle is in x3 or in
x4, then it cannot happen that both lines r3 and r4 become inactive. Thus we consider
the case in which the free particle is in x5. As in the case in which r5 becomes active,
the line r1 can not become inactive. Thus this case is not admissible.

Case ∆s = −3. Let ∆s = −3 and (η̄, η) ∈ ∂B is the exiting move from B. By Remark 4.5
we may consider only the case s(η̄) ≥ s∗+2. Again, since η̄ ∈ B, by (3.29) and s(η̄) ≥ s∗+2,
we only have the following two cases:

(a) p2(η̄) = l∗2 and v(η̄) ≥ pmax(η̄)− 1;

(b) p2(η̄) ≤ l∗2 − 1.

We note that in order to obtain ∆s = −3 we have the three following possibilities:

Case I. five lines becoming inactive and two lines becoming active;

Case II. four lines becoming inactive and one line becoming active;

Case III. three lines becoming inactive and no line becoming active.

Case I. By Lemma 4.15 the lines that must become inactive are r1, r3, r4, r6 and r7: thus
the two lines becoming active are r2 and r5 (both vertical lines). Thus by Lemma 4.13 in
both cases (a) and (b) we have p2(η) = p2(η̄)− 3 ≤ l∗2 − 3 ≤ l∗2 − 1, so it is impossible to
leave B.

Case II. Again by Lemma 4.15 the lines becoming inactive are four among r1, r3,
r4, r6 and r7. Every choice of four of these lines includes at least two horizontal
lines, so, even though one horizontal line becomes active, by Lemma 4.13 we obtain
p2(η) ≤ p2(η̄)− 1 ≤ l∗2 − 1 in both cases (a) and (b). Thus it is impossible to leave B.

Case III. Three lines must become inactive. By Lemma 4.15 we know that at least one
horizontal line must become inactive. Since in both cases (a) and (b) p2(η̄) ≤ l∗2, by
Lemma 4.13 we get p2(η) ≤ p2(η̄)− 1 ≤ l∗2 − 1. Thus it is impossible to leave B.
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Figure 11: Here we depict part of the configuration in the case II for ∆s = −2.

Case ∆s = −2. Let ∆s = −2 and (η̄, η) ∈ ∂B is the exiting move from B. By Remark 4.5
we can only consider the case s(η̄) ≥ s∗+1. Again, since η̄ ∈ B, by (3.29) and s(η̄) ≥ s∗+1,
we only have the following two cases:

(a) p2(η̄) = l∗2 and v(η̄) ≥ pmax(η̄)− 1;

(b) p2(η̄) ≤ l∗2 − 1.

We note that in order to obtain ∆s = −2 we have the three following possibilities:

Case I. four lines becoming inactive and two lines becoming active;

Case II. three lines becoming inactive and one line becoming active,

Case III. two lines becoming inactive and no line becoming active.

Case I. By Lemma 4.15 the lines becoming inactive are four among r1, r3, r4, r6 and r7.
Every choice of four of these lines includes at least two horizontal lines and thus the two
lines becoming active include at most one horizontal line. Then in both cases (a) and (b)
we get p2(η) ≤ p2(η̄)− 1 ≤ l∗2 − 1. Thus it is impossible to leave B.

Case II. Three lines become inactive and one line becomes active. We distinguish the
following cases:

• If the line r1 becomes inactive, by Lemma 4.16(i) we know that no line can become
active, so this case is not admissible.

• If the line r1 becomes active, by Lemma 4.16(ii) we know that the only lines that
can become inactive are r3 and r4. Since we require three deactivating lines, we
deduce that this case is not admissible.

• If the line r1 does not become active nor inactive, by Lemma 4.15 the lines becoming
inactive are three among r3, r4, r6 and r7 and the line becoming active is one among
r2, r3, r4 and r5.

-) If the line becoming active is r3, the three lines becoming inactive are neces-
sarily r4, r6 and r7. Since r4 becomes inactive the site x4 is empty and y2 is
occupied; since r3 becomes active in the site x3 there is a free particle in η̄

(see Figure 11). Since the line r7 becomes active, the site y3 must be occupied.
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Furthermore, the site s is empty, otherwise lines r4 and r6 can not become
inactive. In this case we have one horizontal line becoming active and one
horizontal becoming active, so we obtain{

p1(η) = p1(η̄)− 2,

p2(η) = p2(η̄).
(4.4)

First, we consider the case (a). If s(η) = s∗− 1, by Lemma 4.17(i) we conclude
that it is impossible to leave B. If s(η) ≥ s∗, since by (4.4) p2(η) = p2(η̄) = l∗2,
by Lemma 4.17(ii) we conclude that it is impossible to leave B.

In the case (b), by (4.4), we get p2(η) = p2(η̄) ≤ l∗2 − 1, thus it is impossible to
leave B.

-) If the line becoming active is r4 we conclude by symmetry with a similar
argument.

-) If r3 and r4 do not become active, in both cases (a) and (b) we have p2(η) ≤
p2(η̄)− 1 ≤ l∗2 − 1 and thus it is impossible to leave B.

Case III. There are two lines becoming inactive and no line becoming active. By
Lemma 4.15 the lines that can become inactive are two among r1, r3, r4, r6 and r7. If
at least one horizontal line becomes inactive, in both cases (a) and (b) we get p2(η) ≤
p2(η̄)− 1 ≤ l∗2 − 1 and thus η ∈ B. It remains to analyze the case in which the two lines
that become inactive are both vertical: r6 and r7. Since r7 must become inactive, it is
necessary to have site y3 occupied and sites z1, z2 and z3 empty (see Figure 10).

First, we consider the case (a). We note that the sites y1 and t can not be both
occupied, otherwise the line r6 can not become inactive. For the same reason also the
sites y2 and s can not be both occupied. Furthermore, if y1 is occupied then x3 is empty
and similarly if y2 is occupied then x4 is empty. Thus, if either η̄cl is connected, or both
η̄cl and ηcl are not connected, we get v(η) ≥ v(η̄)− 2. Indeed, if the sites y1 and y2 are
both empty, the particles in the sites x1 and y3 compose a cluster in η̄, thus with the move
we get v(η) ≥ v(η̄): in particular v(η) ≥ v(η̄)− 2. If the sites y1 and y2 are both occupied
we note that the sites z1 and z2 are the unique vacancies in η̄ that are not vacancies in η,
since the sites t, x3, s and x4 are necessarily empty for what we have already observed.
Thus we get v(η) ≥ v(η̄)− 2. If only one site among y1 and y2 is occupied, then only one
vacancy in η̄ is not a vacancy in η, i.e., either z1 if the site y1 is occupied or z2 if the site
y2 is occupied. Since p2(η) = p2(η̄), we get η ∈ B, indeed

v(η) ≥ v(η̄)− 2 ≥ pmax(η̄)− 3 = p1(η)− 1 = pmax(η)− 1.

If η̄cl is not connected and ηcl is connected, since the moved particle and the particle
in y3 are free in η, we deduce that at least one of the clusters in η̄cl must intersect r1:
η̄cl ∩{r1 \ {x1, y3}} 6= ∅. This implies that g′2(η̄) ≥ 1. By (a) and s(η̄) ≥ s∗+ 1, we have that
the circumscribed rectangle of η̄ is R(2l∗2 + k, l∗2) for any k ≥ 0. Since k ≥ 0, 0 < δ < 1

and ε� U2, we get H(η̄) > Γ, indeed

H(η̄) ≥ H(R(2l∗2 + k, l∗2)) + ε(2l∗2 + k − 1) + U1 =

= U1l
∗
2 + 2U2l

∗
2 + kU2 − ε(2(l∗2)2 + kl∗2) + 2εl∗2 + εk − ε+ U1 > Γ⇔

⇔ ε(1 + k(1− δ)− δ) > 0.

(4.5)

In the case (b), since p2(η) = p2(η̄), we get p2(η) ≤ l∗2 − 1 and thus η ∈ B.

4.4 Proof of Proposition 4.7

Proof. By Lemma 4.2(i) there are seven cases corresponding to ∆s = −1, 0, 1, 2, 3, 4, 5.
We analyze separately each case.

Case ∆s = −1. We note that in order to obtain ∆s = −1 we have the four following
possibilities:
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Figure 12: Here we depict part of the configuration in the case III for ∆s = −1.

Case I. four lines becoming inactive and three lines becoming active;

Case II. three lines becoming inactive and two lines becoming active;

Case III. two lines becoming inactive and one line becoming active;

Case IV. one line becoming inactive and no line becoming active.

Case I. By Lemma 4.15 the lines r2 and r5 can not become inactive, thus the lines that
become inactive are four among r1, r3, r4, r6 and r7. Every choice of four of these lines
includes at least two horizontal lines becoming inactive and then at most one horizontal
line becoming active. Thus by Lemma 4.13 we get p2(η) ≤ p2(η̄)− 1 ≤ l∗2 − 2 ≤ l∗2 − 1, so
it is impossible to leave B.

Case II. Again by Lemma 4.15 we know that lines r2 and r5 can not become inactive,
thus the lines that become inactive are three among r1, r3, r4, r6 and r7. We distinguish
the following cases:

• If the line r1 becomes inactive, by Lemma 4.16(i) no line can become active and
thus this case is not admissible.

• If the line r1 becomes active, by Lemma 4.16(ii) the only lines that can become
inactive are r3 and r4. Since we require three deactivating lines, we deduce that
this case is not admissible.

• If the line r1 does not become active nor inactive, by Lemma 4.15 the lines becoming
inactive must be three among r3, r4, r6 and r7 and the lines becoming active must
be two among r2, r3, r4 and r5. Every choice of three of these deactivating lines
includes at least one horizontal line, so at most one horizontal line is becoming
active. For this reason we get p2(η) ≤ p2(η̄) ≤ l∗2 − 1 and thus it is impossible to
leave B.

Case III. There are two lines becoming inactive and one line becoming active. If the
activating line is vertical, by Lemma 4.13 we get p2(η) ≤ p2(η̄) ≤ l∗2 − 1 and thus it is
impossible to leave B, so we can assume for the rest of this case that the activating line
is horizontal. If at least one of the deactivating lines is horizontal we conclude as before.
Indeed p2(η) ≤ p2(η̄) ≤ l∗2 − 1, so it is impossible to leave B. Thus we can reduce the
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proof to the case in which the two deactivating lines are both vertical and the activating
line is horizontal. Since by Lemma 4.15 the lines r2 and r5 can not become inactive, the
lines that become inactive are necessarily r6 and r7. Since r7 becomes inactive, the site
y3 must be occupied and the sites z1, z2 and z3 must be empty (see Figure 12). Thus the
particle in x1 is not free in η̄ and the line r1 cannot become active, so the activating line
is either r3 or r4. By Lemma 4.18(i) we deduce that it is impossible to leave B.

Case IV. We have one deactivating line and no activating line. Thus p2(η) ≤ p2(η̄)− 1 ≤
l∗2 − 2 ≤ l∗2 − 1, so it is impossible to leave B.

Case ∆s = 0. We observe that in order to obtain ∆s = 0 we have the four following
possibilities:

Case I. three lines becoming inactive and three lines becoming active;

Case II. two lines becoming inactive and two lines becoming active;

Case III. one line becoming inactive and one line becoming active;

Case IV. no line becoming inactive and no line becoming active.

Case I. Since by Lemma 4.15 lines r2 and r5 cannot become inactive, the lines becoming
inactive are three among r1, r3, r4, r6 and r7. Again we distinguish the following cases:

• If the line r1 becomes inactive, by Lemma 4.16(i) no line can become active: this
case is not admissible.

• If the line r1 becomes active, by Lemma 4.16(ii) the only lines that can become
inactive are r3 and r4. Since we require three deactivating lines, we deduce that
this case is not admissible.

• If the line r1 does not become active nor inactive, then the lines becoming inactive
are three among r3, r4, r6 and r7 and the lines becoming active are three among
r2, r3, r4 and r5. Every choice of three of these deactivating lines includes at
least one horizontal line, so at most one horizontal line is becoming active. Thus
p2(η) ≤ p2(η̄) ≤ l∗2 − 1, so it is impossible to leave B.

Case II. We have two deactivating and two activating lines. If the two activating lines
are vertical, then we get p2(η) ≤ p2(η̄) ≤ l∗2 − 1, so in this case it is impossible to leave B.
Thus we can reduce the proof to the case in which at least one of the activating lines is
horizontal. Again we consider the following cases:

• If the line r1 becomes inactive, again from Lemma 4.16(i) we deduce that this case
is not admissible, since no line can become active.

• If the line r1 becomes active, again from Lemma 4.16(ii) we deduce that the two
deactivating lines are r3 and r4. Thus we get p2(η) = p2(η̄)− 1 ≤ l∗2 − 1: this implies
that it is impossible to leave B.

• If the line r1 does not become active nor inactive, the deactivating lines are two
among r3, r4, r6, r7 and the activating lines are two among r2, r3, r4 and r5. If at
least one deactivating line is horizontal, we have that at most one activating line
is horizontal, thus we get p2(η) ≤ p2(η̄) ≤ l∗2 − 1: this implies that η ∈ B. Thus we
analyze the case in which the deactivating lines are both vertical: r6 and r7. We
focus on the case in which at least one activating line is horizontal, i.e., the line
r3 and/or r4, otherwise p2(η) = p2(η̄) ≤ l∗2 − 1 and thus it is impossible to leave B.
If only one horizontal line becomes active, by Lemma 4.18(i) we conclude that
η ∈ B. In the case in which two horizontal lines become active, if p2(η̄) ≤ l∗2 − 2 or
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p2(η̄) = l∗2 − 1 and s(η) = s∗− 1, then by Lemma 4.18(ii) we conclude that η ∈ B. By
Remark 4.5 we know that s(η̄) = s(η) ≥ s∗ − 1. Hence we are left to consider the
case s(η̄) ≥ s∗. We obtain that the circumscribed rectangle of η̄ isR(2l∗2+k−1, l∗2−1)

for any k ≥ 1. Recalling that Γ = U1l
∗
2 + 2U2l

∗
2 + U1 − U2 − 2ε(l∗2)2 + 3εl∗2 − 2ε, since

n(η̄) ≥ 2, k ≥ 1, δ < 1 and ε� U2, we get H(η̄) > Γ. Indeed

H(η̄) ≥ H(R(2l∗2 + k − 1, l∗2 − 1)) + 2∆ > Γ⇔ 2U2 > ε(1 + k(δ − 1)). (4.6)

Case III. We have one activating and one deactivating line. If the activating line is
vertical we get p2(η) ≤ p2(η̄) ≤ l∗2 − 1 and we deduce that it is impossible to leave B. Now
we assume that the activating line is horizontal. If also the deactivating line is horizontal,
we get p2(η) = p2(η̄) ≤ l∗2 − 1, thus it is impossible to leave B. We can reduce the proof to
the case in which the activating line is horizontal (r1 or r3 or r4) and the deactivating
line is vertical (r6 or r7). We distinguish the following cases:

• If the line r1 becomes active, by Lemma 4.16(ii) no vertical line can become inactive,
thus this case is not admissible.

• If the line r3 (r4 respectively) becomes active, by Lemma 4.18(i) we deduce that
η ∈ B, since by hypotheses p2(η̄) ≤ l∗2 − 1.

Case IV. We have no deactivating and no activating line, thus we get p2(η) = p2(η̄) ≤ l∗2−1,
so it is impossible to leave B.

Case ∆s = 1. We note that in order to obtain ∆s = 1 we have the four following
possibilities:

Case I. one activating line and no deactivating line;

Case II. two activating lines and one deactivating line;

Case III. three activating lines and two deactivating lines;

Case IV. four activating lines and three deactivating lines.

Case I. We have only to consider the case in which the activating line is horizontal,
otherwise we get p2(η) = p2(η̄) ≤ l∗2 − 1: thus η ∈ B and it is impossible to leave B. If the
activating line is ri, with i ∈ {3, 4}, by Lemma 4.18(i) we deduce that it is impossible to
leave B. Otherwise the horizontal line becoming active is r1. We distinguish the following
two cases:

(a) If the site x5 is empty, by Lemma 4.17(i),(ii) we can conclude that it is impossible
to leave B.

(b) If the site x5 is occupied, in order that r1 becomes active the particle in x5 should
be free in η̄. This implies that n(η̄) ≥ 2 (x1 and x5 contain a free particle). Since
p2(η̄) = l∗2 − 1, by Remark 4.5 we deduce that the circumscribed rectangle of η̄ is
R(2l∗2 + k − 2, l∗2 − 1) for any k ≥ 0. Since k ≥ 0, ε � U2 and 0 < δ < 1, we get
H(η̄) > Γ. Indeed

H(η̄) ≥ H(R(2l∗2 + k − 2, l∗2 − 1)) + 2∆ =

= U1l
∗
2 + 2U2l

∗
2 + kU2 − ε(2(l∗2)2 − 4l∗2 + kl∗2 − k + 2) + U1 − 2ε > Γ⇔

⇔ 2U2 > ε(2− δ + k(δ − 1)).

(4.7)

Case II. We have two activating lines and one deactivating line. If no horizontal line
becomes active, we get p2(η) ≤ p2(η̄) ≤ l∗2 − 1, thus η ∈ B. Now we consider the case in
which at least one horizontal line becomes active. In particular, the relevant cases are
the followings:
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• An horizontal line becomes active and no horizontal line becomes inactive.

-) If r1 is the horizontal line becoming active, by Lemma 4.16(ii) no vertical line
can be deactivated and thus this case is not admissible.

-) If r3 (respectively r4) is the horizontal line becoming active, by Lemma 4.18(i)
we get η ∈ B.

• Two horizontal lines become active, thus n(η̄) ≥ 2. If p2(η̄) ≤ l∗2 − 2 or p2(η̄) = l∗2 − 1

and s(η̄) = s∗−2 that implies s(η) = s∗−1, we get η ∈ B. By Remark 4.5 we deduce
that s(η̄) ≥ s∗ − 2, so we are left to consider the case s(η̄) ≥ s∗ − 1 that implies
s(η) ≥ s∗. Thus the circumscribed rectangle of η̄ is R(2l∗2 + k − 2, l∗2 − 1) for any
k ≥ 1. Since k ≥ 1, δ < 1 and ε� U2, we get H(η̄) > Γ. Indeed

H(η̄) ≥ H(R(2l∗2 + k − 2, l∗2 − 1)) + 2∆ =

= U1l
∗
2 + 2U2l

∗
2 + kU2 − ε(2(l∗2)2 + kl∗2 − k − 4l∗2 + 2) + U1 − 2ε > Γ⇔

⇔ 2U2 > ε(2− δ + k(δ − 1)).

(4.8)

Case III. We have three activating lines and two deactivating lines. The lines becoming
active are three among r1, r2, r3, r4, r5 and the lines becoming inactive are two among
r1, r3, r4, r6 and r7. Again we distinguish the following cases:

• If the line r1 becomes active, by Lemma 4.16(ii) the two deactivating lines are
necessarily r3 and r4, that are both horizontal. Thus we get p2(η) = p2(η̄) − 1 ≤
l∗2 − 2 ≤ l∗2 − 1, so we conclude that it is impossible to leave B.

• If the line r1 becomes inactive, by Lemma 4.16(i) no line can become active and
thus this case is not admissible.

• If the line r1 does not become active nor inactive, the lines becoming active are
three among r2, r3, r4, r5 and the lines becoming inactive are two among r3, r4, r6

and r7. If no horizontal line becomes active, we get p2(η) = p2(η̄) ≤ l∗2 − 1 and thus
it is impossible to leave B, otherwise we consider the following cases:

-) Two horizontal lines become active, i.e., the lines r3 and r4 become active,
thus n(η̄) ≥ 2 (in the sites x3 and x4 there are free particles). If p2(η̄) ≤ l∗2 − 2

or p2(η̄) = l∗2 − 1 and s(η̄) = s∗− 2 that implies s(η) = s∗− 1, by Lemma 4.18(ii)
we get η ∈ B. By Remark 4.5 we deduce that s(η̄) ≥ s∗ − 2, so we are left to
consider the case s(η̄) ≥ s∗ − 1 that implies s(η) ≥ s∗. Thus by (4.8) we get
H(η̄) ≥ H(R(2l∗2 + k − 2, l∗2 − 1)) + 2∆ > Γ for any k ≥ 1.

-) Only one horizontal line becomes active, that is either r3 or r4. By Lemma
4.18(i), we get η ∈ B.

Case IV. We have four activating lines and three deactivating lines. The lines becoming
active are four among r1, r2, r3, r4, r5 and the lines becoming inactive are three among
r1, r3, r4, r6 and r7. Again we distinguish the following cases:

• If the line r1 becomes active, by Lemma 4.16(ii) at most two lines (r3 and/or r4)
can become inactive, thus this case is not admissible.

• If the line r1 becomes inactive, by Lemma 4.16(i) no line becomes active, thus this
case is not admissible.

• If the line r1 does not become active nor inactive, the lines becoming active are r2,
r3, r4, r5 and lines becoming inactive are only r6 and r7: this means that ∆s = 2,
which is in contradiction with ∆s = 1.

Case ∆s = 2. We observe that in order to obtain ∆s = 2 we have the three following
possibilities:
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Case I. four activating lines and two deactivating lines;

Case II. three activating lines and one deactivating line;

Case III. two activating lines and no deactivating line.

Case I. By Lemma 4.15 the lines r6, r7 cannot become active and the lines r2, r5 cannot
become inactive. Thus the activating lines are four among r1, r2, r3, r4, r5 and the
deactivating lines are two among r1, r3, r4, r6 and r7. We distinguish the following cases:

• If the line r1 becomes active, by Lemma 4.16(ii) the lines r3 and r4 become inactive,
that are both horizontal. Thus we get p2(η) = p2(η̄) − 1 ≤ l∗2 − 2 ≤ l∗2 − 1, so it is
impossible to leave B.

• If the line r1 becomes inactive, by Lemma 4.16(i) no line can become active, thus
this case is not admissible.

• If the line r1 does not become active nor inactive, then the four activating lines
are r2, r3, r4, r5 and the two deactivating lines are r6 and r7. By Remark 4.5 we
deduce that s(η̄) ≥ s∗−3 that implies s(η) ≥ s∗−1. If p2(η̄) ≤ l∗2−2 or p2(η̄) = l∗2−1

and s(η) = s∗ − 1, by Lemma 4.18(ii) we deduce that it is impossible to leave
B. If s(η) ≥ s∗, that implies s(η̄) ≥ s∗ − 2, the circumscribed rectangle of η̄ is
R(2l∗2 + k− 3, l∗2 − 1) for any k ≥ 1. Since k ≥ 1, δ < 1 and ε� U2, we get H(η̄) > Γ.
Indeed

H(η̄) ≥ H(R(2l∗2 + k − 3, l∗2 − 1)) + 2∆ =

= U1l
∗
2 + 2U2l

∗
2 + kU2 − ε(2(l∗2)2 + kl∗2 − k − 5εl∗2 + 3) + U1 − U2 − 2ε > Γ⇔

⇔ 2U2 > ε(3− 2δ + k(δ − 1)).
(4.9)

Case II. We have three activating lines and one deactivating line. Again we distinguish
the following cases:

• If the line r1 becomes active, by Lemma 4.16(ii) we know that either r3 or r4

becomes inactive, that are both horizontal. If p2(η̄) ≤ l∗2 − 2, we get p2(η) ≤
p2(η̄) + 1 ≤ l∗2 − 1, thus it is impossible to leave B. In the case p2(η̄) = l∗2 − 1 that
implies p2(η) = l∗2 − 1, by Lemma 4.17(i),(ii) we can conclude that it is impossible
to leave B.

• If the line r1 becomes inactive, by Lemma 4.16(i) no line can become active and
thus this case is not admissible.

• If the line r1 does not become active nor inactive, thus the activating lines are
three among r2, r3, r4, r5 and the deactivating line is one among r3, r4, r6 and r7.
Every choice of three of these activating lines includes at least one horizontal line.
Thus the relevant cases are the followings:

-) If one horizontal line becomes active, i.e., either r3 or r4, by Lemma 4.18(i)
we deduce that it is impossible to leave B.

-) If two horizontal lines become active, we get n(η̄) ≥ 2. By Remark 4.5 we
deduce that s(η̄) ≥ s∗ − 3 that implies s(η) ≥ s∗ − 1. If p2(η̄) ≤ l∗2 − 2 or
p2(η̄) = l∗2 − 1 and s(η) = s∗ − 1, by Lemma 4.18(ii) we deduce that it is
impossible to leave B. If s(η) ≥ s∗, that implies s(η̄) ≥ s∗ − 2, by (4.9) we get
H(η̄) ≥ H(R(2l∗2 + k − 3, l∗2 − 1)) + 2∆ > Γ for any k ≥ 1.

Case III. We have two activating lines and no deactivating line. If no horizontal line
becomes active, we get p2(η) = p2(η̄) ≤ l∗2 − 1 and thus it is impossible to leave B. Thus
we can reduce our analysis to the case in which at least one horizontal line becomes
active. We distinguish the following cases:
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• If the line r1 becomes active, we distinguish the following cases:

-) If two horizontal lines become active, i.e., the line r1 and one among r3 and
r4, by Remark 4.5, we deduce that s(η̄) ≥ s∗ − 3 that implies s(η) ≥ s∗ − 1. If
p2(η̄) ≤ l∗2 − 2 or p2(η̄) = l∗2 − 1 and s(η) = s∗− 1, by Lemma 4.18(ii) we deduce
that it is impossible to leave B. If s(η) ≥ s∗, that implies s(η̄) ≥ s∗ − 2, by (4.9)
we get H(η̄) ≥ H(R(2l∗2 + k − 3, l∗2 − 1)) + 2∆ > Γ for any k ≥ 1.

-) If only one horizontal line become active, i.e., the line r1, we get p2(η) =

p2(η̄) + 1. If p2(η̄) ≤ l∗2 − 2, we get p2(η) ≤ l∗2 − 1 and thus it is impossible to
leave B. Suppose now that the site x5 is empty. If p2(η̄) = l∗2−1 then p2(η) = l∗2,
so by Lemma 4.17(i),(ii) we conclude that it is impossible to leave B. Hence we
are left to consider the case x5 occupied. Thus x5 must contain a free particle,
otherwise the line r1 is already active in η̄. If p2(η̄) = l∗2 − 1 then p2(η) = l∗2, so
by (4.9) we get H(η̄) ≥ H(R(2l∗2 + k − 3, l∗2 − 1)) + 2∆ > Γ for any k ≥ 1.

• If the line r1 does not become active, the horizontal lines that can become active
are r3 and r4. We distinguish the following cases:

-) If only one horizontal line become active, i.e., either r3 or r4, by Lemma 4.18(i)
we get η ∈ B.

-) If two horizontal lines become active, i.e., the lines r3 and r4, by Remark 4.5
we deduce that s(η̄) ≥ s∗ − 3 that implies s(η) ≥ s∗ − 1. If p2(η̄) ≤ l∗2 − 2

or p2(η̄) = l∗2 − 1 and s(η) = s∗ − 1, by Lemma 4.18(ii) we deduce that it is
impossible to leave B. If s(η) ≥ s∗, that implies s(η̄) ≥ s∗ − 2, by (4.9) we get
H(η̄) ≥ H(R(2l∗2 + k − 3, l∗2 − 1)) + 2∆ > Γ for any k ≥ 1.

Case ∆s = 3. We note that in order to obtain ∆s = 3 we have the three following
possibilities:

Case I. five activating lines and two deactivating lines;

Case II. four activating lines and one deactivating line;

Case III. three activating lines and no deactivating line.

Case I. Since by Lemma 4.15 the lines r6 and r7 cannot become active, thus the lines
becoming active are r1, r2, r3, r4, r5 and the lines becoming inactive are r6 and r7. Since
r1 becomes active, by Lemma 4.16(ii) the only lines that can become inactive are r3 and
r4, which is in contradiction with this case.

Case II. We have four activating lines and one deactivating line. Since by Lemma 4.15
the lines r6 and r7 cannot become active, thus we have that at least one horizontal line
must become active. We distinguish the following cases:

• If the line r1 becomes active, by Lemma 4.16(ii) the deactivating line is one among
r3 and r4, that are both horizontal. Thus we deduce that p2(η) ≤ p2(η̄) + 1. If only
one horizontal line becomes active we get p2(η) = p2(η̄) ≤ l∗2 − 1 and thus it is
impossible to leave B. If two horizontal lines become active, i.e., r1 and one line
among r3 and r4, we get p2(η) = p2(η̄) + 1. If p2(η̄) ≤ l∗2 − 2, we get p2(η) ≤ l∗2 − 1

and thus it is impossible to leave B. If p2(η̄) = l∗2 − 1 then p2(η) = l∗2, so by
Lemma 4.17(i),(ii) we conclude that η ∈ B.

• If the line r1 becomes inactive, by Lemma 4.16(i) no line can become active and
thus this case is not admissible.

• If the line r1 does not become active nor inactive, we deduce that one horizontal line
becomes active and one horizontal becomes inactive. Thus p2(η) = p2(η̄) ≤ l∗2 − 1,
so it is impossible to leave B.
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Case III. We have three activating lines and no deactivating line. Since by Lemma 4.15
the lines r6 and r7 can not become active, we have that at least one horizontal line must
become active. We distinguish the following cases:

• If the line r1 becomes active, we distinguish the following cases:

-) If only one horizontal line becomes active, we get p2(η) = p2(η̄) + 1. If p2(η̄) ≤
l∗2 − 2, we get p2(η) ≤ l∗2 − 1, thus it is impossible to leave B. Suppose now that
the site x5 is empty. If p2(η̄) = l∗2 − 1 then p2(η) = l∗2, so by Lemma 4.17(i),(ii)
we conclude that it is impossible to leave B. Hence we are left to consider the
case x5 occupied. Thus it contains a free particle in η̄, otherwise the line r1

is already active in η̄. If p2(η̄) = l∗2 − 1 then p2(η) = l∗2, so by Remark 4.5 we
deduce that the circumscribed rectangle of η̄ is R(2l∗2 + k − 5, l∗2 − 1) for any
k ≥ 1. Since n(η̄) ≥ 2, k ≥ 1, δ < 1 and ε� U2, we get H(η̄) > Γ. Indeed

H(η̄) ≥ H(R(2l∗2 + k − 5, l∗2 − 1)) + 2∆ =

= U1l
∗
2 + 2U2l

∗
2 + U1 + kU2 − 3U2 − ε(2(l∗2)2 + kl∗2 − k − 7l∗2 + 7) > Γ⇔

⇔ 2U2 > ε(5− 4δ + k(δ − 1)).
(4.10)

-) If two horizontal lines become active, i.e., the line r1 and one among r3 and
r4, by Remark 4.5 we deduce that s(η̄) ≥ s∗ − 4 that implies s(η) ≥ s∗ − 1. If
p2(η̄) ≤ l∗2 − 2 or p2(η̄) = l∗2 − 1 and s(η) = s∗− 1, by Lemma 4.18(ii) we deduce
that it is impossible to leave B. If s(η) ≥ s∗, that implies s(η̄) ≥ s∗ − 3, we
obtain that the circumscribed rectangle of η̄ is R(2l∗2 + k − 4, l∗2 − 1) for any
k ≥ 1. Since n(η̄) ≥ 2, k ≥ 1, δ < 1 and ε� U2, we get H(η̄) > Γ. Indeed

H(η̄) ≥ H(R(2l∗2 +k−4, l∗2−1))+2∆ > Γ⇔ 2U2 > ε(4−3δ+k(δ−1)). (4.11)

-) If three horizontal lines become active, we get p2(η) = p2(η̄)+3. If p2(η̄) ≤ l∗2−4,
we get p2(η) ≤ l∗2 − 1, thus it is impossible to leave B. If p2(η̄) = l∗2 − 3 then
p2(η) = l∗2, so by Lemma 4.17(i),(ii) we conclude that η ∈ B. By Remark 4.5 we
know that s(η̄) ≥ s∗−4. If s(η̄) = s∗−4 then s(η) = s∗−1, thus by Lemma 4.17(i)
we conclude that it is impossible to leave B. If s(η̄) ≥ s∗− 3, with p2(η̄) = l∗2− 2

that implies p2(η) = l∗2 +1, we get H(η̄) ≥ H(R(2l∗2 +k−3, l∗2−2))+3∆ > Γ for
any k ≥ 1, by a direct computation, since n(η̄) ≥ 3. We refer to the Appendix
for the explicit computation.

• If the line r1 does not become active, the horizontal lines that can become active
are r3 and r4. Again we distinguish the following cases:

-) If only one horizontal line becomes active, by Lemma 4.18(i), we get η ∈ B.
-) If two horizontal lines become active, i.e., the lines r3 and r4, we get p2(η) =

p2(η̄) + 2. By Remark 4.5 we know that s(η̄) ≥ s∗− 4, that implies s(η) ≥ s∗− 1.
If p2(η̄) ≤ l∗2 − 2 or p2(η̄) = l∗2 − 1 and s(η) = s∗ − 1, by Lemma 4.18(ii)
we obtain that it is impossible to leave B. If s(η̄) ≥ s∗ − 3, that implies
s(η) ≥ s∗, with p2(η̄) = l∗2 − 1 and then p2(η) = l∗2 + 1, by (4.11) we get
H(η̄) ≥ H(R(2l∗2 + k − 4, l∗2 − 1)) + 2∆ > Γ for any k ≥ 1, since n(η̄) ≥ 2.

Case ∆s = 4. We observe that in order to obtain ∆s = 4 we have the two following
possibilities:

Case I. five activating lines and one deactivating line;

Case II. four activating lines and no deactivating line.
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Case I. The five activating lines are r1, r2, r3, r4 and r5, thus we get p2(η) = p2(η̄) + 3

and n(η̄) ≥ 3. If p2(η̄) ≤ l∗2 − 4, we get p2(η) ≤ l∗2 − 1 and thus η ∈ B. If p2(η̄) = l∗2 − 3

then p2(η) = l∗2, so by Lemma 4.17(i),(ii) we deduce that it is impossible to leave B. By
Remark 4.5 we know that s(η̄) ≥ s∗ − 5. If s(η̄) = s∗ − 5 then s(η) = s∗ − 1, thus by
Lemma 4.17(i) we conclude that it is impossible to leave B. Hence we are left to the
case s(η̄) ≥ s∗ − 4, with p2(η̄) = l∗2 − 1 and p2(η̄) = l∗2 − 2. In both cases, we directly get
H(η̄) > Γ for any k ≥ 1. We refer to the Appendix for the explicit computations.

Case II. We have four activating lines and no deactivating line. We observe that there
are at least two horizontal lines becoming active, so at least one line among r3 and r4

must become active. If p2(η̄) ≤ l∗2 − 3, we get p2(η) ≤ p2(η̄) + 2 ≤ l∗2 − 1 and thus it is
impossible to leave B. If l∗2 − 2 ≤ p2(η̄) ≤ l∗2 − 1 and p2(η) = l∗2, by Lemma 4.17(i),(ii) we
conclude that it is impossible to leave B. By Remark 4.5 we know that s(η̄) ≥ s∗ − 5.
Thus we analyze separately the case s(η̄) = s∗ − 5 and s(η̄) ≥ s∗ − 4. If s(η̄) = s∗ − 5

then s(η) = s∗ − 1, so by Lemma 4.17(i) we deduce that it is impossible to leave B. If
s(η̄) ≥ s∗ − 4, we have to analyze the cases p2(η̄) = l∗2 − 2 and p2(η̄) = l∗2 − 1. Thus
we get H(η̄) > Γ with a direct computation. We refer to the Appendix for the explicit
computations.

Case ∆s = 5. We note that the unique way to obtain ∆s = 5 is with five activating lines
and no deactivating line. By Lemma 4.15 the lines becoming active are necessarily r1, r2,
r3, r4 and r5: three are horizontal and two are vertical. Thus we get p2(η) = p2(η̄) + 3. If
p2(η̄) ≤ l∗2 − 4, we get p2(η) ≤ l∗2 − 1, so it is impossible to leave B. If p2(η̄) = l∗2 − 3 then
p2(η) = l∗2, so by Lemma 4.17(i),(ii) we can conclude that it is impossible to leave B. For
the remaining cases, by Remark 4.5 we know that s(η̄) ≥ s∗−6, that implies s(η) ≥ s∗−1.
We analyze separately the cases s(η̄) = s∗ − 6 and s(η̄) ≥ s∗ − 5. If s(η̄) = s∗ − 6 then
s(η) = s∗ − 1, thus by Lemma 4.17(i) we can conclude that η ∈ B. If s(η̄) ≥ s∗ − 5 with a
direct computation we get H(η̄) > Γ, since n(η̄) ≥ 4. We refer to the Appendix for the
explicit computations.

4.5 Proof of Proposition 4.8

Proof. Let (η̄, η) be a move with η̄ ∈ B and ∆s be its corresponding variation of s; by
Lemma 4.2(i) we have to consider only the cases corresponding to ∆s = 3, 4, 5.

Case ∆s = 3. Let ∆s = 3; by Remark 4.5(i) we consider only the case s(η̄) ≥ s∗ − 4. For
the convenience of the proof, we distinguish the following cases:

(a) s(η̄) = s∗ − 4;

(b) s∗ − 3 ≤ s(η̄) ≤ s∗ − 1;

(c) s(η̄) ≥ s∗.

First we consider the case (a). If s(η̄) = s∗ − 4, then s(η) = s∗ − 1. If p2(η) ≤ l∗2 − 1,
we directly get η ∈ B. If p2(η) ≥ l∗2, by Lemma 4.2(ii) we obtain

v(η) ≥ 3pmin(η)− 6 ≥ pmin(η)− 1⇔ 2pmin(η) ≥ 5.

Since pmin(η) ≥ 4, by (3.29) we deduce that in the case (a) it is impossible to leave B.
By Lemma 4.2(ii) we have n(η̄) ≥ 2. The circumscribed rectangle of η̄ is R(2l∗2 − k −

x, l∗2 + k) for any k ≥ 0, where in the case (b) 2 ≤ x ≤ 4, and in the case (c) x ≤ 1. In the
case (b) we obtain

H(η̄) ≥ H(R(2l∗2 − k − x, l∗2 + k)) + 2∆ > Γ⇔
⇔ εk2 + k[U1 − U2 − εl∗2 + xε] + U1 + 3U2 − xU2 + xεl∗2 − 3εl∗2 > 0.

(4.12)
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Since k ≥ 0, x ≥ 2, δ < 1 and ε� U2 we obtain H(η̄) > Γ, indeed

U1 − U2 − εl∗2 + xεU1 − 2U2 − εδ + xε > ε(x− δ) ≥ ε(2− δ) > ε > 0

U1 + 3U2 − xU2 + xεl∗2 − 3εl∗2 = U1 + xεδ − 3εδ ≥ U1 − εδ � U1 − U2 > 0.
(4.13)

In the case (c), since s(η̄) ≥ s∗, by (3.29) we deduce that p2(η̄) = l∗2, so in this case
k = 0 and v(η̄) ≥ pmax(η̄)−1. Since x ≤ 1, 1− δ > 0 and U2 � ε, we get H(η̄) > Γ. Indeed

H(η̄) ≥ H(R(2l∗2 − x, l∗2)) + ε(2l∗2 − x− 1) + 2∆ > Γ⇔
⇔ 2U2 + U1 > ε(1 + x(1− δ)). (4.14)

This concludes the proof in the case ∆s = 3.

Case ∆s = 4. Let ∆s = 4; by Remark 4.5 we consider only the case s(η̄) ≥ s∗ − 5. For
the convenience of the proof, we distinguish the following cases:

(a) s(η̄) = s∗ − 5;

(b) s∗ − 4 ≤ s(η̄) ≤ s∗ − 1;

(c) s(η̄) ≥ s∗.

First, we consider the case (a). If s(η̄) = s∗ − 5, we get s(η) = s∗ − 1. If p2(η) ≤ l∗2 − 1,
we directly get η ∈ B. If p2(η) ≥ l∗2, by Lemma 4.2(ii) we obtain

v(η) ≥ 4pmin(η)− 7 ≥ pmin(η)− 1⇔ pmin(η) ≥ 2.

Since pmin(η) ≥ 4, by (3.29) we obtain that in the case (a) it is impossible to leave B.
By Lemma 4.2(ii) we have n(η̄) ≥ 3. The circumscribed rectangle of η̄ is R(2l∗2 −

k − x, l∗2 + k) for any k ≥ 0, where in the case (b) 2 ≤ x ≤ 5, and in the case (c)
x ≤ 1. In the case (b), the proof is analogue to the one for ∆s = 3, so we get H(η̄) ≥
H(R(2l∗2−k−x, l∗2+k))+3∆ > Γ and we refer to the Appendix for the explicit computation.

In the case (c), since s(η̄) ≥ s∗, by (3.29) we deduce that p2(η̄) = l∗2, so in this case
k = 0 and v(η̄) ≥ pmax(η̄)−1. Thus we get H(η̄) ≥ H(R(2l∗2−x, l∗2))+ε(2l∗2−x−1)+3∆ > Γ

and we refer to the Appendix for the explicit computation. This concludes the proof in
the case ∆s = 4.

Case ∆s = 5. Let ∆s = 5; by Remark 4.5 we consider only the case s(η̄) ≥ s∗ − 6. For
the convenience of the proof, we distinguish the following cases:

(a) s(η̄) = s∗ − 6;

(b) s∗ − 5 ≤ s(η̄) ≤ s∗ − 1;

(c) s(η̄) ≥ s∗.

First we consider case (a). If s(η̄) = s∗ − 6, then s(η) = s∗ − 1. If p2(η) ≤ l∗2 − 1, we
get η ∈ B. If p2(η) ≥ l∗2, by Lemma 4.2(ii) we obtain

v(η) ≥ 5pmin(η)− 8 ≥ pmin(η)− 1⇔ 4pmin(η) ≥ 7.

Since pmin(η) ≥ 4, by (3.29) we deduce that in the case (a) it is impossible to leave B.
By Lemma 4.2(ii) we have n(η̄) ≥ 4. The circumscribed rectangle of η̄ is R(2l∗2 −

k − x, l∗2 + k) for any k ≥ 0, where in the case (b) 2 ≤ x ≤ 6, and in the case (c)
x ≤ 1. In the case (b), the proof is analogue to the one for ∆s = 3, so we get H(η̄) ≥
H(R(2l∗2−k−x, l∗2+k))+4∆ > Γ and we refer to the Appendix for the explicit computation.

In the case (c), since s(η̄) ≥ s∗, by definition (3.29) we deduce that p2(η̄) = l∗2, so in
this case k = 0, and v(η̄) ≥ pmax(η̄)− 1. Thus we get H(η̄) ≥ H(R(2l∗2 − x, l∗2)) + ε(2l∗2 −
x−1)+4∆ > Γ and we refer to the Appendix for the explicit computation. This concludes
the proof in the case ∆s = 5.
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(1) −→
∆

(2) −→−U2
(3) −→

+U2
(4) 99K

0, .., 0

(5) −→−U2

(6) −→
+U1

(7) −→−U1

(8) −→
+U2

(9) 99K
0, .., 0,−U2

(10) 99K
+U1

(11) 99K
−U1 + U1

?

(12)

Figure 13: Transition column to row for R(2l∗2 − 1, l∗2 − 1): the configuration (1) has
energy equal to Γ − ∆ + U2 − U1 and thus the configurations (7), (11) and (12) have
energy equal to Γ. Between the configuration (11) and (12) the protuberance along
the horizontal side is attached to the bar decreasing the energy by U1, afterwards the
protuberance on the right column is detached from the cluster increasing the energy by
U1. In (12) we indicate with a dashed arrow the movement of the free particle until it
connects to the cluster that decreases the energy by U1 + U2.

4.6 Proof of Proposition 4.9

Proof. We will prove that if ∆s = −1 and (η̄, η) ∈ ∂B, then max {H(η̄), H(η)} ≥ Γ.
Moreover, we will identify in which configurations the maximum is equal to Γ to prove
Theorem 3.7(i). By Remark 4.5 we can only consider the case s(η̄) ≥ s∗, i.e., s(η̄) = s∗+k

for any k ≥ 0. By (3.29) and s(η̄) ≥ s∗, we have{
v(η̄) ≥ pmax(η̄)− 1

p2(η̄) = l∗2.
(4.15)

Thus we obtain that the circumscribed rectangle of η̄ is R(2l∗2 + k − 1, l∗2), indeed p1(η̄) =

s(η̄)− l∗2 = 2l∗2 + k − 1. From (3.11) we have

H(η̄) = H(R(2l∗2 + k − 1, l∗2)) + εv(η̄) + U1g
′
2(η̄) + U2g

′
1(η̄) + ∆n(η̄). (4.16)

For pmin(η̄) ≥ 4 we consider the following cases:

Case I. n(η̄) ≥ 1;

Case II. g′1(η̄) + g′2(η̄) ≥ 1 (and n(η̄) = 0);

A. g′2(η̄) = 1;

B. g′1(η̄) = 1;

C. either g′1(η̄) = 1 and g′2(η̄) = 1, or g′2(η̄) ≥ 2;

D. g′1(η̄) ≥ 2 and g′2(η̄) = 0.

Case III. n(η̄) = 0 and g′1(η̄) + g′2(η̄) = 0.

We will prove that in cases I, II-C and II-D we have H(η̄) > Γ; in case II-A we have
H(η̄) ≥ Γ and in cases II-B and III either η ∈ B or η /∈ B and H(η) > Γ.
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l∗2

2l∗2 + k − 16

r

Figure 14: Possible representation for η̄ in the case n(η̄) = 0, g′1(η̄) = 1 and g′2(η̄) = 0.

Case I. Since n(η̄) ≥ 1, by (3.11) and (4.15) we obtain

H(η̄) ≥ H(R(2l∗2 + k − 1, l∗2)) + εv(η̄) + ∆ ≥
≥ U1l

∗
2 + 2U2l

∗
2 + kU2 − U2 − ε(2(l∗2)2 + kl∗2 − l∗2) + ε(2l∗2 + k − 2) + U1 + U2 − ε =

= U1l
∗
2 + 2U2l

∗
2 + kU2 − 2ε(l∗2)2 − kεl∗2 + 3εl∗2 + kε− 3ε+ U1.

(4.17)
We recall that Γ = U1l

∗
2 + 2U2l

∗
2 + U1 − U2 − 2ε(l∗2)2 + 3εl∗2 − 2ε. Since k ≥ 0, ε � U2

and δ < 1, we have U2 > ε(1− k(1− δ)), that implies H(η̄) > Γ.

Case II.A Since g′2(η̄) = 1, k ≥ 0 and δ < 1, using (3.11) we obtain

H(η̄) = H(R(2l∗2 + k − 1, l∗2)) + εv(η̄) + U1 ≥
≥ U1l

∗
2 + 2U2l

∗
2 + kU2 − U2 − ε(2(l∗2)2 + kl∗2 − l∗2) + ε(2l∗2 + k − 2) + U1 ≥ Γ⇔

⇔ kε(1− δ) ≥ 0.

(4.18)

Our goal is also to emphasize in which pairs (η̄, η) we have max{H(η̄), H(η)} = Γ. This
is the case if k = 0 and η̄ is a configuration such that g′2(η̄) = 1 and v(η̄) = 2l∗2 + k − 2 =

pmax(η̄)− 1, namely the configurations in P1 (as number (7) and (11) in Figure 13). Note
that if η̄ ∈ P1, then η ∈ B. Indeed with the move (see transition from configuration (7) to
(8) in Figure 13), we get p2(η) = p2(η̄), s(η) = s(η̄) and v(η) = v(η̄). If v(η̄) > pmax(η̄)− 1

or k ≥ 1, we get H(η̄) > Γ.

Case II.B We have g′1(η̄) = 1. By Remark 4.4 we know that no line can become active.
If p2(η) = p2(η̄) − 1 = l∗2 − 1, we get η ∈ B. Thus we have to consider only the case in
which ∆s = −1 is obtained by a vertical line becoming inactive. Since by Lemma 4.15
the lines r2 and r5 can not become inactive, the deactivating line is one among r6 and r7.
We distinguish the case η̄cl connected or not.

If η̄cl is connected we note that g′1(η̄) = 1 is given by two protuberances at distance
strictly bigger than one on the shorter side, that is the vertical one. Indeed by definition
(3.29) in the case s ≥ s∗, we deduce that p1(η̄) > p2(η̄) (see Figure 14). Clearly, there
could be more vacancies in η̄, but what is relevant to obtain ∆s = −1 is that there must
exist a vertical line r such that r ∩ η̄cl is a single site a, such that a becomes free in η,
indeed this is the only admissible operation with ∆s = −1. Since η̄ ∈ B and s(η̄) ≥ s∗, we
note that v(η̄) ≥ pmax(η̄)− 1 = 2l∗2 + k− 2. Since with the move we lose (l∗2 − 1) vacancies,
we get

v(η) = v(η̄)− (l∗2 − 1) ≥ l∗2 + k − 1.

If k = 0, we get v(η) ≥ l∗2 − 1 = pmin(η)− 1 and, since s(η) = s∗ − 1, we deduce that
η ∈ B.
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Figure 15: Here we depict part of the configuration in the case n(η̄) = 0, g′1(η̄)+g′2(η̄) = 0

and y1 occupied.

If k ≥ 1, we get

H(η) ≥ H(R(2l∗2 + k − 2, l∗2)) + ε(l∗2 + k − 1) + ∆ =

= U1l
∗
2 + 2U2l

∗
2 − ε(2(l∗2)2 + kl∗2 − 2l∗2) + εl∗2 + U1 − U2 + kU2 + kε− 2ε > Γ⇔

⇔ kε(1− δ) > 0, always since δ < 1.

(4.19)

If η̄cl is not connected, we note that g′1(η̄) = 1 can be obtained with two protuberances
at distance strictly bigger than one on the vertical side (as before) or with two distinct
clusters that intersect the same vertical line. In the first case we can conclude with a
similar argument as before. In the latter case, in order to obtain ∆s = −1 with the move,
we have to move a particle in such a way it becomes free in η and the vertical line r
where it lies in η̄ becomes inactive. In this way we deduce that r ∩ η̄cl consists of a single
non-empty site a and such a particle has to become free in γ. From this we deduce that
the particle in a is the moving particle and again in η we lose (l∗2 − 1) vacancies. Thus
the situation for η̄ is the same as before: for k = 0, we get η ∈ B, and for k ≥ 1, we get
H(η) > Γ.

Case II.C By (3.11), the energy increases by a quantity U1 + z > U1, where z = U2 if
g′1(η̄) = 1 and g′2(η̄) = 1, or z ≥ 2U1 if g′2(η̄) ≥ 2. Thus with a similar reasoning as in the
case II.A, we get H(η̄) > Γ.

Case II.D We argue in a similar way as in the case II-B.

Case III. We have s(η̄) ≥ s∗, with n(η̄) = 0 and g′1(η̄) + g′2(η̄) = 0. We will prove that if
η /∈ B, then H(η) > Γ. We recall that the circumscribed rectangle of η̄ is R(2l∗2 +k− 1, l∗2),
for any k ≥ 0, and, since η̄ ∈ B, v(η̄) ≥ pmax(η̄) − 1 = 2l∗2 + k − 1. By Remark 4.3 it is
impossible to activate lines and thus ∆s = −1 is obtained by a unique line becoming
inactive (see Figure 10). Since by Lemma 4.15 the lines r2 and r5 can not become
inactive, we analyze separately the case in which ri is the line becoming inactive, with
i ∈ {1, 3, 4, 6, 7}. If the line becoming inactive is either r1 or r3 or r4, by Lemma 4.13 we
know that p2(η) = p2(η̄)− 1 = l∗2 − 1, thus η ∈ B. Hence we are left to consider the case
in which the line becoming inactive is either r6 or r7:

• r6 is the line becoming inactive. Since ∆s = −1, the sites x3, x4 and x5 must be
empty, otherwise some of the lines r2, r4, r4 and r5 are active in η, so that they must
be active also in η̄ (see Figure 10). This implies that n(η̄) ≥ 1 or η̄ is not monotone,
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Figure 16: Possible configurations for η̄ (on the left hand-side) and the corresponding
for η (on the right hand-side) in the case that r6 becomes inactive.

which is in contradiction with the assumptions n(η̄) = 0 and g′1(η̄) + g′2(η̄) = 0. We
distinguish the following cases:

-) If the site y1 is occupied in η̄, since r6 ∩ ηcl = ∅, we necessarily have that the
site y1 must contain a free particle in η. Thus the sites z1 and t are empty (see
Figure 15). Since η̄ is monotone by assumption, along the line r3 there must be
a unique particle in η̄cl, that is in the site y1. This implies that with the move
also the line r3 becomes inactive, which is in contradiction with ∆s = −1.

-) If the site y2 is occupied, by symmetry we can conclude with a similar argument
as before.

Hence we are left to analyze the case y1 and y2 empty, that implies y3 occupied
in order that r6 becomes inactive. Thus r6 ∩ η̄cl consists in the moving particle,
otherwise the line r6 can not become inactive with the move. What is relevant is
that η̄cl has exactly p2(η̄)− 1 = l∗2 − 1 vacancies along the line r6 (see Figure 16 on
the left hand-side). If there ore other m vacancies in η̄ additional to the ones along
the line r6, there must be m ≥ l∗2 + k − 1. Indeed, in order that η̄ ∈ B, we require
v(η̄) ≥ pmax(η̄)− 1, so we get

v(η̄) = m+ l∗2 − 1 ≥ pmax(η̄)− 1 = 2l∗2 + k − 2⇔ m ≥ l∗2 + k − 1.

Since x3, x4 and x5 are empty, the moved particle is free in η, i.e., n(η) ≥ 1 (see
Figure 16 on the right hand-side). We distinguish the case k = 0 and k ≥ 1. If k = 0,
we obtain η ∈ B, because v(η) = m ≥ l∗2 − 1 = pmin(η̄)− 1. If k ≥ 1, we obtain

s(η) = l∗2 + 2l∗2 + k − 2 ≥ 3l∗2 − 1 = s∗

p2(η) = l∗2
v(η) = m ≥ l∗2 + k − 1.

(4.20)

Since l∗2 � 1, we have that v(η) < pmax(η)− 1, thus η /∈ B. By (4.20) and (3.11), we
get H(η) > Γ, indeed

H(η) ≥ H(R(2l∗2 + k − 2, l∗2)) + εm+ ∆ ≥
≥ U1l

∗
2 + 2U2l

∗
2 + kU2 − ε(2(l∗2)2 + kl∗2 − 2l∗2) + εl∗2 + kε+ U1 − U2 − 2ε > Γ⇔

⇔ εk(1− δ) > 0, always since k ≥ 1 and δ < 1.
(4.21)

• r7 is the line becoming inactive. We deduce that the site y3 is occupied and the
sites z1, z2 and z3 are empty. Furthermore, since η̄ is monotone and n(η̄) = 0,
we obtain that the site x5 is empty. Similarly, since by assumptions n(η̄) = 0 and
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Figure 17: Here we depict part of the configuration in the case in which r7 becomes
inactive for ∆s = −1.

g′1(η̄) = g′2(η̄) = 0, we deduce that the sites x3 and x4 can not be both occupied.
Moreover, the sites x3 and x4 can not be both empty, otherwise the line r1 becomes
inactive, which is in contradiction with ∆s = −1 (see Figure 17, in which we assume
without loss of generality x3 occupied and x4 empty). Since η̄ is monotone and
n(η̄) = 0, r1 ∩ η̄cl consists in the two sites x1 and y3. The circumscribed rectangle
of η̄ is R(2l∗2 + k − 1, l∗2) for any k ≥ 0, thus by Lemma 4.13 we have that the
circumscribed rectangle of η is R(2l∗2 + k − 2, l∗2) for any k ≥ 0. If either η̄cl is
connected or both η̄cl and ηcl are not connected, at most five vacancies in η̄ are not
vacancies in η: the sites z1, z2, a, b and c. Thus we obtain v(η) ≥ v(η̄)−5 ≥ 2l∗2 +k−7.
If k = 0 we have s(η̄) = s∗ − 1. Since U2 � ε, we obtain that η ∈ B, indeed

v(η) ≥ 2l∗2 − 7 ≥ pmin(η)− 1 = l∗2 − 1⇔ l∗2 ≥ 6.

If k ≥ 1, we obtain {
n(η) ≥ 1

v(η) ≥ 2l∗2 + k − 7 ≥ 2l∗2 − 6 ≥ l∗2.
(4.22)

By (4.22), we get H(η) ≥ H(R(2l∗2 + k − 2, l∗2)) + ε(2l∗2 − 6) + ∆ ≥ H(R(2l∗2 + k −
2, l∗2)) + εl∗2 + ∆ > Γ, where the last inequality follows by (4.21).

The case η̄cl not connected and ηcl connected is not admissible. Indeed, if η̄ is
not connected, along the line r6 there must be at least other two particles in
addiction to the moving one, otherwise r6 becomes inactive with the move, which
is in contradiction with ∆s = −1. In this way, since the site r1 ∩ r6 is empty in η

and the configuration η̄ is monotone, we deduce that ηcl is non connected.

Remark 4.19. Let (η̄, η) be a move with η̄ ∈ B and let ∆s = −1 be its corresponding
variation of s; if H(η̄) = Γ then η̄ ∈ P1 and η ∈ B.

Proof. We can justify this remark with the following argument. In the proof of Propo-
sition 4.9 we have underlined which configurations η̄ ∈ B have energy equal to Γ: now
we want to analyze which of them are the saddles such that η /∈ B. Starting from one
of these possible configurations for η̄, we analyze the moves with minimal cost from an
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energetical point of view. What is relevant is that the energy of the configuration must
not exceed the value Γ. Thus we can move the protuberance along the vertical side:
this is a zero cost move and does not allow the exit from B. Another operation that we
can make is the connection between the two protuberances of the configuration (see
the transition from (7) to (8) in Figure 13), since the energy decreases by a quantity U1.
These configurations have pmax(η̄) − 1 vacancies and thus belong to B. Moreover, we
could move the particles that lie along the last column by an upward position (see the
transitions from (8) to (10) in Figure 13): all together these operations have an energy
cost equal to zero. More precisely, when we move the first particle the energy increases
by U2, then the subsequent moves do not change the energy until we move the last
particle and it decreases by U2. Let η′ such a configuration (as (10) in Figure 13), so we
have H(η′) = Γ−U1 +U2 +0+ ..+0−U2 = Γ−U1 < Γ, with v(η′) = pmax(η′)−1 = 2l∗2−2.
Thus the configuration η′ belongs to B. The real saddles η̄k, depicted in (12) in Figure 13,
that allow to arrive to a configuration ηk /∈ B, are the ones where the free particle
moves along the dashed arrow, while ηk is the configuration where the free particle is
attached to the cluster. Note that in this last step of the path described ∆s = 0, which
contradicts ∆s = −1. We get n(η̄k) = 1, p1(η̄k) = 2l∗2 − 2, p2(η̄k) = l∗2 and v(η̄k) = l∗2 − 1,
thus η̄k ∈ P2 ⊂ B. Furthermore, we get n(ηk) = 0, p1(ηk) = 2l∗2 − 2, p2(ηk) = l∗2 and
v(ηk) = l∗2 − 2, thus ηk /∈ B.

4.7 Proof of Proposition 4.10

Proof. Let ∆s = 0 and (η̄, η) ∈ ∂B the exiting move from B. By Remark 4.5 we consider
only the case s(η̄) ≥ s∗ − 1. By definition (3.29) and s(η̄) ≥ s∗ − 1, we deduce that only
the two following cases are admissible:

(a) s(η̄) = s∗ − 1 and v(η̄) ≥ pmin(η̄)− 1;

(b) s(η̄) ≥ s∗, p2(η̄) = l∗2 and v(η̄) ≥ pmax(η̄)− 1.

If p2(η) ≤ l∗2 − 1, in both cases (a) and (b) we get η ∈ B. Hence we are left to consider
p2(η) ≥ l∗2. Let ∆v = v(η)− v(η̄) the variation of the number of vacancies with the move.
If ∆v > −1 we have:

(a) v(η) > v(η̄)− 1 ≥ pmin(η̄)− 2 ≥ pmin(η)− 2 that implies v(η) ≥ pmin(η)− 1, thus by
(3.29) we get η ∈ B.

(b) v(η) > v(η̄) − 1 ≥ pmax(η̄) − 2 ≥ pmax(η) − 2 that implies v(η) ≥ pmax(η) − 1, thus,
if p2(η) = l∗2, by (3.29) we get η ∈ B. Hence we are left to analyze the case
p2(η) ≥ l∗2 + 1; by Remark 4.14 we know that l∗2 + 1 ≤ p2(η) ≤ l∗2 + 3, since at most
three horizontal lines can become active in order that ∆s = 0. For each horizontal
line that becomes active we have a free particle in η̄, thus we get 1 ≤ n(η̄) ≤ 3. We
note that the circumscribed rectangle of η̄ is R(2l∗2 + k − 1, l∗2) for any k ≥ 0. Since
k ≥ 0, δ < 1 and U2 � ε, we get H(η̄) > Γ. Indeed by (3.11) we have

H(η̄) ≥ H(R(2l∗2 + k − 1, l∗2)) + ε(2l∗2 + k − 2) + ∆ =

U1l
∗
2 + 2U2l

∗
2 + U1 + kU2 − ε(2(l∗2)2 + kl∗2 − l∗2) + 2ε(l∗2) + kε− 3ε > Γ⇔

⇔ U2 > ε(1 + k(δ − 1)).

(4.23)

Thus we can consider both cases (a) and (b) with the further condition that ∆v ≤ −1.
Since the number of vacancies can decrease only if either p1(η)−p1(η̄) = p2(η̄)−p2(η) 6= 0

or p1(η)− p1(η̄) = p2(η̄)− p2(η) = 0 but |ηcl| − |η̄cl| > 0 that implies that in both cases (a)
and (b) we have:

(i) either n(η̄) ≥ 1 or
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(ii) n(η̄) = 0 and, by Remark 4.3, g′1(η̄) + g′2(η̄) ≥ 1 and r2 becomes active bringing at
least pmin(η)− 1 vacancies in η.

The cases (b-i) and (b-ii) can be treated as in point ∆s = −1. We refer to the Appendix
for explicit computations.

The case (a) is compatible only with case (i), since in the case (a-ii) we have that
η ∈ B, indeed {

v(η) ≥ pmin(η)− 1

s(η) = s(η̄) = s∗ − 1.
(4.24)

Hence we are left to analyze the case (a-i), with p2(η̄) ≥ l∗2. We note that the circum-
scribed rectangle of η̄ is R(2l∗2 − k − 2, l∗2 + k) for any k ≥ 0. Since U1 − 2U2 > 0 and
δ − k − 3 < −2, we have that H(η̄) ≥ Γ. Indeed

H(η̄) ≥ H(R(2l∗2 − k − 2, l∗2 + k)) + ε(l∗2 + k − 1) + ∆ =

= U1l
∗
2 + 2U2l

∗
2 + U1 − U2 + k(U1 − U2)− 2ε(l∗2)2 − εkl∗2 + εk2 + 3εl∗2 + 3εk − 2ε > Γ

⇔ εk2 + k[U1 − U2 + 3ε− εl∗2] > 0

⇔ U1−2U2

ε > δ − k − 3.
(4.25)

In particular, we obtain H(η̄) = Γ if k = 0, n(η̄) = 1 and v(η̄) = l∗2−1, otherwise H(η̄) > Γ.
We note that H(η̄) = Γ for every η̄ ∈ P2 (see definition in (2.34)).

4.8 Proof of Proposition 4.11

Proof. Let ∆s = 1; by Remark 4.5 we consider only the case s(η̄) ≥ s∗−2. We distinguish
the following three cases:

(a) s(η̄) = s∗ − 2;

(b) s(η̄) = s∗ − 1;

(c) s(η̄) ≥ s∗.

First, we consider the case (a). If s(η̄) = s∗ − 2, then s(η) = s∗ − 1. If p2(η) ≤ l∗2 − 1,
by (3.29) we get η ∈ B. If p2(η) ≥ l∗2 and η /∈ B, we get v(η) < pmin(η) − 1, so by
Lemma 4.2(iii) we have n(η̄) ≥ 2. Furthermore, the circumscribed rectangle of η̄ is
R(2l∗2 − k − 3, l∗2 + k) for any k ≥ 0. Thus by (3.11) we obtain

H(η̄) ≥ H(R(2l∗2 − k − 3, l∗2 + k)) + 2∆ =

= U1l
∗
2 + kU1 + 2U2l

∗
2 − kU2 + 2U1 − U2 − 2ε(l∗2)2 − εkl∗2 + εk2 + 3εl∗2 + 3εk − 2ε > Γ

⇔ εk2 + k[U1 − U2 − εl∗2 + 3ε] + U1 > 0.
(4.26)

Since k ≥ 0, ε > 0, U1 > 0 and δ < 1, we get H(η̄) > Γ, using

U1 − U2 − εl∗2 + 3ε = U1 − 2U2 − εδ + 3ε > ε(2− δ) > ε > 0. (4.27)

Hence we are left to consider the cases (b) and (c). Again we consider two possibilities:

(i) either n(η̄) ≥ 1 or

(ii) n(η̄) = 0 and, by Remark 4.3, g′1(η̄) + g′2(η̄) ≥ 1 and r2 becomes active bringing at
least pmin(η)− 1 vacancies in η.

In the case (b-i) we conclude as in the Proposition 4.10 case (a-i) and we refer to the
Appendix for the explicit computation. In particular, we get H(η̄) = Γ if η̄ ∈ P2.

In the cases (c-i) and (c-ii), we get H(η̄) ≥ Γ as in Proposition 4.9 and we refer to the
Appendix for the explicit computations.
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Figure 18: Here we depict part of the possible configurations in the case in which the
move is horizontal.

We have only to discuss the case (b-ii). In this case the only line that can become
active is r2 and η̄cl is not connected. This also implies that there are no deactivating
line with the move. So we have to consider separately the case in which the move is
horizontal or vertical.

Case (h). Suppose first that the move is horizontal, i.e., r1 is an horizontal line. Since
the line that becomes active is only r2, at least one among the sites x3, x4 and x5 must
be occupied, otherwise r2 does not change its behavior. If the site x3 is occupied, since
r2 must be inactive in η̄, it contains in η̄ a free particle, that implies the case (i). Hence
the site x3 is empty and by symmetry also the site x4 is empty: this implies that the site
x5 is occupied (see Figure 18 on the left hand-side). We deduce that g′2(η̄) ≥ 1. All the
sites along the line r2 are empty, otherwise either n(η̄) ≥ 1 or r2 is active in η̄. Since
s(η̄) = s∗ − 1 and η̄ ∈ B, we get v(η̄) ≥ pmin(η̄) − 1. We note that the circumscribed
rectangle of η̄ is R(2l∗2 − k − 2, l∗2 + k) for any k ≥ 0.

• If g′2(η̄) ≥ 2, we get

H(η̄) ≥ H(R(2l∗2 − k − 2, l∗2 + k)) + ε(l∗2 + k − 1) + 2U1 =

= U1l
∗
2 + k(U1 − U2) + 2U2l

∗
2 + 2U1 − 2U2 − 2ε(l∗2)2 − kεl∗2 + εk2 + 3εk − ε > Γ

⇔ εk2 + k[U1 − U2 − εl∗2 + 3ε] + U1 − U2 + ε > 0.
(4.28)

Analougusly to (4.26), by (4.27) and U1 − U2 + ε > 0, we get H(η̄) > Γ.

• If g′1(η̄) ≥ 1, by (4.27) we get H(η̄) > Γ. Indeed

H(η̄) ≥ H(R(2l∗2 − k − 2, l∗2 + k)) + ε(l∗2 + k − 1) + U1 + U2 =

= U1l
∗
2 + 2U2l

∗
2 + k(U1 − U2) + U1 − U2 − 2ε(l∗2)2 − εkl∗2 + εk2 + 3εl∗2 + 3εk − ε > Γ

⇔ εk2 + k[U1 − U2 − εl∗2 + 3ε] + ε > 0.
(4.29)

It remains to analyze the case g′2(η̄) = 1 and g′1(η̄) = 0. In this case it is necessary to
analyze in more detail the geometry of the configuration η̄.

- If the moving particle has in η̄ at least one vertical and one horizontal bond that
connects it to other particles (y4 and one among y1 and y2, see Figure 18 on the left
hand-side). Thus ∆H := H(η)−H(η̄) ≥ U2, since in the move at least one vertical
bond is lost and the horizontal bond with y3 is recovered with the one with x5. This
implies by (4.29) that H(η) ≥ H(η̄) +U2 ≥ H(R(2l∗2 − k− 2, l∗2 + k)) + ε(l∗2 + k− 1) +

U1 + U2 > Γ.

- If the moving particle has in η̄ two vertical bonds, that implies the sites y1 and
y2 occupied and the site y3 empty (see Figure 18 in the middle). By assumptions
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Figure 19: Here we depict on the left hand-side the remaining case for the horizontal
line; in the middle and on the right hand-side we depict part of the configuration if the
move is vertical.

g′2(η̄) = 1 and g′1(η̄) = 0, v(η̄) ≥ p1(η̄) + p2(η̄)− 2 = 3l∗2 − 4, since in the lines r1, r3

we have overall at least (p1(η̄)− 1) vacancies in η̄. Hence we obtain

H(η̄) ≥ H(R(2l∗2 − k − 2, l∗2 + k)) + ε(3l∗2 − 4) + U1 =

U1l
∗
2 + 2U2l

∗
2 + k(U1 − U2) + U1 − 2U2 − 2ε(l∗2)2 − εkl∗2 + εk2 + 5εl∗2 + 2εk − 4ε > Γ

⇔ εk2 + k[U1 − U2 − εl∗2 + 2ε]− U2 + 2εl∗2 − 2ε > 0.
(4.30)

Since ε� U2, we get H(η̄) > Γ. Indeed

−U2 + 2εl∗2 − 2ε = U2 + 2ε(δ − 1) > U2 − 2ε > 0,

U1 − U2 − εl∗2 + 2ε = U1 − 2U2 − εδ + 2ε > ε(1− δ) > 0.
(4.31)

- If the moving particle has in η̄ only one horizontal bond, that implies y3 occupied
and the sites y1 and y2 empty (see Figure 18 on the right hand-side). We observe
that r6 ∩ η̄cl consists in the moving particle, otherwise we obtain an horizontal non
monotonicity or g′2(η̄) ≥ 2, which are in contradiction with g′1(η̄) = 0 or g′2(η̄) = 1

respectively. Thus the line r6 becomes inactive with the move, against ∆s = 1.
- If the moving particle has in η̄ only a vertical bond, that implies y3 empty and one

site among y1 and y2 occupied (see Figure 19 on the left hand-side). We assume
that such a particle is in the site r6 ∩ r3 without loss of generality, indeed the
argument is analogue if the particle is in the site r6 ∩ r4. We observe that the site s
and those under it along the line r6 are empty, otherwise we obtain a configuration
with an horizontal non monotonicity. The sites next to the left to y3 and next to the
right to x3 are empty by the assumptions g′2(η̄) = 1 and g′1(η̄) = 0. As before, the
lines r1 and r3 bring overall at least p1(η̄) + p2(η̄) − 2 = 3l∗2 − 4 vacancies, so by
(4.30) we get H(η̄) > Γ.

The proof is completed in this horizontal case.

Case (v). Suppose now that the move is vertical, i.e., r1 is a vertical line. Since the
unique line that must become active is r2, at least one site among x3, x4 and x5 must be
occupied. As in the case (h), we deduce that x5 is occupied, and x3 and x4 are empty
(see Figure 19 in the middle). We deduce g′1(η̄) ≥ 1.

- If the moving particle has in η̄ at least one vertical and one horizontal bond, that
implies y3 occupied and one site among y1 and y2 occupied (see Figure 19 in the
middle). Thus ∆H = H(η)−H(η̄) ≥ U1, since in the move two horizontal bonds are
lost (because x3 and x4 are empty) and the vertical bond is recovered with the one
with x5. Thus by (4.29) we get

H(η) ≥ H(η̄) +U1 ≥ H(R(2l∗2 − k− 2, l∗2 + k)) + ε(l∗2 + k− 1) +U1 +U2 > Γ. (4.32)
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- If the moving particle has in η̄ at least two horizontal bonds connecting it to other
particles, then ∆H = H(η)−H(η̄) ≥ −U2 + 2U1, since we lose two horizontal bonds
because x3 and x4 are empty, and we recover a vertical bond with the particle in
the site x5. Thus by (4.29) we get

H(η) ≥ H(η̄)+2U1−U2 ≥ H(R(2l∗2−k−2, l∗2 +k))+ε(l∗2 +k−1)+2U1 > Γ. (4.33)

- If the moving particle has in η̄ only one vertical bond connecting it to other particles,
the site y3 must be occupied and the sites y1 and y2 must be empty. We observe that
r6 ∩ η̄cl consists in the moving particle, indeed either n(η̄) ≥ 1 or η̄ is not monotone,
which is in contradiction with g′2(η̄) = 0. The arguments used are similar to those
used for the corresponding in case (h). In this situation the line r6 becomes inactive,
which contradicts ∆s = 1.

- If the moving particle has in η̄ only one horizontal bond, that implies y3 empty and
one site among y1 and y2 occupied. Thus ∆H = H(η)−H(η̄) = U1 − U2, since we
lose a vertical bond and we recover an horizontal one.

• If g′1(η̄) = 1, since v(η̄) ≥ p1(η̄) + p2(η̄) − 2 (analogue reasoning used for the
corresponding in the case (h)), by (4.30) we get

H(η) = H(η̄)+U1−U2 ≥ H(R(2l∗2−k−2, l∗2 +k))+ε(3l∗2−4)+U1 > Γ. (4.34)

• If g′2(η̄) ≥ 2, by (4.29) we get

H(η) ≥ H(η̄)+U1−U2 ≥ H(R(2l∗2−k−2, l∗2+k))+ε(l∗2+k−1)+U1−U2+2U2 > Γ.

(4.35)

The proof is completed in this vertical case, so it is concluded for the case ∆s = 1.

4.9 Proof of Proposition 4.12

Proof. Let ∆s = 2; by Remark 4.5 we consider s(η̄) ≥ s∗−3. We distinguish the following
cases:

(a) s(η̄) = s∗ − 3;

(b) s(η̄) = s∗ − 2;

(c) s(η̄) = s∗ − 1;

(d) s(η̄) ≥ s∗.

First, we consider the case (a). If s(η̄) = s∗ − 3, then s(η̄) = s∗ − 1. If p2(η) ≤ l∗2 − 1,
we get η ∈ B. If p2(η) ≥ l∗2, by Lemma 4.2(ii) we have

v(η) ≥ 2pmin(η)− 5 ≥ pmin(η)− 1⇔ pmin(η) ≥ 4.

Since pmin(η) ≥ 4, in this case it is impossible to leave B.
By Lemma 4.2(ii) we know that n(η̄) ≥ 1. In the case (c) we conclude as in the case

(∆ s = 0.a-i) and we refer to the Appendix for the explicit computations.
In the case (d), we get H(η̄) > Γ as in the case (∆ s =-1.Case I) and we refer to the

Appendix for the explicit computations.
It remains to analyze the case (b). If s(η̄) = s∗ − 2 and n(η̄) ≥ 2, by (4.27) and k ≥ 0,

we get H(η̄) > Γ. Indeed

H(η̄) ≥ H(R(2l∗2 − k − 3, l∗2 + k)) + 2∆ > Γ⇔
⇔ εk2 + k[U1 − U2 − εl∗2 + 3ε] + U1 > 0.

(4.36)
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Figure 20: Here we depict part of the configuration if ∆s = 2 for the cases 1) and 2).

It remains to analyze the case s(η̄) = s∗ − 2 and n(η̄) = 1. If the unique free particle
is the moving particle, we can not have ∆s = 2, indeed the lines r3, r4 and r5 can not
be activated and in order to have ∆s = 2 the lines r1 and r2 must become active. This
implies that the sites x3, x4 and x5 must be empty, but then ∆s = 0, which contradicts
∆s = 2.

If g′1(η̄) + g′2(η̄) ≥ 1, by (4.27) and k ≥ 0, we get H(η̄) > Γ. Indeed

H(η̄) ≥ H(R(2l∗2 − k − 3, l∗2 + k)) + U2 + ∆ > Γ⇔
⇔ εk2 + k[U1 − U2 − εl∗2 + 3ε] + ε > 0.

(4.37)

It remains only to analyze the case s(η̄) = s∗ − 2, n(η̄) ≥ 1 and g′1(η̄) = g′2(η̄) = 0. We
disinguish two cases:

1) the free particle is in the site xi, with i ∈ {3, 4}, and the lines that become active are
r2 and ri. Due to g′1(η̄) = g′2(η̄) = 0, the site x5 is empty and the site {x3, x4}\{xi}
is empty.

2) the free particle is in the site x5, the lines that become active are r2 and r5 and the
sites x3 and x4 are empty.

In both cases if the moving particle has in η̄ at least one vertical and one horizontal
bond connecting it to other particles, by (4.37) we get H(η) > Γ. Indeed

∆H ≥ U2 ⇒ H(η) ≥ H(η̄) + U2 ≥ H(R(2l∗2 − k − 3, l∗2 + k)) + ∆ + U2 > Γ.

If the moving particle has in η̄ either two bonds orthogonal to the move, or only one
vertical or only one horizontal bond connecting it to other particles, then it is impossible
to leave B, indeed in this case there exists a line r (r = r1 or r = r6) such that its
intersection with η̄cl is only the moving particle. If r = r6, this line becomes inactive
after the move, which is in contradiction with ∆s = 2. If r = r1, we analyze in detail the
possible configuration for η̄ in both cases 1) and 2). First, we consider the case 1). We
assume i = 3 without loss of generality. Thus in the site x3 there is a free particle in
η̄. We have that the site y2 must be occupied, otherwise n(η̄) ≥ 2. The site x4 must be
empty, since the line r2 must become active with the move, so it must be inactive in η̄.
The sites x5, y3 and z3 are empty, since we are in the case r1 ∩ η̄cl consists in the moving
particle (see Figure 20 on the left hand-side). At least one site among z2 and s must
be occupied, otherwise the line r6 becomes inactive after the move, which contradicts
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Figure 21: Possible representation of η̄ in the case that r2 (on the left hand-side) and r5

(on the right hand-side) could become inactive.

∆s = 2. Thus in η̄ there is a monotone cluster (eventually a finite non connected union of
monotone clusters) attached to the moving particle: suppose that it has m ≥ 0 vacancies.
Since p2(η) = p2(η̄) + 1 and p2(η̄) ≥ 4, we get η ∈ B. Indeed

v(η) ≥ m+ (p2(η)− 2) + (p1(η)− 1) ≥ 3 + p1(η)− 1 = p1(η) + 2 ≥ p1(η)− 1 = pmax(η)− 1.

In the case 2), we have that in the site x5 there is a free particle. Furtermore, all the
sites along the line r2 are empty, otherwise either we have n(η̄) ≥ 2 or r2 is already active
in η̄. The moving particle can not be free, so it has at least one vertical bond. Thus at
least one site among y1 and y2 must be occupied: without loss of generality we assume
y2 occupied (see Figure 20 on the right hand-side). Similarly to the case 1), since also
in this case r1 ∩ η̄cl consists in the moving particle, we deduce that the sites y3 and z3

are empty. Furthermore, in η̄ there is a monotone cluster (or a finite union of clusters)
attached to the moving particle: again we suppose that it has m ≥ 0 vacancies. Since
p2(η) = p2(η̄) ≥ 4, we get η ∈ B. Indeed

v(η) ≥ m+ (p1(η)− 2) + (p1(η)− 1) ≥ p1(η) + 1 ≥ p1(η)− 1 = pmax(η)− 1.

4.10 Proof of Lemmas

In this subsection we report the proof of Lemmas given in subsection 4.2.

Proof of Lemma 4.13. Let r be a line that becomes inactive with the move. Since r∩η̄cl 6=
∅ and r ∩ ηcl = ∅, we note that only free particles could be present along the line r in η.
Recalling (3.2) for the definition of the projections p1 and p2, we note that they depends
only on the clusterized part of the configuration, thus in η the line r does not contribute
to p1(η) and p2(η). This implies that p2(η) = p2(η̄) − 1 if r is an horizontal line and
p1(η) = p1(η̄)− 1 if r is vertical.

Proof of Lemma 4.15. First we analyze the line r2. We argue by contradiction: suppose
that r2 becomes inactive with the move. Thus the moved particle must be free in η: this
implies that the sites x3, x4 and x5 must be empty. Since r2 must be active in η̄, at least
one particle above the site x3 or under x4 must be in η̄cl. If |r2 ∩ η̄cl| = 1, we indicate
with a the site occupied by such particle (represented on the left hand-side in Figure 21)
and we can suppose without loss of generality that such particle is above x3. Let a1, a2

and a3 the nearest neighbors of that particle as in Figure 21. Since r2 must be active
in η̄, we have necessarily that at least one among a1, a2 and a3 must contain a particle.
The move does not involve the site a and its nearest neighbors, so we conclude that it is
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not possible that the line r2 becomes inactive. If |r2 ∩ η̄cl| ≥ 2, again the line r2 does not
become inactive. Thus we have proved that r2 also remains inactive in η and thus it can
not become inactive.

If we consider line r5, again we argue by contradiction: suppose that r5 becomes
inactive with the move. Thus the site x5 must be empty, otherwise the line r5 can not
become inactive. First, we consider the case |r5 ∩ η̄cl| = 1: suppose without loss of
generality that such a particle is above the site x5 and call it a (see Figure 21 on the
right hand-side). Let a1, a2 and a3 be the nearest neighbors of the particle in a. Since r5

must be active in η̄, we have necessarily that at least one site among a1, a2 and a3 must
be occupied. The move does not involve the particle in a and its neighbors, so we are
able to conclude that the line r5 can not become inactive. If |r5 ∩ η̄cl| ≥ 2, again the line
r5 does not become inactive. Thus we have proved that r5 also remains inactive in η and
thus it can not become inactive.

Now we focus on lines r6 and r7: we have to prove that these lines can not become
active. If we consider line r7, we suppose by contradiction that r7 becomes active with
the move. Thus we have that line r7 must be inactive in η̄, so the site y3 must be empty.
With the move of the particle from x1 to x2 the number of neighboring particles of y3

decreases. Thus r7 can not be active in η.
In a similar way we suppose by contradiction that the line r6 becomes active: this

means that line r6 is inactive in η̄, so the moving particle is free in η̄. Thus r6 can not
become active after the move.

Proof of Lemma 4.16. First, we consider the point (i). If the line r1 becomes inactive we
have that the sites x3, x4 and x5 must be empty. Thus the lines r2, r3, r4 and r5 can not
become active. Furthermore, by Lemma 4.15 the lines r6 and r7 can not become active,
thus no line can become active.

Now we analyze point (ii). If the line r1 becomes active we have that in the site
x1 there is a free particle in η̄ (y1, y2 and y3 must be empty in η̄). Thus the line r6

can not become inactive. Furthermore, by Lemma 4.15 the lines r2 and r5 can not
become inactive. In order to have r7 inactive in η, the site y3 must be occupied, but this
contradicts the fact that in x1 there is a free particle in η̄. Thus the only lines that can
become inactive in this situation are r3 and r4.

Proof of Lemma 4.17. First, we suppose that the line becoming active is r3 (respectively
r4). We consider now the case ∆s = −2. By Remark 4.5 we know that s(η̄) ≥ s∗ + 1,
with η̄ ∈ B. By (3.29) for the case s ≥ s∗, we get p2(η̄) = l∗2 and thus p1(η̄) = pmax(η̄).
Since l∗2 − 5 ≤ p2(η) ≤ l∗2 + 5, also for the configuration η we deduce that p1(η) > p2(η).
The line r3 (resp. r4) becomes active with the move bringing p1(η) − 1 vacancies in
ηcl, since the unique particle along the line r3 (resp. r4) in ηcl is in the site x3 (resp.
x4), otherwise the line r3 (resp. r4) is already active in η̄. We analyze separately the
cases (i) and (ii). If s(η) = s∗ − 1, since p1(η) ≥ pmin(η) and p2(η) ≥ l∗2, we deduce that
v(η) ≥ pmin(η) − 1: this implies that η ∈ B. If s(η) ≥ s∗, since p2(η) = l∗2 by assumption
and v(η) ≥ p1(η)− 1 = pmax(η)− 1, we get η ∈ B.

Now we analyze the case −1 ≤ ∆s ≤ 5. For each value of ∆s, by Remark 4.5 we know
that s(η) ≥ s∗ − 1. Again the line r3 (resp. r4) becomes active with the move bringing
p1(η)−1 vacancies in η. We analyze separately the cases (i) and (ii). If s(η) = s∗−1, since
p1(η) ≥ pmin(η) and p2(η) ≥ l∗2, we deduce that v(η) ≥ pmin(η)− 1: this implies that η ∈ B.
If s(η) ≥ s∗, since p2(η) = l∗2 and thus p1(η) > p2(η), we deduce that p1(η) = pmax(η), so
we get v(η) ≥ pmax(η)− 1. Thus we obtain that η ∈ B.

Now we suppose that the line becoming active is r1 and the site x5 is empty. Since r1

must become active, we know that in the site x1 there is a free particle in η̄. The line r1

becomes active with the move bringing p1(η)− 1 vacancies in η, since the unique particle
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Figure 22: (U1 + U2)-reduction of a rectangle with a hole.

along the line r1 in ηcl is in the site x1, otherwise the line r1 is already active in η̄, since
the site x5 is empty by assumption. The proof proceed from now on in the same way as
in the case in which r3 (resp. r4) is the horizontal line becoming active.

Proof of Lemma 4.18. First, we consider the case (i). By assumption the line r1 does
not become active and by Lemma 4.16(i) we deduce that r1 does not become inactive,
otherwise no line can become active. Since only one line among r3 and r4 becomes
active, we get p2(η) = p2(η̄) + 1. If p2(η̄) ≤ l∗2 − 2 then p2(η) ≤ l∗2 − 1, so we get η ∈ B. If
p2(η̄) = l∗2 − 1 then p2(η) = l∗2, thus by Lemma 4.17(i),(ii) we conclude that η ∈ B.

Now we consider the case (ii). Since only two horizontal lines become active, we get
p2(η) = p2(η̄) + 2. If p2(η̄) ≤ l∗2 − 3, we get p2(η) ≤ l∗2 − 1, thus η ∈ B. If p2(η̄) = l∗2 − 2

then p2(η) = l∗2, thus by Lemma 4.17(i),(ii) we conclude that η ∈ B. If p2(η̄) = l∗2 − 1 and
s(η) = s∗ − 1, by Lemma 4.17(i) we deduce that η ∈ B.

5 Reduction

5.1 Recurrence property

The goal of this subsection is to prove the Proposition 3.10. In order to prove this, we
adopt a strategy explained in [46], the so-called reduction.

As an application of this technique, we apply [46, Theorem 3.1] to V = V ∗. Thus we
obtain

β 7−→ sup
η∈X

P
(
τηXV ∗

> eβ(V ∗+ε)
)

is SES, (5.1)

for any ε > 0 and for any β sufficiently large.
Since in this case XV ∗ ⊆ {0, 1}, this result states that the probability that the first hitting
time to the set {0, 1} from any state η ∈ X is arbitrarily large is super-exponentially
small.

An analogous result can be derived with V = Γ and so we have that XΓ = Xm = {0}.
For the sequel we need some geometrical definitions. Let η ∈ X given.

Definition 5.1. A site x ∈ Λ is connected trough empty (resp. full) sites to ∂−Λ if there
exists x1, . . . , xn a connected chain of nearest-neighbor empty (resp. full) sites, i.e.,
x1 ∈ nn(x), x2 ∈ nn(x1), . . ., xn ∈ nn(xn−1), xn ∈ ∂−Λ and η(x1) = η(x2) = · · · = η(xn) =

0 (η(x1) = η(x2) = · · · = η(xn) = 1).

Definition 5.2. An external corner of a set A ⊂ Λ is a site x /∈ A such that∑
y∈nn(x):(x,y)∈Λ∗0,h

χA(y) = 1 and
∑

y∈nn(x):(x,y)∈Λ∗0,v

χA(y) = 1,
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where χA denotes the characteristic function of the set A.

Definition 5.3. An internal corner of a set A ⊂ Λ is a site x ∈ A such that∑
y∈nn(x):(x,y)∈Λ∗0,h

χA(y) = 1 and
∑

y∈nn(x):(x,y)∈Λ∗0,v

χA(y) = 1.

Let ηext be the set of sites x ∈ Λ0 such that η(x) = 1 and x is connected trough empty
sites with ∂−Λ.

Proposition 5.4. [50, Proposition 16] Any configuration η ∈ XU1+U2 has no free particles
and it has only rectangular clusters with minimal side larger than one.

Proof of Proposition 3.10. Suppose that η ∈ XU1+U2
and η 6= 0, 1, so from the previous

proposition η has only rectangular clusters which are connected through empty sites to
∂−Λ, i.e., ηext = ∂−η.

Suppose now that a rectangular cluster of η has a vertical subcritical side, i.e., l2 ≤ l∗2−1,
then it is possible to reduce η with the path described in Figure 4 that removes a column
of length l2 with energy barrier ∆H(remove column)= U1 + U2 + ε(l2 − 2) < 2∆− U1 =

∆H(add column) (this is true if and only if we are in the subcritical side). Otherwise
if any rectangle in η has vertical supercritical sides (l2 ≥ l∗2), it is possible to reduce η
with the path described in Figure 4 that adds a column with energy barrier ∆H(add
column)= 2∆− U1. Since 2∆− U1 < ∆− U2 + U1 in the strongly anisotropic case, the
proof is complete defining

V ∗ := max {U1 + U2, U1 + U2 + ε(l2 − 2), 2∆− U1} = 2∆− U1 < Γ.

We remark that Propositions 5.4 and 3.10 state the following inequalities:

0 ≤ U1 + U2 ≤ V ∗ < Γ.

Furthermore, note that from (5.1) and Proposition 3.10 we obtain that from any
configuration in X the Kawasaki dynamics hits 0 or 1 with an overwhelming probability
in a time much less than the transition time. An analogous result is obtained in [35] for
three-dimensional Kawasaki dynamics.

5.2 Proof of Theorem 2.5

To prove Theorem 2.5 we need Proposition [53, Theorem 3.2], that represents the
main property of cycles: with large probability every state in a cycle is visited by the
process before the exit.

Using this result, to prove Theorem 2.5 it is sufficient to show the following:

1. if η is a rectangular configuration contained in R(2l∗2 − 3, l∗2 − 1), then there exists
a cycle C0 containing η and 0 and not containing 1;

2. if η is a rectangular configuration containing R(2l∗2 − 2, l∗2), then there exists a cycle
C1 containing η and 1 and not containing 0.

We start by showing 1. Let C0 be the maximal connected set containing 0 such that
maxη′∈C0 H(η′) < Γ. By definition C0 is a cycle containing 0. It does not contain 1 since
Φ(0, 1) = Γ. We have only to prove that C0 contains η. This can be easily obtained by
constructing a path ωη,0 going from η to 0 keeping the energy less than Γ. ωη, 0 is obtained
by erasing site by site, each column of η and by showing that all the configurations of
this path are in C0.
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More precisely, let η = {(x, y) ∈ Z2 : x ∈ (n, n + l1], y ∈ (m,m + l2]} ∈ R(l1, l2) for
some n, m ∈ Z. Let {ω̄η,0i }i=0,..,l1 be a path of rectangular configurations, starting from
η and ending in 0, given by

ω̄
η,0
i = {(x, y) : x ∈ (n, n+ l1 − i], y ∈ (m,m+ l2]}. (5.2)

To complete the construction we can use now the same idea applied in the definition of
the reference path ω∗: between every pair ω̄η,0i , ω̄η,0i+1 we can insert a sequence ω̃η,0i,0 , .., ω̃

η,0
i,l2

such that ω̃η,0i,0 = ω̄
η,0
i and for j > 0, ω̃η,0i,j is obtained by ω̄η,0i by erasing j sites:

ω̃
η,0
i,j = ω̄

η,0
i \ {(x, y) : x = n+ l1 − i, y ∈ (m+ l2 − j,m+ l2]}. (5.3)

Again, as in the reference path ω∗, the last interpolation consists in inserting between
every pair of consecutive configurations in ω̃η,0 a sequence of configurations with a free
particle in a suitable sequence of sites going from the site previously occupied by the
erased particle to ∂Λ. If l1 ≤ 2l∗2 − 3 and l2 ≤ l∗2, we have H(R(l1, l2)) ≤ H(R(2l∗2 − 3, l∗2)).
In our strong anisotropic case U1 +U2 + ε(l∗2− 3) < 2∆−U1, so for the path ωη,0 obtained
in this way we have

max
i
H(ω

η,0
i ) = max

l∈[1, l1]
H(R(l, l2)) + U1 + U2 + ε(l − l2)

≤ H(R(2l∗2 − 3, l∗2)) + U1 + U2 + ε(l∗2 − 3) < Γ.
(5.4)

If l1 ≤ 2l∗2 − 1 and l2 ≤ l∗2 − 1, we have H(R(l1, l2)) ≤ H(R(2l∗2 − 1, l∗2 − 1)). In our strong
anisotropic case U1 + U2 + ε(l∗2 − 3) < ∆− U2 + U1, so for the path ωη,0 obtained in this
way we have

max
i
H(ω

η,0
i ) = max

l∈[1, l1]
H(R(l, l2)) + U1 + U2 + ε(l2 − 2)

≤ H(R(2l∗2 − 1, l∗2 − 1)) + U1 + U2 + ε(l∗2 − 3) < Γ.
(5.5)

The proof of 2 is similar. Let C1 be the maximal connected set containing 1 such that
maxη′∈C1 H(η′) < Γ. Again C1 is by definition a cycle containing 1 and not containing
0. To prove that C1 contains η we define now a path ωη,1 going from η to 1 obtained by
reaching rectangular configurations with l2 = l∗2 or l1 ≥ L− 1 and, from there, following
the path ω∗. As before, it is easy to prove that all the configurations of this path have an
energy smaller than Γ, so they are in C1.

Going into details, let η ∈ R(l1, l2). First, we consider 3l∗2−2 ≤ s ≤ l∗2 +L−1. If l2 = l∗2
we can choose ωη,1 as the part of the reference path ω∗ going from η to 1. If l2 < l∗2 then
first move columns to rows, until we obtain l2 = l∗2. From there, follow the reference
path ω∗. If l2 > l∗2 then first add columns until we reach l1 = L− 1. The remaining part
of the path follows ω∗. Now we consider the case s ≥ l∗2 + L − 1. If l1 ≥ L − 1 we can
choose ωη,1 as the part of the reference path ω∗ going from η to 1. If l1 < L− 1 we add
columns until we have l1 = L− 1 and then we follow the reference path ω∗. For the path
ωη,1 obtained in this way, since H(R(l′1, l

′
2)) < H(R(2l∗2 − 1, l∗2 − 1)) for any l′1 ≥ 2l∗2 − 2

and l′2 ≥ l∗2, we obtain

max
i
H(ω

η,1
i ) ≤ max

l′1≥2l∗2−2,l′2≥l∗2
H(R(l′1, l

′
2)) + 2∆− U1 < Γ, (5.6)

so that ωη,1i ∈ C1 for any i and the proof of the theorem is complete.

A Appendix

We give explicit argument to complete the proof of Proposition 4.7, considering the
cases that were left in subsection 4.4, because the proofs are analogue to the ones
discussed in that subsection.
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Additional material for Subsection 4.4

Case ∆s = 3. We report the explicit computations for the case (III). Since ∆s = 3 by
Remark 4.5 we know that s(η̄) ≥ s∗ − 4, but we consider only the case s(η̄) ≥ s∗ − 3 (see
Lemma 4.7). If p2(η̄) = l∗2 − 2 the circumscribed rectangle of η̄ is R(2l∗2 + k − 3, l∗2 − 2),
for any k ≥ 1, and if p2(η̄) = l∗2 − 1 it is R(2l∗2 + k − 4, l∗2 − 1), for any k ≥ 1. Since in the
case we are analyzing there are three horizontal lines becoming active, we know that
n(η̄) ≥ 3. If p2(η̄) = l∗2 − 2, since k ≥ 1, δ < 1 and ε� U2, we get H(η̄) > Γ. Indeed

H(η̄) ≥ H(R(2l∗2 + k − 3, l∗2 − 2)) + 3∆ =

U1l
∗
2 + 2U2l

∗
2 + U1 + kU2 − ε(2(l∗2)2 + kl∗2 − 2k − 7l∗2 + 6)− 3ε > Γ⇔

⇔ 5U2 > ε(7− 4δ + k(δ − 2)).

(A.1)

If p2(η̄) = l∗2 − 1, since k ≥ 1, δ < 1 and ε� U2, we get H(η̄) > Γ. Indeed

H(η̄) ≥ H(R(2l∗2 + k − 4, l∗2 − 1)) + 3∆ =

= U1l
∗
2 + 2U2l

∗
2 + 2U1 + kU2 − U2 − ε(2(l∗2)2 + kl∗2 − k − 6l∗2 + 7) > Γ⇔

⇔ U1 + 3U2 > ε(5− 3δ + k(δ − 1)).

(A.2)

Case ∆s = 4. We report the explicit computations for the cases (I) and (II). Since ∆s = 4,
by Remark 4.5 we know that s(η̄) ≥ s∗ − 5, but we consider only the case s(η̄) ≥ s∗ − 4

(see Lemma 4.7). If p2(η̄) = l∗2 − 2 the circumscribed rectangle of η̄ is R(2l∗2 +k− 4, l∗2 − 2)

with k ≥ 1 and if p2(η̄) = l∗2 − 1 it is R(2l∗2 + k − 5, l∗2 − 1), for any k ≥ 1. Since in the case
we are analyzing there are three horizontal lines becoming active, we know that n(η̄) ≥ 3.
For the case (I), if p2(η̄) = l∗2 − 2, since k ≥ 1, δ < 1 and ε� U2, we get H(η̄) > Γ. Indeed

H(η̄) ≥ H(R(2l∗2 + k − 4, l∗2 − 2)) + 3∆ =

= U1l
∗
2 + 2U2l

∗
2 + U1 − U2 + kU2 − ε(2(l∗2)2 + kl∗2 − 2k − 8l∗2 + 11) > Γ⇔

⇔ 5U2 > ε(9− 5δ + k(δ − 2)).

(A.3)

If p2(η̄) = l∗2 − 1, since k ≥ 1, δ < 1 and ε� U2, we get H(η̄) > Γ. Indeed

H(η̄) ≥ H(R(2l∗2 + k − 5, l∗2 − 1)) + 3∆ =

U1l
∗
2 + 2U2l

∗
2 + 2U1 − 2U2 + kU2 − ε(2(l∗2)2 + kl∗2 − k − 7l∗2 + 8) > Γ⇔

⇔ U1 + 3U2 > ε(6− 4δ + k(δ − 1)).

(A.4)

For the case (II), since if l∗2 − 3 ≤ p2(η̄) ≤ l∗2 − 1 the only possibilities that we can
have are p2(η) ≤ l∗2 − 1 or p2(η) = l∗2, the cases that remain to analyze in detail are the
followings:

• p2(η̄) = l∗2 − 2 and p2(η) > l∗2;

• p2(η̄) = l∗2 − 1 and p2(η) > l∗2.

For the cases in which p2(η̄) = l∗2 − 2 and p2(η̄) = l∗2 − 1, the computations are exactly the
same reported for the case (I).

Case ∆s = 5. We report the explicit computations. Since ∆s = 5, by Remark 4.5 we
know that s(η̄) ≥ s∗ − 6, but we consider only the case s(η̄) ≥ s∗ − 5 (see Lemma 4.7).
The cases that remain to analyze in detail are the followings:

• p2(η̄) = l∗2 − 2;

• p2(η̄) = l∗2 − 1.
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If p2(η̄) = l∗2 − 2, the circumscribed rectangle of η̄ is R(2l∗2 + k − 5, l∗2 − 2), for any
k ≥ 1, and if p2(η̄) = l∗2 − 1 it is R(2l∗2 + k − 6, l∗2 − 1), for any k ≥ 1. By Lemma 4.2 we
know that n(η̄) ≥ 4. If p2(η̄) = l∗2 − 2, since k ≥ 1, δ < 1 and ε � U2, we get H(η̄) > Γ.
Indeed

H(η̄) ≥ H(R(2l∗2 + k − 5, l∗2 − 2)) + 4∆ =

U1l
∗
2 + 2U2l

∗
2 + 2U1 − U2 + kU2 − ε(2(l∗2)2 + kl∗2 − 2k − 7l∗2 + 14) > Γ⇔

⇔ U1 + 4U2 > ε(12− 4δ + k(δ − 2)).

(A.5)

If p2(η̄) = l∗2 − 1, since k ≥ 1, δ < 1 and ε� U2, we get H(η̄) > Γ. Indeed

H(η̄) ≥ H(R(2l∗2 + k − 6, l∗2 − 1)) + 4∆ =

= U1l
∗
2 + 2U2l

∗
2 + 3U1 − 2U2 + kU2 − ε(2(l∗2)2 + kl∗2 − k − 8l∗2 + 10) > Γ⇔

⇔ 2U1 + 4U2 > ε(8− 5δ + k(δ − 1)).

(A.6)

We give explicit argument to complete the proof of Proposition 4.8, considering the cases
that were left in subsection 4.5, because the proofs are analogue to the ones discussed
in that subsection.

Additional material for Subsection 4.5

Case ∆ s = 4. We report the explicit computations for the cases (b) and (c). In the case
(b) we obtain

H(η̄) ≥ H(R(2l∗2 − k − x, l∗2 + k)) + 3∆ = U1l
∗
2 + 2U2l

∗
2 + k(U1 − U2) + 3U1

+3U2 − xU2 − 2ε(l∗2)2 − kεl∗2 + εk2 + xεl∗2 + kεx− 3ε > Γ

⇔ εk2 + k[U1 − U2 − εl∗2 + xε] + 2U1 + 4U2 − xU2 − ε+ xεl∗2 − 3εl∗2 > 0.

(A.7)

By (4.13), since k ≥ 0, 0 < δ < 1, x ≥ 1 and ε� U2, we get H(η̄) > Γ. Indeed

2U1 + 4U2 − xU2 − ε+ xεl∗2 − 3εl∗2 = 2U1 + U2 − ε− 3εδ + xεδ � 2U1 − 2εδ > 0. (A.8)

In the case (c), we get H(η̄) > Γ. Indeed

H(R(2l∗2, l
∗
2)) + ε(2l∗2 − x− 1) + 3∆ =

= U1l
∗
2 + 2U2l

∗
2 − ε(2(l∗2)2 − xl∗2) + 2εl∗2 + 3U1 + 3U2 − xU2 − 4ε− xε > Γ⇔

⇔ 3U2 + 2U1 > ε(2 + δ + x(1− δ)), always since x ≤ 1, 1− δ > 0 and ε� U2.

(A.9)

Case ∆s = 5. We report the explicit computations for the cases (b) and (c). In the case
(b) we obtain

H(η̄) ≥ H(R(2l∗2 − k − x, l∗2 + k)) + 4∆ = U1l
∗
2 + 2U2l

∗
2 + k(U1 − U2) + 4U1

+4U2 − xU2 − 2ε(l∗2)2 − kεl∗2 + εk2 + xεl∗2 + kεx− 4ε > Γ

⇔ εk2 + k[U1 − U2 − εl∗2 + xε] + 3U1 + 5U2 − xU2 − 2ε+ xεl∗2 − 3εl∗2 > 0.

(A.10)

By (4.13), since k ≥ 0, 0 < δ < 1, x ≥ 1 and ε� U2., we get H(η̄) > Γ. Indeed

3U1 + 5U2− xU2− 2ε+ xεl∗2 − 3εl∗2 = 3U1 + 2U2− 2ε− 3εδ+ xεδ � 3U1− 2U2 > 0 (A.11)

In the case (c), since x ≤ 1, 1− δ > 0 and ε� U2, we get H(η̄) > Γ. Indeed

H(η̄) ≥ H(R(2l∗2 − x, l∗2)) + ε(2l∗2 − x− 1) + 4∆ =

= U1l
∗
2 + 2U2l

∗
2 + 4U1 + 4U2 − xU2 − ε(2(l∗2)2 − xl∗2) + 2εl∗2 − xε− 5ε > Γ⇔

⇔ 3U1 + 4U2 > ε(3 + δ + x(1− δ)).
(A.12)

We give explicit argument to complete the proof of Proposition 4.10, considering the
cases that were left in subsection 4.7, because the proofs are analogue to the ones
discussed in that subsection.
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Additional material for Subsection 4.7
Let ∆s = 0. We analyze in detail the cases (b − i) and (b − ii). In the case (b − i)

we have s(η̄) ≥ s∗, ∆v ≤ −1 and n(η̄) ≥ 1. By definition (3.29) for the case s ≥ s∗,
we get p2(η̄) = l∗2 and v(η̄) ≥ pmax(η̄) − 1. Thus the circumscribed rectangle of η̄ is
R(2l∗2 + k − 1, l∗2), for any k ≥ 0. Since n(η̄) ≥ 1, from (3.11) we obtain

H(η̄) ≥ H(R(2l∗2 + k − 1, l∗2)) + εv(η̄) + ∆ ≥
≥ U1l

∗
2 + 2U2l

∗
2 + kU2 − U2 − ε(2(l∗2)2 + kl∗2 − l∗2) + ε(2l∗2 + k − 2) + U1 + U2 − ε.

(A.13)
We recall that Γ = U1l

∗
2 + 2U2l

∗
2 + U1 − U2 − 2ε(l∗2)2 + 3εl∗2 − 2ε. Thus we get H(η̄) > Γ

if and only if U2 > ε(1− k(1− δ)), always since ε� U2, k ≥ 0 and δ < 1.
In the case (b− ii) we have s(η̄) ≥ s∗, ∆v ≤ −1 and n(η̄) = 0, so from Remark 4.3 it

follows that g′1(η̄) + g′2(η̄) ≥ 1. We consider the following four cases:

A. g′2(η̄) = 1;
B. g′1(η̄) = 1;
C. either g′1(η̄) = 1 and g′2(η̄) = 1, or g′2(η̄) ≥ 2;
D. g′1(η̄) ≥ 2 and g′2(η̄) = 0.

Case A. Since g′2(η̄) = 1, since k ≥ 0 and δ < 1, we get H(η̄) ≥ Γ. Indeed

H(η̄) = H(R(2l∗2 + k − 1, l∗2)) + εv(η̄) + U1 ≥
≥ U1l

∗
2 + 2U2l

∗
2 + kU2 − U2 − ε(2(l∗2)2 + kl∗2 − l∗2) + ε(2l∗2 + k − 2) + U1 ≥ Γ⇔

⇔ kε(1− δ) ≥ 0.

(A.14)

We note that H(η̄) = Γ if k = 0 and for those configurations η̄ such that g′2(η̄) = 1 and
v(η̄) = 2l∗2 − 1 = pmax(η̄)− 1, i.e., η̄ ∈ P1. Starting from such η̄, we note that in order to
get ∆s = 0 the only admissible transitions are the movement of a single protuberance
along the same side. In this way η ∈ P1 ⊂ B. This contributes to Theorem 3.7(ii). If k ≥ 1

or v(η̄) > pmax(η̄)− 1, we get H(η̄) > Γ.

Case B. We have g′1(η̄) = 1. By Remark 4.4 we know that no line can become active, so
∆s = 0 is obtained by no line becoming active nor inactive. Referring to Figure 14, if
η̄cl is connected we note that the only admissible operations are moving protuberances
or let a particle become free in η in such a way that ∆s = 0. In both cases we get
v(η) ≥ v(η̄). If η̄ ∈ B, we get η ∈ B, since s(η) = s(η̄) and due to the condition about the
number of vacancies. If η̄ /∈ B it is not a relevant case. If η̄cl is not connected we can
argue similarly.

Case C. We have either g′1(η̄) =)1 and g′2(η̄) = 1, or g′2(η̄) ≥ 2. Thus we can conclude in
the same way as in the case II-C for ∆s = −1.

Case D. We have g′1(η̄) ≥ 2 and g′2(η̄) = 0, thus we can conclude in the same way as in
the case II-B for ∆s = −1.

We give explicit argument to complete the proof of Proposition 4.11, considering the
cases that were left in subsection 4.8, because the proofs are analogue to the ones
discussed in that subsection.

Additional material for Subsection 4.8
Let ∆s = 1. We analyze in detail the cases (b-i), (c-i) and (c-ii). In the case (b-i),

the circumscribed rectangle of η̄ is R(2l∗2 − k − 2, l∗2 + k), for any k ≥ 0. Thus, since
U1−2U2

ε > −1 and δ − k − 3 < −2, we get H(η̄) ≥ Γ. Indeed

H(η̄) ≥ H(R(2l∗2 − k − 2, l∗2 + k)) + ε(l∗2 + k − 1) + ∆ =

= U1l
∗
2 + 2U2l

∗
2 + U1 − U2 + k(U1 − U2)− 2ε(l∗2)2 − εkl∗2 + εk2 + 3εl∗2 + 3εk − 2ε > Γ

⇔ εk2 + k[U1 − U2 + 3ε− εl∗2] > 0⇔ U1−2U2

ε > δ − k − 3.
(A.15)
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In particular, we obtain H(η̄) = Γ if k = 0 and v(η̄) = l∗2 − 1, i.e., η̄ ∈ P2, otherwise
H(η̄) > Γ. For such η̄ ∈ P2, we note that in order to get ∆s = 1, the only admissible
operations are to attach the free particle to the protuberance, or to one of the three
other sides. If we attach the particle on the vertical side, we get v(η̄) + l∗2 − 1 = 2l∗2 − 2,
with s(η) = s∗ and p2(η) = l∗2, so η ∈ B and thus this is not a relevant case. If we attach
the free particle on the horizontal side, we get p2(η) = l∗2 + 1, with s(η) = s∗, and thus
η /∈ B. In this case we obtain a configuration in P2.

For the cases (c-i) and (c-ii) we refer again to the case ∆s = −1. In the case (c-i),
since n(η̄) ≥ 1, from (3.11) we obtain

H(η̄) ≥ H(R(2l∗2 − 1, l∗2)) + εv(η̄) + ∆ ≥
≥ U1l

∗
2 + 2U2l

∗
2 − U2 − ε(2(l∗2)2 − l∗2) + ε(2l∗2 − 2) + U1 + U2 − ε =

= U1l
∗
2 + 2U2l

∗
2 − 2ε(l∗2)2 + 3εl∗2 − 3ε+ U1.

(A.16)

Thus we get H(η̄) > Γ if and only if −3ε > −U2 − 2ε⇔ ε < U2, always since ε� U2.
For the case (c-ii), again we distinguish the following subcases:

A. g′2(η̄) = 1;

B. g′1(η̄) = 1;

C. either g′1(η̄) = 1 and g′2(η̄) = 1, or g′2(η̄) ≥ 2;

D. g′1(η̄) ≥ 2 and g′2(η̄) = 0.

The reasonings are the same of the case ∆s = 0 shown in this Appendix.

We give explicit argument to complete the proof of Proposition 4.12, considering the
cases that were left in subsection 4.9, because the proofs are analogue to the ones
discussed in that subsection.

Additional material for Subsection 4.9
Let ∆s = 2. We analyze in detail the cases (c) and (d). For the case (c), since

U1−2U2

ε > −1 and δ − k − 3 < −2, we get H(η̄) ≥ Γ. Indeed

H(η̄) ≥ H(R(2l∗2 − k − 2, l∗2 + k)) + ε(l∗2 + k − 1) + ∆ =

= U1l
∗
2 + 2U2l

∗
2 + U1 − U2 + k(U1 − U2)− 2ε(l∗2)2 − εkl∗2 + εk2 + 3εl∗2 + 3εk − 2ε > Γ

⇔ εk2 + k[U1 − U2 + 3ε− εl∗2] > 0⇔ U1−2U2

ε > δ − k − 3.
(A.17)

In particular, we obtain H(η̄) = Γ if k = 0 and v(η̄) = l∗2 − 1, i.e., η̄ ∈ P2, otherwise
H(η̄) > Γ. For such η̄ ∈ P2, there is no admissible exiting move from B in order to get
∆s = 2, thus it is not a relevant case.

In the case (d), since n(η̄) ≥ 1, we get H(η̄) > Γ. Indeed

H(η̄) ≥ H(R(2l∗2 + k − 1, l∗2)) + εv(η̄) + ∆ ≥
≥ U1l

∗
2 + 2U2l

∗
2 + kU2 − U2 − ε(2(l∗2)2 + kl∗2 − l∗2) + ε(2l∗2 + k − 2) + U1 + U2 − ε > Γ

⇔ U2 > ε(1− k(1− δ)), always since ε� U2, k ≥ 0 and δ < 1.
(A.18)
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