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Averaging in the case of multiple invariant measures
for the fast system
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Abstract

We consider the averaging principle for deterministic and stochastic systems with a
fast stochastic component (family of continuous time Markov chains depending on the
state of the system as a parameter). We show that, due to the nontrivial structure of
the simplex of invariant probability measures of the chains, the limiting system should
be considered on a graph with certain gluing conditions at the vertices of the graph.
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1 Introduction

Consider the d-dimensional continuous stochastic process zεt satisfying the equation

dzεt = v(ξεt , z
ε
t )dt+ κdWt, 0 < ε� 1. (1.1)

We assume that v is sufficiently smooth, and ξεt = ξt/ε, where ξt is a stationary process
with sufficiently good mixing properties, such as a non-degenerate diffusion on a compact
manifold or a continuous time Markov chain on a finite state space (we consider the
latter case in this paper). The Wiener process Wt is independent of ξεt . The coefficient κ
is non-negative.

Put v̄(z) = Ev(ξt, z). Then (see, for example, [9] Section 7.2)

zεt → z̄t, as ε ↓ 0, (1.2)

(convergence, in distribution, of the processes), where z̄t is the solution of the equation

dz̄t = v̄(z̄t)dt+ κdWt (1.3)
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Averaging in the case of multiple invariant measures for the fast system

with the same initial condition as zεt . The convergence of zεt to z̄t is preserved if the
process ξt is not stationary but converges with probability one to a stationary ergodic
process ξ̃t. In this case, v̄(z) = Ev(ξ̃t, z). Moreover, the fast component ξεt in (1.1) can
depend on the slow component. In order to illustrate this point, let us focus on the
case when the fast motion is governed by a continuous time Markov chain Ξzt on the
finite state space {1, ..., n}. The transition rates for the chain Ξzt , which depends on the
parameter z ∈ Rd, will be denoted by qij(z) ≥ 0, 1 ≤ i, j ≤ n, i 6= j. Intuitively, the
slow motion zεt is governed, at short time scales, by (1.1) with ξεt = ξt/ε replaced by Ξzt/ε.
Yet, we cannot simply say that Ξzt/ε is the fast component of the process since z itself
evolves (although slowly) in time. The fast-slow system Xε

t = (ξεt , z
ε
t ) can be defined

constructively (as in Section 2) or by describing its generator. Namely, for 1 ≤ i ≤ n,
consider the operators

Liu(z) =
κ2

2
∆u(z) + v(i, z)∇u(z),

where u is a function defined on Rd. These operators would govern the evolution of the
slow component for the fixed value i of the fast component in the absence of the fast
motion. The second order term, the Laplacian in our case, could also be a more general
operator to allow for more general diffusion in the slow variable. To account for the fast
component, we define the operator

Aεf(i, z) =
1

ε

∑
j 6=i

qij(z)(f(j, z)− f(i, z))

+ Lif(i, z),

where f is a function on {1, ..., n}×Rd. This operator, with the properly specified domain,
is the generator of the process Xε

t = (ξεt , z
ε
t ).

If qij(z) > 0 whenever i 6= j, then the process Ξzt has a unique invariant distribution
µ(z) = (µ1(z), ..., µn(z)), and (1.2) holds with v̄(z) =

∑n
i=1 µi(z)v(i, z). Assume now

that there is a closed domain G with a smooth boundary such that the chain Ξzt is
ergodic for z /∈ G and has, say, two ergodic components R1 = {1, ...,m} and R2 =

{m + 1, ..., n} for z ∈ G. Thus the transitions between R1 and R2 are impossible while
zεt ∈ G. Then one can expect that, as long as zεt remains in G, it converges, as ε ↓ 0,
to the solution of (1.3) either with v̄(z) =

∑
i∈R1

µi(z)v(i, z)/
∑
i∈R1

µi(z) or with v̄(z) =∑
i∈R2

µi(z)v(i, z)/
∑
i∈R2

µi(z), depending on whether the fast component evolves in R1

or R2. Note that, while the invariant distribution is not determined uniquely for z ∈ G,
the above expressions for v̄ are.

The process zεt can go from G to Rd \G and vice versa in finite time. Therefore, in
order to define the limiting process, one should describe the behavior of the process
in an infinitesimal neighborhood of ∂G. The novelty of the current work is that, in the
presence of multiple invariant measures for the fast process, the limiting motion for
the slow component is (and needs to be) considered on a graph or an open book (if
d > 1), i.e., a more sophisticated space than the case of non-degenerate fast component,
where the limiting process lives on the Euclidean space. For simplicity, we will consider
the one-dimensional case, where the structure of the simplex of invariant probability
measures is already non-trivial.

The phase space of a fast-slow system with one-dimensional slow component is shown
in Figure 1. The slow motion takes place in the horizontal direction, with different lines
corresponding to the states of the fast variable. The region G = [0,∞) is where the fast
motion is not ergodic. The limiting motion for the slow variable takes place on the graph,
denoted by S, with one edge (negative semi-axis, denoted by I0) corresponding to the
region where the fast motion is ergodic and two edges (extending to the right, denoted
by I1 and I2) encoding the location of the slow component (horizontal direction) and
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Figure 1: The phase space of the fast-slow system and the corresponding graph. For
z ≥ 0, the chain Ξzt has two ergodic classes, R1 = {1, 2} and R2 = {3, 4, 5}. The point
z = 0 corresponds to the vertex O of the graph.

the ergodic component of the Markov chain (R1 or R2) corresponding to the number
of the edge. The behavior of the limiting process at the vertex will be specified by the
appropriate gluing condition.

Remark. The solutions of the Cauchy problem and of various initial-boundary problems
for PDE systems related to the operator Aε can be written as expectations of certain
functionals of the process Xε

t = (ξεt , z
ε
t ). This allows one to calculate the asymptotics

of solutions to those PDE problems using the results for the process Xε
t and vice versa.

One can also apply the probability results to certain non-linear PDE problems related
to the process. For example, certain problems for reaction-diffusion systems can be
considered in this way (compare with [4], Chapters 5-7).

Finally, we note that the problem considered in this paper can be viewed as a problem
concerning the long-time influence of small perturbations: the process X̃ε

t = Xε
εt starting

at (i, z) can be viewed as a small perturbation of the process X̃t whose first component
is Ξzt starting at i and the second component z ∈ Rd does not evolve in time.

A general approach to the study of the long-time influence of perturbations (see
[5], [6], [7]) is to consider the projection of Xε

t = X̃t/ε onto the simplex of invariant
probability measures of the unperturbed process. In the case when the unperturbed
process is X̃t, the set Merg of the extreme points of the simplex (ergodic invariant
measures) consists of the measures of the form µ(z)× δz (where z /∈ G and µ(z) is the
invariant measure for Ξzt ) and of the measures of the form µ1(z) × δz and µ2(z) × δz
(where z ∈ G and µ1(z), µ2(z) are invariant for Ξzt on R1 and R2, respectively). The
projection of a point (i, z), i ∈ {1, ..., n}, z ∈ Rd, from the phase space of Xε

t onto Merg

is µ(z) × δz (if z /∈ G), or µ1(z) × δz (if z ∈ G, i ∈ R1), or µ2(z) × δz (if z ∈ G, i ∈ R2).
Note that Merg can be parametrized by the set of pairs (l, z), z ∈ Rd, l ∈ {1, 2} if z ∈ G
and l = 0 if z /∈ G. The main result of the paper is that the projection of Xε

t onto Merg

converges to a Markov process on Merg. In the example shown in Figure 1, the set Merg

can be identified with the graph S.

2 The fast-slow system

In this section, we will introduce the fast-slow system Xε
t = (ξεt , z

ε
t ). (Sometimes we

will write Xx,ε
t to indicate the dependence on the initial position x). The fast component

ξεt evolves as a Markov chain, whose transition rates depend on the slow variable. The
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slow component zεt solves an ODE or an SDE with the right hand side that depends on
the fast variable.

In order to define the fast-slow system, we first introduce a family of Markov chains
that, roughly speaking, governs the fast motion (and then we will take the evolution of
the slow variable into account). Namely, let qij(z) ≥ 0, 1 ≤ i, j ≤ n, i 6= j be a family of
transition rates for a Markov chain Ξzt that depends on the parameter z ∈ R. Each of the
functions qij(z) is assumed to be continuous.

We assume that Ξzt is ergodic for each z < 0, while there are two ergodic classes
R1 = {1, ...,m} and R2 = {m + 1, ..., n} for z > 0. More precisely, we assume that
qij(z) > 0 for z < 0, while, for z ≥ 0, qij(z) > 0 if and only if i, j ∈ R1 or i, j ∈ R2.

Moreover, we assume that, when z ↑ 0, the quantities qij(z)− qij(0), i 6= j, are of the
same order, namely, there are positive constants qij , a function ϕ : (−∞, 0)→ (0,∞) with
limz↑0 ϕ(z) = 0 and functions βij : (−∞, 0)→ R with limz↑0 βij(z) = 0 such that

qij(z)− qij(0) = qijϕ(z)(1 + βij(z)), z < 0, i 6= j. (2.1)

This condition is needed in order to control the transitions of the fast component between
R1 and R2 as the slow component approaches the origin from the left. Note that, for
z ≥ 0, by the above assumptions, we simply have qij(z) = qij(0) = 0 if i ∈ R1, j ∈ R2 or
i ∈ R2, j ∈ R1, and limz↓0 qij(z) = qij(0) > 0 if i ∈ R1, j ∈ R1 or i ∈ R2, j ∈ R2.

Let µi(z), 1 ≤ i ≤ n, z ∈ R, be the invariant distribution of the Markov chain Ξzt . It is
determined uniquely for z < 0. The following lemma will be important to understand the
distribution of the fast component of the process as the slow component approaches the
point z = 0 from the left.

Lemma 2.1. Under the above assumptions, there exist the limits πi = limz↑0 µi(z) > 0.

Proof. The asymptotic behavior of the invariant distributions of parameter-dependent
Markov chains, such as Ξzt with z ↑ 0, was considered in [8]. (The paper [8] concerned
the meta-stable distributions for the chains, and evaluating the limit of the invariant
distribution was the first step). The existence of the limit for the invariant distributions
was shown under the asymptotic regularity condition, which, in our case, means that for
each i 6= j and k 6= l, the following finite or infinite limit should exist:

lim
z↑0

(qij(z)/qkl(z)) ∈ [0,∞]. (2.2)

The existence of the limits in (2.2) follows from (2.1). Moreover, from the fact that the
limit in (2.2) is positive and finite for i, l ∈ R1 and j, k ∈ R2 (i.e., that transition rates
from R1 to R2 are of the same order as those from R2 to R1), it easily follows that πi > 0

for each i.

Observe that the invariant distribution for Ξzt is not determined uniquely for z ≥ 0

since there are two ergodic classes for the Markov chain. However, we can select the
unique invariant distribution such that µi(z) are continuous functions on R. Define

π1 =
∑
i∈R1

πi, π2 =
∑
i∈R2

πi. (2.3)

Let v(i, z), 1 ≤ i ≤ n, z ∈ R, be Lipschitz-continuous in z for each i. Define

v0(z) =

n∑
i=1

v(i, z)µi(z), z < 0,

v1(z) =
1

π1

∑
i∈R1

v(i, z)µi(z), v2(z) =
1

π2

∑
i∈R2

v(i, z)µi(z), z ≥ 0.
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In the case when κ = 0, we assume that

v(i, z) > 0 (2.4)

for each (i, z). In particular, v0(z) > 0 for z < 0 and v1(z), v2(z) > 0 for z ≥ 0. This will
imply that the limiting process (defined in Section 3), which behaves deterministically,
except when it hits the origin, will always move from the left to the right. Assumption (2.4)
could be relaxed, resulting in a slightly more general statement, but then we would not
have the explicit expression describing the behavior of the limiting process at the origin
(formula (3.1)). It is not difficult to see from Theorem 5.1 that the limiting process will
be purely deterministic unless v1(0), v2(0) > 0. Assumption (2.4) is not required if there
is diffusion in the slow variable (case κ = 1 below).

Let us make a simplifying assumption about the behavior of the coefficients at infinity.
Namely, we assume that there is C > 0 such that qij(z) = qlij for z ≤ −C and qij(z) = qrij
for z ≥ C, where qlij , q

r
ij do not depend on z. Moreover, we assume that v(i, z) = v∞

for some v∞ for all 1 ≤ i ≤ n, |z| ≥ C. These assumptions can be relaxed significantly,
however, this will not concern us since we would like to focus on the behavior of the
process near z = 0. The slow component zεt is assumed to be continuous and to satisfy

dzεt = v(ξεt , z
ε
t )dt+ κdWt

on each time interval where ξεt is constant. Here κ = 0 or κ = 1 (we will consider two
cases resulting in two different types of the limiting behavior). The fast component,
roughly speaking, evolves as the Markov chain Ξzt (with z = zεt ), sped up by the factor
1/ε. However, since z itself evolves in time, we need a more formal definition of the
process Xx,ε

t = (ξx,εt , zx,εt ). Namely, the process starts at x = (i, z) ∈M , and moves along
the z-axis during a random time interval [0, σ). For t ∈ [0, σ), zx,εt solves

dzt = v(i, zt)dt+ κdWt.

At a random time σ, the process Xx,ε
t jumps to a random location (j, zσ). The distribution

of σ is determined as follows. Let Qi(z) =
∑
j 6=i qij(z) and r(t) = ε−1

∫ t
0
Qi(zs)ds. Then

σ ≥ 0 is such that the distribution of r(σ) is exponential with parameter one. Given a
value of σ, the probability that Xx,ε

t jumps to (j, zσ) is qij(σ)/Qi(σ).
Having identified the location of the process at time σ, we treat it as a new starting

point, and select a new (random) time interval for the jump-free motion of the process
independently of the past. The construction then continues inductively. It is clear that
the process just described is a RCLL (right continuous with left limits) Markov process.

The process Xx,ε
t = (ξx,εt , zx,εt ) could be defined, equivalently, through its generator,

using the Hille-Yosida theorem. We discuss the Hille-Yosida theorem and the generator
of Xx,ε

t next, since, in any case, a similar construction will be used to define the limiting
process when κ = 1.

Let M be a separable locally compact metric space, C0(M) be the space of continuous
functions on M that tend to zero at infinity (can be made arbitrarily close to zero outside
a sufficiently large compact). The space C0(M) is endowed with the supremum norm.
Let P (t, x,B) be a Markov transition function (a priori not assumed to be conservative)
on M . For f ∈ C0(M), let

(Ttf)(x) =

∫
Td
f(x′)P (t, x, dx′), t ≥ 0.

We will say that P satisfies condition C0 if Ttf ∈ C0(M) for each f ∈ C0(M). Recall that P
is said to be stochastically continuous if limt↓0 P (t, x, U) = 1 for each open neighborhood
U of x. The Hille-Yosida Theorem can be found in various textbooks (see, e.g., [3], [11]).
The statement in the form most convenient for us can be found in [10], page 365.
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Theorem 2.2. [Hille-Yosida]. Suppose that a linear operator A on C0(M) has the follow-
ing properties:

(a) The domain D(A) is dense in C0(M);
(b) If f ∈ D(A), f(x0) ≥ 0 and f(x0) ≥ f(x) for all x ∈M , then Af(x0) ≤ 0.
(c) For every ψ ∈ C0(M), and every λ > 0, there exists a solution f ∈ D(A) of the

equation λf −Af = ψ.
Then the operator A is the infinitesimal generator of a semi-group Tt, t ≥ 0, on C0(M)

that is defined by a stochastically continuous Markov transition function satisfying
condition C0. The transition function with such properties is determined uniquely.

The Hille-Yosida theorem can be applied to the space M = {1, ..., n}×R. Let us define
the linear operator Aε in C0(M). In the case κ = 0, the domain of Aε, denoted by D(Aε),
consists of all functions f ∈ C0(M) such that f ′(i, ·) ∈ C0(R) for each i. For f ∈ D(Aε),
we define

Aεf(i, z) =
1

ε

∑
j 6=i

qij(z)f(j, z)−Qi(z)f(i, z)

+ v(i, z)f ′(i, z).

In the case when κ = 1, the domain of Aε consists of all functions f ∈ C0(M) such
that 1

2f
′′(i, ·) + v(i, ·)f ′(i, ·) ∈ C0(R) for each i. For f ∈ D(Aε), we define

Aεf(i, z) =
1

ε

∑
j 6=i

qij(z)f(j, z)−Qi(z)f(i, z)

+
1

2
f ′′(i, z) + v(i, z)f ′(i, z).

In both cases, it is possible to show that the conditions of the Hille-Yosida theorem
are satisfied. (We skip details since, in any case, the process was already defined
constructively.) Let P ε(t, x, dx′) be the corresponding Markov transition function, and
T εt , t ≥ 0, be the corresponding semi-group on C0(M). Take a sequence of functions
fn ∈ D(Aε) with values in [0, 1] with compact support such that fn(i, z) = 1 for |z| ≤ n,
‖Aεfn‖C0 ≤ 1/n. The existence of such a sequence is easily justified once we recall that
the coefficients of Aε are constant for sufficiently large |z|.

Since Aε is the infinitesimal generator of the semi-group T εt , we have (see Theorem
I.1 of [11]), for f ∈ D(Aε),

T εt f − f =

∫ t

0

T εsA
εfds. (2.5)

Therefore,

T εt fn(x)− fn(x) =

∫ t

0

T εsA
εfn(x)ds→ 0 as n→∞,

which implies that T εt fn(x) → 1, and therefore P ε(t, x, ·) is a probability measure. Let
Xx,ε
t = (ξx,εt , zx,εt ), x = (i, z) ∈M , be the corresponding Markov family. A modification of

Xx,ε
t can be chosen with trajectories that are right continuous and have left limits ([10],

page 348).
Rewrite (2.5) as

Ef(Xx,ε
t )− f(x) = E

∫ t

0

(Aεf)(Xx,ε
s )ds.

Since Xx,ε
t is a RCLL Markov process with continuous trajectories, for each x ∈M , the

process f(Xx,ε
t )− f(x)−

∫ t
0
(Aεf)(Xx,ε

s )ds is a RCLL martingale, and, for each stopping
time τ with Eτ <∞, we get

Ef(Xx,ε
τ )− f(x) = E

∫ τ

0

(Aεf)(Xx,ε
s )ds. (2.6)
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Recall that we earlier defined the process Xx,ε
t constructively, without referring

to the Hille-Yosida theorem. It is easily verified directly that the generator of this
process coincides with Aε on D(Aε). The Markov transition function of the process is
stochastically continuous and satisfies condition C0. At the same time, by (2.5), the
semigroup is defined uniquely by the values of the generator on a dense set, and thus the
generator of the constructively defined process is Aε (rather than a non-trivial extension).

3 The limiting process

Let us describe the appropriate space and the limiting process on it for the fast-slow
system Xx,ε

t = (ξx,εt , zx,εt ). Let I0 = (−∞, 0], I1 = {1} × [0,∞), I2 = {2} × [0,∞). These
are three half-lines, with I1 and I2 distinguished by a label. We will identify the ends of
I0, I1, and I2, thus obtaining a graph, denoted by S, with three semi-infinite edges with
the common vertex, which will be denoted O. Each point y = (l, z) ∈ S is determined by
the label of the edge l ∈ {0, 1, 2} and the coordinate z, where z ∈ (−∞, 0] for l = 0 and
z ∈ [0,∞) for l = 1, 2.

First, consider the case when there is no diffusion in the slow variable (κ = 0). The
process Y yt starting at y = (l, z) ∈ S will move deterministically with the variable speed
v0 on I0, v1 on I1, and v2 on I2. For y ∈ I0, we still need to describe the behavior of Y yt
once the process reaches O. The behavior at O is random, the process proceeds to I1
and I2 with probabilities

p1 =

∑
i∈R1

πivi∑
i∈R1

πivi +
∑
i∈R2

πivi
and p2 =

∑
i∈R2

πivi∑
i∈R1

πivi +
∑
i∈R2

πivi
(3.1)

respectively, where vi = v(i, 0).
Next, consider the case with diffusion (κ = 1). The process Y yt is a diffusion inside

each of the edges. However, a gluing condition is needed to describe the behavior of
the process once it reaches the vertex. Thus, it is most convenient to define the process
via its generator. The domain of A, denoted by D(A), consists of all functions f ∈ C0(S)

such that:
(a) 1

2f
′′(l, ·) + vl(·)f ′(l, ·) ∈ C0(S), i.e., the differential operator can be applied to f

inside each of the edges, and the resulting function can be extended to the vertex O, so
that it becomes an element of C0(S).

(b) There are one-sided derivatives f ′(l, 0) and

f ′(0, 0) = π1f
′(1, 0) + π2f

′(2, 0). (3.2)

It is not difficult to verify that the conditions of the Hille-Yosida theorem are satisfied
and that the resulting Markov transition function, denoted by P (t, x,B), is a probability
measure, as a function of B. Let Y yt , y ∈ S, be the corresponding Markov family and Tt
be the corresponding semigroup. In order to show that a modification with continuous
trajectories exists, it is enough to check that limt↓0 P (t, x,B)/t = 0 for each closed set B
that doesn’t contain x (Theorem I.5 of [11], see also [1]). Let f ∈ D(A) be a non-negative
function that is equal to one on B and whose support doesn’t contain x. Then

lim
t↓0

P (t, x,B)

t
≤ lim

t↓0

(Ttf)(x)− f(x)

t
= Af(x) = 0,

as required. Thus Y yt can be assumed to have continuous trajectories.

4 A lemma on convergence of processes

The next lemma can be used to show convergence of families of parameter-dependent
processes. We formulate it in a general setting. Consider a metric space M and a Markov
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family Xx,ε
t , x ∈M , of processes that depend on a parameter ε > 0. We also consider a

continuous mapping h : M → S from M to a locally compact separable metric space S
and define the processes Y x,εt = h(Xx,ε

t ), x ∈M , ε > 0.
The motivation to introduce the latter family of processes comes from our desire to

study the limiting behavior of Xx,ε
t , as ε ↓ 0. However, the space M is too large for our

purposes, i.e., the natural state space for the limiting process consists of equivalence
classes in M rather than of individual points. Thus, Y x,εt will capture reduced dynamics,
where meaningful limiting behavior can be observed.

Note that while convergence to Markov processes on S as ε ↓ 0 will be established,
the processes Y x,εt need not be Markov for fixed ε > 0. The main point of the lemma is
that, in order to demonstrate the convergence of Y x,εt to a limiting process, it is sufficient
to check that for small ε the processes nearly satisfy the relation (4.1), which is similar
to the martingale problem but with the ordinary expectation rather than the conditional
expectation.

Lemma 4.1. Let h : M → S be a continuous mapping from a metric space M to a
locally compact separable metric space S. Let Xx,ε

t , x ∈ M , be a Markov family on
M that depends on a parameter ε > 0. Suppose that the processes Y x,εt = h(Xx,ε

t ),
x ∈M , ε > 0, have continuous trajectories. Let Y yt , y ∈ S, be a Markov family on S with
continuous trajectories whose semigroup Tt, t ≥ 0, preserves the space C0(S). (This,
together with the continuity of trajectories, implies that Tt is a Feller semi-group, i.e.,
Ttf , viewed as a function of t, is a right-continuous from [0,∞) to C0(S) for each f .) Let
A : D(A) → C0(S) denote the infinitesimal generator of this family, where D(A) is the
domain of the generator. Let Ψ be a dense linear subspace of C0(S) and D be a linear
subspace of D(A), and suppose that Ψ and D have the following properties:

(1) There is λ > 0 such that for each f ∈ Ψ the equation λF − AF = f has a
solution F ∈ D.

(2) For each T > 0, each f ∈ D, and each compact K ⊆ S,

lim
ε↓0

E(f(Y x,εT )− f(Y x,ε0 )−
∫ T

0

Af(Y x,εt )dt) = 0, (4.1)

uniformly in x ∈ h−1(K). Suppose that the family of measures on C([0,∞), S) induced
by the processes Y x,εt , ε > 0, is tight for each x ∈M .

Then, for each x ∈M , the measures induced by the processes Y x,εt converge weakly,

as ε ↓ 0, to the measure induced by the process Y h(x)t .

Proof. Fix x ∈M . Since the family of measures on C([0,∞), S) induced by the processes
Y x,εt , ε > 0, is tight, we can find a process Zxt with continuous trajectories and a sequence
εn ↓ 0 such that Y x,εnt converge to Zxt in distribution as n → ∞. The desired result
will immediately follow if we demonstrate that the distribution of Zxt coincides with the

distribution of Y h(x)t (and thus does not depend on the choice of the sequence εn). We
will show that Zxt is a solution of the martingale problem for (A|D, h(x)), i.e., for each
T2 > T1 ≥ 0 and f ∈ D,

E(f(ZxT2
)− f(ZxT1

)−
∫ T2

T1

Af(Zxt )dt|FZ
x

T1
) = 0, Zx0 = h(x). (4.2)

First, however, let us discuss the uniqueness for solutions of the martingale problem.
We claim that:

(a) D is dense in C0(S).
(b) Range(λ−A|D) is dense in C0(S).
(c) For each pair of measures µ1, µ2 on S, the equality

∫
S
fdµ1 =

∫
S
fdµ2 for all

f ∈ C0(S) implies that µ1 = µ2.
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Averaging in the case of multiple invariant measures for the fast system

To demonstrate (a), take an arbitrary δ > 0 and F0 ∈ D(A). Let g0 = λF0 −AF0, and
take g′ ∈ Ψ such that ‖g′− g0‖ ≤ λδ. Let F ′ ∈ D be such that λF ′−AF ′ = g′. Then, since
A is the generator of a strongly continuous semigroup on C0(S), from the Hille-Yosida
theorem it follows that ‖F ′ − F0‖ ≤ ‖g′ − g0‖/λ ≤ δ. This implies (a) since D(A) is dense
in C0(S). Note that (b) follows from the existence of a solution F ∈ D to λF−AF = f ∈ Ψ

and the density of Ψ, while (c) is obvious. The validity of (a)-(c) is enough to conclude
that the distribution on C([0,∞), S) of a process with continuous paths satisfying (4.2) is
uniquely determined (Theorem 4.1, Chapter 4 in [2]).

Note that (4.2) is satisfied if Zxt is replaced by Y h(x)t since D ⊆ D(A) and A the the

generator of the family Y yt , y ∈ S. Therefore, Zxt and Y h(x)t have the same distribution if
(4.2) holds. It remains to prove (4.2).

Note that Zxt is a solution of the martingale problem for (A|D, h(x)) if and only if

E

(
(

k∏
i=1

gi(Z
x
ti))(f(ZxT2

)− f(ZxT1
)−

∫ T2

T1

Af(Zxt )dt)

)
= 0, Zx0 = h(x),

whenever f ∈ D, 0 ≤ t1 < ... < tk ≤ T1, and g1, ..., gk ∈ C0(S). Since Y x,εnt = h(Xx,εn
t )

converge to Zxt in distribution, we have

E

(
(

k∏
i=1

gi(Z
x
ti))(f(ZxT2

)− f(ZxT1
)−

∫ T2

T1

Af(Zxt )dt)

)
=

lim
n→∞

E

(
(

k∏
i=1

gi(h(Xx,εn
ti )))(f(h(Xx,εn

T2
))− f(h(Xx,εn

T1
))−

∫ T2

T1

Af(h(Xx,εn
t ))dt)

)
=

lim
n→∞

E

(
(

k∏
i=1

gi(h(Xx,εn
ti )))E(f(h(Xx,εn

T2
))− f(h(Xx,εn

T1
))−

∫ T2

T1

Af(h(Xx,εn
t ))dt|FX

x,εn

T1
)

)
.

By the Markov property of the family Xx,εn
t ,

E(f(h(Xx,εn
T2

))− f(h(Xx,εn
T1

))−
∫ T2

T1

Af(h(Xx,εn
t ))dt|FX

x,εn

T1
) =

E(f(h(Xx′,εn
T2−T1

))− f(h(Xx′,εn
0 ))−

∫ T2−T1

0

Af(h(Xx′,εn
t ))dt)|x′=Xx,εnT1

,

which tends to zero in distribution, as follows from (4.1) and from the tightness of the
sequence of random variables Xx,εn

T1
. Therefore, using the boundedness of f , Af , and

g1, ..., gk, we conclude that

E

(
(

k∏
i=1

gi(Z
x
ti))(f(ZxT2

)− f(ZxT1
)−

∫ T2

T1

Af(Zxt )dt)

)
= 0.

Finally, Zx0 = h(x) since Y x,εn0 = h(Xx,εn
0 ) = h(x) for all n.

5 Convergence of the fast-slow process

5.1 The case with no diffusion

Consider first a simplified version of the problem: assume that the fast-slow system
Xx,ε
t = (ξx,εt , zx,εt ) is defined as in Section 2, but qij(z) > 0 for i 6= j (and thus Ξzt is

ergodic) for each z ∈ R. In this case, the fast Markov chain has a unique invariant
distribution, which will be denoted by µi(z), 1 ≤ i ≤ n, for each z ∈ R. Define Y yt , y ∈ R,
to be the deterministic motion on the real line with the velocity v(y) =

∑n
i=1 v(i, z)µi(z),
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z ∈ R. The domain D(A) of its generator A consists of all functions f ∈ C0(R) such
that f ′ ∈ C0(R), while Af(y) = v(y)f ′(y). Let h : M → R be the projection h(i, z) = z.
The following lemma is a standard averaging result. It can be used to describe the
behavior of the fast-slow system when the slow component is outside of an arbitrarily
small neighborhood of the origin.

Lemma 5.1. Suppose that qij > 0 for i 6= j, z ∈ R. For each x ∈ M , the measures
induced by the processes Y x,εt = h(Xx,ε

t ) on R converge weakly, as ε ↓ 0, to the measure

induced by the process Y h(x)t .

Proof. We apply Lemma 4.1 with S = R, Ψ = D = D(A). Thus we need to justify (4.1)
for f ∈ D(A). Define f̃(i, z) = f(z), 1 ≤ i ≤ n. Using (2.6) (which is still valid in this
simplified case) applied to f̃ with τ = T , we can write

E

(
f(Y x,εT )− f(Y x,ε0 )−

∫ T

0

Af(Y x,εt )dt

)
=

E

(
f(Y x,εT )− f(Y x,ε0 )−

∫ T

0

Af(Y x,εt )dt

)
− E

(
f̃(Xx,ε

T )− f̃(x)−
∫ T

0

Aεf̃(Xx,ε
t )dt

)
=

E

∫ T

0

(
Aεf̃(Xx,ε

t )−Af(Y x,εt )
)
dt = E

∫ T

0

(v(Xx,ε
t )− v(zx,εt )) f ′(zx,εt )dt.

It easily follows from the explicit construction of Xx,ε
t (Section 2) that the expression in

the right hand side tends to zero uniformly in x.

Now let us consider the original situation with two ergodic classes for the Markov
chain when z ≥ 0. Recall that S is now a graph with three semi-infinite edges, I0, I1, and
I2, with the common vertex O. The process Y yt on S has been defined in Section 3 (the
case κ = 0). The motion is deterministic on each of the edges, while the behavior at O is
random – the process proceeds to I1 or I2 with the prescribed probabilities p1 and p2,
respectively.

Let h be the mapping of M = {1, ..., n} ×R to S defined as follows:

h(i, z) =


(0, z), z ≤ 0,

(1, z), i ∈ R1, z ≥ 0,

(2, z), i ∈ R2, z ≥ 0.

(5.1)

Theorem 5.2. Suppose that κ = 0 and that the assumptions made in Section 2 are
satisfied (in particular, the Markov chain Ξzt has two ergodic classes for each z ≥ 0).
For each x ∈M , the measures induced by the processes Y x,εt = h(Xx,ε

t ) on S converge

weakly, as ε ↓ 0, to the measure induced by the process Y h(x)t .

Proof. Lemma 4.1 is not directly applicable now because the semigroup that corresponds
to the process Y yt does not preserve C0(S). However, outside of an arbitrarily small

neighborhood of the set h−1(O), the limiting motion of Y x,εt is given by Y h(x)t , as follows
from Lemma 5.1. To complete the proof, we need to show that if Xx,ε

t starts slightly to
the left of h−1(O), then it quickly moves to the right of h−1(O) and ξx,εt ends up in the
first ergodic class with probability close to p1 (defined in (3.1)).

More precisely, let
τx,εδ = inf{t ≥ 0 : zx,εt = δ}.

It is sufficient to show that for each η > 0 there is δ0 > 0 such that each δ ∈ (0, δ0] there
is ε0 > 0 such that for ε ∈ (0, ε0], we have

Eτx,εδ < η, (5.2)

|P(ξx,ε
τx,εδ
∈ R1)− p1| < η, (5.3)
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whenever x = (i,−δ). From the explicit construction of Xx,ε
t (Section 2), it is clear

that zx,εt increases, while on [−δ, δ], with the speed that is bounded from below by
infi,z∈[−δ,δ] v(i, z) > 0. This implies (5.2). To prove (5.3), we define fε(i, z), z ∈ [−δ, δ], as
the solution of the system of ODEs

dfε(i, z)

dz
=

(v(i, z))−1

ε

Qi(z)fε(i, z)−∑
j 6=i

qij(z)fε(j, z)


with the terminal condition

fε(i, δ) = fi :=

{
1, i ∈ R1,

0, i ∈ R2.

We extend fε to be defined on M so that fε ∈ D(Aε). Observe that, by construction,
Aεfε(i, z) = 0 when z ∈ [−δ, δ]. Therefore, applying (2.6) with τ = τx,εδ and x = (i,−δ),
we obtain

P(ξx,ε
τx,εδ
∈ R1) = fε(i,−δ).

Thus it remains to analyze the asymptotics of the solution to the ODE. Let N(z) be
the matrix, whose diagonal elements are Nii(z) = −(v(i, z))−1Qi(z) and off-diagonal
elements are Nij(z) = (v(i, z))−1qij(z). Let

Nδ =
1

2δ

∫ δ

−δ
N(z)dz.

Solving the linear ODE, we get

fε(·,−δ) = exp(
2δ

ε
Nδ)f .

When δ is small, Nδ is a small perturbation of the matrix N(0). Namely, let

Hδ = Nδ −N(0). (5.4)

All the entries of Hδ tend to zero when δ ↓ 0. Observe that all the off-diagonal entries
of Nδ are positive for each δ, and the sum of elements in each row is equal to zero.
Therefore, zero is the simple eigenvalue of Nδ with the right eigenvector equal to
e = (1, ..., 1)T , the real parts of the other eigenvalues are negative.

Let Πδ
e(f) be the projection of f onto e along the space spanned by the remaining

eigenvectors (and generalized eigenvectors) of the matrix Nδ. Then

lim
ε↓0

fε(i,−δ) = (Πδ
e(f))i

for each i, and it remains to show that (Πδ
e(f))i (which does not depend on i) is close to

p1 for small δ.
Observe that zero is the top eigenvalue of N(0) with two linearly independent right

eigenvectors e and f and two linearly independent left eigenvectors:

w1
i =

{
πivi, i ∈ R1,

0, i ∈ R2,

w2
i =

{
0, i ∈ R1,

πivi, i ∈ R2,

where vi = v(i, 0) and the quantities πi were introduced in Lemma 2.1. Let λδ1 be
the eigenvalue of Nδ with the second-largest real part (the top eigenvalue is zero).
It is determined uniquely for small δ. Let gδ be the corresponding right eigenvector
(determined up to a constant factor).
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Lemma 5.3. The vector gδ can be represented as

gδ = e + αδf + rδ, (5.5)

where rδ belongs to the space spanned by the eigenvectors (and generalized eigenvec-
tors) of N(0), other than e and f . The coefficient αδ is bounded away from zero, and rδ

tends to zero when δ ↓ 0.

Proof. Recall that the right eigenspace corresponding to the top eigenvalue (equal
to zero) of the matrix N(0) is two-dimensional (spanned by e and f ). For δ > 0, the
perturbed matrix has one top eigenvalue (equal to zero) and another that is close to zero.
The space spanned by the corresponding eigenvectors is close to the space spanned by e

and f . Therefore, gδ can be represented as a linear combination of e, f , and a correction
term that is much smaller than the norm of gδ. We only need to show that the coefficients
at e and f in this representation are of the same order when δ is small. The statements
about the asymptotic behavior of the eigenvectors used below easily follow from the
block-diagonal structure of the matrix N(0).

Let i1(δ) be such that |gδi1(δ)| = max1≤i≤n |gδi |. Assume, for now, that i1(δ) ∈ R1 for all

sufficiently small δ. Then, since Nδ is a small perturbation of N(0) and λδ1 → 0 as δ ↓ 0,
Nδgδ = λδ1g

δ easily implies that gδi /g
δ
i1(δ)

→ 1 as δ ↓ 0 for all i ∈ R1.

Let w̃δ be the normalized left eigenvector for Nδ with eigenvalue zero. From w̃δNδ =

0 and Nδgδ = λδ1g
δ it follows that 〈w̃δ,gδ〉 = 0. Let i2(δ) be such that gδi2(δ) = maxi∈R2 |gδi |.

Observe that w̃δ
i → w1

i for i ∈ R1, and w̃δ
i → w2

i for i ∈ R2. Therefore,

c1|gδi1(δ)| ≤ |g
δ
i2 | ≤ c2|g

δ
i1(δ)
| (5.6)

for some positive constants c1 and c2. As above, gδi /g
δ
i2(δ)

→ 1 as δ ↓ 0 for all i ∈ R2.

From the facts that 〈w̃δ,gδ〉 = 0, w̃δ
i → w1

i for i ∈ R1, and w̃δ
i → w2

i for i ∈ R2, it follows
that gδi , i ∈ R1, are of the opposite sign from gδi , i ∈ R2.

The vector gδ can be represented as a sum of three components, gδ = aδ + bδ + cδ,
where aδ is a multiple of e, bδ is a multiple of f , and cδ is in the space spanned by the
eigenvectors (and generalized eigenvectors) of N(0), other than e and f . Observe that
‖cδ‖/‖gδ‖ → 0 as δ ↓ 0 since e and f span the eigenspace corresponding to the top
eigenvalue of N(0) and gδ belongs to a small perturbation of that space. Moreover, from
(5.6) and the fact that gδi , i ∈ R1, and gδi , i ∈ R2, are of the opposite sign, it follows
that ‖aδ‖/‖bδ‖ is bounded from above and below. Therefore, (5.5) is possible with αδ

bounded away from zero and infinity.
Finally, it remains to note that our condition i1(δ) ∈ R1 does not lead to any loss of

generality.

Since gδ is the eigenvector of Nδ, we get

(N(0) +Hδ)(e + αδf + rδ) = λδ1(e + αδf + rδ).

Taking the scalar product with w1 and w2 on both sides and noting that Hδe = 0, we
obtain

αδ〈w1, Hδf〉+ 〈w1, Hδrδ〉 = λδ1〈w1, e + αδf〉,
αδ〈w2, Hδf〉+ 〈w2, Hδrδ〉 = λδ1〈w2, e + αδf〉.

Therefore,(
αδ〈w1, Hδf〉+ 〈w1, Hδrδ〉

)
〈w2, e + αδf〉 =

(
αδ〈w2, Hδf〉+ 〈w2, Hδrδ〉

)
〈w1, e + αδf〉.
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Observe that

〈w1, Hδrδ〉 = o(αδ〈w1, Hδf〉), 〈w2, Hδrδ〉 = o(αδ〈w2, Hδf〉), as δ ↓ 0,

and therefore,

lim
δ↓0

〈w1, Hδf〉〈w2, e + αδf〉
〈w2, Hδf〉〈w1, e + αδf〉

= 1.

Solving for αδ (using the definition of Hδ from (5.4) and of qij from (2.1)), we get

lim
δ↓0

αδ = −1−

(∑
i∈R1

∑
j∈R2

qijπi

) (∑
i∈R2

w2
i

)(∑
i∈R2

∑
j∈R1

qijπi

) (∑
i∈R1

w1
i

) = −1−
∑
i∈R2

w2
i∑

i∈R1
w1
i

.

From (5.5), it follows that

lim
δ↓0

(Πδ
e(f))i = −1/ lim

δ↓0
αδ =

∑
i∈R1

w1
i∑

i∈R1
w1
i +

∑
i∈R2

w2
i

= p1 ,

as required (see the definition of p1 from (3.1)).

5.2 The case with diffusion

Now we consider the fast-slow system Xx,ε
t = (ξx,εt , zx,εt ) defined in Section 2, with

κ = 1. The filtration generated by the process will be denoted by Fx,εt . The process Y yt
on the graph S is now a diffusion (defined in Section 3 via its generator). The mapping h
is the same as in (5.1).

Theorem 5.4. Suppose that κ = 1 and that the assumptions made in Section 2 are
satisfied (in particular, the Markov chain Ξzt has two ergodic classes for each z ≥ 0).
For each x ∈M , the measures induced by the processes Y x,εt = h(Xx,ε

t ) on S converge

weakly, as ε ↓ 0, to the measure induced by the process Y h(x)t .

Proof. Let T > 0, f ∈ D(A), and let K be a compact subset of S. It is clear that the
family of measures on C([0,∞), S) induced by the processes Y x,εt , ε > 0, is tight for each
x ∈M . Thus, by Lemma 4.1, it is sufficient to prove that, given η > 0, we have

|E(f(Y x,εT )− f(Y x,ε0 )−
∫ T

0

Af(Y x,εt )dt)| ≤ η,

for all x ∈ h−1(K) and all sufficiently small ε.
Define two sequences of stopping times:

σx,ε0 = 0; τx,εn = inf{t ≥ σn−1 : zx,εt = 0}, n ≥ 1; σx,εn = inf{t ≥ τn : |zx,εt | = δ}, n ≥ 1,

where δ > 0 will be selected later. Then

E

(
f(Y x,εT )− f(Y x,ε0 )−

∫ T

0

Af(Y x,εt )dt

)
=

E

∞∑
n=1

(
f(Y x,ε

τx,εn ∧T
)− f(Y x,ε

σx,εn−1∧T
)−

∫ τx,εn ∧T

σx,εn−1∧T
Af(Y x,εt )dt

)
+ (5.7)

E

∞∑
n=1

(
f(Y x,ε

σx,εn ∧T
)− f(Y x,ε

τx,εn ∧T
)−

∫ σx,εn ∧T

τx,εn ∧T
Af(Y x,εt )dt

)
.

In order to control the number of terms in the sums above, we will need the following
lemma.
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Lemma 5.5. There is c > 0 such that, for all sufficiently small δ,

P(σx,εn ≤ T ) ≤ exp(−cδn), x ∈M, n ≥ 2. (5.8)

Proof. Let At be an auxiliary diffusion process, dAt = adt + dWt, A0 = −δ, where
a = supi,z |v(i, z)|. Let τ̃ = inf{t : At = 0}. Then P(τ̃ ≤ T ) ≤ exp(−cδ) for some c > 0. If
τ̃k, k ≥ 1, is a sequence of independent random variables distributed as τ̃ , then

P(τ̃1 + ...+ τ̃n ≤ T ) ≤ exp(−cδn). (5.9)

From the definition of the stopping times and the process Xx,ε
t it follows that

P(τx,εn − σx,εn−1 > s|Fx,ε
σx,εn−1

) ≥ P(τ̃ > s)

for each n ≥ 2 and s ≥ 0. Therefore, estimate (5.8), with τx,εn+1 instead of σx,εn , follows
from (5.9) and the strong Markov property. Thus, the original formula (5.8) also holds,
with a different constant c.

Let

α(x, n) = E

(
f(Y x,ε

τx,εn ∧T
)− f(Y x,ε

σx,εn−1∧T
)−

∫ τx,εn ∧T

σx,εn−1∧T
Af(Y x,εt )dt|Fx,ε

σx,εn−1∧T

)
.

Observe that
lim
ε↓0

sup
x∈h−1(K)

sup
n≥1
|α(x, n)| = 0

uniformly in all the realizations of the randomness (which is present since we are taking
the conditional expectation). This is a standard averaging result for the fast-slow system
in the case of a single invariant measure for the fast motion. It easily follows from the
explicit construction of Xx,ε

t . Therefore, for the first expectation in (5.7), by Lemma 5.5,
we get

|E
∞∑
n=1

(
f(Y x,ε

τx,εn ∧T
)− f(Y x,ε

σx,εn−1∧T
)−

∫ τx,εn ∧T

σx,εn−1∧T
Af(Y x,εt )dt

)
| ≤

≤
∞∑
n=1

|α(x, n)|P(σx,εn−1 ≤ T )→ 0 as ε ↓ 0,

uniformly in x ∈ h−1(K).
Next, observe that

|E
(
σx,εn ∧ T − τx,εn ∧ T |Fx,ε

τx,εn ∧T

)
| ≤ Cδ2

for some constant C and all x ∈ M , n ≥ 1. This follows from the fact that the process
zx,εt is a Brownian motion with a bounded variable drift, and the expectation of its exit
time from the δ-neighborhood of the origin is estimated from above by Cδ2. Therefore,

|E
∞∑
n=1

∫ σx,εn ∧T

τx,εn ∧T
Af(Y x,εt )dt| ≤ Cδ2 sup |Af |

∞∑
n=1

P(τx,εn ≤ T ).

By Lemma 5.5, since τx,εn ≥ σx,εn−1, the right hand side does not exceed Kδ for some
constant K. This is smaller than η/2 for all sufficiently small δ. Thus it remains to show
that there is δ > 0 such that

|E
∞∑
n=1

(
f(Y x,ε

σx,εn ∧T
)− f(Y x,ε

τx,εn ∧T
)
)
| < η/2
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for all sufficiently small ε. Observe that

|E
∞∑
n=1

(
f(Y x,ε

σx,εn
)− f(Y x,ε

σx,εn ∧T
)
)
χ{τ

x,ε
n ≤ T}| ≤ sup |f(l1, z1)− f(l2, z2)| < η/4

for all sufficiently small δ, where the supremum is taken over all l1, l2 and z1, z2 such that
|z1|, |z2| ≤ δ. Therefore,

|E
∞∑
n=1

(
f(Y x,ε

σx,εn ∧T
)− f(Y x,ε

τx,εn ∧T
)
)
| ≤ η/4 + sup

x:h(x)=O

E (f(Y x,εσ )− f(Y x,ε0 ))

∞∑
n=1

P(τx,εn ≤ T ),

where σ = σx,ε = inf{t ≥ 0 : |zx,εt | = δ}. By Lemma 5.5, since τx,εn ≥ σx,εn−1, the sum in the
right hand side can be estimated from above by K/δ for some K, and it remains to show
that supx:h(x)=O E (f(Y x,εσ )− f(Y x,ε0 )) /δ can be made arbitrarily small for some δ and all
sufficiently small ε. Since f(l, z) is differentiable in z at z = 0 along each edge (one-sided
derivatives exist), and the relation between the derivatives is given by (3.2) with π1, π2

defined in (2.3), the result follows from the following lemma.

Lemma 5.6. For each η > 0, for all sufficiently small δ > 0,

|P(ξx,εσ ∈ R1, z
x,ε
σ = δ)− π1

2
| ≤ η, |P(ξx,εσ ∈ R2, z

x,ε
σ = δ)− π2

2
| ≤ η

for each x such that h(x) = O and all sufficiently small ε (depending on δ).

Proof. The idea of the proof is as follows. First, using the Girsanov theorem, we replace
the original process with a similar one but without drift. The slow component of the
process without the drift is a Brownian motion that does not depend on the fast variable.
Then, for almost every realization of the Brownian motion, the fast component is a
time-inhomogeneous Markov chain, whose state space can be separated into two classes
(R1 and R2) that communicate when the Brownian motion is to the left of the origin
and don’t communicate when the Brownian motion is to the right of the origin. Almost
immediately, the distribution of the fast component will become close to π due to the
times that the Brownian motion spends on the negative semi-axis. The probability that
the Brownian motion exits the interval [−δ, δ] through the right end point is 1/2, while
the probability that the fast component is in R1 (R2) at that time is close to π1 (π2),
giving the desired result. Let us make these arguments more rigorous.

Consider an auxiliary process X̃x,ε
t = (ξ̃x,εt , z̃x,εt ) that is defined the same way as Xx,ε

t ,
but with v(i, ·) ≡ 0 for each i. The corresponding stopping time will be denoted by σ̃. Let
µ̃t0 and µt0 be the measures on the space of RCLL functions from [0, t0] to M induced
by the processes X̃x,ε

t and Xx,ε
t , respectively. By the Girsanov theorem, µ̃t0 and µt0 are

mutually absolutely continuous. Moreover, for each η > 0, for all sufficiently small t0 and
ε, we have µ̃t0(1− η ≤ pt0 ≤ 1 + η) ≥ 1− η for each x = (i, 0), where pt0 is the density of
µt0 with respect to µ̃t0 . Since P(σ̃ ≤ t0)→ 1 as δ ↓ 0, we have, for all sufficiently small δ
and ε and x = (i, 0),

lim
δ↓0
|P(ξx,εσ ∈ R1, z

x,ε
σ = δ)− P(ξ̃x,εσ̃ ∈ R1, z̃

x,ε
σ̃ = δ)| ≤ η

2
.

Similarly,

lim
δ↓0
|P(ξx,εσ ∈ R2, z

x,ε
σ = δ)− P(ξ̃x,εσ̃ ∈ R2, z̃

x,ε
σ̃ = δ)| ≤ η

2
.

Thus it is sufficient to prove Lemma 5.6 in the case when there is no drift term.
The process without the drift term can be constructed as follows. For x = (i, z) ∈M ,

let z̃xt be a one-dimensional Brownian motion starting at z (the slow variable does not
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depend on ε since there is no drift). This process is defined on a probability space
denoted by (Ω1,F1,P1). Let (Ω2,F2,P2) be another probability space. For each ω1 ∈ Ω1,
we define ξ̃x,εt to be a time-inhomogeneous Markov process on (Ω2,F2,P2) with transition
rates at time t given by ε−1qij(z̃xt (ω1)). Then X̃x,ε

t = (ξ̃x,εt , z̃xt ) = (ξ̃x,εt (ω1, ω2), z̃xt (ω1)) is
the required process if we consider it on the product space (Ω1 × Ω2,F1 ×F2,P1 × P2).

Let σ′ = inf{t ≥ 0 : z̃x,εt = −δ2}. By conditioning on the event σ′ < σ̃, whose
probability tends to one as δ ↓ 0, we see that it is sufficient to prove

|P(ξ̃x,εσ̃ ∈ R1, z̃
x
σ̃ = δ)− π1

2
| ≤ η

2
, |P(ξ̃x,εσ̃ ∈ R2, z̃

x
σ̃ = δ)− π2

2
| ≤ η

2
(5.10)

for each x = (i,−δ2). By taking δ sufficiently small, we can make sure that P1(z̃xσ̃ = δ) is
arbitrarily close to 1/2 if x = (i,−δ2). Thus (5.10) will follow if we show that

|P2(ξ̃x,εσ̃ ∈ R1)− π1| ≤
η

4
, |P2(ξ̃x,εσ̃ ∈ R2)− π2| ≤

η

4
(5.11)

for each x = (i,−δ2), each ω1 such that z̃xσ̃(ω1) = δ, and all sufficiently small ε (depending
on δ and ω1).

Now fix ω1 and consider ξ̃x,εt as a time-inhomogeneous Markov process on the space

(Ω2,F2,P2). Recall that the time-homogeneous Markov chain Ξ−δ
2

t has a unique invariant
distribution µ(−δ2) = (µ1(−δ2), ..., µn(−δ2)). Moreover, by lemma (2.1), limδ↓0 |µi(−δ2)−
πi| = 0 for each i. Therefore, for each t > 0, the distribution of Ξ−δ

2

t/ε can be made

arbitrarily close to π = (π1, ..., πn), by taking a sufficiently small δ first and then taking
sufficiently small ε. For all sufficiently small t, the time-dependent transition probabilities
of the process ξ̃x,εt are close to those of the process Ξ−δ

2

t/ε . Therefore, the distribution of

ξ̃x,εt∧σ̃ can be made arbitrarily close to π, by taking a sufficiently small δ first, then fixing a
sufficiently small t, and then taking sufficiently small ε.

Thus, using the Markov property, we can replace the initial point x in (5.11) by an
initial distribution with the property that the distribution of the first component (which
will be denoted by ν) is arbitrarily close to π, while the second component is z ∈ [−δ, δ].
Let M(z) be the generator of Ξzt and etM(z), t ≥ 0, be the corresponding semigroup
acting on distributions. It remains to exhibit a sufficiently small neighborhood of π that
is invariant for etM(z) for all sufficiently small |z|. Let α1 < 0. From the property (2.1) of
the transition matrix it follows that we can find α2 > 0 and δ > 0 such that, for t ≥ 0,

|
∑
i∈R1

(etM(z)ν)i − π1| ≤ α1, |
∑
i∈R2

(etM(z)ν)i − π2| ≤ α1,

provided that |z| ≤ δ and the following conditions are satisfied:

|
∑
i∈R1

νi − π1| ≤ α1, |
∑
i∈R2

νi − π2| ≤ α1, (5.12)

| νi∑
j∈R1

νj
− πi| ≤ α2, i ∈ R1, | νi∑

j∈R2
νj
− πi| ≤ α2, i ∈ R2. (5.13)

Moreover, by taking δ smaller, if needed, and assuming that α1 < min(π1, π2)/2, we can
make sure that

| (etM(z)ν)i∑
j∈R1

(etM(z)ν)j
− πi| ≤ α2, i ∈ R1, | (etM(z)ν)i∑

j∈R2
(etM(z)ν)j

− πi| ≤ α2, i ∈ R2,

provided that (5.12) and (5.13) hold. Thus the set of distributions ν satisfying (5.12) and
(5.13) for is invariant for etM(z) if |z| ≤ δ.

By our construction, the distribution of ξ̃x,εσ̃ (with the x distributed as (ν, z)) is

exp(ε−1
∫ σ̃
0
M(z̃xt (ω1))dt)ν. It remains to choose α1 = η/4.

As we discussed above, Lemma 5.6 completes the proof of the theorem.
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