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Abstract

We show that the Brydges-Fröhlich-Spencer-Dynkin and the Le Jan’s isomorphisms
between the Gaussian free fields and the occupation times of symmetric Markov
processes generalize to the β-Dyson’s Brownian motion. For β P t1, 2, 4u this is a
consequence of the Gaussian case, however the relation holds for general β. We further
raise the question whether there is an analogue of β-Dyson’s Brownian motion on
general electrical networks, interpolating and extrapolating the fields of eigenvalues
in matrix-valued Gaussian free fields. In the case n “ 2 we give a simple construction.
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1 Introduction

There is a class of results, known as isomorphism theorems, relating the squares of
Gaussian free fields (GFFs) to occupation times of symmetric Markov processes. They
originate from the works in mathematical physics [34, 3]. For a review, see [26, 31]. Here
in particular we will be interested in the Brydges-Fröhlich-Spencer-Dynkin isomorphism
[3, 8, 9] and in the Le Jan’s isomorphism [21, 22]. The BFS-Dynkin isomorphism involves
Markovian paths with fixed ends. Le Jan’s isomorphism involves a Poisson point process
of Markovian loops, with an intensity parameter α “ 1{2 in the case of real scalar
GFFs. For vector-valued GFFs with d components, the intensity parameter is α “ d{2.
We show that both Le Jan’s and BFS-Dynkin isomorphisms have a generalization to
β-Dyson’s Brownian motion, and provide identities relating the latter to local times of
one-dimensional Brownian motions. By doing so, we go beyond the Gaussian setting.
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Isomorphisms of β-Dyson’s Brownian motion with Brownian local time

For β P t1, 2, 4u, a β-Dyson’s Brownian motion is the diffusion of eigenvalues in a
Brownian motion on the space of real symmetric pβ “ 1q, complex Hermitian pβ “ 2q,
respectively quaternionic Hermitian pβ “ 4q matrices. Yet, the β-Dyson’s Brownian
motion is defined for every β ě 0. The one-dimensional marginals of β-Dyson’s Brownian
motion are Gaussian beta ensembles GβE. The generalization of Le Jan’s and BFS-Dynkin
isomorphisms works for every β ě 0, and for β P t1, 2, 4u it follows from the Gaussian
case. The intensity parameter α appearing in the Le Jan’s type isomorphism is given by

2α “ dpβ, nq “ n` npn´ 1q
β

2
,

where n is the number of “eigenvalues”. In particular, α takes not only half-integer
values, as in the Gaussian case, but a whole half-line of values. The BFS-Dynkin type
isomorphism involves polynomials defined by a recurrence with a structure similar to that
of the Schwinger-Dyson equation for GβE. These polynomials also give the symmetric
moments of the β-Dyson’s Brownian motion.

We further ask the question whether an analogue of GβE and β-Dyson’s Brownian mo-
tion could exist on electrical networks and interpolate and extrapolate the distributions
of the eigenvalues in matrix-valued GFFs. Our motivation for this is that such analogues
could be related to Poisson point process of random walk loops, in particular to those of
non half-integer intensity parameter. If the underlying graph is a tree, the construction
of such analogues is straightforward, by taking β-Dyson’s Brownian motions along each
branch of the tree. However, if the graph contains cycles, this is not immediate, and one
does not expect a Markov property for the obtained fields. However, in the simplest case
n “ 2, we provide a construction working on any graph.

Our article is organized as follows. In Section 2 we recall the BFS-Dynkin and the
Le Jan’s isomorphisms in the particular case of 1D Brownian motion. In Section 3 we
recall the definition of Gaussian beta ensembles and the corresponding Schwinger-
Dyson equation. Section 4 deals with β-Dyson’s Brownian motion and the corresponding
isomorphisms. Section 5 deals with general electrical networks. We give our construction
for n “ 2 and ask our questions for n ě 3.

2 Isomorphism theorems for 1D Brownian motion

Let pBtqtě0 be the standard Brownian motion on R. Lx will denote the Brownian local
times:

LxppBsq0ďsďtq “ lim
εÑ0

1

2ε

ż t

0

1|Bs´x|ăεds.

We will denote by ppt, x, yq the heat kernel on R, and by pR`pt, x, yq the heat kernel on
R` with condition 0 in 0:

ppt, x, yq “
1

?
2πt

e´
py´xq2

2t , pR`pt, x, yq “ ppt, x, yq ´ ppt, x,´yq.

We will denote by Pt,x,yp¨q the Brownian bridge probability from x to y in time t, and by
P
t,x,y
R`

p¨q (for x, y ą 0) the probability measures where one conditions Pt,x,yp¨q on that the

bridge does not hit 0. Let pGR`px, yqqx,yě0 be the Green’s function of 1
2
d2

dx2 on R` with 0

condition in 0, and for K ą 0, pGKpx, yqqx,yě0 the Green’s function of 1
2
d2

dx2 ´K on R:

GR`px, yq “ 2x^ y “

ż `8

0

pR`pt, x, yqdt,

GKpx, yq “
1

?
2K

e´
?

2K|y´x| “

ż `8

0

ppt, x, yqe´Ktdt.
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Isomorphisms of β-Dyson’s Brownian motion with Brownian local time

Let pµx,yR`qx,yą0, resp. pµx,yK qx,yPR be the following measures on finite-duration paths:

µx,yR`p¨q :“

ż `8

0

P
t,x,y
R`

p¨qpR`pt, x, yqdt, µx,yK p¨q :“

ż `8

0

Pt,x,yp¨qppt, x, yqe´Ktdt. (2.1)

The total mass of µx,yR` , resp. µx,yK , is GR`px, yq, resp. GKpx, yq. The image of µx,yR` , resp.

µx,yK , by time reversal is µy,xR` , resp. µy,xK .
Let Tx denote the first hitting time of a level x by the Brownian motion pBtqtě0. We

will denote by γ a generic path on R. Let pµ̌x,yp¨qqxăyPR, resp. pµ̌x,yK p¨qqxăyPR be the
following measures on paths from x to y:

µ̌x,ypF pγqq “ EB0“yrF ppBTx´tq0ďtďTxqs, µ̌x,yK pF pγqq “ EB0“y

“

e´KTxF ppBTx´tq0ďtďTxq
‰

.

The measure µ̌x,y has total mass 1 (probability measure), whereas the total mass of µ̌x,yK
is

EB0“y

“

e´KTx
‰

“ e´
?

2K|y´x| “
GKpx, yq

GKpx, xq
.

For 0 ă x ď y ă z, the measure µx,zR` can be obtained as the image of the product

measure µx,yR` b µ̌
y,z under the concatenation of two paths. Similarly, for x ď y ă z P R,

the measure µx,zK is the image of µx,yK b µ̌y,zK under the concatenation of two paths.
Let pW pxqqxPR denote a two-sided Brownian motion, i.e. pW pxqqxě0 and pW p´xqqxě0

being two independent standard Brownian motions starting from 0 (W p0q “ 0). Note that
here x is rather a one-dimensional space variable then a time variable. The derivative
dW pxq is a white noise on R. Let pφR`pxqqxě0 denote the process p

?
2W pxqqxě0. The

covariance function of φR` is GR` . Let pφKpxqqxPR be the stationary Ornstein–Uhlenbeck
process with invariant measure N p0, 1{

?
2Kq. It is a solution to the SDE

dφKpxq “
?

2dW pxq ´
?

2KφKpxqdx.

The covariance function of φK is GK .
What follows is the BFS-Dynkin isomorphism (Theorem 2.2 in [3], Theorems 6.1 and

6.2 in [8], Theorem 1 in [9]) in the particular case of a 1D Brownian motion. In general,
the BFS-Dynkin isomorphism relates the squares of Gaussian free fields to local times of
symmetric Markov processes.

Theorem 2.1 (Brydges-Fröhlich-Spencer [3], Dynkin [8, 9]). Let F be a bounded measur-
able functional on CpR`q, resp. on CpRq. Let k ě 1 and x1, x2, . . . , x2k in p0,`8q, resp. in
R. Then

E
”

2k
ź

i“1

φR`pxiqF pφ
2
R`
{2q

ı

“

ÿ

ptai,biuq1ďiďk
partition in pairs
of t1,2,...,2ku

ż

γ1,...,γk

E
”

F pφ2
R`
{2` Lpγ1q ` ¨ ¨ ¨ ` Lpγkqq

ı

k
ź

i“1

µ
xai ,xbi
R`

pdγiq,

resp.

E
”

2k
ź

i“1

φKpxiqF pφ
2
K{2q

ı

“

ÿ

ptai,biuq1ďiďk
partition in pairs
of t1,2,...,2ku

ż

γ1,...,γk

E
”

F pφ2
K{2` Lpγ1q ` ¨ ¨ ¨ ` Lpγkqq

ı

k
ź

i“1

µ
xai ,xbi
K pdγiq,
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Isomorphisms of β-Dyson’s Brownian motion with Brownian local time

where the sum runs over the p2kq!{p2kk!q partitions in pairs, the γi-s are Brownian paths
and the Lpγiq-s are the corresponding occupation fields x ÞÑ Lxpγiq.

Remark 2.2. Since for x ă y, the measure µx,yR` , resp. µx,yK , can be decomposed as

µx,xR` b µ̌
x,y, resp. µx,xK b µ̌x,yK , Theorem 2.1 can be rewritten using only the measures of

type µx,xR` and µ̌x,y, resp. µx,xK and µ̌x,yK .

To a wide class of symmetric Markov processes one can associate in a natural way
an infinite, σ-finite measure on loops [20, 19, 18, 21, 22, 23, 12]. It originated from the
works in mathematical physics [32, 33, 34, 3]. Here we recall it in the setting of a 1D
Brownian motion, which has been studied in [24]. The range of a loop will be just a
segment on the line, but it will carry a non-trivial Brownian local time process which will
be of interest for us.

Given a Brownian loop γ, T pγq will denote its duration. The measures on (rooted)
loops are

µloop
R`
pdγq :“

1

T pγq

ż

R`

µx,xR`pdγqdx, µloop
K pdγq “

1

T pγq

ż

R

µx,xK pdγqdx. (2.2)

Usually one considers unrooted loops, but this will not be important here. The 1D
Brownian loop soups are the Poisson point processes, denoted LαR` , resp. LαK , of

intensity αµloop
R`

, resp. αµloop
K , where α ą 0 is an intensity parameter. LpLαR`q, resp.

LpLαKq, will denote the occupation field of LαR` , resp. LαK :

LxpLαR`q :“
ÿ

γPLα
R`

Lxpγq, LxpLαKq :“
ÿ

γPLαK

Lxpγq.

The following statement deals with the law of LpLαR`q, resp. LpLαKq. See Proposition
4.6, Property 4.11 and Corollary 5.5 in [24]. For the analogous statements in discrete
space setting, see Corollary 5, Proposition 6, Theorem 13 in [21] and Corollary 1, Section
4.1, Proposition 16, Section 4.2, Theorem 2, Section 5.1 in [22]. In general, one gets α-
permanental fields (see also [23, 12]). For α “ 1

2 in particular, one gets square Gaussians.
We recall that given a matrix M “ pMijq1ďi,jďk, its α-permanent is

PermαpMq :“
ÿ

σ permutation
of t1,2,...,ku

α# cycles of σ
k
ź

i“1

Miσpiq. (2.3)

Theorem 2.3 (Le Jan [21, 22], Lupu [24]). For every α ą 0 and x P R`, resp. x P R,
the r.v. LxpLαR`q, resp. LxpLαKq, follows the distribution Gammapα,GR`px, xq

´1q, resp.

Gammapα,GKpx, xq
´1q. Moreover, the process α ÞÑ LxpLαR`q, resp. LxpLαKq, is a pure

jump Gamma subordinator with Lévy measure

1lą0
e´l{GR` px,xq

l
dl, resp. 1lą0

e´l{GKpx,xq

l
dl.

Let x1, x2, . . . , xk P R`, resp. R. Then

E
”

k
ź

i“1

LxipLαR`q
ı

“ Permα

`

GR`pxi, xjq1ďi,jďk
˘

,

E
”

k
ź

i“1

LxipLαKq
ı

“ Permα

`

GKpxi, xjq1ďi,jďk
˘

.

For x ě 0, x ÞÑ LxpLαR`q is a solution to the SDE

dLxpLαR`q “ 2
`

LxpLαR`q
˘

1
2 dW pxq ` 2αdx,
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Isomorphisms of β-Dyson’s Brownian motion with Brownian local time

with initial condition L0pLαR`q “ 0. That is to say it is a square Bessel process of
dimension 2α, reflected at level 0 for α ă 1. For x P R, x ÞÑ LxpLαKq is a stationary
solution to the SDE

dLxpLαKq “ 2
`

LxpLαKq
˘

1
2 dW pxq ´ 2

?
2KLxpLαKq ` 2αdx.

In particular, for α “ 1
2 , one has the following identities in law between stochastic

processes:

LpLαR`q
p law q
“

1

2
φ2
R`
, LpLαKq

p law q
“

1

2
φ2
K . (2.4)

3 Gaussian beta ensembles

For references on Gaussian beta ensembles, see [7, 13], [11, Section 1.2.2], and [1,
Section 4.5]. Fix n ě 2. For λ “ pλ1, λ2, . . . , λnq P R

n, Dpλq will denote the Vandermonde
determinant

Dpλq :“
ź

1ďjăj1ďn

pλj1 ´ λjq.

For q ě 1, pqpλq will denote the q-th power sum polynomial

pqpλq :“
n
ÿ

j“1

λqj .

By convention,
p0pλq “ n.

A Gaussian beta ensemble GβE, with β ą ´ 2
n , follows the distribution

1

Zβ,n
|Dpλq|βe´

1
2p2pλq

n
ź

j“1

dλj , (3.1)

where Zβ,n is given by ([27, Formula (17.6.7)] and [11, Formula (1.2.23)])

Zβ,n “ p2πq
n
2

n
ź

j“1

Γ
`

1` j β2
˘

Γ
`

1` β
2

˘ .

The brackets x¨yβ,n will denote the expectation with respect to (3.1). For β “ 0 one gets n
i.i.d. N p0, 1q Gaussians. For β equal to 1, 2, resp. 4, one gets the eigenvalue distribution
of GOE, GUE, resp. GSE random matrices [27, 11]. Usually the GβE are studied for
β ą 0 [7], but the distribution (3.1) is well defined for all β ą ´ 2

n . For β P p´ 2
n , 0q there is

an attraction between the λj -s instead of a repulsion as for β ą 0. Moreover, as β Ñ ´ 2
n ,

λ under (3.1) converges in law to
´ 1
?
n
ξ,

1
?
n
ξ, . . . ,

1
?
n
ξ
¯

, (3.2)

where ξ follows N p0, 1q.
Let dpβ, nq denote

dpβ, nq “ n` npn´ 1q
β

2
.

One can see dpβ, nq as a kind of pseudo-dimension. For β P t1, 2, 4u, dpβ, nq is the
dimension of the corresponding space of matrices.

Let ν “ pν1, ν2, . . . , νmq, where m ě 1, and for all k P t1, 2, . . . ,mu, νk P Nzt0u. We will
denote

mpνq “ m, |ν| “

mpνq
ÿ

k“1

νk.
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Let pνpλq denote

pνpλq :“

mpνq
ź

k“1

pνkpλq.

By convention, we set pHpλq “ 1 and |H| “ 0. Note that pHpλq ‰ p0pλq. We are interested
in the expression of the moments xpνpλqyβ,n. These are 0 if |ν| is not even. For |ν| even,
these moments are given by a recurrence known as loop equation or Schwinger-Dyson
equation ([15, Lemma 4.13], [16, slide 3{15] and [11, Section 4.1.1]). See the Appendix
for the expressions of some moments.

Proposition 3.1 (Schwinger-Dyson equation [15, 16, 11]). For every β ą ´2{n and every
ν as above with |ν| even,

xpνpλqyβ,n “
β

2

νmpνq´1
ÿ

i“1

xppνrqr‰mpνqpλqpi´1pλqpνmpνq´1´ipλqyβ,n (3.3)

`

´

1´
β

2

¯

pνmpνq ´ 1qxppνrqr‰mpνqpλqpνmpνq´2pλqyβ,n

`

mpνq´1
ÿ

k“1

νkxppνrqr‰k,mpνqpλqpνk`νmpνq´2pλqyβ,n,

where p0pλq “ n. In particular, for q even,

xpqpλqyβ,n “
β

2

q´1
ÿ

i“1

xpi´1pλqpq´1´ipλqyβ,n `
´

1´
β

2

¯

pq ´ 1qxpq´2pλqyβ,n,

and for ν with νmpνq “ 1,

xpνpλqyβ,n “

mpνq´1
ÿ

k“1

νkxppνrqr‰k,mpνqpλqpνk´1pλqyβ,n.

The recurrence (3.3) and the initial condition p0pλq “ n determine all the moments
xpνpλqyβ,n.

Proof. Note that (3.3) determines the moments xpνpλqyβ,n because on the left-hand side
one has a degree |ν|, and on the right-hand side all the terms have a degree |ν| ´ 2. It
is enough to check (3.3) for β ą 0, since both sides are analytic in β. For β ą 0, we
outline the proof appearing in [15, Lemma 4.13] and [11, Section 4.1.1], so as to be self-
contained. Let us denote here ν̃ :“ pν1, ν2, . . . , νmpνq´1q, so that pνpλq “ pνmpνqpλqpν̃pλq.
We have that

B

Bλ1

´

λ
νmpνq´1
1 pν̃pλq|Dpλq|

βe´
1
2p2pλq

¯

“

´ λ
νmpνq
1 pν̃pλq|Dpλq|

βe´
1
2p2pλq

` β
n
ÿ

j“2

λ
νmpνq´1
1

λ1 ´ λj
pν̃pλq|Dpλq|

βe´
1
2p2pλq

` pνmpνq ´ 1qλ
νmpνq´2
1 pν̃pλq|Dpλq|

βe´
1
2p2pλq

`

mpνq´1
ÿ

k“1

νkλ
νk`νmpνq´2
1 ppνrqr‰k,mpνqpλq|Dpλq|

βe´
1
2p2pλq.

Since
ż

R

B

Bλ1

´

λ
νmpνq´1
1 pν̃pλq|Dpλq|

βe´
1
2p2pλq

¯

dλ1 “ 0,
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we get that

xλ
νmpνq
1 pν̃pλqyβ,n “ β

n
ÿ

j“2

B

λ
νmpνq´1
1

λ1 ´ λj
pν̃pλq

F

β,n

` pνmpνq ´ 1qxλ
νmpνq´2
1 pν̃pλqyβ,n

`

mpνq´1
ÿ

k“1

νkxλ
νk`νmpνq´2
1 ppνrqr‰k,mpνqpλqyβ,n.

Analogous relations hold for all other indices j1 P t2, . . . , nu. By summing over j1 P
t1, 2, . . . , nu, we get

xpνpλqyβ,n “

β
ÿ

1ďjăj1ďn

B

λ
νmpνq´1

j ´ λ
νmpνq´1

j1

λj ´ λj1
pν̃pλq

F

β,n

` pνmpνq ´ 1qxpνmpνq´2pλqpν̃pλqyβ,n

`

mpνq´1
ÿ

k“1

νkxpνk`νmpνq´2pλqppνrqr‰k,mpνqpλqyβ,n.

Furthermore,

ÿ

1ďjăj1ďn

λ
νmpνq´1

j ´ λ
νmpνq´1

j1

λj ´ λj1
“ ´

1

2
pνmpνq ´ 1qpνmpνq´2pλq `

1

2

νmpνq´1
ÿ

i“1

pi´1pλqpνmpνq´1´ipλq.

So we get (3.3).

Next are some elementary properties of GβE, which follow from the form of the
density (3.1).

Proposition 3.2. The following holds.

1. For every β ą ´2{n, 1?
n
p1pλq under GβE has for distribution N p0, 1q.

2. For every β ą ´2{n, p2pλq{2 under GβE has for distribution Gammapdpβ, nq{2, 1q.

3. p1pλq and λ´ 1
np1pλq under GβE are independent.

4. 1
2

`

p2pλq´
1
np1pλq

2
˘

“ 1
2p2

`

λ´ 1
np1pλq

˘

under GβE follows a Gammappdpβ, nq´1q{2, 1q

distribution.

Proof. One can factorize the density (3.1) as

1

Zβ,n

ˇ

ˇ

ˇ
D
´

λ´
1

n
p1pλq

¯
ˇ

ˇ

ˇ

β

e´
1
2p2

`

λ´ 1
np1pλq

˘ n´1
ź

j“1

d
´

λj ´
1

n
p1pλq

¯

ˆ e´
1
2np1pλq

2

dp1pλq,

where

D
´

λ´
1

n
p1pλq

¯

“
ź

1ďjăj1ďn

´´

λj1 ´
1

n
p1pλq

¯

´

´

λj ´
1

n
p1pλq

¯¯

“ Dpλq.

This immediately implies (3) and (1). The property (2) is implied by (4), (3) and (1). The
property (4) can be obtained by computing a Laplace transform. Fix K ą 0. We have that

@

e´
1
2Kp2

`

λ´ 1
np1pλq

˘

D

β,n
“

1

Zβ,n

ż

Rn
|Dpλq|βe´

1
2 pK`1qp2

`

λ´ 1
np1pλq

˘

´ 1
2np1pλq

2
n
ź

j“1

dλj .
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Isomorphisms of β-Dyson’s Brownian motion with Brownian local time

By performing the change of variables λ̃ “ pK ` 1q
1
2λ, we get that the expression above

equals

pK ` 1q´
n
2

Zβ,n

ż

Rn
|DppK ` 1q´

1
2 λ̃q|βe´

1
2p2

`

λ̃´ 1
np1pλ̃q

˘

´ 1
2npK`1qp1pλ̃q

2
n
ź

j“1

dλ̃j

“
pK ` 1q´

1
2dpβ,nq

Zβ,n

ż

Rn
|Dpλ̃q|βe´

1
2p2pλ̃q`

K
2npK`1qp1pλ̃q

2
n
ź

j“1

dλ̃j .

Thus,

@

e´
1
2Kp2

`

λ´ 1
np1pλq

˘

D

β,n
“ pK ` 1q´

1
2dpβ,nq

@

e
K

2npK`1qp1pλq
2D

β,n
“ pK ` 1q´

1
2 pdpβ,nq´1q.

So we get the Laplace transform of a Gammappdpβ, nq ´ 1q{2, 1q r.v.

Next is an embryonic version of the BFS-Dynkin isomorphism (Theorem (2.1)) for the
GβE. One should imagine that the state space is reduced to one vertex, and a particle on
it gets killed at an exponential time.

Proposition 3.3. Let β ą ´2{n. The following holds.

1. Let a ě 0. Let h : Rn Ñ R be a measurable function such that x|hpλq|yβ,n ă `8.
Assume that h is a-homogeneous, that is to say hpsλq “ sahpλq for every s ą 0. Let
F : r0,`8q Ñ R be a bounded measurable function. Let θ be a r.v. with distribution
Gammappdpβ, nq ` aq{2, 1q. Then

xhpλqF pp2pλq{2qyβ,n “ xhpλqyβ,nErF pθqs. (3.4)

2. In particular, let ν be a finite family of positive integers such that |ν| is even. Let
T1, . . . , T|ν|{2 be an i.i.d. family of exponential times of mean 1, independent of the
GβE. Then

xpνpλqF pp2pλq{2qyβ,n “ xpνyβ,nE
“

xF pp2pλq{2` T1 ` ¨ ¨ ¨ ` T|ν|{2qyβ,n
‰

.

Proof. (1) clearly implies (2). It is enough to check (3.4) for F of form F ptq “ e´Kt, with
K ą 0. Then

xhpλqe´
1
2Kp2pλqyβ,n “

1

Zβ,n

ż

Rn
hpλq|Dpλq|βe´

1
2 pK`1qp2pλq

n
ź

j“1

dλj

“
pK ` 1q´

n
2

Zβ,n

ż

Rn
hppK ` 1q´

1
2 λ̃q|DppK ` 1q´

1
2 λ̃q|βe´

1
2p2pλ̃q

n
ź

j“1

dλ̃j

“ pK ` 1q´
1
2

`

n`npn´1q β2`a
˘

xhpλ̃qyβ,n,

where on the second line we used the change of variables λ̃ “ pK ` 1q
1
2λ, and on the

third line the homogeneity. Further,

pK ` 1q´
1
2

`

n`npn´1q β2`a
˘

“ Ere´Kθs.

4 Isomorphisms for β-Dyson’s Brownian motion

4.1 β-Dyson’s Brownian motions and the occupation fields of 1D Brownian loop
soups

For references on β-Dyson’s Brownian motion, see [10, 6, 30, 4, 5], [27, Chapter 9]
and [1, Section 4.3]. Let β ě 0 and n ě 2. The β-Dyson’s Brownian motion is the process
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Isomorphisms of β-Dyson’s Brownian motion with Brownian local time

pλpxq “ pλ1pxq, . . . , λnpxqqqxě0 with λ1pxq ě ¨ ¨ ¨ ě λnpxq, satisfying the SDE

dλjpxq “
?

2dWjpxq ` β
ÿ

j1‰j

dx

λjpxq ´ λj1pxq
, (4.1)

with initial condition λp0q “ 0. The derivatives pdWjpxqq1ďjďn are independent white
noises. Since we will be interested in isomorphisms with Brownian local times, the
variable x corresponds here to a one-dimensional spatial variable rather than a time
variable. For every x ą 0, λpxq{

a

GR`px, xq “ λpxq{
?

2x, is distributed, up to a reordering
of the λjpxq-s, as a GβE (3.1). For β equal to 1, 2 resp. 4, pλpxqqxě0 is the diffusion of
eigenvalues in a Brownian motion on the space of real symmetric, complex Hermitian,
resp. quaternionic Hermitian matrices. For β ě 1, there is no collision between the
λjpxq-s, and for β P r0, 1q two consecutive λjpxq-s can collide, but there is no collision
of three or more particles [5]. Note that for β ą 0 and j P J2, nK, pλjpxq ´ λj´1pxqq{2

behaves near level 0 like a Bessel process of dimension β ` 1 reflected at level 0, and
since β ` 1 ą 1, the complication with the principal value and the local time at zero does
not occur; see [35, Chapter 10]. In particular, each pλjpxqqxě0 is a semimartingale. For
β “ 0, pλpxq{

?
2qxě0 is just a reordered family of n i.i.d. standard Brownian motions.

Remark 4.1. We restrict to β ě 0 because the case β ă 0 has not been considered in
the literature. The problem is the extension of the process after a collision of λjpxq-s.

The collision of three or more particles, including all the n together for β ă ´ 2pn´3q
npn´1q , is

no longer excluded. However, we believe that the β-Dyson’s Brownian motion can be
defined for all β ą ´ 2

n . This is indeed the case if n “ 2. One can use the reflected Bessel
processes for that. Let pρpxqqxě0 be the Bessel process of dimension β ` 1, reflected at
level 0, satisfying away from 0 the SDE

dρpxq “ dW pxq `
β

2ρpxq
dx,

with ρp0q “ 0. The reflected version is precisely defined for β ą ´1 “ ´2
2 ; see [29,

Section XI.1] and [17, Section 3]. Let pĂW pxqqxě0 be a standard Brownian motion starting
from 0, independent from pW pxqqxě0 Then, for n “ 2, one can construct the β-Dyson’s
Brownian motion as

λ1pxq “ ĂW pxq ` ρpxq, λ2pxq “ ĂW pxq ´ ρpxq. (4.2)

Next are some simple properties of the β-Dyson’s Brownian motion.

Proposition 4.2. The following holds.

1. The process
`

1?
n
p1pλpxqq

˘

xě0
has the same law as φR` .

2. The process p 1
2p2pλpxqqqxě0 is a square Bessel process of dimension dpβ, nq starting

from 0.
3. The processes pp1pλpxqqqxě0 and

`

λpxq ´ 1
np1pλpxqq

˘

xě0
are independent.

4. The process
`

1
2

`

p2pλpxqq ´
1
np1pλpxqq

2
˘˘

xě0
is a square Bessel process of dimension

dpβ, nq ´ 1 starting from 0.

Proof. With Itô’s formula, we get

dp1pλpxqq “
?

2
n
ÿ

j“1

dWjpxq,

d
1

2
p2pλpxqq “ 2

n
ÿ

j“1

λjpxq
?

2
dWjpxq ` dpβ, nqdx,

d
1

2

´

p2pλpxqq ´
1

n
p1pλpxqq

2
¯

“ 2
n
ÿ

j“1

λjpxq ´
1
np1pλpxqq
?

2
dWjpxq ` pdpβ, nq ´ 1qdx, (4.3)
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Isomorphisms of β-Dyson’s Brownian motion with Brownian local time

where the points x P R` for which λjpxq “ λj´1pxq for some j P J2, nK can be neglected.
This gives (1), (2) and (4) since the processes

dĂW pxq “
n
ÿ

j“1

λjpxq
a

p2pλpxqq
dWjpxq, ĂW p0q “ 0,

and

d|W pxq “
n
ÿ

j“1

λjpxq ´
1
np1pλpxqq

b

p2pλpxqq ´
1
np1pλpxqq2

dWjpxq, |W p0q “ 0,

are both standard Brownian motions. Again, one can neglect the points x P R` where
p2pλpxqq ´

1
np1pλpxqq

2 “ 0, which only occur for n “ 2.
For (3), we have that

d
´

λjpxq ´
1

n
p1pλpxqq

¯

“
?

2d
´

Wjpxq ´
1

n
p1pW pxqq

¯

` β
ÿ

j1‰j

dx
`

λjpxq ´
1

n
p1pλpxqq

˘

´
`

λj1pxq ´
1

n
p1pλpxqq

˘

,

where

p1pW pxqq “
n
ÿ

j1“1

Wj1pxq.

The Brownian motion p1pW q “
1?
2
p1pλq is independent from the family of Brownian

motions
`

Wj ´
1
np1pW q

˘

1ďjďn
. Further, the measurability of

`

λj ´
1
np1pλq

˘

1ďjďn
with

respect to
`

Wj ´
1
np1pW q

˘

1ďjďn
follows from the pathwise uniqueness of the solution to

(4.1); see [4, Theorem 3.1].

By combining Proposition 4.2 with Theorem 2.3, we get a first relation between the
β-Dyson’s Brownian motion and 1D Brownian local times. Compare it with Le Jan’s
isomorphism (2.4).

Corollary 4.3. The process
`

1
2p2pλpxqq

˘

xě0
is distributed as the occupation field

pLxpLαR`qqxě0 of a 1D Brownian loop soup LαR` , with the correspondence

2α “ dpβ, nq “ n` npn´ 1q
β

2
. (4.4)

Further, let Lα´
1
2

R`
and rL

1
2

R`
be two independent 1D Brownian loop soups, α still given by

(4.4). Then, one has the following identity in law between pairs of processes:

´1

2

´

p2pλpxqq ´
1

n
p1pλpxqq

2
¯

,
1

2n
p1pλpxqq

2
¯

xě0

(law)
“ pLxpLα´

1
2

R`
q, Lxp rL

1
2

R`
qqxě0.

4.2 Symmetric moments of β-Dyson’s Brownian motion

We will denote by x¨y
R`
β,n the expectation with respect to the β-Dyson’s Brownian

motion (4.1). This section will be devoted to deriving a recursive way to express the
symmetric moments

A

mpνq
ź

k“1

pνkpλpxkqq
ER`

β,n
(4.5)

for ν be a finite family of positive integers with |ν| even and x1 ď x2 ď ¨ ¨ ¨ ď xmpνq P R`.
This generalizes the Schwinger-Dyson equation (3.3). Note that if |ν| is odd then the
moment equals 0.
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Isomorphisms of β-Dyson’s Brownian motion with Brownian local time

We will also use in the sequel the following notation. For k ě k1 P N, Jk, k1K will
denote the interval of integers

Jk, k1K “ tk, k ` 1, . . . , k1u.

We start by some lemmas.

Lemma 4.4. Let q ě 3. Then

dpqpλpxqq “ q
?

2
n
ÿ

j“1

λjpxq
q´1dWjpxq `

β

2
q
q´2
ÿ

i“2

pi´1pλpxqqpq´1´ipλpxqqdx

`2
β

2
nqpq´2pλpxqqdx`

´

1´
β

2

¯

qpq ´ 1qpq´2pλpxqqdx.

Proof. By Itô’s formula,

dpqpλpxqq “ q
?

2
n
ÿ

j“1

λjpxq
q´1dWjpxq ` qpq ´ 1qpq´2pλpxqqdx

` βq
ÿ

1ďjăj1ďn

λjpxq
q´1 ´ λj1pxq

q´1

λjpxq ´ λj1pxq
dx.

But

ÿ

1ďjăj1ďn

λjpxq
q´1 ´ λj1pxq

q´1

λjpxq ´ λj1pxq
“

ÿ

1ďjăj1ďn

q´2
ÿ

r“0

λjpxq
rλj1pxq

q´2´r

“

´

n´
q ´ 1

2

¯

pq´2pλpxqq `
1

2

q´2
ÿ

i“2

pi´1pλpxqqpq´1´ipλpxqq.

Lemma 4.5. Let q, q1 ě 1 with q ` q1 ą 2. Then

dxpqpλpxqq, pq1pλpxqqy “ 2qq1pq`q1´2pλpxqqdx.

Moreover,
dxp1pλpxqq, p1pλpxqqy “ 2ndx.

Proof. This is a straightforward computation.

Lemma 4.6. Let ν be a finite family of positive integers and let q ě 0. Then the process

ż x

0

pνpλpyqq
n
ÿ

j“1

λjpyq
qdWjpyq (4.6)

is a martingale in the filtration of the Brownian motions ppWjpxqq1ďjďnqxě0.

Proof. The process (4.6) is a local martingale. Its quadratic variation is given by
ż x

0

pνpλpyqq
2p2qpλpyqqdy.

For every y ą 0, λpyq{
?

2y follows a fixed distribution, which is up to reordering the GβE
(3.1). Thus,

A

ż x

0

pνpλpyqq
2p2qpλpyqqdy

ER`

β,n
“ xpνpλq

2p2qpλqyβ,n

ż x

0

p2yq|ν|`qdy ă `8.

So the quadratic variation is locally bounded in L1. It follows that (4.6) is a true
martingale.
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Let ν be a finite family of positive integers. and let x1 ď x2 ď ¨ ¨ ¨ ď xmpνq P R`. For
k P J1,mpνqK and x ě xk´1, let fkpxq denote the function

fkpxq :“
A

k´1
ź

k1“1

pνk1 pλpxk1qq

mpνq
ź

k1“k

pνk1 pλpxqq
ER`

β,n
. (4.7)

The main idea for expressing a symmetric moment (4.5) is that for x ě xk´1, the
derivative f 1kpxq is a linear combination of symmetric moments of degree |ν| ´ 2, with
coefficients depending on β and n. The precise expressions for these coefficients can be
deduced from Lemmas 4.4 and 4.5. Further, the moment (4.5) equals fmpνqpxmpνqq, for
every k P J2,mpνqK, fkpxk´1q “ fk´1pxk´1q, and

f1px1q “ p2x1q
|ν|{2xpνpλqyβ,n,

where xpνpλqyβ,n is the moment of the GβE, given by Proposition 3.1. So given the above
initial conditions, and knowing the derivatives f 1kpxq one gets the moment (4.5). It turns
out that this moment is a multivariate polynomial in pxkq1ďkďmpνq. Next we describe the
recursion for this polynomial.

Let pYkkqkě1 denote a family of formal commuting polynomials variables. We will
consider finite families of positive integers ν “ pν1, ν2, . . . , νmpνqq with |ν| even. The order
of the νk will matter. That is to say we distinguish between ν and pνσp1q, νσp2q, . . . , νσpmpνqqq
for σ a permutation of J1,mpνqK. We want to construct a family of formal polynomials
Qν,β,n with parameters ν, β and n, where Qν,β,n has for variables pYkkq1ďkďmpνq. To
simplify the notations, we will drop the subscripts β, n and just write Qν . The polynomials
Qν will appear in the expression of the symmetric moments (4.5). We will denote
by cpν, β, nq the solutions to the recurrence (3.3), which for β P p´2{n,`8q are the
moments xpνpλqyβ,n. By convention, cpp0q, β, nq “ n and cpH, β, nq “ 1. For k ě 1 and Q
a polynomial, QkÐ will denote the polynomial in the variables pYk1k1q1ďk1ďk, obtained
from Q by replacing each variable Yk1k1 with k1 ě k ` 1 by the variable Ykk. Note that
Q
mpνqÐ
ν “ Qν and that Q1Ð

ν is an univariate polynomial in Y11. For Y a formal polynomial
variable, degY will denote the partial degree in Y.

Definition 4.7. The family of polynomials pQνq|ν| even is defined by the following.

1. Q1Ð
ν “ cpν, β, nqY

|ν|{2
11 .

2. If mpνq ě 2, then for every k P J2,mpνqK,

B

BYkk
QkÐν “

β

2

ÿ

kďk1ďmpνq
νk1ą2

νpk1q

2

νk1´2
ÿ

i“2

QkÐppνrqr‰k1 ,i´1,νk1´1´iq (4.8)

`
β

2
n

ÿ

kďk1ďmpνq
νk1ą2

νpk1qQkÐppνrqr‰k1 ,νk1´2q

`
β

2
n2

ÿ

kďk1ďmpνq
νk1“2

QkÐpνrqr‰k1

`

´

1´
β

2

¯

ÿ

kďk1ďmpνq
νk1ą2

νk1pνk1 ´ 1q

2
QkÐppνrqr‰k1 ,νk1´2q

`

´

1´
β

2

¯

n
ÿ

kďk1ďmpνq
νk1“2

QkÐpνrqr‰k1
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`
ÿ

kďk1ăk2ďmpνq
νk1`νk2ą2

νk1νk2Q
kÐ
ppνrqr‰k1,k2 ,νk1`νk2´2q

`n
ÿ

kďk1ăk2ďmpνq
νk1“νk2“1

QkÐpνrqr‰k1,k2 .

If k “ mpνq, then the last two lines of (4.8) vanish.

Note that since the polynomials Qν,β,n are formal, one is not restricted by a specific
range for β. One could take any β P C or even consider β as a formal parameter. The
specific range for β will only matter when relating Qν,β,n to the symmetric moments of
the β-Dyson’s Brownian motion.

Proposition 4.8. Definition 4.7 uniquely defines a family of polynomials pQνq|ν| even.
Moreover, the following properties hold.

1. For every A monomial of Qν and every k P J2,mpνqK,

2
ÿ

kďk1ďmpνq

degYk1k1
A ď

ÿ

kďk1ďmpνq

νk1 , (4.9)

and
2

ÿ

1ďk1ďmpνq

degYk1k1
A “ |ν|.

In particular, Qν is a homogeneous polynomial of degree |ν|{2.

2. For every k P J1,mpνqK and every permutation σ of Jk,mpνqK,

QkÐpνrq1ďrďk´1,pνσprqqkďrďmpνq
“ QkÐν .

Proof. The fact that the polynomials Qν are well defined can be proved by induction on
|ν|{2.

For |ν|{2 “ 1, there are only two polynomials, Qp2q and Qp1,1q. According to the
condition (1),

Qp2q “ cpp2q, β, nqY11 “ dpβ, nqY11 “

´β

2
n2 `

´

1´
β

2

¯

n
¯

Y11.

The condition (2) does not apply for Qp2q. For Qp1,1q, according to the condition (2),

B

BY22
Qp1,1q “ 0.

Thus, Qp1,1q contains no terms in Y22 and Qp1,1q “ Q1Ð
p1,1q. From the condition (1) we

further get
Qp1,1q “ cpp1, 1q, β, nqY11 “ nY11.

The induction step works as follows. Assume |ν|{2 ě 2. The right hand side of
(4.8) involves only families of integers ν̃ with |ν̃| “ |ν| ´ 2. According to the induction

hypotheses,
B

BYkk
QkÐν is uniquely determined for every k P J2,mpνqK. Thus, for every

k P J2,mpνqK, QkÐν ´QkÐν pYkk “ 0q is uniquely determined. On top of that,

QkÐν pYkk “ 0q “ Qk´1Ð
ν ´

`

QkÐν ´QkÐν pYkk “ 0q
˘k´1Ð

.

Moreover, by the condition (1), Q1Ð
ν is also uniquely determined. Thus, all the poly-

nomials pQkÐν q1ďkďmpνq are uniquely determined, with consistency by the Q ÞÑ QkÐ

operations. Finally, Qν “ Q
mpνqÐ
ν .

The properties (1) and (2) again follow easily by induction on |ν|{2.

EJP 26 (2021), paper 126.
Page 13/31

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP697
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Isomorphisms of β-Dyson’s Brownian motion with Brownian local time

We are ready now to express the symmetric moments (4.5).

Proposition 4.9. Let β ě 0. Let ν be a finite family of positive integers, with |ν| even. Let
Qν “ Qν,β,n be the polynomial given by Definition 4.7. Let x1 ď x2 ď ¨ ¨ ¨ ď xmpνq P R`.
Then,

A

mpνq
ź

k“1

pνkpλpxkqq
ER`

β,n
“ QνppYkk “ 2xkq1ďkďmpνqq.

Proof. The proof is done by induction on |ν|{2.
The case |ν|{2 “ 1 corresponds to ν “ p1, 1q or ν “ p2q. These are treated by

Proposition 4.2, and taking into account that the one-dimensional marginals of square
Bessel processes follow Gamma distributions.

Now consider the induction step. Assume |ν|{2 ě 2. Recall the function fkpxq (4.7)
for k P J1,mpνqK. We have that

f1px1q “ cpν, β, nqp2x1q
|ν|{2 “ Q1Ð

ν pY11 “ 2x1q, (4.10)

where for the second equality we applied the condition (1) in Definition 4.7. If mpνq “ 1,
there is nothing more to check. In the case mpνq ě 2, we need only to check that for
every k P J2,mpνqK and every x ą xk´1,

f 1kpxq “
B

Bx
QkÐν ppYk1k1 “ 2xk1q1ďk1ďk´1,Ykk “ 2xq (4.11)

“ 2
´

B

BYkk
QkÐν

¯

ppYk1k1 “ 2xk1q1ďk1ďk´1,Ykk “ 2xq.

Indeed, given (4.10), by applying (4.11) to k “ 2, we further get

f2px2q “ P 2Ð
ν pY11 “ 2x1,Y22 “ 2x2q,

and by successively applying (4.11) to k “ 3, . . . , k “ mpνq, we at the end get

fmpνqpxmpνqq “ QmpνqÐν ppYk1k1 “ 2xk1q1ďk1ďmpνqq,

which is exactly what we want. To show (4.11), we proceed as follows. Let pFxqxě0 be
the filtration of the Brownian motions ppWjpxqq1ďjďnqxě0. Then, for x ą xk´1,

fkpxq “
A

k´1
ź

k1“1

pνk1 pλpxk1qq
A

mpνq
ź

k1“k

pνk1 pλpxqq
ˇ

ˇ

ˇ
Fxk´1

ER`

β,n

ER`

β,n
,

where x¨|Fxk´1
y
R`
β,n denotes the conditional expectation. To express

A

mpνq
ź

k1“k

pνk1 pλpxqq
ˇ

ˇ

ˇ
Fxk´1

ER`

β,n
,

we apply Itô’s formula to

mpνq
ź

k1“k

pνk1 pλpxqq ´
A

mpνq
ź

k1“k

pνk1 pλpxk´1qq

ER`

β,n
.

The local martingale part is, according to Lemma 4.6, a true martingale, and thus gives
a 0 conditional expectation. The bounded variation part is a linear combination of terms
of form pν̃pλpxqqdx, with

|ν̃| “
´

mpνq
ÿ

k1“k

νk1
¯

´ 2,
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the exact expressions following from Lemma 4.4 and Lemma 4.5. By comparing these
expressions with the recurrence (4.8), and using the induction hypothesis at the step
|ν|{2 ´ 1, we get (4.11). At this stage we omit detailing the tedious but completely
elementary computations.

4.3 More general formal polynomials

In previous Section 4.2, we defined recursively a family of formal polynomials Qν “
Qν,β,n (Definition 4.7), which encode the symmetric moments of the β-Dyson’s Brownian
motion (Proposition 4.9). However, these polynomials are insufficient both for the
generalization of the BFS-Dynkin isomorphism (forthcoming Proposition 4.14) and for
expressing the symmetric moments of the stationary version of the β-Dyson’s Brownian
motion (forthcoming Proposition 4.22). Therefore we introduce an other family of formal
polynomials Pν “ Pν,β,n, with Pν constructed out of Qν in a straightforward way which
we describe next.

On top of the formal commuting polynomial variables pYkkqkě1 appearing in the poly-
nomials Qν , we also consider the family of the formal commuting variables pqYk´1 kqkě2,
also commuting with the first one. A polynomial Pν will have for variables pYkkq1ďkďmpνq
and pqYk´1 kq2ďkďmpνq.

Definition 4.10. Given ν a finite family of positive integers with |ν| even, let Pν be the
polynomial in the variables pYkkq1ďkďmpνq, pqYk´1 kq2ďkďmpνq defined by the following.

1. PνppYkkq1ďkďmpνq, pqYk´1 k “ 1q2ďkďmpνqq “ QνppYkkq1ďkďmpνqq.

2. For every A monomial of Pν and every k P J2,mpνqK,

deg
qYk´1 k

A` 2
ÿ

kďk1ďmpνq

degYk1k1
A “

ÿ

kďk1ďmpνq

νk1 . (4.12)

The property (4.9) ensures that Pν “ Pν,β,n is well defined. As for Qν,β,n, Pν,β,n is
defined for every β P C.

Proposition 4.9 and Definition 4.10 immediately imply the following.

Corollary 4.11. Let β ě 0. Let ν be a finite family of positive integers, with |ν| even. Let
x1 ď x2 ď ¨ ¨ ¨ ď xmpνq P R`. Then,

A

mpνq
ź

k“1

pνkpλpxkqq
ER`

β,n
“ PνppYkk “ 2xkq1ďkďmpνq, pqYk´1 k “ 1q2ďkďmpνqq “

PνppYkk “ GR`pxk, xkqq1ďkďmpνq, p
qYk´1 k “ GR`pxk´1, xkq{GR`pxk´1, xk´1qq2ďkďmpνqq.

Next are the expressions for Qp1,1,...,1q, Pp1,1,...,1q, Qp2,2,...,2q and Pp2,2,...,2q.

Proposition 4.12. Let m P Nzt0u. Let M “ pMkk1q1ďk,k1ďm be the formal symmetric
matrix with entries given by

Mkk “ Ykk, for k ă k1, Mkk1 “ Mk1k “ Ykk
ź

k`1ďrďk1

qYr´1 r. (4.13)

The following holds.

1. Assumem is even, and let ν “ p1, 1, . . . , 1q, where 1 appearsm times. ThenQp1,1,...,1q
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Pp1,1,...,1q satisfies the Wick’s rule for Gaussians:

Qp1,1,...,1q “ n
m
2

ÿ

ptai,biuq1ďiďm{2
partition in pairs

of J1,mK

m{2
ź

i“1

Yai^bi ai^bi ,

Pp1,1,...,1q “ n
m
2

ÿ

ptai,biuq1ďiďm{2
partition in pairs

of J1,mK

m{2
ź

i“1

Maibi ,

where ai ^ bi “ minpai, biq and where the sums run over the m!{p2
m
2 pm{2q!q parti-

tions in pairs.

2. Let ν “ p2, 2, . . . , 2q, where 2 appears m times. Then

Qp2,2,...,2q “ 2m Permdpβ,nq{2ppYk^k1 k^k1q1ďk,k1ďmq,

Pp2,2,...,2q “ 2m Permdpβ,nq{2pMq.

Proof. The expressions for Qp1,1,...,1q and Qp2,2,...,2q are easily obtained by induction on m
using Definition 4.7. Alternatively, for β ě 0, one can use that under the law of β-Dyson’s
Brownian motion, the process pp1pλpxqqqxě0 is Gaussian and the process pp2pλpxqqqxě0

is dpβ, nq{2-permanental; see Proposition 4.2. This gives the expression of Qp1,1,...,1q
and Qp2,2,...,2q for β ě 0. To extend it to general β one can use that the coefficients of
the polynomials Qν are themselves polynomials in β. The expressions for Pp1,1,...,1q and
Pp2,2,...,2q are immediately deducible from those for Qp1,1,...,1q and Qp2,2,...,2q by following
Definition 4.10.

For other examples of Pν , see the Appendix.

As a side remark, we observe next that the value β “ ´ 2
n plays a special role for

the polynomials Qν,β,n and Pν,β,n. In particular, Pν,β“´ 2
n ,n

gives the moments of the
stochastic processes pφR`pxqqxě0 and pφKpxqqxPR introduced in Section 2, which are
Gaussian. This is also related to the fact that in the limit β Ñ ´ 2

n , the GβE converges in
law to n identical Gaussians (3.2).

Proposition 4.13. Let n ě 1. Let K ą 0. Let ν be a finite family of positive integers
with |ν| even. Let x1 ď ¨ ¨ ¨ ď xmpνq be mpνq points in p0,`8q, resp. in R. Then

Qν,β“´ 2
n ,n
ppYkk “ 2xkq1ďkďmpνqq “

Pν,β“´ 2
n ,n
ppYkk “ 2xkq1ďkďmpνq, pqYk´1 k “ 1q2ďkďmpνqq “ nmpνq´|ν|{2E

”

mpνq
ź

k“1

φR`pxkq
νk
ı

,

resp.

Pν,β“´ 2
n ,n
ppYkk “ 1{

?
2Kq1ďkďmpνq, pqYk´1 k “ e´

?
2Kpxk´xk´1qq2ďkďmpνqq

“ nmpνq´|ν|{2E
”

mpνq
ź

k“1

φKpxkq
νk
ı

.

That is to say, the variables Ykk are replaced by GR`pxk, xkq, resp. GKpxk, xkq, and the

variables qYk´1 k by GR`pxk´1, xkq{GR`pxk´1, xk´1q, resp. GKpxk´1, xkq{GKpxk´1, xk´1q.
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Proof. First, one can check that

c
´

ν, β “ ´
2

n
, n
¯

“ nmpνq´|ν|{2
|ν|!

2|ν|{2p|ν|{2q!
. (4.14)

This follows from Proposition 3.2. The key point is that

d
´

β “ ´
2

n
, n
¯

“ 1.

Given ν a finite family of positive integers, let kν : J1, |ν|K ÞÑ J1,mpνqK be the function
such that

k´1
ν p1q “ J1, ν1K, for k1 P J2,mpνqK, k´1

ν pk
1q “ Jν1`¨ ¨ ¨`νk1´1`1, ν1`¨ ¨ ¨`νk1K. (4.15)

Further, let p rQνq|ν| even be the following formal polynomials:

rQν “ nmpνq´|ν|{2
ÿ

ptai,biuq1ďiď|ν|{2
partition in pairs

of J1,|ν|K

|ν|{2
ź

i“1

Ykνpaiq^kνpbiqkνpaiq^kνpbiq.

To conclude, we need only to check that rQν “ Qν,β“´ 2
n ,n

for all ν with |ν| even. Indeed,
this immediately implies that

Pν,β“´ 2
n ,n

“ nmpνq´|ν|{2
ÿ

ptai,biuq1ďiď|ν|{2
partition in pairs

of J1,|ν|K

|ν|{2
ź

i“1

Mkνpaiqkνpbiq,

where the Mkk1 are given by (4.13), and thus n´mpνq`|ν|{2Pν,β“´ 2
n ,n

corresponds to

the Wick’s rule. So by evaluating in Ykk “ GR`pxk, xkq and qYk´1 k “ GR`pxk´1, xkq{

GR`pxk´1, xk´1q, resp. Ykk “ GKpxk, xkq and qYk´1 k “ GKpxk´1, xkq{GKpxk´1, xk´1q,
one gets the moments of φR` , resp. φK .

The identity rQν “ Qν,β“´ 2
n ,n

can be checked by induction over |ν|{2 by following

Definition 4.7. From (4.14) follows that the rQν satisfy the condition (1) in Definition 4.7.
One can further check the recurrence (4.8), and this amounts to counting the pairs in
k´1
ν pJk,mpνqKq.

4.4 BFS-Dynkin isomorphism for β-Dyson’s Brownian motion

We will denote by Υ a generic finite family of continuous paths on R, Υ “ pγ1, . . . , γJq,
and JpΥq will denote the size J of the family. We will consider finite Brownian measures
on Υ where JpΥq is not fixed but may take several values under the measure. Given
x P R, LxpΥq will denote the sum of Brownian local times at x:

LxpΥq “

JpΥq
ÿ

i“1

Lxpγiq.

LpΥq will denote the occupation field x ÞÑ LxpΥq.
Given ν a finite family of positive integers with |ν| even and 0 ă x1 ă x2 ă ¨ ¨ ¨ ă xmpνq,

µ
ν,x1,...,xmpνq
R`

pdΥq (also depending on β and n) will be the measure on finite families of
continuous paths obtained by substituting in the polynomial Pν “ Pν,β,n for each variable

Ykk the measure µxk,xkR`
, and for each variable qYk´1 k the measure µ̌

xk´1,xk
R`

; see Section
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2. Since we will deal with the functional LpΥq under µ
ν,x1,...,xmpνq
R`

pdΥq, the order of the
Brownian measures in a product will not matter. For instance, for ν “ p2, 1, 1q (see
Appendix),

Pp2,1,1q “
´β

2
n3 `

´

1´
β

2

¯

n2
¯

Y11Y22
qY23 ` 2nY2

11
qY2

12
qY23,

and

µ
p2,1,1q,x1,x2,x3

R`
“

´β

2
n3 `

´

1´
β

2

¯

n2
¯

µx1,x1

R`
b µx2,x2

R`
b µ̌x2,x3

R`

`2nµx1,x1

R`
b µx1,x1

R`
b µ̌x1,x2

R`
b µ̌x1,x2

R`
b µ̌x2,x3

R`
.

Note that depending on values of n and β, a measure µ
ν,x1,...,xmpνq
R`

may be signed.
Next is a version of BFS-Dynkin isomorphism (Theorem (2.1)) for β-Dyson’s Brownian

motion.

Proposition 4.14. Let ν be a finite family of positive integers, with |ν| even and let
0 ă x1 ă x2 ă ¨ ¨ ¨ ă xmpνq. Let F be a bounded measurable functional on CpR`q. Then

A

mpνq
ź

k“1

pνkpλpxkqqF
´1

2
p2pλq

¯ER`

β,n
“

ż

Υ

A

F
´1

2
p2pλq ` LpΥq

¯ER`

β,n
µ
ν,x1,...,xmpνq
R`

pdΥq. (4.16)

Remark 4.15. In the limiting case when xk “ xk´1 for some k P J2,mpνqK, qYk´1 k in Pν
has to be replaced by the constant 1 instead of a measure on Brownian paths.

Remark 4.16. For β P t0, 1, 2, 4u, (4.16) reduces to the Gaussian case of Theorem 2.1.

Let us first outline our strategy for proving Proposition 4.14. By density arguments it
is enough to show (4.16) for functionals F of form

F pp`pxqqxě0q “ exp
´

´

ż

R`

`pxqχpxqdx
¯

,

where χ is a continuous non-negative function with compact support in p0,`8q. For
such F , the value returned by the right-hand side of (4.16) is well understood and is
related to the local times of Brownian motions with a killing rate given by χ. In order to
deal with the left-hand side of (4.16), one interprets

exp
´

´ 1
2

ş`8

0
p2pλpyqqχpyqdy

¯

A

exp
´

´ 1
2

ş`8

0
p2pλpyqqχpyqdy

¯ER`

β,n

as a density in a change of measure. Then it remains to describe the law of the stochastic
process pλpxqqxě0 under the new measure, and in particular express its symmetric
moments. It turns out that under the new measure, the process can still be reduced to a
β-Dyson’s Brownian motion through a deterministic transformation reminiscent of the
scale and time changes for one-dimensional diffusions; see Lemma 4.19.

We start by some intermediate lemmas. Recall that pFxqxě0 denotes the filtration of
the Brownian motions ppWjpxqq1ďjďnqxě0 in (4.1). Consider χ a continuous non-negative
function with compact support in p0,`8q. Let uχÓ denote the unique solution to

1

2

d2

dx
u “ χu

which is positive non-increasing on R`, with uχÓp0q “ 1. See [24, Section 2.1] for details.
Then

uχÓp`8q “ lim
xÑ`8

uχÓpxq ą 0.
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Lemma 4.17. Let Dχp`8q be the positive r.v.

Dχp`8q :“ uχÓp`8q
´ 1

2dpβ,nq exp
´

´
1

2

ż `8

0

p2pλpyqqχpyqdy
¯

. (4.17)

Then xDχp`8qyR`β,n “ 1. Moreover,

Dχpxq :“ xDχp`8q|FxyR`β,n

“ uχÓpxq
´ 1

2dpβ,nq exp
´

´
1

2

ż x

0

p2pλpyqqχpyqdy
¯

exp
´1

4
p2pλpxqq

u1χÓpxq

uχÓpxq

¯

. (4.18)

Let

Mχpxq :“
1
?

2

ż x

0

u1χÓpyq

uχÓpyq

n
ÿ

j“1

λjpyqdWjpyq.

Then pMχpxqqxě0 is a martingale with respect to the filtration pFxqxě0 and for all x ě 0,

Dχpxq “ exp
´

Mχpxq ´
1

2
xMχ,Mχypxq

¯

.

Proof. (4.17) and (4.18) follow from the properties of square Bessel processes. See
Theorem (1.7), Section XI.1 in [29]. pMχpxqqxě0 is obviously a (true) martingale, as can
be seen with the quadratic variation. Further,

d
´1

4
p2pλpxqq

u1χÓpxq

uχÓpxq

¯

“ dMχpxq `
1

2
p2pλpxqqχpxqdx

´
1

4
p2pλpxqq

u1χÓpxq
2

uχÓpxq2
dx`

1

2
dpβ, nq

u1χÓpxq

uχÓpxq
dx,

and

d
1

2
xMχ,Mχypxq “

1

4
p2pλpxqq

u1χÓpxq
2

uχÓpxq2
dx.

Thus

d
´

Mχpxq ´
1

2
xMχ,Mχypxq

¯

“ d logpDχpxqq.

Lemma 4.18. Let be pλ̃pxq “ pλ̃1pxq, . . . , λ̃npxqqqxě0 with λ̃1pxq ě ¨ ¨ ¨ ě λ̃npxq, satisfying
the SDE

dλ̃jpxq “
?

2dWjpxq `
u1χÓpxq

uχÓpxq
λ̃jpxqdx` β

ÿ

j1‰j

dx

λ̃jpxq ´ λ̃j1pxq
, (4.19)

with initial condition λ̃p0q “ 0. Further consider a change of measure with density
Dχp`8q (4.17) on the filtered probability space with filtration pFxqxě0. Then λ after the
change of measure and λ̃ before the change of measure have the same law.

Proof. The existence and uniqueness of strong solutions to (4.19) is given by [4, The-
orem 3.1]. The rest is a consequence of Girsanov’s theorem; see Theorems (1.7) and
(1.12), Section VIII.1, in [29]. Indeed,

dxWjpxq,Mχpxqy “
1
?

2

u1χÓpxq

uχÓpxq
λjpxqdx.

Thus, after the change of measure, the

Wjpxq ´
1
?

2

ż x

0

u1χÓpyq

uχÓpyq
λjpyqdy

for j P J1, nK are n i.i.d. standard Brownian motions.
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Let ψχ denote the following diffeomorphism of R`:

ψχpxq “

ż x

0

dy

uχÓpyq2
.

Let ψ´1
χ be the inverse diffeomorphism.

Lemma 4.19. If λ̃ is a solution to the SDE (4.19), then the process

´ 1

uχÓpψ
´1
χ pxqq

λ̃pψ´1
χ pxqq

¯

xě0

satisfies the SDE (4.1).

Proof. The process
´ 1

uχÓpxq
λ̃pxq

¯

xě0
satisfies

d
´ 1

uχÓpxq
λ̃jpxq

¯

“

?
2

uχÓpxq
dWjpxq ` β

ÿ

j1‰j

1

uχÓpxq´1λ̃jpxq ´ uχÓpxq´1λ̃j1pxq

dx

uχÓpxq2
.

By further performing the change of variable given by ψχ, one gets (4.1).

In the sequel pGR`,χpx, yqqx,yě0 will denote the Green’s function of 1
2
d2

dx2 ´ χ on R`
with condition 0 in 0. Then for 0 ď x ď y,

GR`,χpx, yq “ 2uχÓpxqψχpxquχÓpyq. (4.20)

Indeed,
1

2

B2

By2

´

2uχÓpxqψχpxquχÓpyq
¯

“ χpyq
´

2uχÓpxqψχpxquχÓpyq
¯

,

1

2

B2

Bx2

´

2uχÓpxqψχpxquχÓpyq
¯

“
1

2

B

Bx

´

2u1χÓpxqψχpxquχÓpyq ` 2
uχÓpyq

uχÓpxq

¯

“ χpxq
´

2uχÓpxqψχpxquχÓpyq
¯

` 0,

and
1

2

´

B

Bx

ˇ

ˇ

ˇ

x“y
´
B

By

ˇ

ˇ

ˇ

y“x

¯´

2uχÓpxqψχpxquχÓpyq
¯

“ 1.

Lemma 4.20. Let pλ̃pxqqxě0 be the solution to (4.19) with λ̃p0q “ 0. Let ν be a finite
family of positive integers, with |ν| even. Let x1 ď x2 ď ¨ ¨ ¨ ď xmpνq P R`. Then,

A

mpνq
ź

k“1

pνkpλ̃pxkqq
ER`

β,n
“

PνppYkk “ GR`,χpxk, xkqq1ďkďmpνq, p
qYk´1 k “ uχÓpxkq{uχÓpxk´1qq2ďkďmpνqq.

Proof. From Lemma 4.19 and Proposition 4.9 it follows that

A

mpνq
ź

k“1

pνkpλ̃pxkqq
ER`

β,n
“

´

mpνq
ź

k“1

uχÓpxkq
νk
¯

QνppYkk “ 2ψχpxkqq1ďkďmpνqq.

“

´

mpνq
ź

k“1

uχÓpxkq
νk
¯

PνppYkk “ 2ψχpxkqq1ďkďmpνq, pqYk´1 k “ 1q2ďkďmpνqq.
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Further, let A be a monomial of Pν . One has to check that

´

mpνq
ź

k“1

uχÓpxkq
νk
¯

AppYkk “ 2ψχpxkqq1ďkďmpνq, pqYk´1 k “ 1q2ďkďmpνqq

“ AppYkk “ 2ψχpxkquχÓpxkq
2q1ďkďmpνq, pqYk´1 k “ uχÓpxkq{uχÓpxk´1qq2ďkďmpνqq.

This amounts to counting the power for each uχÓpxkq on both sides. On the left-hand
side, each uχÓpxkq appears with power νk. The power of uχÓpxkq on the right-hand side is

2 degYkk A` degYk´1 k
A´ degYk k`1

A.

By (4.12), this is again νk. Finally, by (4.20),

2ψχpxkquχÓpxkq
2 “ GR`,χpxk, xkq.

Proof of Proposition 4.14. It is enough to show (4.16) for functionals F of form

F pp`pxqqxě0q “ exp
´

´

ż

R`

`pxqχpxqdx
¯

,

where χ is a continuous non-negative function with compact support in p0,`8q. For
such a χ,

A

mpνq
ź

k“1

pνkpλpxkqq exp
´

´
1

2

ż

R`

p2pλpxqqχpxqdx
¯ER`

β,n
“

A

exp
´

´
1

2

ż

R`

p2pλpxqqχpxqdx
¯ER`

β,n

A

mpνq
ź

k“1

pνkpλ̃pxkqq
ER`

β,n
,

where λ̃ is given by (4.19), with λ̃p0q “ 0. The symmetric moments of λ̃ are given by
Lemma 4.20. To conclude, we use that

ż

γ

exp
´

´

ż

R`

Lzpγqχpzqdz
¯

µx,xR`pdγq “ GR`,χpx, xq,

and for 0 ă x ă y,

ż

γ

exp
´

´

ż

R`

Lzpγqχpzqdz
¯

µ̌x,ypdγq “
GR`,χpx, yq

GR`,χpx, xq
“
uχÓpyq

uχÓpxq
;

see [24, Section 3.2].

4.5 The stationary case

In this section we consider the stationary β-Dyson’s Brownian motion on the whole
line and state the analogues of Propositions 4.2, 4.9 and 4.14 for it. The proofs are
omitted, as they are similar to the previous ones. As previously, n ě 2 and β ě 0. Let
K ą 0. We consider the process pλpxq “ pλ1pxq, . . . , λnpxqqqxPR with λ1pxq ě ¨ ¨ ¨ ě λnpxq,
satisfying the SDE

dλjpxq “
?

2dWjpxq ´
?

2K λjpxq ` β
?

2K
ÿ

j1‰j

dx

λjpxq ´ λj1pxq
, (4.21)

the dWj , 1 ď j ď n, being n i.i.d. white noises on R, and λ being stationary, with
p2Kq

1
4λpxq being distributed according to (3.1) (up to reordering of the λjpxq-s).
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Proposition 4.21. The following holds.

1. The process
`

1?
n
p1pλpxqq

˘

xPR
has the same law as φK .

2. Let be a 1D Brownian loop soup LαK , with α given by (4.4). The process
p 1

2p2pλpxqqqxPR has the same law as the occupation field pLxpLαKqqxPR.

3. The processes pp1pλpxqqqxPR and
`

λpxq ´ 1
np1pλpxqq

˘

xPR
are independent.

4. Let Lα´
1
2

K and rL
1
2

K be two independent 1D Brownian loop soups, α given by (4.4).
Then, one has the following identity in law between pairs of processes:

´1

2

´

p2pλpxqq ´
1

n
p1pλpxqq

2
¯

,
1

2n
p1pλpxqq

2
¯

xPR

(law)
“ pLxpLα´

1
2

K q, Lxp rL
1
2

KqqxPR.

We will denote by x¨yKβ,n the expectation with respect to the stationary β-Dyson’s
Brownian motion. Given ν a finite family of positive integers with |ν| even and x1 ă x2 ă

¨ ¨ ¨ ă xmpνq P R, µ
ν,x1,...,xmpνq
K pdΥq (also depending on β and n) will be the measure on

finite families of continuous paths obtained by substituting in the polynomial Pν “ Pν,β,n
for each variable Ykk the measure µxk,xkK , and for each variable qYk´1 k the measure
µ̌
xk´1,xk
K .

Proposition 4.22. Let ν a finite family of positive integers with |ν| even. Let x1 ď x2 ď

¨ ¨ ¨ ď xmpνq P R. Then,

A

mpνq
ź

k“1

pνkpλpxkqq
EK

β,n
“

PνppYkk “ 1{
?

2Kq1ďkďmpνq, pqYk´1 k “ e´
?

2Kpxk´xk´1qq2ďkďmpνqq “

PνppYkk “ GKpxk, xkqq1ďkďmpνq, pqYk´1 k “ GKpxk´1, xkq{GKpxk´1, xk´1qq2ďkďmpνqq.

Further, let F be a bounded measurable functional on CpRq. For x1 ă x2 ă ¨ ¨ ¨ ă xmpνq P

R,

A

mpνq
ź

k“1

pνkpλpxkqqF
´1

2
p2pλq

¯EK

β,n
“

ż

Υ

A

F
´1

2
p2pλq ` LpΥq

¯EK

β,n
µ
ν,x1,...,xmpνq
K pdΥq.

5 The case of general electrical networks: a construction for n “

2 and further questions

5.1 Formal polynomials for n “ 2

In this section n “ 2, and β is arbitrary, considered as a formal parameter. Note that
dpβ, n “ 2q “ β ` 2. In Section 4.2 we introduced the formal commuting polynomial
variables pYkkqkě1. Here we further consider the commuting variables pYkk1q1ďkăk1 ,
and by convention set Ykk1 “ Yk1k for k1 ă k. Given ν̃ “ pν̃1, . . . , ν̃mq with ν̃k P N

(value 0 allowed), Pν̃,β will be the following multivariate polynomial in the variables
pYkk1q1ďkďk1ďm:

Pν̃,β :“ Perm β`1
2
ppYfpiqfpjqq1ďi,jďν̃1`¨¨¨`ν̃mq,

where f is a map f : J1, ν̃1`¨ ¨ ¨`ν̃mK Ñ J1,mK, such that for every k P J1,mK, |f´1pkq| “ ν̃k.
Recall the expression of the α-permanents (2.3). It is clear that Pν̃,β does not depend
on the particular choice of f . In case ν̃1 “ ¨ ¨ ¨ “ ν̃m “ 0, by convention we set Pν̃,β “ 1.
Given ν a finite family of positive integers with |ν| even, let kν : J1, |ν|K ÞÑ J1,mpνqK be
the map given by (4.15). Let Iν be the following set of subsets of J1, |ν|K:

Iν :“ tI Ď J1, |ν|K| @k P J1,mpνqK, |k´1
ν pkqzI| is evenu,
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where | ¨ | denotes the cardinal. Note that necessarily, for every I P Iν , the cardinal |I| is
even. Let pPν,β be the following multivariate polynomial in the variables pYkk1q1ďkďk1ďmpνq:

pPν,β :“
ÿ

IPIν

2mpνq´|I|{2
´

ÿ

ptai,biuq1ďiď|I|{2
partition in pairs

of I

|I|{2
ź

i“1

Ykνpaiqkνpbiq

¯

P
p 12 |k

´1
ν pkqzI|q1ďkďmpνq,β

.

By construction, for every A monomial of pPν,β and every k P J1,mpνqK,

2 degYkk A`
ÿ

1ďk1ďmpνq
k1‰k

degYkk1
A “ νk. (5.1)

Proposition 5.1. Let ν be finite family of positive integers with |ν| even. Pν,β,n“2

is obtained from pPν,β by replacing each variable Ykk1 with 1 ď k ă k1 ď mpνq by

Ykk
ś

k`1ďrďk1
qYr´1 r:

Pν,β,n“2 “ pPν,β
``

Ykk1 “ Ykk
ź

k`1ďrďk1

qYr´1 r

˘

1ďkăk1ďmpνq

˘

.

Proof. Let be

rPν,β :“ pPν,β
``

Ykk1 “ Ykk
ź

k`1ďrďk1

qYr´1 r

˘

1ďkăk1ďmpνq

˘

.

We want to show the equality rPν,β “ Pν,β,n“2. Since a direct combinatorial proof would
be a bit lengthy, we proceed differently. Let β ě 0 and let pλpxq “ pλ1pxq, λ2pxqqqxě0 be
the β-Dyson’s Brownian motion (4.1) in the case n “ 2. We use its construction through
(4.2). We claim that for x1, x2, . . . , xmpνq P R`,

A

mpνq
ź

k“1

pνkpλpxkqq
ER`

β,n“2
“ pPν,β

``

Ykk1 “ GR`pxk´1, xkq
˘

1ďkďk1ďmpνq

˘

.

Indeed, in the expansion of
´

ĂW pxkq ` ρpxkq
¯νk

`

´

ĂW pxkq ´ ρpxkq
¯νk

only enter the even powers of ρpxkq, which is how Iν appears. Then one uses that the
square Bessel process pρpxqqxě0 is a pβ ` 1q{2-permanental field with kernel
pGR`px, yqqx,yPR` . Because of the particular form of GR` , we have that for x1 ď x2 ď

¨ ¨ ¨ ď xmpνq P R`,

A

mpνq
ź

k“1

pνkpλpxkqq
ER`

β,n“2
“ rPν,βppYkk “ 2xkq1ďkďmpνq, pqYk´1 k “ 1q2ďkďmpνqq.

By combining with Corollary 4.11, we get that the following multivariate polynomials in
the variables pYkkq1ďkďmpνq are equal for β ě 0:

rPν,βppqYk´1 k “ 1q2ďkďmpνqq “ Pν,β,n“2ppqYk´1 k “ 1q2ďkďmpνqq.

Since the coefficients of both are polynomials in β, the equality above holds for gen-
eral β. To conclude the equality rPν,β “ Pν,β,n“2, we have to deal with the variables

pqYk´1 kq2ďkďmpνq. For this we use that both in case of Pν,β,n“2 and in case of rPν,β, each

monomial satisfies (4.12). For rPν,β this follows from (5.1).
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5.2 A construction on discrete electrical networks for n “ 2

Let G “ pV,Eq be an undirected connected graph, with V finite. We do not allow
multiple edges or self-loops. The edges tx, yu P E are endowed with conductances
Cpx, yq “ Cpy, xq ą 0. There is also a non-uniformly zero killing measure pKpxqqxPV , with
Kpxq ě 0. We see G as an electrical network. Let ∆G denote the discrete Laplacian

p∆Gfqpxq “
ÿ

y„x

Cpx, yqpfpyq ´ fpxqq.

Let pGG,Kpx, yqqx,yPV be the massive Green’s function GG,K “ p´∆G `Kq
´1. The (mas-

sive) real scalar Gaussian free field (GFF) is the centered random Gaussian field on V
with covariance GG,K , or equivalently with density

1

pp2πq|V | detGG,Kq
1
2

exp
´

´
1

2

ÿ

xPV

Kpxqϕpxq2 ´
1

2

ÿ

tx,yuPE

Cpx, yqpϕpyq ´ ϕpxqq2
¯

. (5.2)

Let Xt be the continuous time Markov jump process to nearest neighbors with jump
rates given by the conductances. The process Xt is also killed by K. Let ζ P p0,`8s
be the first time Xt gets killed by K. Let pG,Kpt, x, yq be the transition probabilities of
pXtq0ďtăζ . Then pG,Kpt, x, yq “ pG,Kpt, y, xq and

GG,Kpx, yq “

ż `8

0

pG,Kpt, x, yqdt.

Let Pt,x,yG,K be the bridge probability measure from x to y, where one conditions on t ă ζ.
For x, y P V , let µx,yG,K be the following measure on paths:

µx,yG,Kp¨q :“

ż `8

0

P
t,x,y
G,K p¨qpG,Kpt, x, yqdt.

It is the analogue of (2.1). The total mass of µx,yG,K is GG,Kpx, yq, and the image of µx,yG,K by
time reversal is µy,xG,K . Similarly, one defines the measure on (rooted) loops by

µloop
G,Kpdγq :“

1

T pγq

ÿ

xPV

µx,xG,Kpdγq,

where T pγq denotes the duration of the loop γ. It is the analogue of (2.2). The measure
µloop
G,K has an infinite total mass because it puts an infinite mass on trivial “loops” that stay

in one vertex. For α ą 0, one considers Poisson point processes LαG,K of intensity αµloop
G,K .

These are (continuous time) random walk loop soups. For details, see [19, 18, 21, 22].
For a continuous time path γ on G of duration T pγq and x P V , we denote

Lxpγq :“

ż T pγq

0

1γpsq“xds.

Further,
LxpLαG,Kq :“

ÿ

γPLαG,K

Lxpγq.

One has equality in law between pLxpL
1
2

G,KqqxPV and p 1
2φG,Kpxq

2qxPV , where φG,K is the
GFF distributed according to (5.2) [21, 22]. This is the analogue of (2.4). For general
α ą 0, the occupation field pLxpLαG,KqqxPV is the α-permanental field with kernel GG,K
[21, 22, 23]. In this sense it is analogous to squared Bessel processes. If pχpxqqxPV P RV

is such that ´∆G `K ´ χ is positive definite, then

E
”

exp
´

ÿ

xPV

χpxqLxpLαG,Kq
¯ı

“

ˆ

detp´∆G `Kq

detp´∆G `K ´ χq

˙α

. (5.3)
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See Corollary 5 in [21] and Corollary 1, Section 4.1 in [22].
Now we proceed with our construction. Fix β ą ´1. Let α “ 1

2dpβ, n “ 2q “ β`2
2 ą 1

2 .

Let φG,K be a GFF distributed according to (5.2), and Lα´
1
2

G,K an independent random walk
loop soup. For x P V we set

λ1pxq :“
1
?

2
φG,Kpxq `

b

LxpLα´
1
2

G,K q, λ2pxq :“
1
?

2
φG,Kpxq ´

b

LxpLα´
1
2

G,K q,

and λ :“ pλ1pxq, λ2pxqqxPV . x¨yG,Kβ,n“2 will denote the expectation with respect to λ. As in
Section 4.4, Υ “ pγ1, . . . , γJpΥqq will denote a generic family of continuous time paths,
this time on the graph G. For x P V ,

LxpΥq :“

JpΥq
ÿ

i“1

Lxpγiq,

and LpΥq will denote the occupation field of Υ, x ÞÑ LxpΥq. Given ν a finite family of

positive integers with |ν| even, and x1, x2, . . . , xmpνq P V , µ̂
ν,β,x1,...,xmpνq
G,K will denote the

measure on families of |ν|{2 paths on G obtained by substituting in the polynomial pPν,β
for each variable Ykk1 , 1 ď k ď k1 ď mpνq, the measure µ

xk,xk1
G,K . The order of the paths

will not matter.

Proposition 5.2. The following holds.

1. For every x P V , pλ1pxq{
a

GG,Kpx, xq, λ2pxq{
a

GG,Kpx, xqq is distributed, up to re-
ordering, according to (3.1) for n “ 2.

2. Let x, y P V . Let

η “
GG,Kpx, xqGG,Kpy, yq

GG,Kpx, yq2
ě 1. (5.4)

Then the couple p
?

2λpxq{
a

GG,Kpx, xq,
?

2ηλpyq{
a

GG,Kpy, yqq is distributed like
the β-Dyson’s Brownian motion (4.1) at points 1 and η, for n “ 2.

3. Let ν be finite family of positive integers with |ν| even and x1, x2, . . . , xmpνq P V .
Then

A

mpνq
ź

k“1

pνkpλpxkqq
EG,K

β,n“2
“ pPν,βppYkk1 “ GG,Kpxk, xk1qq1ďkďk1ďmpνqq.

4. (BFS-Dynkin’s isomorphism) Moreover, given F a measurable bounded function on
RV ,

A

mpνq
ź

k“1

pνkpλpxkqqF
´1

2
p2pλq

¯EG,K

β,n“2
“

ż

Υ

A

F
´1

2
p2pλq ` LpΥq

¯EG,K

β,n“2
µ̂
ν,β,x1,...,xmpνq
G,K pdΥq. (5.5)

5. For β P t1, 2, 4u, pλ1pxq, λ2pxqqxPV is distributed like the ordered family of eigen-
values in a GFF with values in 2 ˆ 2 real symmetric pβ “ 1q, complex Hermitian
pβ “ 2q, resp. quaternionic Hermitian pβ “ 4q matrices, with density proportional
to

exp
´

´
1

2

ÿ

xPV

KpxqTrpMpxq2q ´
1

2

ÿ

tx,yuPE

Cpx, yqTrppMpyq ´Mpxqq2q
¯

. (5.6)
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6. Assume that β ą 0. Let φ1 and φ2 be two independent scalar GFFs distributed
according to (5.2). Lα´1

G,K be a random walk loop soup independent from pφ1, φ2q,

with still α “ β`2
2 . Then pλ1pxq, λ2pxqqxPV is distributed as the ordered family of

eigenvalues in the matrix-valued field
¨

˝

φ1pxq
b

LxpLα´1
G,K q

b

LxpLα´1
G,K q φ2pxq

˛

‚, x P V. (5.7)

7. Given another killing measure rK P RV`, non uniformly zero, and λ̃ “ pλ̃1, λ̃2q the

field obtained by using rK instead of K, the density of the law of λ̃ with respect to
that of λ is

ˆ

detp´∆G ` rKq

detp´∆G `Kq

˙

β`2
2

exp
´

´
1

2

ÿ

xPV

p rKpxq ´Kpxqqp2pλpxqq
¯

.

Proof. (1) This follows from Proposition 3.2 and the fact that φG,Kpxq{
a

GG,Kpx, xq is

distributed according to N p0, 1q, and LxpLα´
1
2

G,K q{
a

GG,Kpx, xq according to Gamma
`

α´
1
2 , 1

˘

.
(2) One uses the decomposition (4.2) of a β-Dyson’s Brownian motion for n “ 2. In-

deed, p
?

2φG,Kpxq{
a

GG,Kpx, xq,
?

2ηφG,Kpyq{
a

GG,Kpy, yqq and pφR`p1q, φR`pηqq are two
Gaussian vectors with the same distribution, with covariance matrix given by

ˆ

2 2

2 2η

˙

. (5.8)

Moreover, the couple p
?

2LxpLα´
1
2

G,K q{
a

GG,Kpx, xq,
?

2ηLypLα´
1
2

G,K q{
a

GG,Kpy, yqq is distrib-
uted as pρp1q, ρpηqq, a two-dimensional marginal of a Bessel process of dimension β ` 1.
The latter can be seen using the moments, that characterize the finite-dimensional
marginals of the Bessel process ρ. In both cases those are pβ ` 1q{2-permanents, with
coefficients given by the matrix (5.8).

(3) This follows by expanding

´ 1
?

2
φG,Kpxkq `

b

LxkpLα´
1
2

G,K q
¯νk

`

´ 1
?

2
φG,Kpxkq ´

b

LxkpLα´
1
2

G,K q
¯νk

(5.9)

for every k P J1,mpνqK. In this decomposition only the integer powers of LxkpLα´
1
2

G,K q

survive cancellation. The moments of pφG,Kpxkqq1ďkďmpνq give rise to the Wick part in

pPν,β (sums over partitions in pairs). The moments of pLxkpLα´
1
2

G,K qq1ďkďmpνq give rise to

the permanental part in pPν,β .
(4) The GFF φG,K satisfies the BFS-Dynkin isomorphism; see [3, Theorem 2.2], [8,

Theorems 6.1, 6.2], and [9, Theorem 1]. Moreover, there is a version of BFS-Dynkin

isomorphism for the occupation field LpLα´
1
2

G,K q obtained by applying Palm’s identity
to Poisson point processes; see [23, Theorem 1.3] and [24, Sections 3.4, 4.3]. More
precisely, for any y1, . . . , yr P V ,

E
”

r
ź

i“1

LyipLα´
1
2

G,K qF pLpL
α´ 1

2

G,K qq
ı

“

ÿ

σ permutation
of t1,2,...,ru

´

α´
1

2

¯# cycles of σ
ż

γ1,...,γr

E
”

F pLpLα´
1
2

G,K q`Lpγ1q`¨ ¨ ¨`Lpγrqq
ı

r
ź

i“1

µ
yi,yσpiq
G,K pdγiq.

EJP 26 (2021), paper 126.
Page 26/31

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP697
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Isomorphisms of β-Dyson’s Brownian motion with Brownian local time

Further, by expanding (5.9) for k P J1,mpνqK, we get that
śmpνq
k“1 pνkpλpxkqq is actually a

polynomial in the variables pφG,Kpxkqq1ďkďmpνq and pLxkpLα´
1
2

G,K qq1ďkďmpνq, the non-integer

powers of LxkpLα´
1
2

G,K q cancelling out. Moreover,

1

2
p2pλq “

1

2
φ2
G,K ` LpL

α´ 1
2

G,K q.

Since the fields φG,K and LpLα´
1
2

G,K q are independent, on gets (5.5) by combining the

BFS-Dynkin isomorphism for φG,K and the BFS-Dynkin isomorphism for LpLα´
1
2

G,K q.

(5) Recall that for all three matrix spaces considered, β ` 2 is the dimension. Given
pMpxqqxPV a matrix field distributed according to (5.6), M0pxq will denote the matrix
Mpxq ´ 1

2 TrpMpxqqI2, where I2 is the 2ˆ 2 identity matrix, so that TrpM0pxqq “ 0. Since
the hyperplane of zero trace matrices is orthogonal to I2 for the inner product pA,Bq ÞÑ
RepTrpABqq, we get that pM0pxqqxPV and pTrpMpxqqqxPV are independent. Moreover,
p 1?

2
TrpMpxqqqxPV is distributed as the scalar GFF (5.2). As for pTrpMpxq2qqxPV , on one

hand it is the sum of β` 2 i.i.d. squares of scalar GFFs (5.2) corresponding to the entries
of the matrices. On the other hand,

TrpMpxq2q “ TrpM0pxq
2q `

1

2
TrpMpxqq2.

So pTrpM0pxq
2qqxPV is distributed as the sum of β ` 1 i.i.d. squares of scalar GFFs

(5.2). So in particular, this is the same distributions as for p2LxpL
β`1
2

G,K qqxPV . Finally, the
eigenvalues of Mpxq are

1

2
TrpMpxqq ˘

1
?

2

a

TrpM0pxq2q.

(6) The eigenvalues of the matrix (5.7) are

φ1pxq ` φ2pxq

2
˘

b

LxpLα´1
G,K q ` pφ2pxq ´ φ1pxqq2{4.

pφ1 ` φ2q{
?

2 and pφ2 ´ φ1q{
?

2 are two independent scalar GFFs. Moreover,

LpLα´1
G,K q `

1

4
pφ2 ´ φ1q

2

has same distribution as LpLα´
1
2

G,K q.

(7) The density of the GFF φG,ĂK with respect to φG,K is

ˆ

detp´∆G ` rKq

detp´∆G `Kq

˙
1
2

exp
´

´
1

2

ÿ

xPV

p rKpxq ´Kpxqqϕpxq2
¯

.

The density of LpLα´
1
2

G,ĂK
q with respect to LpLα´

1
2

G,K q is

ˆ

detp´∆G ` rKq

detp´∆G `Kq

˙α´ 1
2

exp
´

´
ÿ

xPV

p rKpxq ´KpxqqLxpLα´
1
2

G,K q
¯

,

as can be seen from the Laplace transform (5.3).
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5.3 Further questions

Here we present our questions that motivated this paper. The first question is
combinatorial. We would like to have the polynomials Pν,β,n given by Definition 4.7
under a more explicit form. The recurrence on polynomials (4.8) is closely related to
the Schwinger-Dyson equation (3.3). Its very form suggests that the polynomials Pν,β,n
might be expressible as weighted sums over maps drawn on 2D compact surfaces (not
necessarily connected), where the maps associated to ν have mpνq vertices with degrees
given by ν1, ν2, . . . , νmpνq, with powers of n corresponding to the number of faces. This
is indeed the case for β P t1, 2, 4u, and this corresponds to the topological expansion of
matrix integrals [2, 14, 28, 25].

Question 5.3. Is there a more explicit expression for the polynomials Pν,β,n? Can they
be expressed as weighted sums over the maps on 2D surfaces (topological expansion)?

The second question is whether there is a natural generalization of Gaussian beta
ensembles and β-Dyson’s Brownian motion to electrical networks. For n “ 2, such a
generalization was given in Section 5.2.

Question 5.4. We are in the setting of an electrical network G “ pV,Eq endowed with a
killing measure K, as in Section 5.2. Given n ě 3 and β ą ´ 2

n , is there a distribution
on the fields pλpxq “ pλ1pxq, λ2pxq, . . . , λnpxqqqxPV , with λ1pxq ą λ2pxq ą ¨ ¨ ¨ ą λnpxq,
satisfying the following properties?

1. For β P t1, 2, 4u, λ is distributed as the fields of ordered eigenvalues in a GFF with
values into n ˆ n matrices, real symmetric pβ “ 1q, complex Hermitian pβ “ 2q,
resp. quaternionic Hermitian pβ “ 4q.

2. For β “ 0, λ is obtained by reordering n i.i.d. scalar GFFs (5.2).

3. As β Ñ ´ 2
n , λ converges in law to

´ 1
?
n
φG,K ,

1
?
n
φG,K , . . . ,

1
?
n
φG,K

¯

,

where φG,K is a scalar GFF (5.2).

4. For every x P V , λpxq{
a

GG,Kpx, xq is distributed, up to reordering, as the GβE
(3.1).

5. For every x, y P V , the couple p
?

2λpxq{
a

GG,Kpx, xq,
?

2ηλpyq{
a

GG,Kpy, yqq, with η
given by (5.4), is distributed as the β-Dyson’s Brownian motion (4.1) at points 1

and η.

6. The fields p1pλq and λ´ 1
np1pλq are independent.

7. The field 1?
n
p1pλq is distributed as a scalar GFF (5.2).

8. The field 1
2

`

p2pλq ´
1
np1pλq

2
˘

is the α ´ 1
2 -permanental field with kernel GG,K ,

where α “ 1
2dpβ, nq, and in particular is distributed as the occupation field of the

continuous-time random walk loop soup Lα´
1
2

G,K .

9. The field 1
2p2pλq is the α-permanental field with kernel GG,K , where α “ 1

2dpβ, nq,
and in particular is distributed as the occupation field of the continuous-time
random walk loop soup LαG,K (already implied by (6)+(7)+(8)).

10. The symmetric moments
A

mpνq
ź

k“1

pνkpλpxkqq
EG,K

β,n

are linear combination of products
ź

1ďkďk1ďmpνq

GG,Kpxk, xk1q
akk1 ,
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with akk1 P N and for every k P J1,mpνqK,

2akk `
ÿ

1ďk1ďmpνq
k1‰k

akk1 “ νk,

the coefficients of the linear combination being universal polynomials in β and n,
not depending on the electrical network and its parameters; see also Question 5.3.

11. Given rK P RV`, non-uniformly zero, and λ̃ “ pλ̃1, λ̃2, . . . , λ̃nq the field associated to

the killing measure rK instead of K, the law of λ̃ has the following density with
respect to that of λ:

ˆ

detp´∆G ` rKq

detp´∆G `Kq

˙
1
2dpβ,nq

exp
´

´
1

2

ÿ

xPV

p rKpxq ´Kpxqqp2pλpxqq
¯

.

12. λ satisfies a BFS-Dynkin type isomorphism with continuous time random walks
(already implied by (10)+(11)).

If the graph G is a tree, the natural generalization λ of the β-Dyson’s Brownian motion
is straightforward to construct, at least for β ě 0. In absence of cycles, λ satisfies a
Markov property, and along each branch of the tree one has the values of a β-Dyson’s
Brownian motion at different positions. On the random walk loop soup side, (8) and (9)
is ensured by the covariance of the loop soups under the rewiring of graphs; see [22,
Chapter 7]. Constructing λ on a tree for β P

`

´ 2
n , 0

˘

is a matter of constructing the
corresponding β-Dyson’s Brownian motion. However, if the graph G contains cycles,
constructing λ is not immediate, and we have not encountered such a construction in
the literature. One does not expect a Markov property, since already for β P t1, 2, 4u one
has to take into account the angular part of the matrices.

Appendix: A list of moments for GβE and the corresponding formal
polynomials

xp1pλq
2yβ,n “ n,

Pp1,1q “ nY11
qY12,

xp2pλqyβ,n “
β

2
n2 `

´

1´
β

2

¯

n “ dpβ, nq,

Pp2q “

´β

2
n2 `

´

1´
β

2

¯

n
¯

Y11 “ dpβ, nqY11,

xp1pλq
4yβ,n “ 3n2,

Pp1,1,1,1q “ n2Y11
qY12Y33

qY34 ` 2n2Y11
qY12Y22

qY2
23
qY34,

xp2pλqp1pλq
2yβ,n “

β

2
n3 `

´

1´
β

2

¯

n2 ` 2n,

Pp2,1,1q “

´β

2
n3 `

´

1´
β

2

¯

n2
¯

Y11Y22
qY23 ` 2nY2

11
qY2

12
qY23,

Pp1,2,1q “

´β

2
n3 `

´

1´
β

2

¯

n2 ` 2n
¯

Y11
qY12Y22

qY23,

Pp1,1,2q “

´β

2
n3 `

´

1´
β

2

¯

n2
¯

Y11
qY12Y33 ` 2nY11

qY12Y22
qY2

23,
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xp2pλq
2yβ,n “

β2

4
n4 ` 2

β

2

´

1´
β

2

¯

n3

`

´´

1´
β

2

¯2

` 2
β

2

¯

n2 ` 2
´

1´
β

2

¯

n

“ dpβ, nqpdpβ, nq ` 2q,

Pp2,2q “

´β2

4
n4 ` 2

β

2

´

1´
β

2

¯

n3 `

´

1´
β

2

¯2

n2
¯

Y11Y22

`

´

2
β

2
n2 ` 2

´

1´
β

2

¯

n
¯

Y2
11
qY2

12,

xp3pλqp1pλqyβ,n “ 3
β

2
n2 ` 3

´

1´
β

2

¯

n,

Pp3,1q “

´

3
β

2
n2 ` 3

´

1´
β

2

¯

n
¯

Y2
11
qY12,

Pp1,3q “

´

3
β

2
n2 ` 3

´

1´
β

2

¯

n
¯

Y11
qY12Y22,

xp4pλqyβ,n “ 2
β2

4
n3 ` 5

β

2

´

1´
β

2

¯

n2 `

´β

2
` 3

´

1´
β

2

¯2¯

n,

Pp4q “

´

2
β2

4
n3 ` 5

β

2

´

1´
β

2

¯

n2 `

´β

2
` 3

´

1´
β

2

¯2¯

n
¯

Y2
11,

xp3pλq
2yβ,n “ 12

β2

4
n3 ` 27

β

2

´

1´
β

2

¯

n2 `

´

3
β

2
` 15

´

1´
β

2

¯2¯

n,

Pp3,3q “ 9
´β2

4
n3 ` 2

β

2

´

1´
β

2

¯

n2 `

´

1´
β

2

¯2

n
¯

Y2
11
qY12Y22

`3
´β2

4
n3 ` 3

β

2

´

1´
β

2

¯

n2 `

´β

2
` 2

´

1´
β

2

¯2¯

n
¯

Y3
11
qY3

12.
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