n b
Electr® 8biljty

Electron. ]J. Probab. 26 (2021), article no. 126, 1-31.
ISSN: 1083-6489 https://doi.org/10.1214/21-EJP697

Isomorphisms of 5-Dyson’s Brownian motion with
Brownian local time*
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Abstract

We show that the Brydges-Frohlich-Spencer-Dynkin and the Le Jan’s isomorphisms
between the Gaussian free fields and the occupation times of symmetric Markov
processes generalize to the 3-Dyson’s Brownian motion. For 8 € {1,2,4} this is a
consequence of the Gaussian case, however the relation holds for general 3. We further
raise the question whether there is an analogue of 5-Dyson’s Brownian motion on
general electrical networks, interpolating and extrapolating the fields of eigenvalues
in matrix-valued Gaussian free fields. In the case n = 2 we give a simple construction.
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1 Introduction

There is a class of results, known as isomorphism theorems, relating the squares of
Gaussian free fields (GFFs) to occupation times of symmetric Markov processes. They
originate from the works in mathematical physics [34, 3]. For a review, see [26, 31]. Here
in particular we will be interested in the Brydges-Frohlich-Spencer-Dynkin isomorphism
[3, 8, 9] and in the Le Jan’s isomorphism [21, 22]. The BFS-Dynkin isomorphism involves
Markovian paths with fixed ends. Le Jan’s isomorphism involves a Poisson point process
of Markovian loops, with an intensity parameter « = 1/2 in the case of real scalar
GFFs. For vector-valued GFFs with d components, the intensity parameter is « = d/2.
We show that both Le Jan’s and BFS-Dynkin isomorphisms have a generalization to
B-Dyson’s Brownian motion, and provide identities relating the latter to local times of
one-dimensional Brownian motions. By doing so, we go beyond the Gaussian setting.
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Isomorphisms of 5-Dyson’s Brownian motion with Brownian local time

For 8 € {1,2,4}, a 5-Dyson’s Brownian motion is the diffusion of eigenvalues in a
Brownian motion on the space of real symmetric (8 = 1), complex Hermitian (8 = 2),
respectively quaternionic Hermitian (5 = 4) matrices. Yet, the §-Dyson’s Brownian
motion is defined for every 5 > 0. The one-dimensional marginals of 3-Dyson’s Brownian
motion are Gaussian beta ensembles GSE. The generalization of Le Jan’s and BFS-Dynkin
isomorphisms works for every 8 > 0, and for § € {1, 2,4} it follows from the Gaussian
case. The intensity parameter o appearing in the Le Jan’s type isomorphism is given by

200 =d(B,n) =n+n(n— 1)§7

where n is the number of “eigenvalues”. In particular, o takes not only half-integer
values, as in the Gaussian case, but a whole half-line of values. The BFS-Dynkin type
isomorphism involves polynomials defined by a recurrence with a structure similar to that
of the Schwinger-Dyson equation for GSE. These polynomials also give the symmetric
moments of the 5-Dyson’s Brownian motion.

We further ask the question whether an analogue of GSE and (-Dyson’s Brownian mo-
tion could exist on electrical networks and interpolate and extrapolate the distributions
of the eigenvalues in matrix-valued GFFs. Our motivation for this is that such analogues
could be related to Poisson point process of random walk loops, in particular to those of
non half-integer intensity parameter. If the underlying graph is a tree, the construction
of such analogues is straightforward, by taking S-Dyson’s Brownian motions along each
branch of the tree. However, if the graph contains cycles, this is not immediate, and one
does not expect a Markov property for the obtained fields. However, in the simplest case
n = 2, we provide a construction working on any graph.

Our article is organized as follows. In Section 2 we recall the BFS-Dynkin and the
Le Jan’s isomorphisms in the particular case of 1D Brownian motion. In Section 3 we
recall the definition of Gaussian beta ensembles and the corresponding Schwinger-
Dyson equation. Section 4 deals with §-Dyson’s Brownian motion and the corresponding
isomorphisms. Section 5 deals with general electrical networks. We give our construction
for n = 2 and ask our questions for n > 3.

2 Isomorphism theorems for 1D Brownian motion

Let (By)¢>0 be the standard Brownian motion on R. L” will denote the Brownian local
times:

1 t
Lx((Bs)Oésgt) = lim 7\[ 1\Bsf:v|<sd5-

e—0 26 0
We will denote by p(t,z,y) the heat kernel on R, and by pr_ (¢,,y) the heat kernel on
R, with condition 0 in 0:

1 _ (w2
p(t7xay) = \/ﬁe 2t p]R+ (t7$7y) = p(t»$7y) _p(t7xa _y)

We will denote by P%*%¥(.) the Brownian bridge probability from x to y in time ¢, and by
IPfRi“() (for =,y > 0) the probability measures where one conditions P*%¥(-) on that the

bridge does not hit 0. Let (Gr, (x,%))+,y>0 be the Green’s function of %% on R, with 0

condition in 0, and for K > 0, (Gx(2,¥))z,y>0 the Green’s function of %% — K on R:
+o0
GIR/Jr (IE, y) = 2z A y= J PR, (t7 xz, y)dtv
0
GK(ﬂj,y) = Lei 2Ky=e| = J\+Ocp(t7xay)etht'
V2K 0
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Let (! )z,y>0, T€SP. (1E")z,yer be the following measures on finite-duration paths:

+00 +0o0
M?Ri/() = L Pfﬁi’y(')pﬂ+ (t>x7y)dt7 /‘%y() = JO Pt,$7y(')p(t7xﬂy)e_tht' (2.1)

The total mass of M]R , resp. u?, is Gr, (z,y), resp. Gk (z,y). The image of ,u]R , resp.
pi”, by time reversal is piy”, resp. py”.

Let T, denote the first h1tt1ng time of a level = by the Brownian motion (B;);>o. We
will denote by « a generic path on R. Let (4%¥(-))z<yer, resp. (737 (-))a<yer be the

following measures on paths from z to y:

AT (F(7) = Bpy—y[F((Br,—t)o<e<r, )], 0" (F(7)) = Epy—y[e " " F((Br, ~t)ost<r,)]-

The measure ™Y has total mass 1 (probability measure), whereas the total mass of [ﬁ(’y
is
—-KT,] _ ,—V2K|y—=| _ GK(x’y)
EBO:y[e ]—6 | |—W
can be obtained as the image of the product
measure u]Ry ® yy * under the concatenatlon of two paths. Similarly, forz <y < z€e R,
the measure ;3” is the image of 172 ® [1%;” under the concatenation of two paths.

Let (W (x))zer denote a two-sided Brownian motion, i.e. (W (x))z>0 and (W (—2z))z>0
being two independent standard Brownian motions starting from 0 (W (0) = 0). Note that
here z is rather a one-dimensional space variable then a time variable. The derivative
dW () is a white noise on R. Let (¢r, (z)).>0 denote the process (vV2W (z))y>0. The
covariance function of ¢r, is Gr, . Let (¢ (x)).er be the stationary Ornstein-Uhlenbeck
process with invariant measure A'(0,1/+/2K). It is a solution to the SDE

dox (z) = V2dW (z) — V2K ¢ () da

The covariance function of ¢k is Gk.

What follows is the BFS-Dynkin isomorphism (Theorem 2.2 in [3], Theorems 6.1 and
6.2 in [8], Theorem 1 in [9]) in the particular case of a 1D Brownian motion. In general,
the BFS-Dynkin isomorphism relates the squares of Gaussian free fields to local times of
symmetric Markov processes.

Theorem 2.1 (Brydges-Frohlich-Spencer [3], Dynkin [8, 9]). Let F' be a bounded measur-
able functional on C(R), resp. on C(R). Let k > 1 and 1,2, ..., 22 in (0,+00), resp. in
R. Then

7Z

For 0 < z < y < 2, the measure uy

E[ﬁ% (e F (6%, /2)| =
i=1

IR - 1 WE RS S ERRES ]Hu (),

({ai,bi})1<i<k
partition in pau's’y1 ek
of{1,2,...,2k}

resp.

[mK 2)F(6%/2)| =

k

) f B[F(¢k/2+ Low) + -+ L) [T ™ (@),
({ai,b; })1<z<k V1 seeer Vi 1=1
partition in pairs
of {1,2,...,2k}
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where the sum runs over the (2k)!/(2*k!) partitions in pairs, the v;-s are Brownian paths
and the L(v;)-s are the corresponding occupation fields x — L*(~;).

Remark 2.2. Since for = < y, the measure ug”, resp. ug”, can be decomposed as
,uf{’f ® 1Y, resp. puy” @ Y, Theorem 2.1 can be rewritten using only the measures of
type p and ™Y, resp. pg” and fig”.

To a wide class of symmetric Markov processes one can associate in a natural way
an infinite, o-finite measure on loops [20, 19, 18, 21, 22, 23, 12]. It originated from the
works in mathematical physics [32, 33, 34, 3]. Here we recall it in the setting of a 1D
Brownian motion, which has been studied in [24]. The range of a loop will be just a
segment on the line, but it will carry a non-trivial Brownian local time process which will
be of interest for us.

Given a Brownian loop v, T'(y) will denote its duration. The measures on (rooted)
loops are

00 1 x,T 00 1 x,T
Nimp(dﬁ’) = W JR MR, (dv)d, MIK P(dy) = W LR pg (dy)dz. (2.2)
+

Usually one considers unrooted loops, but this will not be important here. The 1D

Brownian loop soups are the Poisson point processes, denoted LO‘+, resp. L%, of

intensity au}f{ip, resp. auﬁ(’p, where o > 0 is an intensity parameter. L(Lg, ), resp.

L(L%), will denote the occupation field of £°‘+, resp. L%:

L*(Lg,) = ), L°(),  L*(L%):= ), L*(3).

7€£ﬁ+ YELY

The following statement deals with the law of L(L}; ), resp. L(L%). See Proposition
4.6, Property 4.11 and Corollary 5.5 in [24]. For the analogous statements in discrete
space setting, see Corollary 5, Proposition 6, Theorem 13 in [21] and Corollary 1, Section
4.1, Proposition 16, Section 4.2, Theorem 2, Section 5.1 in [22]. In general, one gets a-
permanental fields (see also [23, 12]). For a = % in particular, one gets square Gaussians.
We recall that given a matrix M = (Mij)1<i) j<k. its a-permanent is

k
Perm, (M) := Z o cycles of o H Mg i)- (2.3)
o permutation i=1
of {1,2,...,k}

Theorem 2.3 (Le Jan [21, 22], Lupu [24]). For every o« > 0 and x € R, resp. = € R,
the rv. L*(Ly, ), resp. L*(L%), follows the distribution Gamma(a, Gr, (x,2)71), resp.
Gamma(a, Gk (z,7)~!). Moreover, the process a — L*(Ly, ), resp. L*(L%), is a pure
jump Gamma subordinator with Lévy measure

e~ V/Gr, (@) e~ 1/GK(z,)
11>0de, resp. 1l>0fdl.
Let x1,x2,...,2, € Ry, resp. R. Then
k
E[HL“(,C%Jr)] = Perm, (G]R+ (.’lﬁi7.’lﬁj)1<i’j<k),

i=1

E[ LI’(ﬁ?f)] = Perma (GK(xi,xj)1<i7j<k).

i=1

Forz >0, z — L*(Ly, ) Is a solution to the SDE

dL™(L8,) = 2(L7(£5,)) *dW (x) + 2ad,

EJP 26 (2021), paper 126. https://www.imstat.org/ejp
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with initial condition LO(L%J = 0. That is to say it is a square Bessel process of
dimension 2a, reflected at level 0 for « < 1. For x € R, x — L*(L%) is a stationary
solution to the SDE

dL7(£3) = 2(L7(L%)) 2 dW (2) — 2V2K L* (L) + 2adz.

In particular, for a = % one has the following identities in law between stochastic

processes:
(law aw )

1 1
Lcg) = Sk, L) ) ok 2.4)

3 Gaussian beta ensembles

For references on Gaussian beta ensembles, see [7, 13], [11, Section 1.2.2], and [1,
Section 4.5]. Fix n = 2. For A = (A1, Ag,..., \n) € R™, D(A\) will denote the Vandermonde
determinant

D()\) = H ()\j/ —/\j).

1<j<j'<n

For ¢ > 1, p,()\) will denote the ¢-th power sum polynomial

pg(A) = Z Y.
j=1

By convention,
p0(>\) =n.
A Gaussian beta ensemble GSE, with 8 > —%, follows the distribution

1
Zgm

IDV)Pem 22 [ T d);, (3.1)

j=1
where Zg ,, is given by ([27, Formula (17.6.7)] and [11, Formula (1.2.23)])

" noT 1+jé
7 T )

j=1
The brackets {-)g , will denote the expectation with respect to (3.1). For 8 = 0 one gets n
i.i.d. M(0,1) Gaussians. For 3 equal to 1, 2, resp. 4, one gets the eigenvalue distribution
of GOE, GUE, resp. GSE random matrices [27, 11]. Usually the GSE are studied for
B > 0[7], but the distribution (3.1) is well defined for all 3 > —2. For 8 € (—2,0) there is
an attraction between the );-s instead of a repulsion as for § > 0. Moreover, as 3 — —%,
A under (3.1) converges in law to

1 1 1
where ¢ follows N(0,1).
Let d(3,n) denote
d(B,n) =n+n(n— l)g

One can see d(f8,n) as a kind of pseudo-dimension. For § € {1,2,4}, d(8,n) is the
dimension of the corresponding space of matrices.

Letv = (v1,19,...,Vy), wherem > 1, and for all k € {1,2,...,m}, v, € IN\{0}. We will
denote

m(v)
m(v) = m, lv| = Z V.
k=1

EJP 26 (2021), paper 126. https://www.imstat.org/ejp
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Let p,(\) denote

m(v)

= H Py, ()‘)
k=1

By convention, we set pg(A\) = 1 and || = 0. Note that pg () # po(A). We are interested
in the expression of the moments (p, ()))g . These are 0 if |v| is not even. For |v| even,
these moments are given by a recurrence known as loop equation or Schwinger-Dyson
equation ([15, Lemma 4.13], [16, slide 3/15] and [11, Section 4.1.1]). See the Appendix
for the expressions of some moments.

Proposition 3.1 (Schwinger-Dyson equation [15, 16, 11]). For every 8 > —2/n and every
v as above with |v| even,

Pe(Mpn =

NIy
N

m(v)
Z <p(’/7‘)'r7$'m(y) ()\)plfl()\)me(y)flfl(A)>ﬁ~n (3'3)

i=1

B
i (1 - 5) () = VP, sy NPrny—2(A)) 8,0

m(v)—1
+ Z Vk<p(1/w)r¢k,m(u)()\)p”kJ”’m(v)*Q()\»ﬁv”’
k=1

where po(\) = n. In particular, for q even,

BaNsn = 5 2<pu Opg 1O+ (1= 2) (@ = Dpg2 Wi

and for v with Vm(v) = 1,

m(v)—1

<pz/()‘)>67n= Z Vk?<p(l/r)7ﬂ#k,m(y)()\)pl’k_l()\)>ﬂ;n'

k=1

The recurrence (3.3) and the initial condition po()\) = n determine all the moments
Pu(A))g,n-

Proof. Note that (3.3) determines the moments (p, (\))s ,, because on the left-hand side
one has a degree |v|, and on the right-hand side all the terms have a degree |v| — 2. It
is enough to check (3.3) for § > 0, since both sides are analytic in 3. For § > 0, we
outline the proof appearing in [15, Lemma 4.13] and [11, Section 4.1.1], so as to be self-
contained. Let us denote here ¥ := (v1,v9,...,Vp()-1), SO that p,(A) = p,, ., (MN)pz(A).
We have that

(N e ID) i) =
_)\’1’7"() ( )\D( )|ﬂ6—%p2(>\)
n Ilfm(,,) 1 ) .
+B ), S peWID ez
j=2 M J
V() —2 L
+ (Vm(l,) — DA pa (V)| D) [Pem 2Pz
m(v)—
l/ ‘v, 2 1
* 2 s THRWIN 0N 1210V (TS
Since
0 (Nmer =t B —1pa(R)
aT(Al ps(N)[D(N)|Pe? )dA1 o,
R 1
EJP 26 (2021), paper 126. https://www.imstat.org/ejp
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we get that

n V()1
<>‘Vm(y) ( >5 no = ZQ<>\ ()\)>5 n + (Vm(l/) )</\VM( 0 ()‘)>ﬁ’”
m(v

)—

FVm(v)—2
+ Z Vk<>\11jk e p(”T)7‘7$k,7n(1/) ()\)>ﬁ,n~
1

Analogous relations hold for all other indices j' € {2,...,n}. By summing over j' €
{1,2,...,n}, we get

<pu(>‘)>5 n =

I/m() 1 I/m() 1

< Y —/\
1<J<J’<rL

pg(A>>ﬁ § (o) — Dt —2(Nps (W

m(v)—1
+ Z Vk<pl/k+l/m(,,)72()\)]9(”7‘)7‘#)977,1(,,)()\)>/an'
k=1
Furthermore,
)\l{m,(u)—l - )\lf/rn,(u)—l 1 Vi (v)—1

Z : )\ _ )\] = —§(Vm(l’) - 1)py7n(u) 2 Z Di— 1 pV,m(,,)—l—i()\)'
1<j<j’'<n J J’
So we get (3.3). O

Next are some elementary properties of GSE, which follow from the form of the
density (3.1).

Proposition 3.2. The following holds.

1. For every 3 > —2/n, ﬁpl()\) under GBE has for distribution N'(0,1).
For every B > —2/n, p2(\)/2 under GBE has for distribution Gamma(d(8,n)/2,1).

p1(A) and A — Lp;(X\) under GBE are independent.

3 (p2(\)—Lp1(N)?) = ip2(A—2p1()N)) under GBE follows a Gamma((d(8,n)—1)/2,1)
distribution.

s LN

Proof. One can factorize the density (3.1) as

D(A— 1) [ et min) ﬂ (M= ) x e Fm ),

1
Z3n

where
p(r-2m) = T ((v-2m0) = (3 - 2m)) = DY,

This immediately implies (3) and (1). The property (2) is implied by (4), (3) and (1). The
property (4) can be obtained by computing a Laplace transform. Fix K > 0. We have that

(Hmbino)y z;n f D[P AU (-t )= 1‘[

EJP 26 (2021), paper 126. https://www.imstat.org/ejp
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By performing the change of variables A= (K + 1)%)\, we get that the expression above
equals

(K +1)°% C1syB—ime (32 () ) T
T Zsa n|D((K+1) 2M)|Pe 2 O e 1:[
K + 1)~ 24(B.n) ~ 3 02 T o+
%J |D(A)|ﬂe*%pz(A)+WK+nm(’\)2 n dh;.
Bn n 7j=1
Thus,
e 2Kp2()\ 1()))>ﬁ (K+ 1)**(1(5” <62n(K+1)p1(>\) > K+ 1) %(d(ﬁ’n)il).
So we get the Laplace transform of a Gamma((d(8,n) —1)/2,1) r.v. O

Next is an embryonic version of the BFS-Dynkin isomorphism (Theorem (2.1)) for the
GpE. One should imagine that the state space is reduced to one vertex, and a particle on
it gets Kkilled at an exponential time.

Proposition 3.3. Let 5 > —2/n. The following holds.

1. Leta > 0. Let h : R™ — R be a measurable function such that {|h()\)|)s.n < +00.
Assume that h is a-homogeneous, that is to say h(s\) = s*h(\) for every s > 0. Let
F :[0,+m) — R be a bounded measurable function. Let § be a r.v. with distribution
Gamma((d(8,n) + a)/2,1). Then

N F(p2(N)/2))8,m = (M(A)) s E[F(6)]. (3.4)
2. In particular, let v be a finite family of positive integers such that |v| is even. Let
Ti,---, T2 be an i.i.d. family of exponential times of mean 1, independent of the

GPE. Then
DoV F (p2(N)/2)).0 = Du)snB[(F(p2(N)/2 + T + -+ + Tiujj2)8.m] -

Proof. (1) clearly implies (2). It is enough to check (3.4) for F of form F(t) = e~ X*, with
K > 0. Then

—1Kp2(N) 1 b ) "
e 6 Zﬁﬁnfn h(NID(N)["e 1:[
K+1) 2 e .
B (ZB)J h((K +1)"20)[D((K + 1)"2))[Pe” Pz(A)nd)\

= (K EleenEe) gy,

where on the second line we used the change of variables A = (K + 1)%)\, and on the
third line the homogeneity. Further,

(K + 1)7%(n+n(n71)§+a) _ ]E[efKe]. O

4 Isomorphisms for 5-Dyson’s Brownian motion
4.1 (-Dyson’s Brownian motions and the occupation fields of 1D Brownian loop
soups

For references on -Dyson’s Brownian motion, see [10, 6, 30, 4, 5], [27, Chapter 9]
and [1, Section 4.3]. Let 8 > 0 and n > 2. The -Dyson’s Brownian motion is the process

EJP 26 (2021), paper 126. https://www.imstat.org/ejp
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M) = (M(z), ..., \u(2))) a0 With A1 (x) = -+ = A\, (z), satisfying the SDE
d

X

@) = VaWi @)+ 6 ),
J'#3

with initial condition A(0) = 0. The derivatives (dW;(z))i<;j<. are independent white
noises. Since we will be interested in isomorphisms with Brownian local times, the
variable x corresponds here to a one-dimensional spatial variable rather than a time
variable. For every z > 0, \(z)/1/GRr, (z,2) = \(x)/+/2x, is distributed, up to a reordering
of the \;(z)-s, as a GSE (3.1). For § equal to 1,2 resp. 4, (A(z))s>0 is the diffusion of
eigenvalues in a Brownian motion on the space of real symmetric, complex Hermitian,
resp. quaternionic Hermitian matrices. For § > 1, there is no collision between the
Aj(x)-s, and for § € [0,1) two consecutive \;(x)-s can collide, but there is no collision
of three or more particles [5]. Note that for 5 > 0 and j € [2,n], (A\j(z) — A;—1(x))/2
behaves near level 0 like a Bessel process of dimension 5 + 1 reflected at level 0, and
since 8 + 1 > 1, the complication with the principal value and the local time at zero does
not occur; see [35, Chapter 10]. In particular, each (A;(z))s>0 is a semimartingale. For
B =0, (AM2)/v2)s>0 is just a reordered family of n i.i.d. standard Brownian motions.

(4.1)

Remark 4.1. We restrict to 5 > 0 because the case 5 < 0 has not been considered in
the literature. The problem is the extension of the process after a collision of \;(x)-s.
The collision of three or more particles, including all the n together for § < — TQL((:;:?)) is
no longer excluded. However, we believe that the 5-Dyson’s Brownian motion can be
defined for all § > —%. This is indeed the case if n = 2. One can use the reflected Bessel

processes for that. Let (p(2))z=0 be the Bessel process of dimension § + 1, reflected at
level 0, satisfying away from 0 the SDE

B
dp(z) = dW(x) + mdm,
with p(0) = 0. The reflected version is precisely defined for § > —1 = _72; see [29,
Section XI.1] and [17, Section 3]. Let (I/IN/'(:c))BO be a standard Brownian motion starting
from 0, independent from (W (x)),>o Then, for n = 2, one can construct the 5-Dyson’s

Brownian motion as
M (z) = W(z)+p(x),  Aalz) = W(z) — p(a). (4.2)
Next are some simple properties of the S-Dyson’s Brownian motion.
Proposition 4.2. The following holds.

1. The process (ﬁpl(A(x)))Po has the same law as ¢, .

2. The process (3p2(A(z)))s=0 is a square Bessel process of dimension d(j3,n) starting
from 0.

3. The processes (p1(\(2))).=0 and (X(z) — :p1(A(z))),., are independent.

4. The process (3 (p2(M(x)) — zp1(M(@))?)), ., is a square Bessel process of dimension
d(B,n) — 1 starting from 0.

Proof. With It6’s formula, we get

Iy O@) = V2 3 W o),

Jj=1

2 a
1 Looemz) — Aj(@) = mpi(A(@)) ,
a3 (p(M@) = ~p1 (A@))?) = 23, Sa W)+ (d(B,n) — dr, (43)
EJP 26 (2021), paper 126. https://www.imstat.org/ejp
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where the points z € Ry for which \;(z) = A\;_i1(z) for some j € [2,n] can be neglected.
This gives (1), (2) and (4) since the processes

and

C$ M@0 g
2/ (A@) — 2y (M)
are both standard Brownian motions. Again, one can neglect the points z € R, where

p2(A(z)) — Lpi(A(z))? = 0, which only occur for n = 2.
For (3), we have that

d()\j(x) - %pl()\(x))> = \/id(wj(x) - %pl(W(x)))

dz
+8 )] :
75 (@) = —m@) — (@) — p1 (A)))

where

The Brownian motion p; (W) = %pl()\) is independent from the family of Brownian
motions (W; — %pl(W))KKn.
respect to (Wj — %Lpl(W))1 <j<n follows from the pathwise uniqueness of the solution to
(4.1); see [4, Theorem 3.1]. O

Further, the measurability of (A\; — £p1(})), <j<n With

By combining Proposition 4.2 with Theorem 2.3, we get a first relation between the
B-Dyson’s Brownian motion and 1D Brownian local times. Compare it with Le Jan’s
isomorphism (2.4).

Corollary 4.3. The process (5p2(\(x))),., is distributed as the occupation field
(L*(LR, ))x=0 of a 1D Brownian loop soup Lf; , with the correspondence

200 =d(B,n) =n+n(n— 1)? (4.4)

_1 ~1
Further, let LE+ ? and ,C]fh be two independent 1D Brownian loop soups, « still given by
(4.4). Then, one has the following identity in law between pairs of processes:

1 1 1

(5(P20@) = 21 OA@)2)s 5omA@)?) 2 (LA (L), LHER, o

2
=0 +

4.2 Symmetric moments of 5-Dyson’s Brownian motion

We will denote by <~>?;L the expectation with respect to the 5-Dyson’s Brownian
motion (4.1). This section will be devoted to deriving a recursive way to express the
symmetric moments

m(v R,

)

P (A1) ) (4.5)
k=1 An

for v be a finite family of positive integers with [v| even and z; < x5 < -+ < 700 € Ry

This generalizes the Schwinger-Dyson equation (3.3). Note that if |v| is odd then the

moment equals 0.
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We will also use in the sequel the following notation. For k > k' € IN, [k, k'] will
denote the interval of integers

[k, K] = {k,k+1,..., k).

We start by some lemmas.
Lemma 4.4. Let ¢ > 3. Then

dpy(M(z)) = Q\@Z (@) T AWy (2) + qva 1(A(@))pg-1-i(A(x))dz

—|—2§nqpq_2()\(x))dx + (1 — g)q(q — Dpg—2(A(x))dz.

Proof. By It6’s formula,

dpy(A(z)) = qv/2 Z X (@) AWy (@) + (g — 1)pg—2(A(x))dx

Jj=1

D e V1o Lo

+ By
<iThen  N(@) = Ap(2)
But
Aj(@)? 1 — Apr (@) 2
= A ya—2=r
mg;,@ Aj(x) = Aje (@) 1<];,<M2
g—1 1952
= (n= 15— )pa2A@)) + 5 Pt M@pe1A ().
Lemma 4.5. Letq,¢' > 1 with ¢ + ¢’ > 2. Then
d{pq(A()), py (A())) = 2qq/pq+q/,2()\(m))dm.

Moreover,

d{pr(A(2)), pr(A(2))) = 2ndz.
Proof. This is a straightforward computation. O

Lemma 4.6. Let v be a finite family of positive integers and let ¢ > 0. Then the process

Jx z”: y)1dW; (y (4.6)

is a martingale in the filtration of the Brownian motions ((W;(x))1<j<n)z>0-

Proof. The process (4.6) is a local martingale. Its quadratic variation is given by

L b (AW))2ag(Aw) .

For every y > 0, A(y)/+/2y follows a fixed distribution, which is up to reordering the GSE
(3.1). Thus,

([ 2000 = g O [ 20) 0y <
0 B.n 0

So the quadratic variation is locally bounded in L'. It follows that (4.6) is a true
martingale. O
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Let v be a finite family of positive integers. and let 1 < 22 < -+ < @y,(,) € R4 For
ke[l,m(v)] and x > x;_1, let fi(z) denote the function

m(v)

)i=( T o O ] 7 @), . 4.7

k'=1

The main idea for expressing a symmetric moment (4.5) is that for x > x;_1, the
derivative f;(z) is a linear combination of symmetric moments of degree |v| — 2, with
coefficients depending on 3 and n. The precise expressions for these coefficients can be
deduced from Lemmas 4.4 and 4.5. Further, the moment (4.5) equals f,,(,) (%)), for
every k € [2,m(v)], fr(zx-1) = fe-1(zk-1), and

filar) = 2z)"2p, (Mg,

where (p, (\))g,» is the moment of the GSE, given by Proposition 3.1. So given the above
initial conditions, and knowing the derivatives f/(z) one gets the moment (4.5). It turns
out that this moment is a multivariate polynomial in (2 )1<k<m(v)- Next we describe the
recursion for this polynomial.

Let (Yix)r>1 denote a family of formal commuting polynomials variables. We will
consider finite families of positive integers v = (v1, 12, ..., V() With |v| even. The order
of the v, will matter. That is to say we distinguish between v and (Vo (1, Vo (2); - - - » Vo (m(v)))
for o a permutation of [1,m(v)]. We want to construct a family of formal polynomials
Qv,5,n With parameters v, § and n, where Q, 3, has for variables (Yir)i<i<m(v). TO
simplify the notations, we will drop the subscripts 3, n and just write (),,. The polynomials
@, will appear in the expression of the symmetric moments (4.5). We will denote
by ¢(v, 8,n) the solutions to the recurrence (3.3), which for g € (—2/n,+o) are the
moments {p,(\))gn. By convention, ¢((0), 3,n) = n and ¢(&,8,n) = 1. For k > 1 and Q
a polynomial, Q% will denote the polynomial in the variables (Y4 )i1<k <k, Obtained
from () by replacing each variable Yy with k¥’ > k + 1 by the variable Yj;. Note that

m)<= _ 0, and that QL is an univariate polynomial in Y;;. For Y a formal polynomial
variable, degy will denote the partial degree in Y.

Definition 4.7. The family of polynomials (Q,),| even is defined by the following.

1. QL = c(w Bm)YY"”.
2. If m(v) > 2, then for every k € [2,m(v)],

% ﬁ k, Vi —2
aYka ) Z Z Q (V) i si— 1,03 —1—3) (4.8)
k<k'<m(v)
Vk’>2

5 “«—
+§n Z V(k'/)QI(C(VT,)Tik/,Vk/72)
k<K' <m(v)
I/k/>2

B o
+§TL 2 Q(VT)T#IC/

k<k’'<m(v)
Vit =2

/B / ;) —
+(1 - 5) Z MQ((W)TM/ Vi —2)

k<k'<m(v)
Vit >2

+(1 — §>n Z QI(CZ:)T#M

k<k'<m(v)
Vit =2
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ke
+ Z Vk‘/yk'//Q((yr)T#k,’ku,I/k/+1/k//—2)

k<K' <k"<m(v)
Vit +Vpn>2

(V"')r#k',k” :
k<K' <k”"<m(v)
vy =vyn=1

Ifk = m(v), then the last two lines of (4.8) vanish.

Note that since the polynomials @), g, are formal, one is not restricted by a specific
range for 5. One could take any 3 € C or even consider 5 as a formal parameter. The
specific range for 5 will only matter when relating ), g, to the symmetric moments of
the 5-Dyson’s Brownian motion.

Proposition 4.8. Definition 4.7 uniquely defines a family of polynomials (Q.)|,| even-
Moreover, the following properties hold.

1. For every A monomial of ), and every k € [2,m(v)],

2 ), degy, A< Y w, (4.9)

k<k’'<m(v) k<k'<m(v)

and
2 Z degy,, , A= |v|.

1<k’/<m(v)
In particular, ), is a homogeneous polynomial of degree |v|/2.
2. For every k € [1,m(v)] and every permutation o of [k, m(v)],
Qk«— _ Qk<—.

(Vr)1<r<k—1,Vo(r)) k<r<m(v)
Proof. The fact that the polynomials @), are well defined can be proved by induction on
v]/2.
For |v[/2 = 1, there are only two polynomials, @2y and Q(; 1). According to the
condition (1),

Qe = ¢((2), B,m)Y11 = d(B, )Y, = (§n2 +(1- g)n)vn.

The condition (2) does not apply for Q2. For Q(; 1), according to the condition (2),

0
N Qa1 =0.

Thus, Q(;,1) contains no terms in Yy, and Q1) = Q%{‘l). From the condition (1) we
further get

Q(l,l) =c((1,1),8,n)Y11 = nY11.

The induction step works as follows. Assume |v|/2 > 2. The right hand side of
(4.8) involves only families of integers 7 with |7| = |v| — 2. According to the induction

hypotheses, Q%< is uniquely determined for every k € [2,m(v)]. Thus, for every

0
Y ki
ke [2,m(v)], Q¥ — Q% (Yir = 0) is uniquely determined. On top of that,

QF(Yer =0) = QE1 — (QF — QF (Yur = 0))

Moreover, by the condition (1), Q1< is also uniquely determined. Thus, all the poly-

nomials (Ql’f‘—)lgkgm(u) are uniquely determined, with consistency by the Q — Q%<

k—1«

operations. Finally, @, = QU
The properties (1) and (2) again follow easily by induction on |v|/2. O
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We are ready now to express the symmetric moments (4.5).

Proposition 4.9. Let 8 > 0. Let v be a finite family of positive integers, with |v| even. Let
Qv = Qu p.n be the polynomial given by Definition 4.7. Let x1 < x3 < -+ < Ty € Ry
Then,

m(v) R,
(T pa@)) | = Qul(Yar = 25) k)
k=1 ’

Proof. The proof is done by induction on |v|/2.

The case |v|/2 = 1 corresponds to v = (1,1) or v = (2). These are treated by
Proposition 4.2, and taking into account that the one-dimensional marginals of square
Bessel processes follow Gamma distributions.

Now consider the induction step. Assume |v|/2 > 2. Recall the function fi(z) (4.7)
for k € [1, m(v)]. We have that

fi(@) = e(v, B,n)(221)"2 = QU (Y = 221), (4.10)

where for the second equality we applied the condition (1) in Definition 4.7. If m(v) = 1,
there is nothing more to check. In the case m(v) > 2, we need only to check that for
every k € [2,m(v)] and every x > xy_1,

a “«—
file) = S-Qu" (Yww = 2o0)1cwsr1, Yir = 22) (4.11)
a «—
= 2(6Ykk; Q;Ij )((Yk/k’ = 2xk/)1<k’<k71,Ykk — 2%)

Indeed, given (4.10), by applying (4.11) to k = 2, we further get
fa(m2) = P7~ (Y11 = 21, Yag = 213),
and by successively applying (4.11) to k = 3,...,k = m(v), we at the end get

Fn) @m)) = QU (Y = 221 ) 1<hr<m(n))s

which is exactly what we want. To show (4.11), we proceed as follows. Let (F,).>0 be
the filtration of the Brownian motions ((W;(z))1<j<n)z>0. Then, for z > x;_1,

k-1 () Ry Ry
@) = ( TT 2o M) TT 2o G@)| o) ")
k'=k ’

Pl Byn
where <-|]—‘Ik71>g‘; denotes the conditional expectation. To express

Ry
)

<nﬁ)pyk,u<x>>\a“>ﬁ '
k'=k ’

we apply Ité’s formula to

m(v) m(v) R,

v (A(T)) — v (A(Tp—1 .
T o) =TT o Ot

The local martingale part is, according to Lemma 4.6, a true martingale, and thus gives
a 0 conditional expectation. The bounded variation part is a linear combination of terms
of form ps (A(z))dx, with

m(v)

7= (X w) -2,

k'=k
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the exact expressions following from Lemma 4.4 and Lemma 4.5. By comparing these
expressions with the recurrence (4.8), and using the induction hypothesis at the step
|v|/2 — 1, we get (4.11). At this stage we omit detailing the tedious but completely
elementary computations. O

4.3 More general formal polynomials

In previous Section 4.2, we defined recursively a family of formal polynomials @, =
Qu,8,» (Definition 4.7), which encode the symmetric moments of the 5-Dyson’s Brownian
motion (Proposition 4.9). However, these polynomials are insufficient both for the
generalization of the BFS-Dynkin isomorphism (forthcoming Proposition 4.14) and for
expressing the symmetric moments of the stationary version of the g-Dyson’s Brownian
motion (forthcoming Proposition 4.22). Therefore we introduce an other family of formal
polynomials P, = P, g, with P, constructed out of (), in a straightforward way which
we describe next.

On top of the formal commuting polynomial variables (Yjx)r>1 appearing in the poly-
nomials @,, we also consider the family of the formal commuting variables (Yi_1)r>2,
also commuting with the first one. A polynomial P, will have for variables (Y )1<k<m(v)

and (?kfl k)2<k<m(v)-

Definition 4.10. Given v a finite family of positive integers with |v| even, let P, be the
polynomial in the variables (Yr)1<k<m(v), (Yrk—1k)2<k<m(v) defined by the following.

1. Po((Yrr)i<kem@) (Ye—1k = Dockam@)) = Qu((Yer)1<h<m(v))-
2. For every A monomial of P, and every k € [2,m(v)],

degy,  A+2 ) degy, A= > w. (4.12)

k<k’'<m(v) k<k'<m(v)

The property (4.9) ensures that P, = P, g, is well defined. As for Q, g, P, 5 is
defined for every 3 € C.

Proposition 4.9 and Definition 4.10 immediately imply the following.

Corollary 4.11. Let 8 > 0. Let v be a finite family of positive integers, with |v| even. Let
T <X < -+ < Tm(v) € R+. Then,

m(v R,

= Po((Yir = 221) 1<hem@v)s (Yio1k = Docham)) =

)
Pu (M) )

k=1

Bn

P,((Yrr = Gr, (Tks Tk)) 1<k <m(v) s \f=r= Gr, (Tr—1,78)/GR, (Th—1,Tk—1))2<k<m(v))-

Next are the expressions for Q1 1,...1), P1,1,...,1), Q2,2,....2) and Pz 2 . 2).

Proposition 4.12. Let m € IN\{0}. Let M = (Mg )1<k i’<m be the formal symmetric
matrix with entries given by

Mk = Y,  fork < k', My = My = Y, H N2 (4.13)

k+1<r<k’

The following holds.

1. Assumem is even, and letv = (1,1,...,1), where 1 appears m times. Then Qu,...1)
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P11,...1) satisfies the Wick’s rule for Gaussians:

m/2

m
Q(l,l,...,l) = n:2 Z nYaiAbiaiAbi7

({aibiDicicm/2 =1
partition in pairs
of [1,m]

m/2

P(1,17...,1) = TL% Z 1_[ Malbm

({aivbi})lsismp i=1
partition in pairs
of [1,m]

where a; A b; = min(a;, b;) and where the sums run over the m!/(2% (m/2)!) parti-
tions in pairs.

2. Letv =(2,2,...,2), where 2 appears m times. Then
Q2z2,..2) = 2" Permgyp ) 2((Yrar kak)1<k,k/<m);
P20 = 2" Permgyg ) 2(M).

Proof. The expressions for Q1 1, .. 1) and Q(22, ... 2) are easily obtained by induction on m
using Definition 4.7. Alternatively, for 5 > 0, one can use that under the law of 8-Dyson’s
Brownian motion, the process (p;(A(z)))z>0 is Gaussian and the process (p2(A(x)))z>0
is d(j3,n)/2-permanental; see Proposition 4.2. This gives the expression of Q11 .. 1)
and Q22,... 2y for § > 0. To extend it to general 3 one can use that the coefficients of
the polynomials ), are themselves polynomials in 3. The expressions for P ;.. ;) and
Py, 2) are immediately deducible from those for Q; 1 .. 1) and Q3 2.... 2) by following
Definition 4.10. O

For other examples of P,, see the Appendix.

As a side remark, we observe next that the value § = —% plays a special role for
the polynomials @, 5., and P, s,. In particular, P, 5 >, gives the moments of the
stochastic processes (¢r, (¢))z>0 and (¢x(z))zer introduced in Section 2, which are
Gaussian. This is also related to the fact that in the limit 8 — —%, the GSE converges in
law to n identical Gaussians (3.2).

Proposition 4.13. Letn > 1. Let K > 0. Let v be a finite family of positive integers
with |v| even. Let x1 < --- < Z,,(,) be m(v) points in (0, +o0), resp. in R. Then

Qu =2 n((Yir = 225)1<k<m)) =

m(v)

Py g——2 o (Yrk = 22k)1<k<m(v), \( = Dackemv)) = nm(y)f‘”‘/QE[ n PR, (xk)”’“],
k=1

resp.
P, =2 o (Yie = 1/V2K)1<k<mv) (Yio1k = e V2@, )

m(v)
- nm(vHu\/zE[ I1 ¢K(Ik)uk].
k=1

That is to say, the variables Y}, are replaced by Gr, (v, x1), resp. Gi (zx, x)), and the
variables Y]c,1 k by G]pUr (CCkfl, LL’k)/G]R+ (l‘kfl, Clikfl), resp. GK(wkfl, ,’E}c)/GK(l‘k,l7 $k,1).
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Proof. First, one can check that

2 _ [v|!
_ 2\ ame-vl
o(v.8 nn) n SRR (4.14)

This follows from Proposition 3.2. The key point is that
2
a(p=-=n) =1.
n

Given v a finite family of positive integers, let k, : [1, |v|] — [1, m(v)] be the function
such that
k(1) =[1,1n], fork e[2,m®)], k,*(K)=[vi+ - +vp_1+1,v14---+vp]. (4.15)

Further, let (@,,)M oven D€ the following formal polynomials:

|v1/2

Q, = nm =2 Z H Yk, (ai) Ak (i) ko (1) Ak (b) -
({aibiPDi<i<)p)yz =1
partition in pairs
of [1,|v[]

To conclude, we need only to check that @,, =Q, 3-_2 , for all v with |v| even. Indeed,
this immediately implies that

lv|/2

m(v)—|v|/2
Pogo—zp=n @)=l 2 1_[ Mi, (ai )k (b:)

({ai,bii<i<pvz =1
partition in pairs
of [1,|v[]

where the My, are given by (4.13), and thus n—7n(l/)+|V|/2PV”8=731n corresponds to

n

the Wick’s rule. So by evaluating in Y, = Gr, (zx,2r) and \?qu = Gr, (Tp—1, 1)/
GRr, (Tk—1,7k-1), Tesp. Yy, = Gg(x,v;) and Ye1k = Gr(xp—1,2r)/Gxr(Th—1,Tk—1),
one gets the moments of ¢R, , resp. ¢x.

The identity @, = Qyﬁzf%’n
Definition 4.7. From (4.14) follows that the @l, satisfy the condition (1) in Definition 4.7.

One can further check the recurrence (4.8), and this amounts to counting the pairs in
k; ([, m(v)]). O

can be checked by induction over |v|/2 by following

4.4 BFS-Dynkin isomorphism for 5-Dyson’s Brownian motion

We will denote by Y a generic finite family of continuous paths on R, T = (v1,...,7s),
and J(Y) will denote the size J of the family. We will consider finite Brownian measures
on T where J(Y) is not fixed but may take several values under the measure. Given
x € R, L*(T) will denote the sum of Brownian local times at x:

J(T)

LH(r) = 3 L*(%).
i=1

L(7T) will denote the occupation field z — L*(T).
Given v a finite family of positive integers with |v| evenand 0 < 21 < x2 < -+ < Ty,

u;{’fl""’w""‘”’ (dY) (also depending on 3 and n) will be the measure on finite families of
continuous paths obtained by substituting in the polynomial P, = P, g ,, for each variable

. . Y CTR—1,Tk .
Y. the measure ufR’;’w’“, and for each variable Y;_; the measure ,u]R’: 1%k, see Section
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2. Since we will deal with the functional L(Y) under /f et (47, the order of the
Brownian measures in a product will not matter. For 1nstance, forv = (2,1,1) (see
Appendix),

Py = (gng + <1 - g)ﬁ)YnYzzvzs + ZnY%?ﬁv%,

and

2,1,1),x1,x2,x: 6 ﬂ T To,T . To,T
M](R+ ),T1,T2,T3 _ <*77,3+ (17§> );L"]Rl+ 1®M]R2+ 2® 2 3

+2nM$1 s L1 ®'u$1;931 ®/2le+7$2 ®ﬂI$R1+7$2 ® v$2;$3.

VyT1se s, Tom (v)

Note that depending on values of n and 3, a measure pup may be signed.
Next is a version of BFS-Dynkin isomorphism (Theorern (2.1)) for 5-Dyson’s Brownian

motion.

Proposition 4.14. Let v be a finite family of positive integers, with |v| even and let

0 <x; <xp <--+ < Zp). Let F be a bounded measurable functional on C(R, ). Then

<nﬁ)puk A(zx)) (; Bn J<F ~p2(A +L(T))> nu]"R’fl """ ) (dY). (4.16)

Remark 4.15. In the limiting case when z; = z;_; for some k € [2, m(v)], \v(k,l L in P,
has to be replaced by the constant 1 instead of a measure on Brownian paths.

Remark 4.16. For § € {0, 1,2, 4}, (4.16) reduces to the Gaussian case of Theorem 2.1.

Let us first outline our strategy for proving Proposition 4.14. By density arguments it
is enough to show (4.16) for functionals F' of form

F((U(@))z0) = xp - |

Ry

{(x)x(@)dz),

where y is a continuous non-negative function with compact support in (0, +). For
such F, the value returned by the right-hand side of (4.16) is well understood and is
related to the local times of Brownian motions with a killing rate given by x. In order to
deal with the left-hand side of (4.16), one interprets

exp ( — 1§ pz(A(y))x(y)dy)

(exp (= 557 mAWIX(w)y) )

Ry
B,n

as a density in a change of measure. Then it remains to describe the law of the stochastic
process (A(z))z>o under the new measure, and in particular express its symmetric
moments. It turns out that under the new measure, the process can still be reduced to a
B-Dyson’s Brownian motion through a deterministic transformation reminiscent of the
scale and time changes for one-dimensional diffusions; see Lemma 4.19.

We start by some intermediate lemmas. Recall that (F,).>¢ denotes the filtration of
the Brownian motions ((W;(z))i<j<n)z>0 in (4.1). Consider x a continuous non-negative
function with compact support in (0, +). Let u,,| denote the unique solution to

which is positive non-increasing on R, with u, | (0) = 1. See [24, Section 2.1] for details.
Then
Uyy(+00) = lm wu,(z) > 0.

T—+00
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Lemma 4.17. Let D, (+0c0) be the positive .v.

+00

1
D, (+o) := qu(—I-OO)_%d(ﬁ’") exp ( - QJ

 pOw)x()y). (4.17)

Then <DX(+C>O)>?;Z = 1. Moreover,
R
Dy () 1= (Dx(+0)| F2pg

“ 1@ 0 o (1 [ @) e (jr0E) D). @9

Let

NS N RRCVIC) N .
Myw) 1= 7 | 2 2 A0

Then (M, (x)).>0 is a martingale with respect to the filtration (F,),>0 and for allz > 0,

Dy(z) = e (My(2) = 5(My MyO(@)).

Proof. (4.17) and (4.18) follow from the properties of square Bessel processes. See
Theorem (1.7), Section XI.1 in [29]. (M, (x)).x0 is obviously a (true) martingale, as can
be seen with the quadratic variation. Further,

d(ipz(A(x))Zﬁg;) =AMy (2) + Spa(N@))X(w)d
—1 T u;d(x)Q T 1 n u;l(x) T
4p2(>\( ))“Xl($)2d i Qd(ﬁ’ )uxl(x)d ’
e 2L M M) = Loy )
3 M M) = {2 2
Thus )
A(My(@) = (M M) () ) = dlog(D(a)). 0
Lemma 4.18. Let be (A\(z) = (A1 (), ..., M(®)))es0 With A (z) = --- = A, (z), satisfying
the SDE , )
d\;(x) = V2dW;(z) + ZXiZ) Aj(x)dz + ) A()dIA() (4.19)
X g V) T A

with initial condition 5\(0) = 0. Further consider a change of measure with density
D, (+x©) (4.17) on the filtered probability space with filtration (F,),>0. Then X after the

change of measure and \ before the change of measure have the same law.

Proof. The existence and uniqueness of strong solutions to (4.19) is given by [4, The-
orem 3.1]. The rest is a consequence of Girsanov’s theorem; see Theorems (1.7) and
(1.12), Section VIII.1, in [29]. Indeed,

AW (), My (2)) = = 205 0y
i(x), T))=— i(x)dx.
! * V2 uy (2)"
Thus, after the change of measure, the
1 (" uy(y)
W) = s [ 2L )y
! V2 Jo uy (y) ’
for j € [1,n] are n i.i.d. standard Brownian motions. O
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Let v, denote the following diffeomorphism of R, :

inte) = [ 2

0 uxl(y)zl

Let ¢! be the inverse diffeomorphism.

Lemma 4.19. If ) is a solution to the SDE (4.19), then the process

(o @),

satisfies the SDE (4.1).

1 -
Proof. The process ( )\(x)) satisfies
Uy} (7) x>0
1« V2 1 dx
d( by x)) = Y aWi(a) + 8 Y] — — .
uxi(2) uxi () 775 W (@) TN (@) = uyy (2) 7 A (@) U ()
By further performing the change of variable given by v, one gets (4.1). O

2

In the sequel (Gr, (,Y))z,y>0 will denote the Green’s function of 1-4; — y on R

with condition 0 in 0. Then for 0 < z < y,

Grox(2,y) = 2uy ()P (2)uxy (1) (4.20)
Indeed,
3 (2 D s ) = X0 (20 @ (s ),
o (e @) = (B ) + 220
= X(@) (2u (@n@)u () +0,
and
(2L 2] ) r@n@nw) -1

Lemma 4.20. Let (\(z)),>0 be the solution to (4.19) with A\(0) = 0. Let v be a finite
family of positive integers, with [v| even. Let x1 < 23 < --- < Zp,(,) € Ry. Then,

m(v) R,

< H Puy (M) >B7n =

Py((Yir = Gry x Tk, Tk) ) 1<hemv) Yi—1k = Uy (Tk)/Ux) (Tk-1))2<k<m(v))-
Proof. From Lemma 4.19 and Proposition 4.9 it follows that

m(v) m(v)

< H P (A(r) >B . ( H ux Tk ”") o(Yer = 20 (@) 1<k<m(v))-

m(v)

( H Uy (T) k) U (Yer = 200y (2k))1<k<mv) (Yk—uc = 1D)ocka<m(v))-
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Further, let A be a monomial of P,. One has to check that

m(v

)
( “Xl(mk)yk)A((Ykk = wa(xk))lskSm(y)a (Ye—1x = 1)2<ksm(u))
k=1

= A((Yrr = 20y (k) uxy (21)*) 1<h<mv) Vo1 = Uy (Tr) [ty (Th—1))2<k<mv))-

This amounts to counting the power for each u,(z;) on both sides. On the left-hand
side, each u, (x)) appears with power ;. The power of u, | (z;) on the right-hand side is

2degy,, A +degy, ,, A—degy, . A.
By (4.12), this is again 1. Finally, by (4.20),
20 (21 )uyy (24)” = Gry oy (Th, Tk).- O

Proof of Proposition 4.14. 1t is enough to show (4.16) for functionals F' of form

F(({(x))z=0) = exp ( — f(x)x(x)dx),

R4

where y is a continuous non-negative function with compact support in (0, +o0). For
such a y,

m(v 1 R,

)pl,k (Mxg)) exp ( - = JR pz(/\(x))x(x)dm)> =

k=1 2 Bin

Ry

m(v)
(o (=3 [, mO@I@)) " (T Oe),

where ) is given by (4.19), with A\(0) = 0. The symmetric moments of A are given by
Lemma 4.20. To conclude, we use that

Je (= [ o)z = Gn, o),

and for0 < x <y,

Lexp < - Lh LZ('Y)X(Z)dz) a*Y(dy) = Gy x(@,Y) _ U (y) :

GR+’X($>$) qu(w)

see [24, Section 3.2]. O

4.5 The stationary case

In this section we consider the stationary S-Dyson’s Brownian motion on the whole
line and state the analogues of Propositions 4.2, 4.9 and 4.14 for it. The proofs are
omitted, as they are similar to the previous ones. As previously, n > 2 and 8 > 0. Let
K > 0. We consider the process (A(z) = (A1(2),..., An(2)))zer With A1 (z) = -+ = A\, (),
satisfying the SDE

dA;(x) = V2dW;(x) — V2K Nj(z) + BV2EK Y. dz

S — (4.21)
(@) = A ()

the dW;, 1 < j < n, being n i.i.d. white noises on R, and A being stationary, with
(2K)3 A(z) being distributed according to (3.1) (up to reordering of the \;(z)-s).
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Proposition 4.21. The following holds.

1. The process (ﬁpl(A(x)))xeR has the same law as ¢x.

2. Let be a 1D Brownian loop soup L9, with « given by (4.4). The process
(3p2(A\(2)))ser has the same law as the occupation field (L (L£$))ger-

3. The processes (p1(A(«)))eer and (A(z) — £p1(A(z))) . are independent.

_1 ~1
4. Let Ci > and L} be two independent 1D Brownian loop soups, o given by (4.4).
Then, one has the following identity in law between pairs of processes:

1 1

(5 (@) = 2o @), gom A@)?) " (L), L () aer

We will denote by <>§ ,» the expectation with respect to the stationary $-Dyson’s
Brownian motion. Given v a finite family of positive integers with || even and z; < x2 <
C< Ty € R, pg I (dY) (also depending on 3 and n) will be the measure on
finite families of continuous paths obtained by substituting in the polynomial P, = P, g,

for each variable Y}, the measure ,uf(’“” and for each variable Y;_1; the measure

L Tg—1,Tk
% .
Proposition 4.22. Let v a finite family of positive integers with |v| even. Let 1 < x5 <

S Tp(y) € R. Then,

m(v

)
(I m0w), =

Py((Ykk' = 1/\/ 2K)1<k<m(u)7 (vk—lk = eiﬂ(zkixk_l))QSkSm(u)) =
P,(Yrr = G (Tr, Th)) 1<k <m(v) Vio1s = Gr(Tr—1,7)/Gr(Tr-1,Tr-1))2<k<m®))-

Further, let F' be a bounded measurable functional on C(R). For vy < o3 <+ < Ty €
R,

(T ()P (50a0) ), = [ (P (G + LC0)) T e a),
k=1 1 |

5 The case of general electrical networks: a construction for n =
2 and further questions

5.1 Formal polynomials for n = 2

In this section n = 2, and 3 is arbitrary, considered as a formal parameter. Note that
d(B,n = 2) = 8+ 2. In Section 4.2 we introduced the formal commuting polynomial
variables (Yir)r>1. Here we further consider the commuting variables (Yjx )1<k<k’,
and by convention set Yyr = Yg for &/ < k. Given v = (y,...,0p,) with 7, € N
(value 0 allowed), B3 g will be the following multivariate polynomial in the variables
(Yir )1<hsh <m:

PBop = Permo (Y (i) () 1<ivj<om+tim);

where fisamap f : [1,71+ - +,] — [1,m], such that for every k € [1,m], |f~ (k)| = 7.
Recall the expression of the a-permanents (2.3). It is clear that 3; 3 does not depend
on the particular choice of f. In case 7; = - = I, = 0, by convention we set L, 5 = 1.
Given v a finite family of positive integers with |v| even, let k,, : [1, |v|] — [1,m(v)] be
the map given by (4.15). Let Z, be the following set of subsets of [1, |v|]:

T, = {I < [1, V]| Vk € [L,m()], [k " (k)\I| is even},
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where | - | denotes the cardinal. Note that necessarily, for every I € Z,, the cardinal |I| is
even. Let P, s be the following multivariate polynomial in the variables (Y )1<k<i/<m(v):

111/2
Do mv)—|I|/2
P, = Z 2=l ( 2 H ka(‘li)ku(bi))%(%|k;1(k‘)\1|)1$ksm(y),ﬁ'
IeZ, (faibiPDi<i<irye =1
partition in pairs
of I

By construction, for every A monomial of 131,, s and every k € [1,m(v)],

2degy,, A+ Z dngW A=y (5.1)
1<k’ <m(v)
k' #k
Proposition 5.1. Let v be finite family of positive integers with |v| even. P, g ,—o
is obtained from P, s by replacing each variable Yy with 1 < k < k' < m(v) by

Yk Hk+1<r<k' Yoo1r:

PV,B,n:Z = ﬁu,ﬁ((Ykk’ = Ykk n ?rfl T>1Sk’<k’$7n(u))'
k+1<r<k’

Proof. Let be

~

PL/,B = ﬁl/,ﬁ((Ykk’ = Ykk H ?rfl T)1$k<k’<m(u))'

k+1<r<k’

We want to show the equality ]3% g8 = P, g n—2. Since a direct combinatorial proof would
be a bit lengthy, we proceed differently. Let 5 > 0 and let (A(z) = (A1(x), A2(2)))2>0 be
the 5-Dyson’s Brownian motion (4.1) in the case n = 2. We use its construction through

(4.2). We claim that for z1,z2,..., T € R4,
m(v) R, ~
Pur (A(fﬂk))>ﬁ = P (Y = Gry (@r-1,20)) ) oo )

k=1

Indeed, in the expansion of

(W) + o) + (Wew) - plaw)

only enter the even powers of p(xy), which is how 7, appears. Then one uses that the
square Bessel process (p(x))z>0 is a (8 + 1)/2-permanental field with kernel
(Gr, (2,Y))zyer, - Because of the particular form of Ggr,, we have that for z; < x5 <
o < Ty € Ry,

m(v) R, N -
I Puk()\(xk))>ﬁ , = Prp((Yir = 200)1<kem@v), (Ye-1k = Doshem@))-
k=1 n=

By combining with Corollary 4.11, we get that the following multivariate polynomials in
the variables (Yix)1<k<m(v) are equal for 8 = 0:

~

PV,B((?kflk = 1)2ngm(V)) = PI/,B,TL=2((?]€71]€ = 1)2gkgm(u))~

Since the coefficients of both are polynomials in 3, the equality above holds for gen-
eral 3. To conclude the equality ]31,75 = P, 3n—2, we have to deal with the variables
(\v(k_l k)2<k<m(u)- For this we use that both in case of P, 3 ,—» and in case of }5%5, each
monomial satisfies (4.12). For ]3,,,5 this follows from (5.1). O
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5.2 A construction on discrete electrical networks for n = 2

Let G = (V, E) be an undirected connected graph, with V' finite. We do not allow
multiple edges or self-loops. The edges {z,y} € E are endowed with conductances
C(z,y) = C(y,z) > 0. There is also a non-uniformly zero killing measure (K(z))ey, with
K(z) = 0. We see G as an electrical network. Let Ag denote the discrete Laplacian

(Agf)(x) = Y. Cla,y)(f(y) — f(x)).

y~z

Let (Gg,k (%, y))syev be the massive Green'’s function Gg = (—Ag + K)~!. The (mas-
sive) real scalar Gaussian free field (GFF) is the centered random Gaussian field on V'
with covariance Gg g, or equivalently with density

! 2
((2m)IVI det Gg )2 (_*ZK -3 2 Clz,y)(e(y) — oz )))- (5.2)

zeV {x y}eE

Let X; be the continuous time Markov jump process to nearest neighbors with jump
rates given by the conductances. The process X; is also killed by K. Let ¢ € (0, +o0]
be the first time X; gets killed by K. Let pg x (¢, z,y) be the transition probabilities of
(Xt)ot<c- Then pg i (t,z,y) = pg,k (t,y,z) and

+00

Gorc(z.y) = f po.xc (1,2, y)dL.
0

Let IPtngy be the bridge probability measure from z to y, where one conditions on ¢ < (.
Forz,yeV, let ug be the following measure on paths:

—+00
pEY () = f PL%Y (pg i (1, y)dt.

)

It is the analogue of (2.1). The total mass of yig% is Gg k (v, y), and the image of yg % by

time reversal is H - Similarly, one defines the measure on (rooted) loops by
1 ;
Kok (dy Z 1k (
wEV

where T'(y) denotes the duration of the loop ~. It is the analogue of (2.2). The measure
1°°p has an infinite total mass because it puts an infinite mass on trivial “loops” that stay
in one vertex. For a > 0, one considers Poisson point processes Lg , of intensity ozugf}(.
These are (continuous time) random walk loop soups. For details, see [19, 18, 21, 22].
For a continuous time path - on G of duration 7'(v) and z € V, we denote

T(v)
Lw(’y) = L l,y(s):l.ds.

Further,

L* (L3 k) = ), L*().

'yellng

One has equality in law between (Lf(ﬁéK))gCev and ($¢g,k (z)?)zev, where ¢g  is the
GFF distributed according to (5.2) [21, 22]. This is the analogue of (2.4). For general
a > 0, the occupation field (L*(L§ ))zev is the a-permanental field with kernel Gg
[21, 22, 23]. In this sense it is analogous to squared Bessel processes. If (x(z))zcv € RV
is such that —Ag + K — x is positive definite, then

[on( o)) - (mieedls) e

zeV
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See Corollary 5 in [21] and Corollary 1, Section 4.1 in [22].

Now we proceed with our construction. Fix # > —1. Leta = 1d(8,n =2) = 22 > 1

5
1

Let ¢g x be a GFF distributed according to (5.2), and L’g, % an independent random walk

loop soup. For x € V we set

M@:%mmmwm@jx M@;%%M) Le(£3738),

and A := (A1(z), A2(x))zev - <->gf=2 will denote the expectation with respect to \. As in
Section 4.4, T = (v1,...,7,¢)) will denote a generic family of continuous time paths,
this time on the graph G. For x € V,

J(Y)
= Z Lm(%)v
=1

and L(T) will denote the occupation field of T,  — L*(Y). Given v a finite family of
positive integers with |v| even, and z1, z2,..., Zpu) €V, Ag”i{wl’ 7m0 will denote the
measure on families of |v|/2 paths on G obtained by substituting in the polynomial 131,_, 8
for each variable Yy, 1 < k < k' < m(v), the measure ;"' . The order of the paths
will not matter.

Proposition 5.2. The following holds.

1. Foreveryz eV, )/ Gg k(z,x), Ao (x)/A/Gg K (z,x)) is distributed, up to re-

ordering, accordmg to (3 1) forn = 2.
2. Letx,yeV. Let
_ Go.x(z,2)Gg.k(y,9)
G,k (z,y)?

Then the couple (vV2\(z)/+/Gg .k (z,7),/20\y)/r/Gg.x(y,y)) is distributed like

the 3-Dyson’s Brownian motion (4.1) at points 1 and n, forn = 2.

> 1. (5.4)

3. Let v be finite family of positive integers with |v| even and x4, s, . .. » Tn(v) € V.
Then
m(v) G.K R
< H Doy (A >B L= P, a(Yer = Gg i (T, Ti) )1 <ho<hr <m(v) ) -

4. (BFS-Dynkin’s isomorphism) Moreover, given F' a measurable bounded function on
RY,

<iﬂm@@wFGmQDija=

[P+ L))" g =om). 59

=2

5. For B € {1,2,4}, (A1 (x), A\2(x))sev is distributed like the ordered family of eigen-
values in a GFF with values in 2 x 2 real symmetric (8 = 1), complex Hermitian
(8 = 2), resp. quaternionic Hermitian (/5 = 4) matrices, with density proportional

to
exp (—5 XK@ TM@?) — L Y Cly) (M) - M@)P). (5.6)
eV {z y}eE
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6. Assume that § > 0. Let ¢, and ¢5 be two independent scalar GFFs distributed
according to (5.2). L’S}l be a random walk loop soup independent from (¢1, ¢2),

with still o« = % Then (M (), A2(x))zev is distributed as the ordered family of
eigenvalues in the matrix-valued field

¢1 () L= (LG %)

- , zeV (5.7)
L*(LGx) pa(z)

7. Given another killing measure K e RY, non uniformly zero, and A= (5\1, :\2) the

field obtained by using K instead of K, the density of the law of \ with respect to
that of \ is

(m) = exp ( - % (K () — K(x))pQ()\(x))),

zeV

Proof. (1) This follows from Proposition 3.2 and the fact that ¢g k(2)/7/Gg K (x,x) is
distributed according to N (0,1), and L*(L O‘_f ©)/\/Gg K (x,z) according to Gamma (o —

1
1),
27
(2) One uses the decomposition (4.2) of a 5-Dyson’s Brownian motion for n = 2. In-

deed, (V2¢g,k (z)/\/Ga,k (%, x),v/2ndg i (y)/+/Ga.x (y,y)) and (¢r, (1), ¢r, (1)) are two

Gaussian vectors with the same distribution, with covariance matrix given by

2 2
<2 277)' (5.8)

Moreover, the couple (v2L*(L ai* )/ Ge k(z, ),/ 2nLY (L ai* )/ Gg k(y,y)) is distrib-

uted as (p(1), p(n)), a two- dlmensmnal marginal of a Bessel process of dlmensmn 8+ 1.
The latter can be seen using the moments, that characterize the finite-dimensional
marginals of the Bessel process p. In both cases those are (5 + 1)/2-permanents, with
coefficients given by the matrix (5.8).

(3) This follows by expanding

(\[Gf)g K(Tg) + m)uk + (%QSQ,K(QL‘IC) — A/ L7 (Lg 4 ))Vk (5.9)

for every k € [1,m(v)]. In this decomposition only the integer powers of L** (,Cg % )
survive cancellation. The moments of (¢g, x (2r))1<k<m() give r1se to the Wick part in

/\

P, s (sums over partitions in pairs). The moments of (L** (£g K ))Kkgm(y) give rise to

the permanental part in Pl,, 8-

(4) The GFF ¢g i satisfies the BFS-Dynkin isomorphism; see [3, Theorem 2.2], [8,
Theorems 6.1, 6.2], and [9, Theorem 1]. Moreover, there is a version of BFS-Dynkin
isomorphism for the occupation field L(Eg K% ) obtained by applying Palm’s identity
to Poisson point processes; see [23, Theorem 1.3] and [24, Sections 3.4, 4.3]. More
precisely, for any y1,...,y, €V,

E[ﬁLw(cg@F(L(ﬁZ,éﬂ] -

D (a—%)#cydesm f IE[F(L(E 2)+L(m)+ -+ L(y) ]ﬂuy“””“d%

o permutation
of {1,2,...,7} ViseesVr
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Further, by expanding (5.9) for k € [1,m(v)], we get that [ 7"’ p,, (A(zx)) is actually a
polynomial in the varlables (¢g,K (Tk))1<k<m(v) and (L¥* (Eg & ))1<k<m(v), the non-integer

powers of ka(£g7 K ) cancelling out. Moreover,

1 1 a1l
§p2(>\) = §¢(2;,K + L(Lg )

1
Since the fields ¢g x and L(Eg ) are independent, on gets (5.5) by combining the

BFS-Dynkin isomorphism for ¢g x and the BFS-Dynkin isomorphism for L(Eg}%)

(5) Recall that for all three matrix spaces considered, § + 2 is the dimension. Given
(M(z))zev a matrix field distributed according to (5.6), My(z) will denote the matrix
M(z) — 4 Tr(M(z))I2, where I, is the 2 x 2 identity matrix, so that Tr(My(z)) = 0. Since
the hyperplane of zero trace matrices is orthogonal to I, for the inner product (A, B) —
Re(Tr(AB)), we get that (My(z))zev and (Tr(M(z))).ev are independent. Moreover,
(% Tr(M (x)))zev is distributed as the scalar GFF (5.2). As for (Tr(M(x)?)).ev, on one
hand it is the sum of S + 2 i.i.d. squares of scalar GFFs (5.2) corresponding to the entries
of the matrices. On the other hand,

TH(M (2)%) = Te(Mo(2)?) + 5 Te(M (x)*

o (Tr(Mo(x)?))zev is distributed as the sum of 8 + 1 i.i.d. squares of scalar GFFs

B+1
(5.2). So in particular, this is the same distributions as for (2L"(L;%))sev. Finally, the
eigenvalues of M (z) are

1
V2

(6) The eigenvalues of the matrix (5.7) are

1 Tr(M(x)) +

. Te(My (2)7).

$1(x) + Pa(x

2 +\/L“ (LGR) + (62(z) — ¢1(2))?/4.

(61 + ¢2)/v/2 and (¢ — ¢1)/+/2 are two independent scalar GFFs. Moreover,
a—1 1 2
L(LG ) + 1(@172 —¢1)

l
has same distribution as L(ﬁg %)
(7) The density of the GFF % 7% With respect to ¢g k is

(W) Texp (1 D (K@) - K@)ele)).

1
The density of L(/j % ) with respect to L(Lg ) is

7

(d“‘A‘”K)> exp (= X (K@) - K@)IF(£58)),

det(—Ag + K) =
as can be seen from the Laplace transform (5.3). O
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5.3 Further questions

Here we present our questions that motivated this paper. The first question is
combinatorial. We would like to have the polynomials P, g, given by Definition 4.7
under a more explicit form. The recurrence on polynomials (4.8) is closely related to
the Schwinger-Dyson equation (3.3). Its very form suggests that the polynomials P, g
might be expressible as weighted sums over maps drawn on 2D compact surfaces (not
necessarily connected), where the maps associated to v have m(v) vertices with degrees
given by v1,vs, ..., V), With powers of n corresponding to the number of faces. This
is indeed the case for 8 € {1, 2,4}, and this corresponds to the topological expansion of
matrix integrals [2, 14, 28, 25].

Question 5.3. Is there a more explicit expression for the polynomials P, g ,,? Can they
be expressed as weighted sums over the maps on 2D surfaces (topological expansion)?

The second question is whether there is a natural generalization of Gaussian beta

ensembles and $-Dyson’s Brownian motion to electrical networks. For n = 2, such a
generalization was given in Section 5.2.
Question 5.4. We are in the setting of an electrical network G = (V, E) endowed with a
killing measure K, as in Section 5.2. Given n > 3 and > —%, is there a distribution
on the fields (M(z) = (A (2), A2(2), ..., \u(2)))zev, With Aj(x) > Aa(z) > -+ > A\y(2),
satisfying the following properties?

1. For g € {1,2,4}, A is distributed as the fields of ordered eigenvalues in a GFF with
values into n x n matrices, real symmetric (5 = 1), complex Hermitian (8 = 2),
resp. quaternionic Hermitian (8 = 4).

2. For 8 =0, )\ is obtained by reordering n i.i.d. scalar GFFs (5.2).

3. As 3 — —%, A converges in law to

1 1 1
<%¢9,K7 %¢Q7K7 SRR %(bg,K),
where ¢g g is a scalar GFF (5.2).

4. For every x € V, A(x)/+/Gg i (z, ) is distributed, up to reordering, as the GSE
(3.1).

5. For every x,y € V, the couple (v2\(z)/r/Gg.x (z,2),v/20\(y)/r/Gg .k (y,y)), with n

given by (5.4), is distributed as the g-Dyson’s Brownian motion (4.1) at points 1

and 7.
6. The fields p;(\) and A — Lp;(\) are independent.
7. The field ﬁpl()\) is distributed as a scalar GFF (5.2).

8. The field 1(p2(\) — Lpi(A)?) is the a — }-permanental field with kernel Gg ,
where o = %d(ﬁ, n), and in particular is distributed as the occupation field of the
. . a—1
continuous-time random walk loop soup EgA, P
9. The field 3p,()) is the a-permanental field with kernel Gg i, where o = 3d(8,n),
and in particular is distributed as the occupation field of the continuous-time
random walk loop soup Eg’K (already implied by (6)+(7)+(8)).
10. The symmetric moments
G,K

m(v)
(T paie),,

are linear combination of products

[ Goxl@r )™,

1<k<k’'<m(v)
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with agr € IN and for every k € [1, m(v)],

2akk + Z Qg = Uk,
1<k '<m(v)
k' #k
the coefficients of the linear combination being universal polynomials in 5 and n,
not depending on the electrical network and its parameters; see also Question 5.3.

11. Given K € IRX, non-uniformly zero, and \ = (5\1, Aoy, An) the field associated to

the killing measure K instead of K, the law of \ has the following density with
respect to that of A:

ot(— R\ 246 .
(W) exp ( - ;;V(K("”) - K@) (\@))).

12. ) satisfies a BFS-Dynkin type isomorphism with continuous time random walks
(already implied by (10)+(11)).

If the graph G is a tree, the natural generalization A of the -Dyson’s Brownian motion
is straightforward to construct, at least for 5 > 0. In absence of cycles, \ satisfies a
Markov property, and along each branch of the tree one has the values of a 5-Dyson’s
Brownian motion at different positions. On the random walk loop soup side, (8) and (9)
is ensured by the covariance of the loop soups under the rewiring of graphs; see [22,
Chapter 7]. Constructing A on a tree for 8 € ( — 2,0) is a matter of constructing the
corresponding 3-Dyson’s Brownian motion. However, if the graph G contains cycles,
constructing ) is not immediate, and we have not encountered such a construction in
the literature. One does not expect a Markov property, since already for 3 € {1,2,4} one
has to take into account the angular part of the matrices.

Appendix: A list of moments for GSE and the corresponding formal
polynomials

PrNDen =

Puy = nY11 Y1z,
P2(N)pn = §n2 +(1- g)n = d(B,n),
Poy = (5712 + (1 — g)n)Yn =d(B,n)Y11,

<p1(>‘)4>[3,n = 3712,

Paiaay = n°Y11Y12Y33Y5 4+ 2n°Y11 Y12 Y22 Y35 Y54,

PoNP1 (N g = §n3+(1—§) 24 om,

P, = (2 (1= BYn2) Yy YoV + 202,92,

(2,1,1) = 5” + -5 n 11Y22Y23 +2nY7; Y15 Y23,
P, = (B s (1= BY ez 4 2n)Vi VaaYaeY

L2y = \h + ) +2n|Y11Y12Y22Y23,

P, = (B (1= B)n2) ViV ia s + 20V 11 VaaYas V2

112 = \Fh + T ) )t 33 T 2nY11Y12Y22Y 53,
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Ppa(N)pn = %Qn“ + 2§ (1 — g)nS
#((1-5) w2t e2(1= )
= d(B,n)(d(B,n) +2),

Poa = (B: +2§(1

GO (s = 3507 +3(1- D),
Py = (gn +3(1

Pus = (gn +3(1-

Pa\)pm 542 w50 (1= D) (Zs(1-9)

2 2 2 2
2
Ro = e g (G-
(ps(N)Dgm = 12%71 +27ﬁ( g) <3§+15(1—§)2)n,
Pasy = 9(Znt w22 (1= D)+ (1= 2) ') V2 VoV
(g (G2
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