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Abstract

We consider the spread of a supercritical stochastic SIR (Susceptible, Infectious,
Recovered) epidemic on a configuration model random graph. We mainly focus on the
final stages of a large outbreak and provide limit results for the duration of the entire
epidemic, while we allow for non-exponential distributions of the infectious period and
for both finite and infinite variance of the asymptotic degree distribution in the graph.

Our analysis relies on the analysis of some subcritical continuous time branching
processes and on ideas from first passage percolation.

As an application we investigate the effect of vaccination with an all-or-nothing
vaccine on the duration of the epidemic. We show that if vaccination fails to prevent
the epidemic, it often – but not always – increases the duration of the epidemic.
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1 Introduction

Mathematical models have been widely used to study the spread of infectious diseases
and to design control strategies for reducing the impact of those diseases [13]. In many
models, a key assumption for the spread of epidemics is that the individuals are uniformly
mixing, i.e. all pairs of individuals in the population contact each other at the same
rate and independently of each other. In order to gain some realism, a (social) network
structure may be introduced to the models. In those models contacts are only possible
between “neighbours”, which are pairs of individuals that share a connection in the
network (see e.g. [2, 23]). In this set-up, each vertex represents an individual and an
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edge represents that two individuals have a relationship that makes it possible for the
disease to transmit from one to the other.

Much is already known for (variants of) epidemics on random graphs, e.g. about
the final size of the epidemic (the fraction of the population infected during the epi-
demic) and the probability of a large or major outbreak (to be defined below) [10, 4]. In
this paper we focus on the random duration of an epidemic on a configuration model
graph. The duration of an epidemic is especially relevant for animal diseases. When
outbreaks of those diseases occur, trade bans are often imposed on import from af-
fected counties. So, from an economics perspective, it might be more important to
reduce the duration of an epidemic than to reduce the number of animals killed by
it.

For uniformly mixing populations Barbour [6] provides rigorous results on the dura-
tion of (Markov) SIR (Susceptible, Infectious, Recovered; see Section 2.3 for a definition)
epidemics and Britton [10] also sketched some results about the duration of epidemic in
a uniformly mixing population. A corollary of their results is that, if a major outbreak
occurs in a population of size n, the time until the epidemic goes extinct divided by log n

converges to an explicit constant as n → ∞. Here the duration of an epidemic is the
time until the final recovery in the population, which corresponds to the time of strong
extinction defined below.

We consider SIR epidemics on configuration model graphs in the large population
limit. Configuration model graphs are random graphs with specified vertex degrees
(see Section 2.2, or for a detailed description see [14, 16]). In this graph each individ-
ual/vertex has his or her given degree (number of neighbours). The edges are created
in such a way that the graph is uniform among all possible multigraphs with the given
degree sequence.

We only consider major outbreaks of the epidemic. Formally we say that an outbreak
is major if more than log n individuals get infected, where n is again the number of
individuals in the population. It can be shown that this is (as n → ∞) equivalent to
assuming that the number of ultimately infected individuals is of the same order as
the population size. The beginning (until a small but non-negligible fraction of the
population is infected) and the middle part (until a small but non-negligible fraction
of the ultimately infected individuals still has to be infected) of a major outbreak on a
configuration model have been studied before (e.g. in [7, 12, 25, 20]). Volz [25] studied
a deterministic model for the spread of an SIR epidemic through a network using a set
of differential equations, keeping track of the probability that a vertex of given degree
avoids infection as a function of time. Under some moment conditions his results were
made rigorous by Decreusefond et al. [12]. Using a different mathematical approach
Barbour and Reinert [7] study (among other things) a stochastic model for the spread
of SIR epidemics on a configuration model with bounded degrees and minor conditions
on the infectious period distribution. The approach of the paper is tailored for finding
the distribution of the time a typical individual in the population gets infected, but is not
directly suitable for finding the time of the last infection or the last infected individual
recovering. Janson et al. [20] study the spread of Markov SIR epidemics on quite general
configuration models and their analysis heavily relies on the memoryless infectious
period. In none of the papers mentioned in this pargraph the time until the end of the
epidemic is studied.

The spread of epidemics on random graphs can also be studied using first passage
percolation [9, 8, 1]. In first passage percolation i.i.d. weights (lengths) are assigned
to edges in the graph and questions regarding distances between typical vertices in
the graph can be answered. In epidemiological terms the distance between a uniformly
chosen vertex and the initially infected vertex may be interpreted as the time of infection
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of that uniformly chosen vertex in an SI epidemic (i.e. an SIR epidemic with infinite
infectious period). In this setting the question regarding the time until the last infection
in the epidemic corresponds to the flooding time of the giant component of the random
graph [1].

In the analysis of first passage percolation on random graphs in [9, 8] growing
“balls” around vertices are explored and the time at which the balls touch provides
precise results on the distance between the center vertices of those balls. These
methods are well suited for obtaining the asymptotic distribution of the distance be-
tween two vertices, but are less fit for finding flooding times and diameters (however,
see [1]).

As written above, we focus on the duration of the entire epidemic, and in particular
on the final stages of the epidemic. We use two definitions of the end of the epidemic:
i) the time at which there are no infectious individuals in the population anymore, which
we call strong extinction and ii) the first time at which there are no more infectious
individuals with susceptible neighbours in the population, which we call weak extinction.
We allow for quite general infectious period distributions (see Theorems 2.3 and 2.4
below), and do not have to restrict ourselves to infinite infectious periods as is the case
in the first passage percolation literature. Furthermore, we pose milder conditions
on the degree distribution of the configuration model than Barbour and Reinert [7],
who also allow for relatively general infectious period distributions. Our approach is
to use the results of [7], which are obtained through methods similar to those used
in first passage percolation, to obtain the time until a typical vertex gets infected
and then use subcritical branching processes to approximate the time between the
infection of a typical vertex and the end of the epidemic. We show that, under some
mild conditions, the time until (weak or strong) extinction of the epidemic divided by
log n converges in probability to a specified constant. We note that our result is weaker
in nature than the results of [7, 9, 8], where asymptotic distributions of the difference
between, rather than the quotient of, infection times/distances of uniformly chosen
vertices and their typical times/distances are provided (see also Section 8). However,
as stated, we allow for more general distributions of the infectious period and degree
distributions.

Finally, we briefly analyse the impact of vaccinating the entire population with
an all-or-nothing vaccine. This vaccine either causes an individual to be completely
immune or has no impact at all independently and with the same probability for different
individuals. This vaccination strategy is asymptotically equivalent to vaccinating a
uniform fraction of the population with a perfect vaccine, i.e. a vaccine which gives
complete immunity.

1.1 Outline of paper

The paper is structured as follows. In Section 2 we formally define the model
and provide the main theorems of the paper. In Section 3 we discuss the impact
of vaccination on the duration of the epidemic, using the results of Section 2 and
some heuristics. In Section 4 we present some techniques for analysing epidemics on
graphs. Furthermore, we summarise results on continuous time branching processes
that we need in the proofs of the main theorems. In Section 5 heuristics are given
for the main theorems, while in Sections 6 and 7 these theorems are proved rigor-
ously. In the proofs the durations of the initial and final phase of the epidemic are
analysed separately. We conclude the paper with some remarks on possible sharp-
ening of the results and on some caveats in applying the results in real life set-
tings.
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2 Definitions, notation and main results

2.1 Basic notation

The following basic notation and definitions are used throughout this paper (see also
e.g. [21, Section 1.2]). For f : R→ R and g : R→ R≥0 and x→∞ we write

f(x) = O(g(x)) if lim sup |f(x)|/g(x) <∞,
f(x) = o(g(x)) if lim f(x)/g(x) = 0,
f(x) = Θ(g(x)) if 0 < lim inf |f(x)|/g(x) ≤ lim sup |f(x)|/g(x) <∞.

Also for f : R→ R, we write f(x−) = limy↗x f(y).

All random processes and random variables that we consider are defined on a rich
enough probability space (Ω,F ,P), which we do not further specify. The population
size is always denoted by n. In this paper, asymptotic results and limits are for n→∞,
unless explicitly stated otherwise. We say that an event occurs with high probability
(w.h.p.) if the probability of the event converges to 1. Furthermore,

a.s.→ denotes almost

sure convergence,
P→ denotes convergence in probability, and

d→ denotes convergence in
distribution.

We denote the set of strictly positive integers by N and write N0 = N ∪ {0}. Further-
more, N≤x = [1, x] ∩N. The sets N≥x, N<x and N>x are defined similarly. Throughout,
the cardinality of a set X is denoted by |X |.

2.2 Construction of the random graph and assumptions on the degree distri-
bution

The epidemic spreads on a random graph G(n) = (V (n), E(n)). The set V (n) consists
of n vertices that represent the individuals, and the edge set E(n) represent connec-
tions/relationships of individuals through which infection might transmit. For v ∈ V (n),
the degree of vertex v (i.e. the number of edges adjacent to vertex v) is denoted by dv.
We assume that dv ∈ N, since vertices of degree 0 will not be infected anyway. G(n) is
generated through a configuration model with given degree sequence {dv}v∈V (n) .

The graph is constructed by assigning dv half-edges (edges with only one endpoint
assigned to a vertex) to vertex v for v ∈ V (n) and pairing those half-edges uniformly at
random. By this construction every vertex has the right degree, although it is possible
that there is more than one edge between a pair of vertices (parallel edges) or that an
edge connects a vertex to itself (a self-loop). In the graph, parallel edges are counted
separately in the degree and a self-loop adds two to the degree of a vertex.

Define

`(n) =
∑

v∈V (n)

dv and `2(n) =
∑

v∈V (n)

(dv)
2. (2.1)

Observe that `(n) is even, since every edge in E(n) adds 2 to the total degree of the
graph. We make the following assumptions

Assumption 2.1. There exists an N valued random variable D such that

(A1) n−1
∑
v∈V (n) 1(dv = k)→ pk = P(D = k),

(A2) n−1`(n)→ E[D] <∞,

(A3) n−1`2(n)→ E[D2] ≤ ∞,

(A4) If k ∈ N is such that P(D ≥ k) = 0, then there exists n0 ∈ N, such that for all
n ∈ N≥n0

, it holds that
∑
v∈V (n) 1(dv ≥ k) = 0.
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Assumption (A4) is introduced for technical purposes in the proofs. We expect that
this condition is not needed for the results to be true. This assumption assures that D
provides in some sense enough information on the highest degree vertices of a large
but finite graph. Assumption (A4) obviously holds if D has unbounded support or if the
degrees of vertices in V (n) are i.i.d. and distributed as D.

The “size biased” random variable D̃ is defined through

P(D̃ = k) = p̃k =
kpk
E[D]

.

Let D(n) be a random variable with the same distribution as the degree of a vertex
chosen uniformly at random from the graph. That is,

P(D(n) = k) = n−1
∑

v∈V (n)

1(dv = k) for k ∈ N.

By (A1) and (A2), D(n) d→ D and E[D(n)]
d→ E[D].

Let D̃(n) be the size biased variant of D(n), i.e.

P(D̃(n) = k) =
kP(D(n) = k)

E[D(n)]
=
k
∑
v∈V (n) 1(dv = k)

`(n)
for k ∈ N.

Note that D̃(n) is distributed as the degree of a vertex adjacent to a uniformly chosen

edge from the graph. By (A1) and (A2), D̃(n) d→ D̃, while by (A3),

E[D̃(n)] =
`2(n)

`(n)

d→ E[D2]

E[D]
= E[D̃] ∈ (0,∞]. (2.2)

For the epidemic process on the graph, we merge parallel edges and ignore self-
loops. Because E(D) < ∞, this assumption has no impact on the asymptotic degree
distribution [17, Thm. 1.6] although the number of self-loops and parallel edges diverges
if V ar(D) =∞ [16, p. 219].

When considering epidemics in the remainder of the paper, we condition on large
outbreaks, i.e. outbreaks of size Θ(n). These large outbreaks are only possible if the
underlying network has a component of size Θ(n), which is w.h.p. the case if E[D̃− 1] > 1

[17, Thm. 4.6].

2.3 The SIR epidemic

We consider an SIR (Susceptible, Infectious, Recovered) epidemic on G(n). We say
that a vertex is susceptible, infectious or recovered if the individual it represents is in
this “infection state”. Neighbours in the population contact each other according to
independent homogeneous Poisson processes with rate β, and if the contact is between
a susceptible and an infectious vertex, then the susceptible one becomes immediately
infectious itself. Infectious vertices stay so for a random period distributed as the
random variable L, which is [0,∞]-valued. All infectious periods and Poisson processes
are independent of each other. A contact by an infectious vertex is called an infectious
contact, whether or not the “contactee” is susceptible. Throughout we assume that at
time 0, there is one infectious individual, which is chosen uniformly at random from
the population and all other individuals are susceptible. This assumption is purely for
ease of exposition. It is straightforward to extend our analysis and results to some other
initial conditions (see Section 8).

The probability, ψ say, that an infected vertex makes an infectious contact with a
given neighbour (and infects it if that neighbour is still susceptible) is given by

ψ =

∫ ∞
0

βe−βtP(L > t)dt = 1−
∫ ∞

0

e−βtL(dt), (2.3)

EJP 26 (2021), paper 112.
Page 5/49

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP679
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


The duration of a supercritical SIR epidemic on a configuration model

where we used partial integration and the shorthand L(dt) = P(L ∈ dt).
We denote the sets of susceptible, infectious and recovered individuals at time t by

S(n)(t), I(n)(t) and R(n)(t) respectively. We say that the epidemic goes strongly extinct or
ends before time t if |I(n)(t)| = 0. Lastly, we let X(n)(t) be the set of pairs of neighbours
of which one is susceptible and the other infectious. We say that the epidemic is weakly
extinct at time t if |X(n)(t)| = 0.

Throughout we use continuous time branching processes [19, Ch. 6] to approximate
the epidemic process. We rely on theory for those processes for which there exists a
number α (called Malthusian parameter, or real-time growth rate) which satisfies∫ ∞

0

e−αtµ(dt) = 1, (2.4)

where µ(s) =
∫ s

0
µ(dt) is the expected number of births of children of a particle up to

time s, i.e. {µ(s); s ≥ 0} defines the mean offspring measure of the branching process.
Below we define and justify a branching process approximation for the early stages of a
SIR epidemic. The approximating branching process has mean offspring measure

µ′(dt) = E[D̃ − 1]βe−βtP(L > t)dt. (2.5)

Here E[D̃ − 1], can be interpreted as the expected number of susceptible neighbours a
“typical” individual infected in the early stages, has at the moment he or she gets infected.
Following the terminology from epidemiology, we define the basic reproduction number
R0 as the expected total number of children of a particle in the branching process:

R0 = µ′(∞) =

∫ ∞
0

µ′(dt) = ψE[D̃ − 1]. (2.6)

Here we used (2.3) for the last identity. If R0 > 1 the epidemic is supercritical and α

exists and is strictly positive. If on the other hand R0 < 1, the process is subcritical and
α might exist and if it does, α is strictly negative. If R0 = 1 the epidemic is critical and
the corresponding α trivially equals 0.

In epidemic literature R0 is arguably the most studied quantity (e.g. [13]). It is
usually defined as the average number of secondary infections caused by a typical
infected individual in the early stages of an epidemic which started in a fully susceptible
population. This definition is consistent with (2.6).

The main contribution of this paper is the observation that the final stage of the
epidemic can also be approximated by a branching process. The mean offspring measure
of this branching process is

µ∗(dt) = E
[
(D̃ − 1)(1− ψ + ψq̃∗)D̃−2

]
βe−βtP(L > t)dt, (2.7)

where
q̃∗ = min

{
s ≥ 0; s = E

[
(1− ψ + ψs)D̃−1

]}
. (2.8)

This mean offspring measure can be understood intuitively by considering the graph of
vertices that have not been infected before the final stage of the epidemic and the edges
that connect those vertices. In Section 5.2 we show heuristically that the probability that
a vertex which is part of this “remaining graph” has degree k in G(n), is proportional
to pk(1− ψ + ψq̃∗)k, where q̃∗ is the asymptotic probability that a neighbour (v say) of a
uniformly chosen vertex from G(n) avoids being infected by any of its other neighbours
and 1 − ψ + ψq̃∗ = q̃∗ + (1 − q̃∗)(1 − ψ) is the probability that a given neighbour of v
does not transmit the infection to v (either by avoiding being infected itself, or by not
transmitting the infection if infected). Some straightforward arguments (see Section 5.2)
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then shows that the expected number of susceptible neighbours a “typical” individual
that is infected in the final stage of the epidemic has at the moment he or she gets

infected, is given by E
[
(D̃ − 1)(1− ψ + ψq̃∗)D̃−1

]
.

2.4 The main results

In this subsection we state the main results of the paper. Heuristics for these results
will be given in Section 5 and rigorous proofs are provided in Sections 6 and 7. We
consider an SIR epidemic on the configuration model graph G(n) = (V (n), E(n)) with
degrees satisfying Assumptions 2.1. The infectious periods are distributed as L, and
neighbours contact each other according to independent Poisson processes with intensity
β. Throughout we condition on a major outbreak, which we denote byM(n) and define
as an outbreak in which more than log n vertices get infected, i.e.

M(n) = {|S(n)(0) \ S(n)(∞)| > log n}. (2.9)

In this definition the log n term can be replaced by any increasing function which goes to
infinity but is o(n). It can be proved that |S(n)(0) \ S(n)(∞)| = Θ(n) onM(n) w.h.p. This
can be shown in a similar way as the corresponding result in [5, Thm. 3.5].

Define the time until strong extinction of an epidemic in a population of size n by

T ∗(n) = inf{t ≥ 0; |I(n)(t)| = 0}. (2.10)

We also consider the time of weak extinction T †(n), i.e. the time after which no further
infections are possible, because there are no more infected vertices with susceptible
neighbours. That is,

T †(n) = inf{t ≥ 0; |X(n)(t)| = 0}. (2.11)

For E[D̃ − 1] <∞ and R0 = ψE[D̃ − 1] = ψE[D(D − 1)]/E[D] > 1, define α′ by

α′ = {x ∈ R; 1 = g′(x)}, (2.12)

where for x ∈ R
g′(x) =

∫ ∞
0

e−xtµ′(dt) (2.13)

and µ′(dt) = E[D̃ − 1]βe−βtP(L > t)dt as defined in (2.5). Note that x 7→ g′(x) is
continuous and decreasing and that g′(0) = R0 > 1 and g′(x)→ 0 as x→∞. Therefore,
there is a unique α′ > 0 such that g′(α′) = 1 and α′ is well defined. This α′ corresponds
to the real time growth rate of the epidemic in its early stages (see Lemma 4.1 below). If
E[D̃ − 1] =∞, we set α′ =∞. Note that E[D̃ − 1] > R0 > 1, and therefore the random
graph has w.h.p. a giant component for both of the cases in which we define α′.

Define
α∗ = inf{x ∈ R; g∗(x) < 1}, (2.14)

where for x ∈ R
g∗(x) =

∫ ∞
0

e−xtµ∗(dt), (2.15)

and µ∗(dt) is defined in (2.7). From Claim 7.1 below it follows that

E
[
(D̃ − 1)(1− ψ + ψq̃∗)D̃−2

]
<∞

and thus that µ∗(dt) is well defined. It is easy to see that either

α† = inf{x ∈ R; g∗(x) <∞} ∈ (−∞, 0]
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or g′(x) → ∞ as x → −∞. In the same way as for x 7→ g′(x), note that x 7→ g∗(x) is
continuous and decreasing on (α†,∞) and that g∗(x) → 0 as x → ∞. Therefore, α∗ is
well defined. This α∗ corresponds to the real-time decline rate of an epidemic during its
final stages (see Lemma 4.3 below).

For further use, define

R∗0 = g∗(0) =

∫ ∞
0

µ∗(dt) = ψE
[
(D̃ − 1)(1− ψ + ψq̃∗)D̃−2

]
, (2.16)

which can be interpreted as the expected number of infections caused by a typical
infected vertex during the final stages of the epidemic.

By standard theory on supercritical branching processes [19], we obtain q̃∗ ∈ (0, 1),
because q̃∗ is the extinction probability of a supercritical branching process of which the
number of children of a particle is Mixed Binomially distributed, with “number of trials”
distribution D̃− 1 and “success probability” ψ, and therefore with offspring mean R0 > 1

[4]. By Lemma 2.2 below the branching process defined through µ∗(dt) is subcritical.
If
∫∞

0
e−α

∗tµ∗(dt) = 1 then α∗ is a Malthusian parameter. A sufficient (but far from
necessary) condition for α∗ to be a Malthusian parameter is that both P(L > t0) = 0 for
some t0 > 0 and E[D̃ − 1] <∞ hold.

Before stating the main theorem, we provide the following lemma, the proof of which
is provided in Section 7.

Lemma 2.2. If R0 > 1 then R∗0 < 1 and α∗ < 0.

The first main theorem is on the time until strong extinction.

Theorem 2.3 (Time until strong extinction). Assume that Assumptions 2.1 hold and that
R0 > 1. Then we have for all ε > 0 that

P

(∣∣∣∣T ∗(n)

log n
−
(

1

α′
+

1

|α∗|

)∣∣∣∣ > ε | M(n)

)
→ 0,

if and only if ∫ ∞
0

e(|α∗|−η)tL(dt) <∞ for all η ∈ (0, |α∗|). (2.17)

Using this main theorem, we obtain in a straightforward fashion a result for the time
until weak extinction as well (see the proof in Section 7.3).

Theorem 2.4 (Time until weak extinction). Assume that Assumptions 2.1 hold and that
R0 > 1. Then we have for all ε > 0 that

P

(∣∣∣∣T †(n)

log n
−
(

1

α′
+

1

|α∗|

)∣∣∣∣ > ε | M(n)

)
→ 0.

Remark 2.5. In Theorems 2.3 and 2.4 the summand 1
α′ is related to the duration of the

early stage, i.e. the exponentially growing phase, of the epidemic, while the summand
1
|α∗| is related to the duration of the final phase, i.e. the exponentially declining phase, of
the epidemic.

Remark 2.6. Observe that for x > 0,∫ ∞
0

extL(dt) =

∫ ∞
0

(ext − 1)L(dt) +

∫ ∞
0

L(dt)

= x

∫ ∞
0

(∫ t

0

exsds

)
L(dt) + 1

= x

∫ ∞
0

(∫ ∞
s

L(dt)

)
exsds+ 1

= x

∫ ∞
0

P(L > s)exsds+ 1.
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So, condition (2.17) is equivalent to∫ ∞
0

e(|α∗|−η)tP(L > t)dt <∞ for all η ∈ (0, |α∗|). (2.18)

This condition guarantees that w.h.p. none of the individuals infected during the epi-
demic will stay infectious for a time longer than log[n]/|α∗|. Condition (2.18) gives that
Theorem 2.3 provides the (scaled) duration of the epidemic if P(L > t) decays faster
than exponential, but not if P(L > t) decays slower than exponential or exponentially
with rate less than |α∗|.
Remark 2.7. In order to understand the definition of α∗ in (2.14) it is good to study
g∗(x). This function is strictly decreasing, and we may define

α† = inf{x ∈ R; g∗(x) <∞}. (2.19)

By definition α† ∈ [−∞, α∗]. Recalling the definition of µ∗(·), we see that for all x > −β

g∗(x) = E
[
(D̃ − 1)(1− ψ + ψq̃∗)D̃−2

] ∫ ∞
0

βe−(x+β)tP(L > t)dt

≤ E
[
(D̃ − 1)(1− ψ + ψq̃∗)D̃−2

] ∫ ∞
0

βe−(x+β)tdt =
R∗0
ψ

β

x+ β
,

which is finite by R∗0 < 1. So, we obtain α† ≤ −β < 0.
It is straightforward to see that g∗(x) is continuous for x > α† and that if α† > −∞

then limx↘α† g
∗(x) = g∗(α†), where g∗(α†) may be infinite. Furthermore, g∗(0) = R∗0 < 1.

Together this has the following implications.

• If α† = −∞ then limx→−∞ g∗(x) = ∞. This implies that α∗ ∈ (−∞, 0), while
g∗(α∗) = 1 and g∗(x) ∈ (1,∞) for x ∈ (−∞, α∗).

• If α† > −∞ and g∗(α†) > 1, then by the same arguments as for α† = −∞ we obtain
α∗ ∈ (α†, 0), while also g∗(α∗) = 1 and g∗(x) ∈ (1,∞) for x ∈ (α†, α∗).

• If α† > −∞ and g∗(α†) < 1, then there is no solution of g∗(x) = 1 and the branching
process with mean offspring measure µ∗(·) does not have a Malthusian parameter,
although α∗ is well defined and equal to α†. Furthermore, g∗(x) =∞ for x < α∗.

• If α† > −∞ and g∗(α†) = 1, then clearly α∗ = α†, but g∗(x) =∞ for x < α∗.

Remark 2.8. Intuition from first passage percolation (e.g. [9, 8]) and research on the
epidemic curve [20, 7, 6] suggests that (possibly with some extra conditions on the
distributions of the infectious period and degrees)

T ∗(n)−
(

1

α′
+

1

|α∗|

)
log n

might converge in distribution to a non-degenerate, a.s. finite random variable. We did
not try to prove this or identify which extra conditions would be necessary for such a
proof.

In order to prove Theorem 2.3 we use some lemmas. Let

q∗ = E[(1− ψ + ψq̃∗)D], (2.20)

where q̃∗ is defined through (2.8). Copying the steps of the corresponding result for
random intersection graphs as provided in [5, Thm. 3.4] (see also Section 5.2 below for
a heuristic branching process interpretation of q∗ and Lemma 2.9), we obtain
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Lemma 2.9 (The size of an epidemic). Assume that Assumptions 2.1 hold and that
R0 > 1. Then

P(|n−1|S(n)(∞)| − q∗| > ε | M(n))→ 0 for all ε > 0.

In order to formulate the main lemmas, define for γ ∈ (0, 1− q∗)

T ′γ(n) = inf{t > 0;n−1|S(n)(t)| < 1− γ}. (2.21)

Theorem 2.3 now follows trivially from the following lemmas, where the first is about
the duration of the initial phase of the epidemic and the second about the duration of
the final phase.

Lemma 2.10 (Duration of initial phase of epidemic). Assume that (A1)–(A3) of Assump-
tions 2.1 hold and that R0 > 1. Then

P

(∣∣∣∣T ′γ(n)

log n
− 1

α′

∣∣∣∣ > ε | M(n)

)
→ 0 for all ε > 0 and all γ ∈ (0, 1− q∗).

Lemma 2.11 (Duration of final phase of epidemic). Assume that Assumptions 2.1 hold
and that R0 > 1. If and only if (2.17) holds, we have that there exists γ ∈ (0, 1− q∗), such
that

P

(∣∣∣∣T ∗(n)− T ′γ(n)

log n
− 1

|α∗|

∣∣∣∣ > ε | M(n)

)
→ 0 for all ε > 0.

Observe that Lemma 2.10 implies that for all γ, γ′ ∈ (0, 1− q∗) and all ε > 0 we have

P
( |T ′γ(n)−T ′

γ′ (n)|
logn > ε|M(n)

)
→ 0. So, Lemma 2.11 actually holds for all γ ∈ (0, 1− q∗).

3 Vaccination

In this section we briefly discuss the effect of vaccination on the duration of an
epidemic. We give heuristics on the effect of vaccinating everybody in the population
with an all-or-nothing vaccine in uniformly mixing populations and on configuration
model graphs. We assume that the vaccination takes place before the outbreak starts.
We only consider the case where the vaccination is not enough to make the epidemic
process subcritical, i.e. the effective R0 stays strictly larger than 1.

Recall that with an all-or-nothing vaccine, a vaccinated individual will not be affected
by the vaccine (say with probability c ∈ (0, 1]) or will be immune to the infection (with
probability 1 − c), independently of the effect of the vaccine on other individuals. In
what follows, we decorate quantities associated with the epidemic in such a vaccinated
population with a subscript c. Note that c does not stand for (vaccine) coverage, as is
sometimes the case in epidemiological literature. We choose to parametrise vaccination
in such a way that the epidemic spreads more (and thus the effectiveness of the vaccine
decreases) if the parameter increases.

To analyse the spread of the SIR epidemic after the all-or-nothing vaccine is admin-
istered, we label the vertices of the random graph already by “fully susceptible” or
“not susceptible” (depending on the impact of the vaccine on the vertex) before the
half-edges are paired. Half-edges receive the same label as the vertex they belong
to. Not susceptible vertices (apart from possibly the initially infected vertex) do not
contribute to the spread the disease, while the fully susceptible vertices spread to their
fully susceptible neighbours as if they were not vaccinated at all. Therefore, we can
model the epidemic in the vaccinated population, as if the epidemic is spreading on the
graph consisting of the fully susceptible vertices and the fully susceptible half-edges that
are paired with other fully susceptible half-edges.
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So, the all-or-nothing vaccine effectively changes the (fully susceptible) population
size to nc, a Bin(n, c) distributed random variable. The limiting degree distribution of
the fully susceptible vertices (say Dc) becomes a mixed binomial random variable with
“number of trials distribution” D and “success probability” c, because each fully suscep-
tible half-edge is paired with a uniformly chosen other half-edge, and the asymptotic
fraction of half-edges that is fully susceptible is c. Below we use the trivial observation

that log(nc)
logn

P→ 1. Furthermore, if D̃c is the size biased version of Dc, then

P(D̃c = k) =
kP(Dc = k)

E[Dc]

=
kE[
(
D
k

)
ck(1− c)D−k]

cE[D]

=
E[D

(
D−1
k−1

)
ck−1(1− c)D−k]

E[D]

=

∞∑
`=k

`p`
E[D]

(
`− 1

k − 1

)
ck−1(1− c)`−k

=

∞∑
`=k

p̃`

(
`− 1

k − 1

)
ck−1(1− c)`−k

= E

[(
D̃ − 1

k − 1

)
ck−1(1− c)D̃−k

]
.

So, D̃c − 1 is mixed binomial with “number of trials distribution” D̃ − 1 and “success
probability” c. Using this, and the binomial theorem we deduce that for x ∈ (0, 1),

E
[
(D̃c − 1) ((1− x))

D̃c−2
]

= E
[
E
[
(D̃c − 1) ((1− x))

D̃c−2 | D̃ − 1
]]

= E

D̃−1∑
`=0

(
D̃ − 1

`

)
c`(1− c)D̃−1−``(1− x)`−1


= E

c(D̃ − 1)

D̃−1∑
`=1

(
D̃ − 2

`− 1

)
(1− c)D̃−1−`[c(1− x)]`−1


= E

[
c(D̃ − 1)(1− cx)D̃−2

]
.

Note that if x = 1, then the left and right hand side both give the probability that D̃c = 2.

Define R0,c = cψE[D̃ − 1]. If R0,c > 1, then there is a positive probability of a

large outbreak even after vaccination. LetM(n)
c be the event of a large outbreak in a

vaccinated population. Using this mixed binomial distribution in equations (2.5), (2.12),
(2.14), (2.7) and (2.8) and assuming that α∗c as defined below exists and satisfies (2.17),
we obtain that T ∗c (n), the time until the end of the epidemic after vaccination satisfies
for all ε > 0

P

(∣∣∣∣T ∗c (n)

log n
−
(

1

α′c
+

1

|α∗c |

)∣∣∣∣ > ε | M(n)
c

)
→ 0.

where α′c and α∗c satisfy

1 =

∫ ∞
0

e−α
′
ctµ′c(dt) and 1 =

∫ ∞
0

e−α
∗
c tµ∗c(dt), (3.1)
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with

µ′c(dt) = cE[D̃ − 1]βe−βtP(L > t)dt, (3.2)

µ∗c(dt) = cE[(D̃ − 1)(1− cψ + cψq̃∗c )D̃−2]βe−βtP(L > t)dt (3.3)

and
q̃∗c = min

{
s ≥ 0; s = E

[
(1− c+ c(1− ψ + ψs))

D̃−1
]}

= min
{
s ≥ 0; s = E

[
((1− cψ + cψs))

D̃−1
]}

.
(3.4)

We now discuss the effect of vaccination in a uniformly mixing population (the second
example) and in two different configuration model random graphs (the first and third
example). In Examples 3.1 and 3.2 (α′c)

−1 + |α∗c |−1 decreases as c increases (i.e. the
duration of a large outbreak increases as the vaccine becomes more effective) and
in Example 3.3 (α′c)

−1 + |α∗c |−1 is strictly less than (α′1)−1 + |α∗1|−1 for some c ∈ (0, 1)

(i.e. the duration of a large outbreak is smaller in a vaccinated population than in an
unvaccinated population).

Example 3.1. Let D be Poisson distributed with expectation λ. Furthermore, let L
satisfy (2.17) (which it trivially does if, for example, it has bounded support). Recall from
(2.3) that ψ =

∫∞
0
βe−βtP(L > t)dt. It is straightforward to check that E[D̃ − 1] = λ, q̃∗c

satisfies q̃∗c = e−λcψ(1−q̃∗c ) and

E[(D̃ − 1)(1− cψ(1− q̃∗c ))D̃−2)] = λe−λcψ(1−q̃∗c ) = λq̃∗c .

So, filling this in in (3.2) and (3.3) we obtain

µ′c(dt) = cλβe−βtP(L > t)dt and µ∗c(dt) = cλq̃∗cβe
−βtP(L > t)dt. (3.5)

We assume that the disease is supercritical even after vaccination. So,∫ ∞
0

µ′c(dt) = cλψ > 1 (3.6)

and by Lemma 2.2 ∫ ∞
0

µ∗c(dt) = cλq̃∗cψ < 1. (3.7)

By their definitions in (3.1), α′c and |α∗c | are given through

1 =

∫ ∞
0

e−α
′
ctcλβe−βtP(L > T )dt (3.8)

and

1 =

∫ ∞
0

e|α
∗
c |tcq̃∗cλβe

−βtP(L > T )dt (3.9)

and it follows that α′c is increasing in c and |α∗c | is decreasing in cq̃∗c .
From q̃∗c = e−λcψ(1−q̃∗c ), we deduce that for λcψ > 1

dq̃∗c
dc

= −q̃∗cλψ
(

1− q̃∗c − c
dq̃∗c
dc

)
⇒ dq̃∗c

dc
=
λψq̃∗c (1− q̃∗c )

cλψq̃∗c − 1
.

and
d(cq̃∗c )

dc
= q̃∗c +

cλψq̃∗c (1− q̃∗c )

cλψq̃∗c − 1
= q̃∗c

cλψ − 1

cλψq̃∗c − 1
, (3.10)

which is strictly negative by (3.6) and (3.7). So, both α′c and |α∗c | are increasing in c,
which implies that (α′c)

−1 + |α∗c |−1, and thus the limiting duration of a large outbreak, is
decreasing in c (and increasing in the efficacy of the vaccine).
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Example 3.2. In a uniformly mixing population, all pairs of individuals contact each
other independently of each other at rate β. In order for the model to be interesting and
the expected number of contacts per individual to stay constant if n→∞, we assume
β = β′/n. The uniformly mixing population does not satisfy the conditions of our paper,
but we can take several approaches to still analyse the uniformly mixing population.
One is to deduce the branching process approximations used in this paper also for the
uniformly mixing population, and use that in Theorem 2.3 the quantities α′c and α∗c are
the Malthusian parameters for those branching processes.

We however, use the previous example of analysing an epidemic on a configuration
model with a Poisson degree distribution, where β′ = βλ, and where the expected degree
λ goes to infinity. It is easily checked that the epidemic generated graph (see e.g. [5])
of the epidemic on the configuration model converges locally to that of the uniformly
mixing population.

Note that for all t > 0 we have that as λ→∞, then e−(β′/λ)t → 1 and

λψ = λ

∫ ∞
0

β′

λ
e−(β′/λ)tP(L > t)dt→ β′E[L]. (3.11)

We further observe that for x > 1, the solution of s = e−x(1−s) is given by s =

−x−1W (−xe−x), where W (·) is the principal branch of the Lambert W function, which
is a continuous function of x [11]. Together with (3.11) this implies that,

q̃∗c → min{s ≥ 0; s = e−cβ
′E[L](1−s)} as λ→∞.

Filling in β = β′/λ in (3.8) and (3.9) and taking the limit λ → ∞ gives that α′c and α∗c
satisfy

1 =

∫ ∞
0

e−α
′
ctcβ′P(L > t)dt and 1 =

∫ ∞
0

e−α
∗
c tcβ′q̃∗cP(L > t)dt.

Assume that c is such that the epidemic is still supercritical after vaccination. That is,
assume that inequality (3.6) and thus (3.7) still hold. It is again immediate that α′c is
increasing in c and |α∗c | is decreasing in cq̃∗c . Filling in λψ = β′E[L] in (3.10) we obtain

d(cq̃∗c )

dc
=

cβ′E[L]− 1

cβ′E[L]q̃∗c − 1
q̃∗c , (3.12)

which is strictly negative by (3.6) and (3.7).
As in Example 3.1 this implies that increasing the efficacy of the vaccination, without

making the epidemic subcritical, increases the asymptotic duration of the epidemic.

Example 3.3. For this example we use the following intuition. Unvaccinated vertices of
very high degree are very likely to be infected during the early stages of an epidemic,
even if a fraction of their neighbours are vaccinated. Therefore, those vertices will
hardly play a role in the duration of the final phase of the epidemic. Vertices who have
initially 1 unvaccinated neighbour cannot be infected and pass the disease on to other
individuals, because the unvaccinated neighbour must be their infector. So, vertices
with one unvaccinated neighbour that are still susceptible after the intermediate phase
of the epidemic will shorten the final stage of the epidemic. If the infectious period is
exponentially distributed, then vertices with two unvaccinated neighbours in the final
stages of the epidemic do not lengthen the duration of the epidemic if they get infected,
because the neighbour who is not the infector might be infected before, in which case
the number of infectious, susceptible pairs decreases by the infection, or that neighbour
is still susceptible in which case the number of infectious, susceptible pairs stays the
same. So, as an example we consider a population in which vertices may have very large
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degree or have degree 1 or 2, and such that after vaccination of a small proportion of
the population the “effective degree distribution” has more mass on 1.

Using this intuition we consider the model with

P(D = 1) = P(D = 2) = 100/201 and P(D = 100) = 1/201.

This implies

P(D̃ = 1) = P(D̃ = 100) = 1/4 and P(D̃ = 2) = 1/2.

Furthermore, let t0 � 0 and assume that β = 99/100 and P(L > t) = e−µt for t < t0
and P(L > t0) = 0 with µ = 1/100, that is, L is exponentially distributed with a cut-off
at t0. This cut-off is needed for

∫∞
0
te−α

∗tL(dt) to be finite. The above parameters make
that in the limit t0 → ∞, we obtain ψ = 99/100. Without vaccination 1

α′ + 1
|α∗| = 2.04,

while with 1% of the population vaccinated, i.e. with c = 0.99 we obtain 1
α′c

+ 1
|α∗c |

= 2.021.

That is, vaccinating 1% of the population does not necessarily prevent the large outbreak
and if a large outbreaks occurs it ends faster.

4 The epidemic on the graph

4.1 Construction of the graph together with the epidemic

For the proof of the main theorems we rely on the following explicit step-by-step
simultaneous construction of the graph G(n) and the epidemic process

{S(n)(t), I(n)(t), R(n)(t); t ≥ 0},

or more precisely, on the simultaneous construction of the cluster of vertices of G(n)

which are ultimately recovered and the epidemic process. In this construction we
see contacts as asymmetric: the times v contacts v′ are not necessarily the same as
when v′ contacts v, but contacts in both directions occur according to independent
Poisson Processes with intensity β. Only when an infectious vertex contacts a susceptible
neighbour (and not when a susceptible vertex contacts an infectious neighbour) the
susceptible becomes infectious. Since in both the directed and undirected interpretation
of contacts, contacts from an infected to a susceptible neighbour occur at intensity β,
the spread of the epidemic is unaltered.

Label the vertices in V (n) by 1, 2, · · · , n, such that

d(n) = d
(n)
1 , · · · , d(n)

n = d1, · · · , dn

is a non-decreasing degree sequence satisfying Assumptions 2.1. Let

s(n) = {(1, 1), (1, 2), · · · , (1, d1), (2, 1), · · · , (2, d2), · · · , (n, 1), · · · , (n, dn)}

be the set containing `(n) elements, corresponding to the half-edges used in the con-
struction of G(n) and let

x(n) = (x1, x
′
1), (x2, x

′
2), · · ·

be an infinite sequence of (2 dimensional) elements of s(n), where the elements are
chosen independently with replacement and uniformly at random. Further define i.i.d.
random variables

{τv,j ; (v, j) ∈ s(n)}

which are exponentially distributed with expectation 1/β. We may interpret τv,j as the
first time after its infection (if this happens) that v makes a contact along the half-edge
(v, j). Then define i.i.d. random variables {Lv; v ∈ V (n)} all distributed as L. If v becomes
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infectious during the epidemic, we interpret Lv as the infectious period of vertex v.
Otherwise, Lv has no epidemiological interpretation. Furthermore, let x0 be the initially
infected vertex, which is chosen uniformly at random from the population. All random
variables defined in this paragraph are independent of each other.

For reasons that will become clear in the proof of Theorem 2.4, we define

L′v = min(Lv, max
1≤j≤dv

τv,j), for v ∈ V (n). (4.1)

So L′v time units after infection, v is either recovered or has made contacts to all of its
neighbours. This implies that L′v time units after infection v is no longer the infectious
vertex in an infectious-susceptible pair, because v has either recovered or has made
contacts to all of its neighbours (of which some might have been infected before). In
particular, if we say that for v ∈ V (n), vertex v recovers L′v instead of Lv time units after
v got infected, the spread of the epidemic is unaltered.

We define the following process of partitions of the set of half-edges and vertices, in
which the half-edges are paired at the moment a contact involving an infectious vertex is
made.

{X (n)(t); t ≥ 0} = {(S(n)(t), I(n)(t), R(n)(t), E(n)
S (t), E(n)

I (t), E(n)
R (t), E(n)

P (t); t ≥ 0}. (4.2)

In this process S(n)(t), I(n)(t) and R(n)(t) are respectively the sets of susceptible, infec-

tious and recovered vertices at time t. The set E(n)
S (t) consists of the unpaired half-edges

belonging to vertices in S(n)(t), E(n)
I (t) is the set of unpaired half-edges belonging to

vertices in I(n)(t), E(n)
R (t) is the set of unpaired half-edges belonging to vertices in R(n)(t)

and E(n)
P (t) is the set of paired half-edges. Let

σ(v) = inf{t ≥ 0; v ∈ I(n)(t)}, for v ∈ V (n)

be the time that v gets infected, which corresponds to the time at which the first half-
edge belonging to vertex v is added to {E(n)

P (t); t ≥ 0}. Throughout the process the
sequence x(n) is explored element by element and x(n)(t) is the set of elements of x(n)

explored before or at time t.
The construction of {X (n)(t); t ≥ 0} is as follows.

• Start of construction: Choose the initial infected vertex x0 uniformly at random. So,
I(n)(0) = {x0}. Set S(n)(0) = V (n) \x0 and σ(x0) = 0. Note that x0 has degree dx0

in

G(n). Furthermore, the set E(n)
I (0) = {(v, j) ∈ s(n); v = x0} consists of all half-edges

attached to x0, while all other half-edges are in E(n)
S (0) = {(v, j) ∈ s(n); v 6= x0}.

None of the elements of x(n) are explored yet at time 0, i.e. x(n)(0) = ∅.

• Assume that at time t, x(n) is explored up to and including (xk, x
′
k), i.e. x(n)(t) =

{(x1, x
′
1), · · · , (xk, x′k)}. Define

t+(t) = min({σ(v) + Lv; v ∈ I(n)(t)} ∪ {σ(v) + τv,j ; (v, j) ∈ E(n)
I (t)}),

which can be interpreted as the first time after time t that a step in the process
{X (n)(t); t ≥ 0} occurs, by either a recovery of an infected vertex or a pairing of
two half-edges and possibly the infection of a vertex. Because the distribution of
the “τ random variables” does not have any atoms, the infection times of (infected)
vertices are almost surely different and at t+(t) almost surely only one event occurs.
In the interval [t, t+(t)) the process X (n)(t) is constant, while if t+(t) = σ(u)+Lu for

some u ∈ V (n), then all {(v, j) ∈ E(n)
I (t); v = u} are in E(n)

R (t+(t)) and u ∈ R(t+(t)).

If t+(t) = σ(u) + τu,j for some (u, j) ∈ E(n)
I (t), then (u, j) ∈ E(n)

P (t+(t)). In addition,
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consider (xk+1, x
′
k+1), which is the half-edge (u, j) “wants to” be paired with if it

is still possible. The half-edge (xk+1, x
′
k+1) is considered explored from time t+(t)

on, i.e. (xk+1, x
′
k+1) ∈ x(n)(t+(t)). We distinguish between the following cases for

further changes in X (n)(t) at time t+(t) = σ(u) + τu,j .

– If (xk+1, x
′
k+1) ∈ E(n)

S (t), then (xk+1, x
′
k+1) ∈ E(n)

P (t+(t)), while all dxk+1
− 1

other half-edges belonging to xk+1 (which necessarily belong to E(n)
S (t)) move

to E(n)
I (t+(t)). Furthermore, σ(xk+1) = t+(t) and xk+1 ∈ I(n)(t+(t)).

– If (xk+1, x
′
k+1) ∈ E(n)

I (t) ∪ E(n)
R (t), then again (xk+1, x

′
k+1) ∈ E(n)

P (t+(t)), while
none of the other half-edges and none of the vertices changes.

– If (xk+1, x
′
k+1) ∈ E(n)

P (t), then take the same steps as above with (xk+1, x
′
k+1)

replaced by (xk+2, x
′
k+2) and so on, while treating all considered half-edges as

explored.

• Continue the above construction until I(n)(t) = ∅. That is, until there are no
infectious vertices left.

4.2 Branching processes theory background

Throughout the manuscript we use several continuous time branching processes. In
this section we summarise some of the results we use in the analysis of the duration of
the epidemic. Some of the branching processes that we use are two stage branching
processes in the sense that the reproduction law for the ancestor is different from
that of the other particles in the process. In the exposition below we use a single
stage branching process, but extending the results to two stage branching processes is
straightforward. For further theory we refer to [19, Chapter 6] and [16, Chapter 3].

Assume that particles give birth to other particles according to a random point process
distributed as {ξ(t); t ≥ 0} and define µ(t) = E[ξ(t)]. Further assume that {ξ(t); t ≥ 0}
has a.s. no atoms and no multiple births at one time. If µ(∞) > 1 then equation (2.4) has
a strictly positive solution α, which is called the Malthusian parameter of the process. We
call a process supercritical if µ(∞) > 1, critical if µ(∞) = 1 and subcritical if µ(∞) < 1.
We decorate particles in the branching process with a lifetime, distributed as some
[0,∞]-valued random variable Λ and we assume that P(ξ(Λ) = ξ(∞)) = 1.

Let Z(t) be the number of particles in the branching process at time t and Ztot(t)

the number of particles born in the branching process up to and including time t.
Furthermore, let Z(t; a) be the number of particles alive at time t and of age at most a,
i.e. born after time t− a. The following Lemma follows immediately from Theorems 2.1
and 2.4 of [18] and Theorem 5.4 of [22].

Lemma 4.1. Assume µ(∞) > 1 and let α be the Malthusian parameter defined in (2.4).
Furthermore, for log+ t = log(max(1, t)), if there exist ε > 0 such that∫ ∞

0

t(log+ t)1+εe−αtµ(dt) <∞,

then almost surely and in expectation

e−αtZ(t)→W and e−αtZtot(t)→W ′ as t→∞, (4.3)

where W and W ′ are a.s. finite random variables satisfying

P(W > 0) = P(W ′ > 0) = P(Z(t) 6→ 0, for t→∞). (4.4)

If in addition

E

[∫ ∞
0

e−αtξ(dt) log+

(∫ ∞
0

e−αtξ(dt)

)]
<∞,
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then a.s. on {Z(t)→∞} we have

Z(t; a)

Z(t)
→
∫ a

0
P(L > a)e−αudu∫∞

0
P(L > a)e−αudu

, as t→∞. (4.5)

We need the following corollary of (4.3) and (4.4) in this lemma.

Corollary 4.2. Assume that the conditions of Lemma 4.1 hold. For k ∈ N, define T̂k =

inf{t ≥ 0;Z(t) ≥ k} and T̂ ′k = inf{t ≥ 0;Ztot(t) ≥ k}. Then a.s. on {Z(t)→∞ as t→∞}
we have that

T̂k
log k

→ 1

α
and

T̂ ′k
log k

→ 1

α
as k →∞. (4.6)

Proof. We only provide the proof of (log k)−1T̂k
a.s.→ α−1 as k →∞. The second statement

can be proved in an identical way.
Note that because {ξ(t); t ≥ 0} has neither atoms nor multiple points at the same

location, T̂k = inf{t ≥ 0;Z(t) = k} a.s. on {Z(t) → ∞ as t→∞}. If for ω ∈ Ω,
(log k)−1T̂k(ω) 6→ α−1 as k →∞, then there exists ε > 0 such that |(log k)−1T̂k(ω)−α−1| >
ε for infinitely many k ∈ N. Assume that (log k)−1T̂k(ω)−α−1 > ε for infinitely many k. If
(log k)−1T̂k(ω)− α−1 < −ε for infinitely many k, the proof is similar.

Let k1, k2, · · · be an increasing infinite sequence of integers, for which

T̂kj (ω)

log kj
− 1

α
> ε.

Since (log kj)
−1T̂kj (ω)− α−1 > ε implies T̂kj (ω) > (α−1 + ε) log kj , we have

e−αT̂kj (ω)Z(T̂kj (ω)) = e−αT̂kj (ω)kj < (kj)
−αε,

which converges to 0 as j →∞. So, e−αT̂kj (ω)Z(T̂kj (ω))→ 0 as j →∞. This implies that
if

P

( ∞∑
k=1

1

(
T̂k

log k
− 1

α
> ε

)
=∞

)
> 0,

then (4.3) and (4.4) cannot both be true, which finishes the proof.

To approximate the final phase of an epidemic we use a subcritical branching process.
For these branching processes equation (2.4) does not necessarily have a solution.
However if it has, then we may obtain some useful results. First note that α < 0. Let the
life-length of particles be distributed as Λ. From Theorem 6.2 of [19], we immediately
obtain

Lemma 4.3. Let µ(∞) < 1. Assume

(i) equation (2.4) has a solution,

(ii)
∫∞

0
te|α|tΛ(dt) <∞,

(iii)
∫∞

0
te|α|tµ(dt) <∞ and

(iv) E
[∫∞

0
e|α|tξ(dt) log+(ξ(∞))

]
<∞,

then e|α|tP(Z(t)>0|Z(0)=1) converges to a strictly positive and finite limit.

Below we use the following Corollary of this Lemma.

Corollary 4.4. Assume that the conditions of Lemma 4.3 hold. For k ∈ N, assume

Z(0) = k and define T̂ ∗k = inf{t ≥ 0;Z(t) = 0}. Then, T̂∗k
log k

P→ 1
|α| as k →∞.
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Proof. It is enough to prove that for every δ ∈ (0, 1) and as k →∞,

P

(
T̂ ∗k ≤

1 + δ

|α|
log k

)
= P

(
Z

(
1 + δ

|α|
log k

)
= 0|Z(0) = k

)
→ 1 and

P

(
T̂ ∗k ≤

1− δ
|α|

log k

)
= P

(
Z

(
1− δ
|α|

log k

)
= 0|Z(0) = k

)
→ 0.

Note that {Z(t); t ≥ 0} is distributed as {
∑k
j=1 Zj(t); t ≥ 0}, where for j ∈ N, the pro-

cesses {Zj(t); t ≥ 0} are independent branching processes distributed as the subcritical
branching process satisfying Zj(0) = 1. So,

{Z(t) = 0} = ∩kj=1{Zj(t) = 0}

and we obtain that

P(Z(t) = 0|Z(0) = k) = (P(Z(t) = 0|Z(0) = 1))
k
.

Therefore,

P

(
Z

(
1 + δ

|α|
log k

)
= 0|Z(0) = k

)
=

(
P

(
Z

(
1 + δ

|α|
log k

)
= 0|Z(0) = 1

))k
.

By Lemma 4.3 we know that there exists t0 > 0 such that for all t > t0 we have both

P(Z(t) > 0|Z(0) = 1) < e−|α|(1−δ/2)t and P(Z(t) > 0|Z(0) = 1) > e−|α|(1+δ)t.

So, we obtain

P

(
Z

(
1 + δ

|α|
log k

)
= 0|Z(0) = k

)
=

(
P

(
Z

(
1 + δ

|α|
log k

)
= 0|Z(0) = 1

))k
>
(

1− e−(1−δ/2)(1+δ) log k
)k

=
(

1− k−(1+δ/2−δ2/2)
)k

=

(
1− k−(δ−δ2)/2

k

)k
,

which converges to 1 for δ ∈ (0, 1), by (1− ck−1)k → e−c as k →∞. Similarly,

P

(
Z

(
1− δ
|α|

log k

)
= 0|Z(0) = k

)
=

(
P

(
Z

(
1− δ
|α|

log k

)
= 0|Z(0) = 1

))k
<
(

1− e−(1+δ)(1−δ) log k
)k

=
(

1− k−(1−δ2)
)k

=

(
1− kδ

2

k

)k
,

which converges to 0, since (1− ck−1)k → e−c as k →∞ and the proof of the corollary is
complete.
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5 Heuristics

In this subsection we provide some heuristic arguments for Theorem 2.3. If a large
outbreak occurs, the epidemic can be subdivided into three phases, which can be roughly
described as follows. Let ε > 0 be small. In the initial phase the number of susceptible
vertices decreases from n − 1 to (1 − ε)n. In the intermediate phase the number of
susceptible vertices decreases from (1 − ε)n to (q∗ + ε)n. While the final stage of the
epidemic lasts from the moment that the number of susceptible vertices is (q∗ + ε)n until
there are no more infectious vertices in the population.

5.1 The initial and intermediate phase of the epidemic

The primary intuition for the initial phase is that |I(t)|, the number of infectious
vertices at time t and |I(t)| + |R(t)|, the number of vertices infected before time t are
well approximated by a branching process with mean measure given by (2.5) as long as
n−1|S(t)| > 1− ε for ε > 0 but small. The result of Lemma 2.10 then follows by applying
Corollary 4.2 with k = εn.

To justify the use of (2.5), assume that the degree of a vertex uniformly taken from
the population of size n has exactly the same distribution function as D, then a newly
infected vertex has degree distribution D̃, because of size biasing effects (see e.g.
[14]). Apart from one (the infector) all of the neighbours of this newly infected vertex
are susceptible with high probability. A newly infected vertex stays infectious for a
random time distributed as L. Neighbours contact each other with intensity β, and if
the contact is between a susceptible and an infectious vertex then the susceptible one
becomes infected, which can be interpreted as being a child of his or her infector in the
approximating branching process. So in an approximating branching process we obtain
expression (2.5):

µ′(dt) = E[D̃ − 1]βe−βtP(L > t)dt,

where E[D̃ − 1] is the expected number of susceptible neighbours of a newly infected
vertex, βe−βt is the density of the time since infection of the first contact with a given
neighbour, while P(L > t) is the probability that the vertex is still infectious at this time
of first contact. The Malthusian parameter of this approximating branching process is
therefore given by (2.12).

In the intermediate phase of the epidemic, |S(t)|, |I(t)|, and the number of infectious-
susceptible neighbour pairs are all Θ(n). This implies that changes in n−1|S(t)|, occur at
an Θ(1) rate and the intermediate phase has duration Θ(1).

Our proof of Lemma 2.10, however makes use of the fact that the initial and inter-
mediate phase of the epidemic are, with some extra conditions on D and L, studied
by Barbour and Reinert in [7]. They study the evolution of |S(T0 + (α′)−1( 1

2 log[n] + t))|,
where T0 = inf{t ≥ 0; |S(t)| ≤ n −

√
n} is the time when

√
n vertices are infected or

recovered. As a corollary of the results of [7] it follows that for T ′γ(n) defined as in
Lemma 2.10, T ′γ(n)− (α′)−1 log n converges in distribution as n→∞. We avoid the extra
conditions of [7] at the cost of only being able to study the convergence of T ′γ(n)/(log n).

5.2 The final phase of the epidemic

In order to describe the end of the epidemic more work is required. We use that
for 1 − q∗ − γ > 0 but small, the time interval between T ′γ(n) and T ∗(n), none of

the quantities n−1|S(n)(t)| and n−1|E(n)
S (t)|, n−1|E(n)

I (t)|, n−1|E(n)
R (t)| and n−1|E(n)

P (t)| (as
defined in Section 4.1) change much. So, we assume that during the final stages of the
epidemic, the environment of newly infected vertices is more or less constant. That is,
in our approximation we assume that the degree distribution and the fraction of the
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neighbours which are still susceptible of newly infected vertices are constant during this
final phase. In particular, the degree distribution of a vertex infected during the final
phase of the epidemic should be well approximated by the size biased degree distribution
of ultimately susceptible vertices, while the fraction of susceptible neighbours of a newly
infected vertex in this phase of the epidemic should be well approximated by the fraction
of susceptible neighbours of ultimately susceptible vertices. We now find those quantities.

Let D∗ be a random variable, such that the degree of a uniformly chosen ultimately
susceptible vertex converges in distribution to D∗ as n → ∞. And let p∗ss be the
probability that a given neighbour of an ultimately susceptible vertex is ultimately
susceptible itself. Below we show that p∗ss is indeed well defined, and whether a given
neighbour of an ultimately susceptible vertex is susceptible is independent of the degree
of that vertex.

The end of the epidemic is then described by offspring measure

µ∗(dt) = E[D̃∗ − 1]p∗ssβe
−βtP(L > t)dt, (5.1)

which is derived in the same way as equation (2.5) and where D̃∗ is the size-biased
variant of D∗. Below we derive that

E[D̃∗ − 1] =
E[(D̃ − 1)(1− ψ + ψq̃∗)D̃−1]

q̃∗
and p∗ss =

q̃∗

1− ψ + ψq̃∗
.

Combining the above with (5.1) and Corollary 4.4 then gives Lemma 2.11.

5.2.1 Degree distribution of ultimately susceptible individuals

In this section we use ideas from [3, 4, 5]. Although we do not use them explicitly, these
ideas are related to susceptibility sets and could likely be expressed in those terms here
as well. The arguments of this section are self-contained.

It is important to note that in the epidemic process the event that a vertex is ulti-
mately recovered does not depend on its infectious period, even when infectious periods
are random. This fact helps us to derive the probability of a vertex being ultimately
susceptible and of degree k (as in [2]), which then yields the degree distribution of the
ultimately susceptible individuals.

Assume that a large outbreak occurs, which happens with the same probability as
the survival of the branching process approximating the early spread of the epidemic,
(see e.g. [4]). Recall that there is only one initially infectious individual. So, as n→∞,
the probability that a uniformly chosen vertex is the initial infectious vertex converges
to 0. Therefore, the probability that a uniformly chosen vertex v is ultimately susceptible
(i.e. it escapes the epidemic) is given by

ξ =

∞∑
k=0

ξkpk, (5.2)

where ξk is probability that a vertex of degree k does not acquire the infection by any of
its neighbours until the end of the epidemic. We denote a neighbour of vertex v by u.
Recall that 1− ψ is the probability that u does not contact v during its infectious period,
if u would become infected. Let q̃∗ denote the probability that u escapes the epidemic
(we determine q̃∗ later). Then, ξk is given by

ξk =

k∑
l=0

(
k

l

)
(q̃∗)k−l(1− q̃∗)l(1− ψ)l = (1− ψ + ψq̃∗)k, (5.3)
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because each of the neighbours of v should be either not infected itself, or, if infected,
not contact v during the infectious period. Using (5.3) in (5.2), the probability for a
uniformly chosen vertex to escape the epidemic is given by

ξ =

∞∑
k=0

pk(1− ψ + ψq̃∗)k. (5.4)

Similarly, q̃∗, the probability that u escapes infection by all of its neighbours other
than v is given by

q̃∗ =

∞∑
k=0

ξ̃kp̃k, (5.5)

where ξ̃k is the probability that a degree k vertex does not acquire the infection from
k − 1 given neighbouring vertices and is defined as

ξ̃k =

k−1∑
l=0

(
k − 1

l

)
(q̃∗)k−l−1(1− q̃∗)l(1− ψ)l = (1− ψ + ψq̃∗)k−1. (5.6)

Here we consider only k − 1 of the k neighbours of u because we assume that u does not
acquire infection from v. Equations (5.5) and (5.6) give that q̃∗ is a solution of

q̃∗ =

∞∑
k=0

p̃k(1− ψ + ψq̃∗)k−1. (5.7)

In this heuristic argument we claim without proof that q̃∗ is the smallest solution of
this identity. So we have an implicit expression for the probability q̃∗ that neighbour
u escapes the epidemic. Moreover, from (5.3) we obtain the probability that a vertex
of degree k escapes the epidemic. From this we deduce that the probability that an
ultimately susceptible individual has degree k (say p∗k) is given by

p∗k =
ξkpk
ξ

=
(1− ψ + ψq̃∗)kpk∑∞
j=1 pj(1− ψ + ψq̃∗)j

, (5.8)

where ξ is a normalising constant and is defined in (5.4). The size biased distribution of
the ultimately susceptible individuals is given through

p̃∗k =
kp∗k∑∞
j=1 jp

∗
j

=
kpk(1− ψ + ψq̃∗)k∑∞
j=1 jpj(1− ψ + ψq̃∗)j

,

=
p̃k(1− ψ + ψq̃∗)k−1∑∞
j=1 p̃j(1− ψ + ψq̃∗)j−1

=
p̃k(1− ψ + ψq̃∗)k−1

q̃∗
.

(5.9)

5.2.2 Fraction of ultimately susceptible neighbours of an ultimately suscepti-
ble vertex

Let v be an arbitrary vertex of degree k and u one of its neighbours. We compute the
fraction of neighbours of an ultimately susceptible individual which are also ultimately
susceptible as the following conditional probability:

p∗ss(k) = P(u is ultimately susceptible | v is ultimately susceptible),

=
P(v and u are ultimately susceptible)

P(v is ultimately susceptible)
=
q̃∗ ξ̃k
ξk

=
q̃∗

1− ψ + ψq̃∗
.

(5.10)
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Note that this probability is independent of the degree k of vertex v and therefore we
can write p∗ss(k) = p∗ss.

To understand (5.10), recall that q̃∗ is the probability that the initially susceptible
neighbour u escapes the infection from all its neighbouring vertices, apart from possibly
v, ξ̃k is the probability that v escapes infection from all of its neighbours, apart from
possibly u, and ξk is the unconditional probability that vertex v does not acquire the
infection until the end of the epidemic.

6 Proof of Lemma 2.10

We split the proof into two lemmas which trivially imply Lemma 2.10.

Lemma 6.1. Assume that A1–A3 of Assumptions 2.1 hold, then

T ′γ(n)

log n
1(M(n)) ≤ 1

α′
+ δ w.h.p. for every δ > 0.

Lemma 6.2. Assume that A1–A3 of Assumptions 2.1 hold and that E[D2] <∞, then

T ′γ(n)

log n
≥ 1

α′ + δ
w.h.p. for every δ > 0.

Note that E[D2] =∞ implies α′ =∞ and the equivalent of Lemma 6.2 is meaningless.
Lemma 6.1 still holds in that case.

Proof of Lemma 6.1. Assume first that D(n) has uniformly bounded support, that is,
there exist K > 0 such that P(D(n) > K) = 0 for all n ∈ N. Furthermore, assume that
there exists Lmax ∈ (0,∞) such that P(L > Lmax) = 0, i.e. we assume that L has bounded
support. Under those assumptions the conditions of [7, Thm. 3.3] are satisfied. Note
that in the notation of [7], λ is the Malthusian parameter (α′ in our notation) and N is
the population size (n in our notation). It is easily deduced from equation (3.11) and

the definition of τN on page 27 of [7] that τN/[logN ]
P→ 1/(2λ) on M(n). Finally, the

expression ŝl(u) in [7] is independent of N for all l ∈ {1, 2, · · · ,K}. Translating the
notation of [7, Thm. 3.3] to our notation we obtain as an immediate corollary that for
every γ′ ∈ (0, 1− q∗) and every δ > 0,

1

n

∣∣∣S(n)
((

(α′)−1 + δ
)

log n
)∣∣∣1(M(n)) < q∗ + γ′ w.h.p.

To obtain the results without the extra conditions, let K = K(δ) be a large constant
satisfying some properties specified later. Mark (before the pairing) all half-edges
belonging to vertices with degree strictly larger than K. By assumptions (A1) and (A2)
one can make the fraction of half-edges that are marked arbitrary small by choosing
K and n large enough. The next step is to pair all half-edges (ignoring whether they
are marked and unmarked) uniformly at random as before. Then delete all edges which
contain at least one marked half-edge. If a fraction δ1 = δ1(K) of the half-edges is marked
then the remaining degree distribution of the graph is a Mixed Binomial distribution
with random “number of trials parameter” D(n)1(D(n) ≤ K) and “probability parameter”

1− δ1. Let D(n)
K be distributed as this Mixed Binomial random variable, and D̃(n)

K be the

size-biased variant of D(n)
K . It follows immediately from assumptions (A1) and (A2) that

lim
K→∞

lim
n→∞

E[D
(n)
K ] = E[D].

Furthermore, for both E[D2] =∞ and E[D2] <∞, (A1) and (A3) imply that

lim
K→∞

lim
n→∞

E[(D
(n)
K )2] = E[D2].

EJP 26 (2021), paper 112.
Page 22/49

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP679
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


The duration of a supercritical SIR epidemic on a configuration model

In particular, we obtain that

lim
K→∞

lim
n→∞

E[D̃
(n)
K − 1] = E[D̃ − 1].

In addition we consider an epidemic on the newly created (thinned) graph with
infectious period distribution

L′ = L1(L < Lmax) + Lmax1(L ≥ Lmax).

So, in the new model we have deleted some edges and shortened some infectious periods,
which means that the epidemic spreads faster in the original model than in the new
model.

For this new epidemic we deduce from (2.12) that the Malthusian parameter is the
x ∈ R satisfying

1

E[D̃
(n)
K − 1]

=

∫ Lmax

0

e−xtβe−βtP(L > t)dt = f(x, Lmax). (6.1)

We define f(x,∞) in the obvious way. Note that f(x, Lmax) is continuous and decreasing
in x and continuous and increasing in Lmax. Furthermore, if ψE[D̃ − 1] > 1, then

f(0,∞) = ψ >
1

E[D̃ − 1]
,

while limx→∞ f(x, Lmax) = 0 for all Lmax ∈ (0,∞]. It follows that the solution of (6.1)
converges to α′ as K → ∞ and Lmax → ∞. In particular, for every δ > 0, there exists
K0 < ∞ and L0 < ∞ such that for all K > K0 and Lmax > L0, the x ∈ R solving (6.1)
satisfies 1/x < 1/α′ + δ/2.

So, by choosing Lmax and K large enough (but finite), we are in the realm of [7,
Thm. 3.3] and for the corresponding model we obtain that for every γ′ ∈ (0, 1− q∗) and
δ > 0 with high probability it holds that,

1

n

∣∣∣∣S(n)

((
1

α′
+ δ/2 + δ/2

)
log n

)∣∣∣∣ < q∗ + γ′,

which finishes the proof of Lemma 6.1.

Proof of Lemma 6.2. In order to prove the lemma we prove the following stronger
statement: The number of vertices affected by the epidemic up to time logn

α′+δ satisfies

|n− S(n)( logn
α′+δ )| = o(n) with high probability for all δ > 0.

Now, for δ1 > 0, let α1 = α1(δ1) satisfy

1

E[D̃ − 1] + δ1
=

∫ ∞
0

e−α1tβe−βtP(L > t)dt. (6.2)

As before, because R0 > 1, we know that α1 exists and is positive for all δ1 ≥ 0 and
is continuous increasing in δ1 on [0,∞). In particular, for every δ > 0, we can and do
choose δ1 > 0 such that α1(δ1) < α′ + δ/2.

We use the notation of Section 4.1, where the vertices in V (n) are labelled such that
the degree sequence d1, d2, · · · , dn is non-decreasing. We also use that `2(n) = O(n) by
assumption (A3) and the assumption E[D2] <∞ (or equivalently E[D̃] <∞).

Let ε1 ∈ (0, 1) be a number to be specified later. For i ≤ ε1n define the random
variable D′ (n)(x; i) through

P(D′ (n)(x; i) = k) =

∑n
v=1 1(dv = k)1(v 6∈ {x0, x1, · · ·xi})∑n

v=1 1(v 6∈ {x0, x1, · · ·xi})
.
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That is, D′ (n)(x; i) is the degree distribution of the vertices not chosen in the first i
elements of x.

Note that for all i ≤ i0 = bε1nc, the random variable D′ (n)(x; i) is stochastically
dominated by D′′ (n)(ε1), which is defined through

P(D′′ (n)(ε1) = k) =

∑n
v=i0+1 1(dv = k)

n− i0
.

So, D′′ (n)(ε1) is the degree distribution of a vertex chosen uniformly from the n − i0
vertices with highest degrees, which is stochastically increasing in i0. Let D̃′′ (n)(ε1) be
the size biased variant of D′′ (n)(ε1). It follows that

E[D̃′′ (n)(ε1)] =

∑n
v=i0+1(dv)

2∑n
v=i0+1 dv

.

Observe that
∑n
v=i0+1(dv)

2 ≤
∑n
v=1(dv)

2 = `2(n), while

n∑
v=i0+1

dv =

n∑
v=1

dv −
i0∑
v=1

dv ≥ `(n)− i0E[D(n)] = `(n)− i0
`(n)

n
≥ `(n)(1− ε1).

So,

E[D̃′′ (n)(ε1)] ≤ `2(n)

`(n)(1− ε1)
=

1

1− ε1
E[D̃(n)].

Note that (apart from possibly x0), in the construction of {X (n)(t); t ≥ 0} the degree
of a vertex added to V (n) \ S(n)(t) is stochastically smaller than D̃′′ (n)(ε1), as long as
t < t0, where t0 = t0(ε1) = max{t > 0; |x(n)(t)| ≤ i0}. That is, up to we explore the i0-th
vertex, the number of vertices in V (n) \ S(n)(t) is less than the number of particles in a
branching process with offspring measure

µ′′ (n)(dt; i0) = E[D̃′′ (n)(ε1)]βe−βtP(L > t)dt.

Denote the number of particles in this branching process at time t (t ≥ 0) by Z ′′ (n)(t).

Because E[D̃(n)] → E[D̃] as n → ∞, we have that for every δ1 > 0 we can choose
ε1 = ε1(δ1) > 0 and n0 = n0(δ1) ∈ N, such that E[D̃′′ (n)(ε1)] < E[D̃] + δ1 for all n > n0.

So for ε1 = ε1(δ1) and n0 = n0(δ1) as above, {Z ′′ (n)(t); t ∈ (0, t0)} is dominated by a
branching process {Z ′′(t); t ∈ (0, t0)} with offspring measure

µ′′(dt) = (E[D̃] + δ1)βe−βtP(L > t)dt.

This branching process has a Malthusian parameter α1(δ1), which satisfies equation (6.2)
and is less than α′ + δ/2.

Now observe that by Lemma 4.1, with high probability

Z ′′
(

log n

α′ + δ

)
= O

(
e(α′+ δ

2 ) logn
α′+δ

)
= O

(
n
α′+δ/2
α′+δ

)
= o(n).

Since i0 = θ(n) and the number of individuals infected before time t is stochastically
less than Z ′′( logn

α′+δ ), we obtain that n − |S( logn
α′+δ )| = o(n) with high probability for all

δ > 0.
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7 The final stage of the epidemic

7.1 Proof of Lemma 2.2

Before we prove Lemma 2.11, we first provide the proof of Lemma 2.2. To this end
we use the following almost trivial observation.

For x ∈ (0, 1], let D∗x be a random variable with distribution defined through

p∗k(x) = P(D∗x = k) =
pkx

k∑∞
`=0 p`x

`
(7.1)

for k ≥ 0. Here pk = P(D = k) as in Section 2.2.

Claim 7.1. For x ∈ (0, 1) all moments of the random variable D∗x are finite, regardless of
the distribution of D.

Proof. Consider the jth moment of D∗x

E[(D∗x)j ] =

∞∑
k=1

kjp∗k(x) =

∞∑
k=1

kj
pkx

k∑∞
l=0 plx

l
≤ maxk∈N k

jxk∑∞
l=0 plx

l
.

Because the numerator is finite and the denominator is strictly positive, the claim
follows.

In particular, note that

E[D̃∗] =
E[D̃zD̃−1]

q̃∗
=
E[D2zD−1]

E[D]q̃∗

=
E[D2(1− ψ + ψq̃∗)D]

E[zD]

E[zD]

E[D]q̃∗z
= E[(D∗z)2]

E[zD−1]

E[D]q̃∗
<∞,

where
z = 1− ψ + ψq̃∗. (7.2)

For notational convenience we continue using z below.

Proof of Lemma 2.2. Recall the definition of α† from (2.19). By Claim 7.1 µ∗(dt) is well
defined. In Remark 2.7 we argued that α∗ ≥ α†; α† < 0 and the function g∗(x) is
continuous and strictly decreasing for x > α†. This implies that g∗(x) is continuous and
strictly decreasing on the non empty interval (−α†, 0) and α∗ ∈ [−α†, 0) if and only if

R∗0 =

∫ ∞
0

µ∗(dt) = g∗(0) < 1.

To show that R∗0 < 1, observe that the function

g(x) =

∞∑
k=1

p̃k(1− ψ + ψx)k−1

is convex and analytic on x ∈ [0, 1] and has derivative

d

dx
g(x) = ψ

∞∑
k=1

(k − 1)p̃k(1− ψ + ψx)k−2 = ψE[(D̃ − 1)(1− ψ + ψx)D̃−2].

Furthermore, by the definition of q̃∗ (see (2.8)) and the convexity of g(·), q̃∗ and 1 are the
only two solutions of the equation g(x)− x = 0 in [0, 1]. We recall that q̃∗ < 1. Because
g(x)− x is convex, we know that the function g(x)− x has to be negative between its two
zeros (i.e. between q̃∗ and 1). This, together with d

dxg(x)|x=q̃∗ = R∗0 (by (2.16)) implies
that R∗0 < 1, which finishes the proof.

EJP 26 (2021), paper 112.
Page 25/49

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP679
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


The duration of a supercritical SIR epidemic on a configuration model

7.2 Time until the end of the epidemic

In this section we use the construction of the epidemic generated graph as presented
in Section 4.1. We restrict ourselves to major outbreaks. Our approach is to define
a random time t1 = t

(n)
1 , when the fraction of susceptible vertices among all vertices

is larger than, but close to, its asymptotic value and sandwich (w.h.p.) the process
{|I(n)(t)|; t ≥ t(n)

1 } between two branching processes and then find the time until those
branching processes go extinct.

Let {X (n)(t); t ≥ 0} be as in Section 4.1. In our analysis below we consider |E(n)
S (t)|,

|E(n)
P (t)| and ∑

v∈S(n)(t)

dv1(dv ≥ k) =
∑

v∈V (n)

dv1(dv ≥ k)1(v ∈ S(n)(t)).

Note that |E(n)
S (t)| and

∑
v∈S(n)(t) dv1(dv ≥ k) are decreasing in t, while |E(n)

P (t)| is
increasing in t.

For all n, k ∈ N define the constant d̂(n)
k by

d̂
(n)
k = sup

n′≥n
P(D(n′) = k).

Observe that by definition d̂(n)
k ≥ d̂(n′)

k ≥ P(D(n′) = k) for all n′ ∈ N≥n and for all k ∈ N.

Furthermore, it follows immediately from D(n) d→ D that d̂(n)
k → P(D = k). However,

note that in general
∑∞
k=1 d̂

(n)
k may be strictly larger than 1 and there is no reason to

assume that
∑∞
k=1 d̂

(n)
k converges to 1 as n→∞.

For ε ∈ (0, ψ(1− q̃∗)) = (0, 1− z) define

t(n)
a (ε) = inf{t > 0; |E(n)

S (t)| ≤ E[(z + ε)D̃]`(n)},

t
(n)
b (ε) = inf{t > 0; |E(n)

P (t)| ≥ `(n)− 1− (z + ε)2`(n)},

t(n)
c (ε) = inf{t > 0;

∑
v∈S(n)(t)

dv1(dv ≥ k) ≤
∞∑
j=k

njd̂
(n)
j (z + ε)j for all k ∈ N},

where the infimum of an empty set is∞. Let

t
(n)
1 (ε) = max(t(n)

a (ε), t
(n)
b (ε), t(n)

c (ε))

and define the event A(n)
1 (ε) = {t(n)

1 (ε) < ∞}. Let A(n)
2 (ε) be the event that all of the

following events hold.

|E(n)
S (∞)| > E[(z − ε)D̃]`(n),

|E(n)
P (∞)| < `(n)− 1− (z − ε)2`(n),∑

v∈S(n)(∞)

dv1(dv ≥ k) ≥
∞∑
j=k

njP(D = j)(z − ε)j for all k ∈ N≤b1/εc.

Finally define A(n)(ε) = A(n)
1 (ε) ∩ A(n)

2 (ε).

Lemma 7.2. For all ε ∈ (0, ψ(1− q̃∗)), it holds that P(A(n)(ε)|M(n))→ 1 and there exists
c1 > 0, such that

P(|S(n)(t
(n)
1 (ε))| − |S(n)(∞)| > c1n|M(n))→ 1.

The proof of this lemma is provided in Appendix A.
Now we are almost ready to prove Lemma 2.11. In the proof we consider who infected

whom, and since individuals can be infected only once, this leads to a tree representation
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of the infection process: the infection tree. For u, v ∈ V (n), if v is infected by u then u

is the infector of v and we write u = ζ(v). We say that vertex u is an ancestor of v if
there is j ∈ N and there are vertices u = v0, v1, · · · , vj = v ∈ V (n) such that for i ∈ N≤j ,
vi−1 = ζ(vi). To be complete we say that v is an ancestor of itself.

Let v be a vertex infected at time σ(v). Then define {J (n)
v (t); t ≥ 0}, through

J (n)
v (t) = I(n)(σ(v) + t) ∩ {u ∈ V (n); v is an ancestor of u}.

Furthermore, let V (n)
∗ (t) ⊂ V (n), be the set of vertices infected after time t, of which

the infector is infected before time t, i.e.

V
(n)
∗ (t) = {v ∈ S(n)(t) \ S(n)(∞); ζ(v) ∈ I(n)(t)}. (7.3)

In the language of [9], V (n)
∗ (t) is the coming generation at time t.

7.2.1 Proof of Lemma 2.11

Lemma 2.11 follows trivially from the following three lemmas. In Lemma 7.3 we show
that condition (2.17) is necessary to obtain the proper scaling for the duration of the
end of the epidemic. If condition (2.17) holds, then we provide an upper bound for the
duration of the end of the epidemic in Lemma 7.4 and we provide a lower bound in
Lemma 7.5.

Lemma 7.3. Assume that (2.17) does not hold, i.e. assume that there exists η > 0 such
that

∫∞
0
e(|α∗|−η)tL(dt) = ∞. Then there exists δ > 0, γ > 0 and a strictly increasing

infinite sequence of positive integers n1, n2, · · · such that

P

(
T ∗(ni)− T ′γ(ni) >

log ni
|α∗| − δ

| M(ni)

)
→ 1 as i→∞.

Lemma 7.4. Assume that (2.17) holds. For every δ ∈ (0, |α∗|), there exist γ > 0, such
that

P

(
T ∗(n)− T ′γ(n) <

log n

|α∗| − δ
| M(n)

)
→ 1.

Lemma 7.5. For every δ > 0, there exist γ > 0, such that

P

(
T ∗(n)− T ′γ(n) >

log n

|α∗|+ δ
| M(n)

)
→ 1.

Note that in Lemma 7.5 condition (2.17) is not needed, since (2.17) is only needed to
guarantee that vertices do not stay infectious for too long and as such only needed for
stochastic upper bounds on the duration of the epidemic.

Proof of Lemma 7.3. By Remark 2.6 we know that for η ∈ (0, |α∗|),∫ ∞
0

e(|α∗|−η)tL(dt) =∞⇔
∫ ∞

0

e(|α∗|−η)tP(L > t)dt =∞. (7.4)

Working with the right hand side, we continue by observing∫ ∞
0

e(|α∗|−η)tP(L > t)dt =

∞∑
n=1

∫ log(n+1)
|α∗|−η/2

logn
|α∗|−η/2

e(|α∗|−η)tP(L > t)dt

≤
∞∑
n=1

log(1 + 1/n)

|α∗| − η/2
e
|α∗|−η
|α∗|−η/2 log(n+1)

P

(
L >

log n

|α∗| − η/2

)

≤
∞∑
n=1

log 2

|α∗| − η/2
n
|α∗|−η
|α∗|−η/2

log(n+1)
logn P

(
L >

log n

|α∗| − η/2

)
.
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Furthermore, there exists ε1 > 0, which depends on η such that for all large enough n

|α∗| − η
|α∗| − η/2

log(n+ 1)

log n
< 1− 2ε1.

So, there exists ε1 > 0 such that∫ ∞
0

e(|α∗|−η)tP(L > t)dt =∞⇒
∞∑
n=1

n1−2ε1P

(
L >

log n

|α∗| − η/2

)
=∞. (7.5)

Now assume that
∫∞

0
e(|α∗|−η)tP(L > t)dt =∞ and that there exists N0 ∈ N such that

P
(
L > logn

|α∗|−η/2

)
≤ n−(1−ε2) for all ε2 > 0 and all n ∈ N>N0 . This implies with ε2 = ε1

that

∞∑
n=1

n1−2ε1P

(
L >

log n

|α∗| − η/2

)

≤
N0∑
n=1

n1−2ε1 +

∞∑
n=N0+1

n1−2ε1n−(1−ε1) ≤ (N0)1−2ε1 +

∞∑
n=N0+1

n−ε1 ,

which is finite and therefore contradicts
∫∞

0
e(|α∗|−η)tP(L > t)dt =∞.

So, there exists ε1 > 0 such that P
(
L > logn

|α∗|−η/2

)
> n−(1−ε1), for infinitely many n.

Say that for the infinite increasing sequence n1, n2, · · · we have

P

(
L >

log ni
|α∗| − η/2

)
> (ni)

−(1−ε1) for i ∈ N. (7.6)

We choose γ > 0 and c1 > 0 such that

P
(
|S(ni)(T ′γ(ni)) \ S(ni)(∞)| > c1ni | M(ni)

)
→ 1 as i→∞, (7.7)

which we can do by Lemma 7.2. If the maximal infectious period of vertices in the set
|S(ni)(T ′γ(ni)) \ S(ni)(∞)| is larger than logni

|α∗|−η/2 , then∣∣∣∣I(ni)

(
T ′γ(ni) +

log ni
|α∗| − η/2

)∣∣∣∣ > 0.

The probability that the maximum of the infectious periods of vertices in the set
|S(ni)(T ′γ(ni)) \ S(ni)(∞)| is larger than logni

|α∗|−η/2 is given by

1−
(

1− P
(
L >

log ni
|α∗| − η/2

))|S(ni)(T ′γ(ni))\S(ni)(∞)|

.

By (7.6) this probability is larger than

1−
(

1− c1(ni)
ε1

c1ni

)|S(ni)(T ′γ(ni))\S(ni)(∞)|

.

So combining this with (7.7) we obtain

P

(
T ∗(ni)− T ′γ(ni) >

log ni
|α∗| − η/2

| M(n)

)
= P

(∣∣∣∣I(ni)

(
T ′γ(ni) +

log ni
|α∗| − η/2

)∣∣∣∣ > 0 | M(ni)

)
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≥ 1− P(|S(ni)(T ′γ(ni)) \ S(ni)(∞)| ≤ c1ni | M(ni))

− P
(∣∣∣∣I(ni)

(
T ′γ(ni) +

log ni
|α∗| − η/2

)∣∣∣∣ > 0
⋂∣∣∣S(ni)(T ′γ(ni)) \ S(ni)(∞)

∣∣∣ > c1ni | M(ni)

)
≥ 1− P(|S(ni)(T ′γ(ni)) \ S(ni)(∞)| ≤ c1ni | M(ni))−

(
1− c1(ni)

ε1

c1ni

)c1ni
,

which converges to 1 as i→∞.

Proof of Lemma 7.4. We divide the proof in the following steps

1. Show that there exists with high probability a constant γ > 0 such that for
v ∈ V

(n)
∗ (T ′γ(n)) and for δ ∈ (0, |α∗|), we can construct a branching process

which dominates {J (n)
v (t); t ≥ 0} and has Malthusian parameter in the interval

(−|α∗|,−(|α∗| − δ)).

2. Show that the dominating branching process satisfy the conditions of Lemma 4.3.

3. Show that

∑
v∈V (n)

∗ (T ′γ(n))

∣∣∣∣J (n)
v

(
T ′γ(n) +

log n

|α∗| − δ
− σ(v)

)∣∣∣∣
+

∣∣∣∣I(n)
(
T ′γ(n)

)
∩ I(n)

(
T ′γ(n) +

log n

|α∗| − δ

)∣∣∣∣ = 0 w.h.p.

Again we use z = 1− ψ + ψq̃∗.

Step 1:
Let ε > 0 satisfy ε < z and z + 2ε < 1. If at time t a half-edge from E(n)

I (t−) is paired with

another half-edge, this other half-edge belongs to E(n)
S (t−) with probability κ(n)(t), which

is defined by

κ(n)(t) =
|E(n)
S (t−)|

`(n)− |E(n)
P (t−)| − 1

. (7.8)

Here `(n)− |E(n)
P (t−)| is the number of not-yet paired vertices just before time t and the

−1 appears in the denominator because the half-edge from E(n)
I (t−) cannot be paired

with itself. Furthermore, the probability that if the half-edge is paired with a half-edge
from E(n)

S (t−), it belongs to a vertex of degree at least k is given by π(n)
≥k (t), which is

defined by

π
(n)
≥k (t) =

∑
v∈S(n)(t−) dv1(dv ≥ k)

|E(n)
S (t−)|

. (7.9)

The processes {|S(n)(t)|; t ≥ 0} and {|E(n)
S (t)|; t ≥ 0} are decreasing in t, while the process

{|E(n)
P (t)|; t ≥ 0} is increasing in t. So, for t(n)

1 (ε) as in Lemma 7.2, and t > t
(n)
1 (ε) and on

A(n)(ε),

κ(n)(t) ≤
|E(n)
S (t

(n)
1 (ε))|

`(n)− |E(n)
P (∞)| − 1

<
E[(z + ε)D̃]`(n)

(z − ε)2`(n)
=
E[(z + ε)D̃]

(z − ε)2
. (7.10)

For future reference define

κ+(ε) =
E[(z + ε)D̃]

(z − ε)2
, (7.11)
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and note that the second inequality in (7.10) is strict. Similarly, on A(n)(ε) and for k ≥ 1

and t ≥ t(n)
1 (ε), we have by Lemma 7.2 that

π
(n)
≥k (t) =

∑
v∈S(n)(t−) dv1(dv ≥ k)

|E(n)
S (t−)|

≤ min

(
1,

∑
v∈S(n)(t

(n)
1 (ε))

dv1(dv ≥ k)

|E(n)
S (∞)|

)

≤ min

(
1,

∑∞
j=k njd̂

(n)
j (z + ε)j

`(n)E[(z − ε)D̃]

)
= P(D̃(n),+(ε) ≥ k), (7.12)

where the final equality defines the random variable D̃(n),+(ε). That is, D̃(n),+(ε) stochas-

tically dominates the random variable defined through π
(n)
≥k (t) for t > t

(n)
1 (ε). It is

important to note that for ε as above and n′ > n, D̃(n),+(ε) stochastically dominates
D̃(n′),+(ε).

Recall the notation from Section 4.1 Let v be a vertex infected at time t. Then v has
a random degree with distribution defined through π

(n)
≥k (t). One of the dv half-edges

attached to v is paired at time t, while the other dv − 1 are still unpaired at time t.
Let Lv be the infectious period of v and without loss of generality we can assume
that v was infected through half-edge (v, dv). So, τv,1, τv,2, · · · τv,dv−1 are the independent
exponentially distributed random variables with expectation 1/β assigned to the different
unpaired half-edges of v. For i ≤ dv − 1, if τv,i ≤ Lv, then t+ τv,i is the time at which a
contact is made along the half-edge (and the half-edge is paired) and the contact made
at time t + τv,i is with a susceptible with probability κ(n)(t + τv,i−). By (7.10), (7.11)

and (7.12) we thus obtain that for all v ∈ V (n)
∗ (t

(n)
1 (ε)), {|J (n)

v (t)|; t ≥ 0} is stochastically
dominated by a branching process in which particles give birth at ages given by the
point process 

D̃(n),+(ε)−1∑
k=1

1(τk < min(L, t))Y +
k (ε); t ≥ 0

 , (7.13)

where Y +
k (ε) is a Bernoulli random variable with success probability κ+(ε), τ1, τ2, · · · are

exponential distributed random variables with expectation 1/β and all defined random
variables are independent.

To make step 2 below work, we define another process which dominates the above
point process by

{ξ̂(n),+
ε (t); t ≥ 0}

=

1(g∗(α∗) < 1)Ȳ +

D̃(n),+(ε)−1∑
k=1

1(τv,k < min(L, t))Y +
k (ε); t ≥ 0

 . (7.14)

Here g∗(·) is defined as in (2.15) and Ȳ is a Bernoulli random variable with success
probability 1 − g∗(α∗), which is independent of everything else in the process. So,

if g∗(α∗) ≥ 1, {ξ̂(n),+
ε (t); t ≥ 0} is given by (7.13). While if g∗(α∗) < 1, we obtain

{ξ̂(n),+
ε (t); t ≥ 0} by adding with probability 1− g∗(α∗) a point at time 0 to (7.13). Note

that if we create a branching process by adding this possible extra particle to the
branching process with mean offspring measure µ∗(·), for which g∗(α∗) < 1 then for the
new branching process the mean offspring measure, µ̄∗(·) say, satisfies∫ ∞

0

e−α
∗tµ̄∗(dt) =

∫ ∞
0

e−α
∗tµ∗(dt) + 1− g∗(α∗) = g∗(α∗) + 1− g∗(α∗) = 1.
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So, the new branching process also has Malthusian parameter α∗.
The mean offspring measure of the branching process with reproduction process

{ξ̂(n),+
ε (t); t ≥ 0} is then defined through

µ(n),+
ε (t) = E[D̃(n),+(ε)− 1]κ+(ε)P(τv,k < min(L, t)) + max(0, 1− g∗(α∗)),

where κ+(ε) is defined in (7.11) and

E[D̃(n),+(ε)] ≤
∞∑
k=1

∑∞
j=k njd̂

(n)
j (z + ε)j

`(n)E[(z − ε)D̃]
=

∑∞
j=1 j

2d̂
(n)
j (z + ε)j

n−1`(n)E[(z − ε)D̃]
.

Since 1 ≥ d̂(n)
j → dj for all j and d̂(n)

j is decreasing in n and because the sum
∑∞
j=1 j

2(z +

ε)j <∞, the numerator decreases to

E[D2(z + ε)D] = E[D]E[D̃(z + ε)D̃],

while the denominator converges to E[D]E[(z − ε)D̃]. So,

n1(ε) = min

{
n ∈ N;E[D̃(n),+(ε)] <

E[D̃(z + 2ε)D̃]

E[(z − ε)D̃]

}

is well defined and finite. Denote the branching process with reproduction process
{ξ̂(n1(ε)),+
ε (t); t ≥ 0} by {ξ̂+

ε (t); t ≥ 0} and the corresponding offspring mean with µ+
ε (t).

Finally,

P(τv,k < min(L, t)) =

∫ t

0

(1− e−βs)L(ds) =

∫ t

0

βe−βsP(L > s)ds. (7.15)

Combining the above terms we obtain that

µ+
ε (0) = 1(g∗(α∗) < 1)(1− g∗(α∗))

and for t > 0 and n > n1 that

µ+
ε (dt) ≤ E[(D̃ − 1)(z + ε)D̃]

E[(z − ε)D̃]

E[(z + 2ε)D̃]

(z − ε)2
βe−βtP(L > t)dt = K+(ε)µ∗(dt), (7.16)

where µ∗(dt) is defined in (2.7) and

K+(ε) =
E[(D̃ − 1)(z + ε)D̃]

E[(D̃ − 1)zD̃]

E[(z + 2ε)D̃]

E[(z − ε)D̃]

z2

(z − ε)2
> 1. (7.17)

So, for t ∈ (0,∞), we have µ∗(dt) ≤ µ+
ε (dt) ≤ K+(ε)µ∗(dt), where the first inequality

is strict for t such that P(L > t) > 0. Therefore, for every x > α∗ we have,

g∗(x) + max(0, 1− g∗(α∗)) =

∫ ∞
0

e−xtµ∗(dt) + max(0, 1− g∗(α∗))

<

∫ ∞
0

e−xtµ+
ε (dt) ≤ K+(ε)

∫ ∞
0

e−xtµ∗(dt) + max(0, 1− g∗(α∗))

= K+(ε)g∗(x) + max(0, 1− g∗(α∗)). (7.18)

Note that that g∗(α∗) + max(0, 1 − g∗(α∗)) = max(1, g∗(α∗) = 1. Then note that all
expectations in K+(ε) as defined in (7.17) are finite by Claim 7.1 and continuous in ε.
Furthermore, K+(ε) is clearly increasing in ε. By the finiteness of all expectations in
(7.17), we also obtain that limε↘0K+(ε) = 1.

EJP 26 (2021), paper 112.
Page 31/49

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP679
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


The duration of a supercritical SIR epidemic on a configuration model

Together this gives that for every δ′ > 0, we can choose ε > 0 such that,∫ ∞
0

e−(α∗+δ′)tµ+
ε (dt) ≤ K+(ε)

∫ ∞
0

e−(α∗+δ′)tµ∗(dt) + max(0, 1− g∗(α∗)) < 1 (7.19)

and

lim
x↘α∗

∫ ∞
0

e−xtµ+
ε (dt) > 1.

It is easy to check that
∫∞

0
e−xtµ+

ε (dt) is continuous and monotone in x on (α†,∞).
Therefore, for ε such that (7.19) is satisfied, there exists α+

ε ∈ (α∗, α∗ + δ′) such that∫∞
0
e−α

+
ε tµ+

ε (dt) = 1.

Step 2:
In this step, let µ+

ε (dt) be as in Step 1. We wish to show that for every δ ∈ (0, |α∗|) there
exists ε > 0 and α+

ε ∈ (α∗, α∗ + δ) such that

(i) 1 =
∫∞

0
e−α

+
ε tµ+

ε (dt),

(ii)
∫∞

0
te|α

+
ε |tL(dt) <∞,

(iii)
∫∞

0
te|α

+
ε |tµ+

ε (dt) <∞ and

(iv) E
[∫∞

0
e|α

+
ε |tξ̂+

ε (dt) log+(ξ̂+
ε (∞))

]
<∞.

From the last paragraph of Step 1, (i) follows immediately. Furthermore, by assump-
tion we have

∫∞
0
e−xtL(dt) <∞ for all x > α∗. This implies that

∫∞
0
te−xtL(dt) <∞ for

all x > α∗. (ii) follows now from α+
ε > α∗.

By α+
ε > α∗ ≥ α† and the second inequality in (7.18) we obtain by the definition of α†

that
∫∞

0
e−α

+
ε tµ∗(dt) <∞ and thus that∫ ∞

0

te−α
+
ε tµ+

ε (dt) ≤ K+(ε)

∫ ∞
0

e−α
+
ε tµ∗(dt) + 1(g∗(α∗) < 1)(1− g∗(α∗)) <∞.

Finally,

E

[∫ ∞
0

e|α
+
ε |tξ̂+

ε (dt) log+(ξ̂+
ε (∞))

]
≤ E

[∫ ∞
0

e|α
+
ε |tξ̂+

ε (dt) log+(D̃+(ε)− 1))

]
≤ E[(D̃+(ε)− 1) log+(D̃+(ε)− 1)]κ+(ε)

∫ ∞
0

e|α
+
ε |tβe−βtP (L > t)dt

≤ E[(D̃+(ε)− 1)2]κ+(ε)

∫ ∞
0

e|α
−
ε |tβe−βtP (L > t)dt

=
E[(D̃+(ε)− 1)2]

E[D̃+(ε)− 1]
κ+(ε)

∫ ∞
0

e|α
−
ε |tµ−ε (dt).

It follows from Claim 7.1 that the quotient of the expectations is finite, while the integral
is finite by condition (iii). So condition (iv) is met.

Step 3:
For v ∈ S(n)(0) \ S(n)(∞) recall from (7.3) that V (n)

∗ (t) is the set of vertices infected after
time t, by an infector infected before or at time t.
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For δ ∈ (0, |α∗|), we are interested in

P

(
I(n)

(
T ′γ(n) +

log n

|α∗| − δ

)
6= ∅ | M(n)

)
.

Observe {
I(n)

(
T ′γ(n) +

log n

|α∗| − δ

)
6= ∅
}

=

{
I(n)

(
T ′γ(n) +

log n

|α∗| − δ

)
∩ I(n)

(
T ′γ(n)

)
6= ∅
}

⋃ ⋃
v∈V (n)

∗ (T ′γ(n))

{
J (n)
v

(
log n

|α∗| − δ
− (σ(v)− T ′γ(n))

)
6= ∅
} .

So,

P

(
I(n)

(
T ′γ(n) +

log n

|α∗| − δ

)
6= ∅ | M(n)

)
≤P

(
I(n)

(
T ′γ(n) +

log n

|α∗| − δ

)
∩ I(n)

(
T ′γ(n)

)
6= ∅ | M(n)

)
+

∑
v∈V (n)

∗ (T ′γ(n))

P

(
J (n)
v

(
log n

|α∗| − δ
− (σ(v)− T ′γ(n))

)
6= ∅ | M(n)

)
.

We treat the two terms on the right hand side separately. Observe that

P

(
I(n)

(
T ′γ(n) +

log n

|α∗| − δ

)
∩ I(n)

(
T ′γ(n)

)
6= ∅ | M(n)

)

≤ P

 ⋂
v∈V (n)

{
Lv >

log n

|α∗| − δ

} ≤ ∑
v∈V (n)

P

(
Lv >

log n

|α∗| − δ

)

= nP

(
L >

log n

|α∗| − δ

)
.

Assume that lim infn→∞ nP
(
L > logn

|α∗|−δ

)
> 0. Then there exists a sequence of integers

1 = n0, n1, n2, · · · and a constant c2 > 0 such that niP
(
L > logni

|α∗|−δ

)
> c2 and ni+1/ni >

e|α
∗|−δ for all i ∈ N0. This implies that∫ ∞

0

e(|α∗|−η)tP(L > t)dt

=

∞∑
i=1

∫ logni
α∗−η

logni
α∗−η−1

e(|α∗|−η)tP(L > t)dt+

∫ logni+1
α∗−η −1

logni
α∗−η

e(|α∗|−η)tP(L > t)dt


≥
∞∑
i=1

∫ logni
α∗−η

logni
α∗−η−1

e(|α∗|−η)tP(L > t)dt

≥
∞∑
i=1

e−(|α∗|−η)niP

(
L >

log ni
|α∗| − η

)
dt

≥
∞∑
i=1

e−(|α∗|−η)c2,

which is infinite. But by Assumption (2.17) and by (2.18) we have∫ ∞
0

e(|α∗|−η)tP(L > t)dt <∞ for η ∈ (0, |α∗|).
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So, we arrive at a contradiction and therefore nP
(
L > logn

|α∗|−δ

)
→ 0 and thus

P

(
I(n)

(
T ′γ(n) +

log n

|α∗| − δ

)
∩ I(n)

(
T ′γ(n)

)
6= ∅ | M(n)

)
→ 0.

Now consider,∑
v∈V (n)

∗ (T ′γ(n))

P

(
J (n)
v

(
log n

|α∗| − δ
− (σ(v)− T ′γ(n))

)
6= ∅ | M(n)

)
.

Recall that ζ(v) is the vertex through which v is infected. By definition σ(v)− σ(ζ(v)) ≥
σ(v)− T ′γ(n) > 0 for v ∈ V (n)

∗ (T ′γ(n)) and |J (n)
v (t)| = 0⇒ |J (n)

v (t′)| = 0 for all t′ > t. So,

P

 ∑
v∈V (n)

∗ (T ′γ(n))

∣∣∣∣J (n)
v

(
log n

|α∗| − δ
− (σ(v)− T ′γ(n))

)∣∣∣∣ = 0 | M(n)


≥P

 ∑
v∈V (n)

∗ (T ′γ(n))

∣∣∣∣J (n)
v

(
log n

|α∗| − δ
− (σ(v)− σ(ζ(v))

)∣∣∣∣ = 0 | M(n)

 .

By steps 1 and 2 we know that we can choose ε > 0 such that
∑

v∈V (n)
∗ (T ′γ(n))

∣∣∣J (n)
v (t− (σ(v)− σ(ζ(v)))

∣∣∣ ; t ≥ T ′γ(n)


is dominated by 

∑
v∈V (n)

∗ (T ′γ(n))

|Zv(t− (σ(v)− σ(ζ(v)))| ; t ≥ T ′γ(n)

 ,

where for v ∈ V (n), we let {Zv(t); t ≥ 0} be independent branching processes all with
Malthusian parameter α+

ε , independent of {σ(v); v ∈ V (n)} and {σ(ζ(v)); v ∈ V (n)} and

satisfying the conditions of Lemma 4.3. Since V (n)
∗ (T ′γ(n)) ⊂ V (n) we obtain that

P

 ∑
v∈V (n)

∗ (T ′γ(n))

∣∣∣∣J (n)
v

(
log n

|α∗| − δ
− (σ(v)− σ(ζ(v))

)∣∣∣∣ = 0 | M(n)


≥ P

 ∑
v∈V (n)\v0

∣∣∣∣Zv ( log n

|α∗| − δ
− (σ(v)− σ(ζ(v))

)∣∣∣∣ = 0


=

∏
v∈V (n)\v0

P

(∣∣∣∣Zv ( log n

|α∗| − δ
− (σ(v)− σ(ζ(v))

)∣∣∣∣ = 0

)

≥ 1−
∑

v∈V (n)\v0

P

(∣∣∣∣Zv ( log n

|α∗| − δ
− (σ(v)− σ(ζ(v))

)∣∣∣∣ > 0

)
.

Our next observation is that

{σ(v)− σ(ζ(v)); v ∈ V (n) \ v0} ⊂ {τv,v′ ; (v, v′) ∈ s(n), τv,v′ ≤ Lv},
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where s(n) and {Lv; v ∈ V (n)} are defined in Section 4.1. Therefore with Zv,v′ i.i.d. copies
of Zv, ∑

v∈V (n)\v0

P

(∣∣∣∣Zv ( log n

|α∗| − δ
− (σ(v)− σ(ζ(v))

)∣∣∣∣ > 0

)

≤
∑

v∈V (n)

dv∑
v′=1

P

(
1(τv,v′ ≤ Lv)

∣∣∣∣Zv,v′ ( log n

|α∗| − δ
− τv,v′

)∣∣∣∣ > 0

)

=
∑

v∈V (n)

∫ logn
|α∗|−δ

0

dv∑
v′=1

P

(
1(τv,v′ ≤ t)

∣∣∣∣Zv,v′ ( log n

|α∗| − δ
− τv,v′

)∣∣∣∣ > 0

)
Lv(dt)

=
∑

v∈V (n)

dv

∫ logn
|α∗|−δ

0

∫ t

0

βe−βsP

(∣∣∣∣Zv,v′ ( log n

|α∗| − δ
− s
)∣∣∣∣ > 0

)
dsLv(dt).

By Lemma 4.3 we know that there exists c3 > 0 such that P(Zv,v′(t) > 0) ≤ c3e−|α
+
ε |t for

all t > 0. Therefore,∑
v∈V (n)\v0

P

(∣∣∣∣Zv ( log n

|α∗| − δ
− (σ(v)− σ(ζ(v))

)∣∣∣∣ > 0

)

≤ c3
∑

v∈V (n)

dv

∫ logn
|α∗|−δ

0

∫ t

0

βe−βse−|α
+
ε |(

logn
|α∗|−δ−s)dsLv(dt)

= c3
∑

v∈V (n)

dv

∫ logn
|α∗|−δ

0

∫ logn
|α∗|−δ

s

Lv(dt)βe
−βse−|α

+
ε |(

logn
|α∗|−δ−s)ds

≤ c3
∑

v∈V (n)

dv

∫ logn
|α∗|−δ

0

P(L > s)βe−βse−|α
+
ε |(

logn
|α∗|−δ−s)ds

= c3
∑

v∈V (n)

dv

∫ logn
|α∗|−δ

0

P(L > s)βe−βse|α
+
ε |sn−

|α+
ε |

|α∗|−δ ds.

We can choose ε > 0, such that α+
ε exists and |α+

ε | ∈ (|α∗| − δ, |α∗|). So, using (2.14) the
above expression is bounded from above by

c3n
− |α+

ε |
|α∗|−δ

∑
v∈V (n)

dv

∫ ∞
0

P(L > s)βe−βse|α
∗|sds

≤ c3n1− |α+
ε |

|α∗|−δ
`(n)

n

1

E
[
(D̃ − 1)zD̃−2

] . (7.20)

Finally, by |α+
ε | > |α∗| − δ, we know that n1− |α+

ε |
|α∗|−δ → 0. Furthermore, by assumption A1,

`(n)
n converges to a finite limit and E

[
(D̃ − 1)zD̃−2

]
is necessarily positive. So, (7.20)

converges to 0 as n→∞ and therefore∑
v∈V (n)

∗ (T ′γ(n))

P

(
J (n)
v

(
log n

|α∗| − δ
− (σ(v)− T ′γ(n))

)
6= ∅ | M(n)

)
→ 0.

Proof of Lemma 7.5. In this proof we restrict ourselves to the event M(n) ∩ A(n)(ε)

(defined as in Lemma 7.2) for some ε > 0 conveniently chosen. Because there exists
c1 > 0 such that |S(n)(t

(n)
1 (ε))| − |S(n)(∞)| > c1n w.h.p., we immediately obtain that there
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exists γ ∈ (0, 1 − q∗) such that T ′γ(n) ∈ (t
(n)
1 (ε), T ∗(n)) w.h.p. The proof consists of the

following steps:

1. Show that there exists with high probability a constant γ > 0 such that for v ∈
V

(n)
∗ (T ′γ(n)) and for δ ∈ (0, |α∗|) small enough, we can construct a branching process

which is dominated by {J (n)
v (t); t ≥ 0} and has Malthusian parameter larger than

−(|α∗|+δ) (i.e. the absolute value of the Malthusian parameter is less than |α∗|+δ).

2. Show that there exists γ > 0 and δ > 0 such that the dominated branching process
satisfy the conditions of Lemma 4.3.

3. Show that there exist c1 > 0 such that

P
(
n−1|V (n)

∗ (T ′γ(n))| > c1 | M(n)
)
→ 1.

4. Show that for every δ ∈ (0, 1), there exist γ > 0, such that

P

(
T ∗(n)− T ′γ(n) >

log n

|α∗|+ δ
| M(n)

)
→ 1.

Step 1:
Let ε > 0 be small and chosen appropriately later. Recall the definitions (7.8) and (7.9).
For t(n)

1 (ε) as in Lemma 7.2, and t > t
(n)
1 (ε) and on A(n)(ε), we have

κ(n)(t) ≥
|E(n)
S (∞)|

`(n)− |E(n)
P (t

(n)
1 (ε))| − 1

≥ E[(z − ε)D̃]`(n)

(z + ε)2`(n)
= κ−(ε), (7.21)

where the last equality is the definition of κ−(ε). Similarly, for t > t
(n)
1 (ε), on A(n)(ε) and

for k ∈ N≤b1/εc,

π
(n)
≥k (t) =

∑
v∈S(n)(t−) dv1(dv ≥ k)

|E(n)
S (t−)|

≥
∑
v∈S(n)(∞) dv1(dv ≥ k)

|E(n)
S (t

(n)
1 (ε))|

≥ E[(1(D̃ ≥ k)(z − ε)D̃]`(n)

E[(z + ε)D̃]`(n)
= P(D̃−(ε) ≥ k), (7.22)

where again the last equality serves as a definition. Further, let P(D̃−(ε) > b1/εc) = 0.
So, D̃−(ε)1(A(n)(ε)) is stochastically dominated by the random variable defined through

π
(n)
≥k (t) for t > t

(n)
1 (ε).

As in the proof of Lemma 2.10, if v is a vertex infected at time t, then v has degree
distribution defined through π(n)

≥k (t). One of the dv half-edges attached to v is paired at
time t, while the other dv − 1 are still unpaired at time t. Again as in the proof of Lemma
2.10, let Lv be the infectious period of v and let τv,1, τv,2, · · · τv,dv−1 be independent
exponentially distributed random variables with expectation 1/β assigned to the different
unpaired half-edges of v. If τv,i ≤ Lv then a contact made by v at time t+ τv,i is with a
susceptible with probability κ(n)(t).

Let L′ε = min(L, 1/ε), be a random variable representing a life length, which is
distributed as L cut off at length 1/ε. By (7.21) and (7.22) we obtain that for all v ∈
V

(n)
∗ (t1), the process {|J (n)

v (t)|; t ≥ 0} stochastically dominates a branching process in
which particles give birth at ages given by the point process

{ξ̂−ε (t); t ≥ 0} =


D̃−(ε)−1∑
k=1

1(τk < min(L′ε, t))Y
−
k (ε); t ≥ 0

 ,
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where Y −k (ε) is a Bernoulli random variable with success probability κ−(ε), τ1, τ2, · · · are
exponentially distributed random variables with expectation 1/β and all defined random
variables are independent.

The mean offspring measure of this branching process is given by

{µ−ε (t); t ≥ 0} = E[D̃−(ε)− 1]κ−(ε)P(τk < min(L′ε, t)),

where

κ−(ε) =
E[(z − ε)D̃]

(z + ε)2

by (7.21). Further,

E[D̃−(ε)] =

b1/εc∑
k=1

E[(1(D̃ ≥ k)(z − ε)D̃]

E[(z + ε)D̃]
=
E[D̃(z − ε)D̃1(D̃ ≤ b1/εc)]

E[(z + ε)D̃]
. (7.23)

Finally,

P(τk < min(L′ε, t)) =

∫ t

0

βe−βsP(L′ > s)ds =

∫ min(t,1/ε)

0

βe−βsP(L > s)ds.

So,

µ−ε (dt)

=

(
E[D̃(z − ε)D̃1(D̃ ≤ b1/εc)]

E[(z + ε)D̃]
− 1

)
E[(z − ε)D̃]

(z + ε)2
βe−βtP(L > t)1(t < 1/ε)dt

= K−(ε)1(t < 1/ε)µ∗(dt),

where

K−(ε) =

(
E[D̃(z − ε)D̃1(D̃ ≤ b1/εc)]− E[(z + ε)D̃]

E[(D̃ − 1)zD̃−2]

)
E[(z − ε)D̃]

E[(z + ε)D̃+2]
(7.24)

and µ∗(dt) is defined in (2.7).

Because there exists w.h.p. γ ∈ (0, 1 − q∗) such that T ′γ(n) ∈ (t
(n)
1 (ε), T ∗(n)), we

obtain that with high probability and for all v ∈ V
(n)
∗ (T ′γ(n)), we have constructed

branching process with reproduction process {ξ̂−ε (t); t ≥ 0} and mean offspring measure

{µ−ε (t); t ≥ 0}, which is stochastically dominated by the process {|J (n)
v (t)|; t ≥ 0}.

Note that all expectations in (7.24) are finite, that K−(ε) < 1 and that K−(ε)↗ 1 as
ε↘ 0.

By definition of α∗ we know that for all δ > 0,∫ ∞
0

e−(α∗−δ)tµ∗(dt) > 1.

So, for all δ > 0, there exist ε0 = ε0(δ) > 0 such that for all ε ∈ (0, ε0)∫ ∞
0

e−(α∗−δ)tµ−ε (dt) =

∫ 1/ε

0

K−(ε)e−(α∗−δ)tµ∗(dt) ≥ 1.

We also know that for all ε > 0,
∫ 1/ε

0
e−xtµ∗(dt) is continuous in x and

∫ 1/ε

0
e−xtµ∗(dt) < 1

for all x > α∗, which implies that for all ε > 0.
∫ 1/ε

0
e−α

∗tµ∗(dt) ≤ 1. In particular,∫ ∞
0

e−α
∗tµ−ε (dt) =

∫ 1/ε

0

K−(ε)e−α
∗tµ∗(dt) <

∫ 1/ε

0

e−α
∗tµ∗(dt) ≤ 1.
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So, for all δ > 0 there exists ε0 = ε0(δ) > 0 such that for all ε ∈ (0, ε0), there exists
α−ε ∈ (α∗, α∗ + δ) such that ∫ ∞

0

e−α
−
ε tµ−ε (dt) = 1.

This concludes Step 1 of the proof.

Step 2:
In this step we wish to show that there exists ε > 0 such that

(i) there exists α−ε < 0 such that 1 =
∫∞

0
e−α

−
ε tµ−ε (dt),

(ii)
∫∞

0
te|α

−
ε |tL′ε(dt) <∞,

(iii)
∫∞

0
te|α

−
ε |tµ−ε (dt) <∞ and

(iv) E
[∫∞

0
e|α
−
ε |tξ̂−ε (dt) log+(ξ(∞))

]
<∞.

We note first that since µ−ε (·) has mass on a bounded interval, (i) and (iii) are trivially
satisfied. Similarly, because L′ε has bounded support (ii) is also satisfied.

Finally,

E

[∫ ∞
0

e|α
−
ε |tξ̂−ε (dt) log+(ξ̂−ε (∞))

]
≤ E

[∫ ∞
0

e|α
−
ε |tξ̂−ε (dt) log+(D̃−(ε)− 1))

]
= E[(D̃−(ε)− 1) log+(D̃−(ε)− 1)]κ−(ε)

∫ ∞
0

e|α
−
ε |tβe−βtP (L′ > t)dt

≤ E[(D̃−(ε)− 1)2]κ−(ε)

∫ 1/ε

0

e|α
−
ε |tβe−βtP (L > t)dt

=
E[(D̃−(ε)− 1)2]

E[D̃−(ε)− 1]

∫ 1/ε

0

e|α
−
ε |tµ−ε (dt).

It follows from Claim 7.1 that the quotient of expectations is finite, while the integral is
trivially finite. So (iv) is met.

Step 3:
Let γ ∈ (0, 1− q∗) and γ′ ∈ (γ, 1− q∗). By the definition

T ′γ(n) = inf{t > 0;n−1|S(n)(t)| < 1− γ},

we obtain that if T ′γ′(n) < ∞, then n−1|S(n)(t)| ≥ 1− γ′ for t < T ′γ′(n) and in particular,

n−1|S(n)(T ′γ(n))| ≥ 1− γ′. Combined with Lemma 2.9 this gives that

|S(n)(T ′γ(n))| − |S(n)(∞)| = θ(n) w.h.p.

For t > 0, let V (n)
∗ (t) be as before the set of vertices infected after time t, which are

infected by vertices infected before time t. In order to obtain a contradiction, assume
that |V (n)

∗ (t)| = o(n). From Step 1 we know that |S(n)(T ′γ(n))|− |S(n)(∞)| is stochastically

smaller than the total progeny of |V (n)
∗ (t)| sub-critical branching processes with mean

offspring measure µ+
ε and thus expected total number of children per particle µ+

ε (∞).
However the total size of such a branching process has expectation (1−µ+

ε (∞))−1 = θ(1).

This implies that if |V (n)
∗ (T ′γ(n))| = o(n), then E[|S(n)(T ′γ(n))| − |S(n)(∞)|] = o(n), which
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implies that |S(n)(T ′γ(n)| − |S(n)(∞)| = o(n) w.h.p., which is a contradiction. This finishes
step 3.

Step 4:
Let δ ∈ (0, |α∗|). We can and do choose ε > 0, such that α−ε exists and |α−ε | is in the

interval (|α∗|, |α∗|+ δ/2). By Lemma 7.2 we know that P(t
(n)
1 (ε) < T ∗(n)|M(n))→ 1 and

we choose γ such that T ′γ(n) ∈ (t
(n)
1 (ε), T ∗(n)).

Observe that for t > T ′γ(n),

|I(n)(t)| =
∑

v∈V (n)
∗ (T ′γ(n))

|Jv(t− σ(v))|+ |I(n)(t) ∩ I(n)(T ′γ(n))|

≥
∑

v∈V (n)
∗ (T ′γ(n))

|Jv(t− σ(v))|, (7.25)

where Jv(s) = 0 for s < 0.
Recall that {Jv(t); t ≥ 0} dominates a branching process with mean offspring measure

{µ−ε (t); t ≥ 0}. Consider a sequence of i.i.d. copies of this branching process indexed by

v ∈ |V (n)
∗ (T ′γ(n))| and let Z−ε,v(t) be the number of alive particles in the copy indexed by v

at time t. So, |I(n)(t)| is stochastically larger than
∑
v∈V (n)

∗ (T ′γ(n))
Z−ε,v(t − σ(v)). By the

independence of the branching processes we then obtain that

P(|I(n)(T ′γ(n) + t)| = 0 | V (n)
∗ (T ′γ(n)))

≤
∏

v∈V (n)
∗ (T ′γ(n))

P(Z−ε,v(T
′
γ(n) + t− σ(v)) = 0 | V (n)

∗ (T ′γ(n)))

≤
∏

v∈V (n)
∗ (T ′γ(n))

P(Z−ε,v(t) = 0)

=
(
P(Z−ε,1(t) = 0

)|V (n)
∗ (T ′γ(n))|

=P
(
Z−ε,1(t) = 0 | Z−ε,v(0) = |V (n)

∗ (T ′γ(n))|
)
.

(7.26)

For the second inequality we used that {Z−ε,k(t) = 0} is increasing in t. Using the above
gives us for all c1 ∈ (0, 1)

P(|I(n)(T ′γ(n) + t)| = 0 | M(n))

= P(|I(n)(T ′γ(n) + t)| = 0 ∩ |V (n)
∗ (T ′γ(n))| > c1n | M(n))

+ P(|I(n)(T ′γ(n) + t)| = 0 ∩ |V (n)
∗ (T ′γ(n))| ≤ c1n | M(n))

≤ P
(
|I(n)(T ′γ(n) + t)| = 0 | |V (n)

∗ (T ′γ(n))| > c1n
)
P(|V (n)

∗ (T ′γ(n))| > c1n | M(n))

+ P(|V (n)
∗ (T ′γ(n))| ≤ c1n | M(n))

≤ P
(
|I(n)(T ′γ(n) + t)| = 0 | |V (n)

∗ (T ′γ(n))| > c1n
)

+ P(|V (n)
∗ (T ′γ(n))| ≤ c1n | M(n))

≤ P
(
Z−ε,1(t) = 0 | Z−ε,v(0) = c1n

)
+ P(|V (n)

∗ (T ′γ(n))| ≤ c1n | M(n)).

(7.27)

Now we can apply Corollary 4.4, which gives that for all δ > 0

P

(
Z−ε,1

(
log c1n

|α−ε |+ δ/3

)
= 0 | |Z−ε,1(0)| = c1n

)
→ 0.
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For sufficiently large n we have log c1n

|α−ε |+δ/3
≥ logn

|α−ε |+δ/2
and thus we obtain

P

(
Z−ε,1

(
log n

|α−ε |+ δ/2

)
= 0 | |Z−ε,1(0)| = c1n

)
→ 0.

By step 3 we also know that there exists c1 ∈ (0, 1) such that

P(|V (n)
∗ (T ′γ(n))| ≤ c1n | M(n))→ 0.

So, from (7.27) we obtain

P

(
|I(n)

(
T ′γ(n) +

log n

|α−ε |+ δ/2

)
| = 0 | M(n)

)
→ 0.

By |α−ε | < |α∗|+ δ/2 we then obtain

P

(
|I(n)

(
T ′γ(n) +

log n

|α∗|+ δ

)
| = 0 | M(n)

)
→ 0.

This in turn leads to

P

(
T ∗(n)− T ′γ(n) <

log n

|α∗|+ δ
| M(n)

)
= P

(
|I(n)

(
T ′γ(n)) +

log n

|α∗ + δ|

)
| = 0 | M(n)

)
→ 0

and the proof is complete.

7.3 Proof of Theorem 2.4

In this section we show how Theorem 2.4 relatively straightforward follows from the
proof of Theorem 2.3.

The way we prove it is to show that for every η > 0, with high probability no vertex in
the population is infectious while having at least one susceptible neighbour for a period
at least (|α∗| − η)−1 log n. Furthermore, we show that for all vertices infected after time
T ′γ(n) (as defined in (2.21)) condition (2.18) is satisfied if we replace L by L′ as defined
in (4.1). Then we can use the proof of Lemma 7.4 with the replacement for L, while
Lemma 7.5 holds irrespective of the distribution of L.

Proof of Theorem 2.4. Observe that

P

(
max
v∈V (n)

L′v > t

)
= 1−

∏
v∈V (n)

[
1− P(Lv > t)

(
1− (1− e−βt)dv

)]
≤

∑
v∈V (n)

P(L > t)
(
1− (1− e−βt)dv

)
≤

∑
v∈V (n)

P(L > t)dve
−βt

= P(L > t)`(n)e−βt.

(7.28)

We also know from the definition of α∗ (see (2.14) and (2.7)) that∫ ∞
0

e(|α∗|−η)te−βtP(L > t)dt <∞ for every η ∈ (0, α∗) (7.29)

and thus that
e(|α∗|−η)te−βtP(L > t)→ 0 as t→∞,

which, after filling in t = (|α∗| − η)−1 log n implies

n1− β
|α∗|−ηP

(
L >

log n

|α∗| − η

)
→ 0 as n→∞. (7.30)
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Filling in t = (|α∗| − η)−1 log n in (7.28) we obtain that

P

(
max
v∈V (n)

L′v >
log n

|α∗| − η

)
≤ P

(
L >

log n

|α∗| − η

)
`(n)n−

β
|α∗|−η ,

which by (7.30) and `(n) = O(n) implies that for all η ∈ (0, α∗),

P

(
max
v∈V (n)

L′v >
log n

|α∗| − η

)
→ 0.

So with high probability no vertex infected before time T ′γ(n) is both still infectious and

has susceptible neighbours at time T ′γ(n) + logn
|α∗|−η .

Our next step is to observe that the epidemic spread does not change if for all v ∈ V (n)

we say that v recovers L′v instead of Lv time units after the infection time σ(v). In the
first step of the proof of Lemma 7.4 we can then replace L by a random variable L′, with
a distribution defined through

P(L′ > t) = P(L > t)E
[
1− (1− e−βt)D̃

(n),+(ε)
]
≤ P(L > t)E

[
D̃(n),+(ε)

]
e−βt.

We further use that by Claim 7.1 E
[
D̃(n),+(ε)

]
<∞.

We may apply Lemma 7.4 with L replaced by L′ and check whether condition (2.18)
holds: ∫ ∞

0

e(|α∗|−η)tP(L′ > t)dt ≤
∫ ∞

0

e(|α∗|−η)tP(L > t)E
[
D̃(n),+(ε)

]
e−βtdt, (7.31)

which is indeed finite by (7.29).

8 Concluding remarks

In this manuscript we obtain asymptotic results on both the time of strong extinction
T ∗(n) and the time until weak extinction T †(n) of an SIR epidemic on a configuration
model random graph with n vertices. In these concluding remarks we only consider
the time of strong extinction. Results for weak extinction are similar. We show that
conditioned on a large outbreak and under some further mild conditions T ∗(n)/ log n

converges in probability to (α′)−1 + |α∗|−1, where α′ and α∗ are Malthusian parameters
of branching processes that approximate respectively the early phase and the final phase
of the epidemic. As opposed to much theory on epidemics on networks, we do not have
to assume that the infectious period distribution is exponentially distributed or that the
asymptotic degree distribution has finite variance.

We expect that conditioned on a large outbreak and some further conditions

T ∗(n)− ((α′)−1 + |α∗|−1) log n

converges in distribution to a random variable with finite mean and variance. We also
expect that showing this might require quite some extra work. In particular, in the proof
of Lemma 7.4 we use that we have useful bounds for the infection times of vertices that
are infected after time T ′γ(n) (see (2.21)), but of which the infector was infected before
that time. If we want to obtain convergence results for T ∗(n) − ((α′)−1 + |α∗|−1) log n,
we need more detailed knowledge of the asymptotic distribion of those infection times,
which we anticipate is possible but hard to obtain if the infectious periods are not
exponentially distributed. Furthermore, we need to be more precise in coupling the
initial and final phase of the epidemic with branching processes, even if the infectious
periods are exponentially distributed. For the early phase we can use the results from
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[7] or [20] if we adopt the assumptions underlying the results of those papers. To obtain
similar results for the final phase of the epidemic we need to work with subcritical
branching processes and epidemics, which we consider beyond the scope of this paper.

We expect that if the infectious periods of vertices satisfy some extra conditions
(e.g. that they are almost surely bounded) and if the conditions of [7] on the degree
distribution are met, then(

T ∗(n)−
(

1

α′
+

1

|α∗|

)
log n

)
f(n)

P→ 0

for every deterministic function f(n) that converges to 0. We leave exploring what
conditions are exactly needed to future work.

We also consider the impact of vaccination. We show that if vaccination is not suf-
ficient to prevent a large outbreak, it will often (but not always) increase the duration
of an SIR epidemic in a large enough population. We note that this result might be
of no direct value in real world applications, because we only show that with insuf-
ficient vaccination the the time until strong survival divided by log n converges to a
larger constant than if there is no vaccination at all. Because the growth of log n is
slow, it is likely that the lower order terms for the duration are still important for
considerably large n, and perhaps even for population sizes exceeding the global pop-
ulation.

We assume throughout the manuscript that the epidemic is initiated by a single,
uniformly chosen infected vertex. In our proofs we do not need this assumption and
our theorems are still valid if the sum of the degrees of the initially infectious vertices
converges in distribution to some almost surely finite random variable, say Dint. This
is because we condition on a large outbreak in all of our results, and the Malthusian
parameter of the approximating branching process is not dependent on how many
particles there are in the first generation of the branching process. If Dint and D have
the same support then our results are immediate since the number of infections and the
times of infections by initial infectious vertices can be coupled, such that they correspond
with positive probability, and all our results involve convergence in probability of the
duration of an epidemic.

A Proof of Lemma 7.2

In this appendix we prove Lemma 7.2. We repeat some definitions and the statement
of the Lemma.

Recall from (7.2) that z = 1−ψ+ψq̃∗ and let {X (n)(t); t ≥ 0} be defined as in Section
4.1. Furthermore, for all n ∈ N and all k ∈ N we define

d̂
(n)
k = sup

n′≥n
P(D(n′) = k).

For all ε ∈ (0, ψ(1− q̃∗)) = (0, 1− z) we define A(n)
1 (ε) = {t(n)

1 (ε) <∞}, where

t
(n)
1 (ε) = max(t(n)

a (ε), t
(n)
b (ε), t(n)

c (ε)),

and

t(n)
a (ε) = inf{t > 0; |E(n)

S (t)| ≤ E[(z + ε)D̃]`(n)},

t
(n)
b (ε) = inf{t > 0; |E(n)

P (t)| ≥ `(n)− 1− (z + ε)2`(n)},

t(n)
c (ε) = inf{t > 0;

∑
v∈S(n)(t)

dv1(dv ≥ k) ≤
∞∑
j=k

njd̂
(n)
j (z + ε)j for all k ∈ N}.
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We also defined the event A(n)
2 (ε), which is the event that the following holds.

|E(n)
S (∞)| > E[(z − ε)D̃]`(n),

|E(n)
P (∞)| < `(n)− 1− (z − ε)2`(n),∑

v∈S(n)(∞)

dv1(dv ≥ k) ≥
∞∑
j=k

njP(D = j)(z − ε)j for all k ∈ N≤b1/εc.

Finally, A(n)(ε) = A(n)
1 (ε) ∩ A(n)

2 (ε).

Lemma A.1. For all ε ∈ (0, ψ(1− q̃∗)), it holds that P(A(n)(ε)|M(n))→ 1 and there exists
c1 > 0, such that

P(|S(n)(t
(n)
1 (ε))| − |S(n)(∞)| > c1n|M(n))→ 1.

Proof. We start with some definitions. Let K1 = K
(n)
1 (ε) be a Poisson distributed random

variable with expectation `(n)| log(z + ε/2)| and let K2 = K
(n)
2 (ε) be a Poisson distributed

random variable with expectation `(n)| log(z − ε/2)|. Both K1 and K2 are independent of
the epidemic process. Let x(n) and x(n)(t) be as in Section 4.1 and define for i ∈ {1, 2}

t′(Ki) = inf{t > 0; |x(n)(t)| ≥ Ki}.

For notational convenience define S̄(n)
i for i ∈ {1, 2} as the set of vertices which have no

half-edge among the first Ki elements of x(n). So S̄(n)
1 is equal to S(n)(t′(K1)) onM(n).

Our strategy is now as follows. First we show that

P(K1 < |x(n)(∞)| < K2|M(n))→ 1 (A.1)

and that there exists c1 > 0, such that

P
(
|S(n)(t′(K1))| − |S(n)(∞)| > c1n|M(n)

)
→ 1. (A.2)

After that we show that for i ∈ {a, b, c}

P
(∣∣∣x(n)

(
t
(n)
i (ε)

)∣∣∣ < K1 | M(n)
)
→ 1 (A.3)

and that
(i) the number of half edges that belong to vertices in V (n) that have none of their half-
edges among the first K2 elements of x(n) exceeds with high probability E[(z − ε)D̃]`(n),
(ii) the number of half-edges that are themselves or are paired with half edges among
the first K2 elements of x(n) is with high probability less than `(n)− 1− (z − ε)2`(n),
(iii) For every k ∈ N, the number of half edges that belong to vertices of degree at least
k in V (n) that have none of their half-edges among the first K2 elements of x(n) is with
high probability at least

∑∞
j=k njP(D(n) = j)(z − ε)j . Together this proves the Lemma.

Because the elements of x(n) are i.i.d. and uniform among all `(n) half-edges, we
have by well-known properties of the Poisson distribution (see e.g. [24, p. 317]) that
the number of times a given half-edge is among the first K1 (resp. K2) elements of
x(n) is Poisson distributed with expectation | log(z + ε/2)| (resp. Poisson distributed with
expectation | log(z − ε/2)|) and independent for different half-edges. This implies that
the events that different half-edges are not among the first K1 elements of x(n) are
independent and have probability

e−| log(z+ε/2)| = z + ε/2.

Similarly, the events that different half-edges are not among the first K2 elements of
x(n) are independent and have probability z − ε/2. So, the probability that none of the
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half-edges belonging to a uniformly chosen vertex is part of the first K1 elements of x is
given by

∞∑
k=0

P(D(n) = k)(z + ε/2)k →
∞∑
k=0

P(D = k)(z + ε/2)k,

and the probability that none of the half-edges belonging to a uniformly chosen vertex is
part of the first K2 elements of x is given by

∞∑
k=0

P(D(n) = k)(z − ε/2)k →
∞∑
k=0

P(D = k)(z − ε/2)k,

where both of the limits follows from D(n) d→ D and bounded convergence.
So, by a variant of the (weak) law of large numbers (e.g. [15, Problem 7.11.20]), we

obtain that the fraction of the vertices with no half-edges among the first K1 half-edges
of x(n) (i.e. n−1|S̄(n)

1 |) converges in probability to
∑∞
k=0P(D = k)(z + ε/2)k and that the

fraction of the vertices with no half-edges among the first K2 half-edges of x(n) (i.e.
n−1|S̄(n)

2 |) converges in probability to
∑∞
k=0P(D = k)(z − ε/2)k.

By Lemma 2.9, equation (2.20) and by q∗ =
∑∞
k=0P(D = k)zk we have(

1

n
|S(n)(∞)| −

∞∑
k=0

P(D = k)zk

)
1(M(n))

P→ 0. (A.4)

Because
∑∞
k=0P(D(n) = k)xk is strictly increasing for x ∈ [0, 1), the above implies

immediately that (A.1) and (A.2) hold.
In a similar fashion we obtain that the probability that a uniformly chosen half-edge

belongs to a vertex of which none of the half-edges is part of the first K1 elements of
x(n) is given by

∞∑
k=0

P(D̃(n) = k)(z + ε/2)k

and the probability that a uniformly chosen half-edge belongs to a vertex of which none
of the half-edges is part of the first K2 elements of x(n) is given by

∞∑
k=0

P(D̃(n) = k)(z − ε/2)k.

Using the same law of large numbers argument as above we obtain that the fraction of
half-edges belonging to vertices of which none of the half-edges is part of the first K1

elements of x(n) converges in probability to
∑∞
k=0P(D̃ = k)(z + ε/2)k, which is strictly

less than E[(z + ε)D̃]. Similarly, the fraction of half-edges belonging to vertices of which
none of the half-edges is part of the first K2 elements of x(n) converges in probability
to
∑∞
k=0P(D̃ = k)(z − ε/2)k, which is strictly more than E[(z − ε)D̃]. Together with (A.1)

this implies

P(t(n)
a (ε) <∞|M(n))→ 1

and

P

(
1

`(n)
|E(n)
S (∞)| > E[(z − ε)D̃] | M(n)

)
→ 1.

Now we turn our attention to |E(n)
P (t)|. In G(n), all half-edges are paired uniformly

at random. For a half-edge not to be part of E(n)
P (t), neither the half-edge itself nor its

partner should be part of x(n)(t). Again the probability that two given half-edges are not
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among the first K1 (resp. K2) elements of x(n) is (z + ε/2)2 (resp. (z − ε/2)2). So using
(A.1) and the above law of large numbers again we obtain(

`(n)− |E(n)
P (t′(K1))|
`(n)

− (z + ε/2)2

)
1(t′(K1) <∞)

P→ 0.

By

`(n)− |E(n)
P (t′(K1))| − 1

`(n)
<
`(n)− |E(n)

P (t′(K1))|
`(n)

and (A.1) we then obtain that P(t′(K1) > t
(n)
b (ε)|M(n))→ 1. Furthermore, again by (A.1)

we also obtain that

P

(
`(n)− |E(n)

P (∞)| − 1

`(n)
> (z − ε)2 | M(n)

)
P→ 1.

Finally, we consider
∑
v∈S̄(n)

1
dv1(dv ≥ k). By the definition of S̄(n)

1 and D(n) this

sum is equal to
∑∞
j=k jB

(n)
j , where B(n)

j (j ∈ N) are independent binomially distributed

random variable with parameters nP(D(n) = j) and (z + ε/2)j .

We want to show that P(t′(K1) > t
(n)
c (ε)|M(n))→ 1. That is, we want

P

 ∞∑
j=k

jB
(n)
j ≤ n

∞∑
j=k

jd̂
(n)
j (z + ε)j for all k ∈ N

→ 1. (A.5)

Since P(D(n) = j) is at most d̂(n)
j for all j ∈ N, it is enough to prove that

P

 ∞∑
j=k

jB
(n)
j ≤ n

∞∑
j=k

jP(D(n) = j)(z + ε)j for all k ∈ N

→ 1. (A.6)

if for given k we have P(D ≥ k) = 0, then by assumption (A4) of Assumptions 2.1 for all
large enough n

∞∑
j=k

jB
(n)
j = n

∞∑
j=k

jP(D(n) = j)(z + ε)j = 0.

So assume P(D ≥ k) > 0.

E

 ∞∑
j=k

jB
(n)
j

 = n

∞∑
j=k

P(D(n) = j)j(z + ε/2)j

V ar

 ∞∑
j=k

jB
(n)
j

 = n

∞∑
j=k

P(D(n) = j)j2(z + ε/2)j(1− (z + ε/2)j)

≤ n

∞∑
j=k

P(D(n) = j)j2(z + ε/2)j .
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So applying Chebyshev’s inequality, we obtain that

nP

 ∞∑
j=k

jB
(n)
j > n

∞∑
j=k

jP(D(n) = j)(z + ε)j


≤

∑∞
j=k P(D(n) = j)j2(z + ε/2)j(∑∞

j=k jP(D(n) = j)[(z + ε)j − (z + ε/2)j ]
)2

→ E[1(D ≥ k)D2(z + ε/2)D]

(E [1(D ≥ k)D[(z + ε)D − (z + ε/2)D]])
2 ,

(A.7)

where we have used D(n) → D and that
∑∞
j=k j

2(z + ε)j → 0 as k →∞. The quotient in
the right hand side of (A.7) is independent of n and by the assumption P(D ≥ k) > 0 it is
also finite. So,

P

 ∞∑
j=k

jB
(n)
j > n

∞∑
j=k

jP(D(n) = j)(z + ε)j

→ 0 for all k ∈ N.

In other words, for all k0 ∈ N and all ε1 > 0 there exists n0 ∈ N such that for all n > n0

k0∑
k=1

P

 ∞∑
j=k

jB
(n)
j > n

∞∑
j=k

jP(D(n) = j)(z + ε)j

 < ε1/2.

So, in order to prove that

P

 ∞∑
j=k

jB
(n)
j ≤ n

∞∑
j=k

jP(D(n) = j)(z + ε)j for all k ∈ N

→ 1,

it is enough to show that for every ε1 > 0, there exists k0 ∈ N such that

P

 ∞∑
j=k

jB
(n)
j ≤ n

∞∑
j=k

jP(D(n) = j)(z + ε)j for all k ∈ N>k0

 > 1− ε1/2.

which holds if for every ε1 > 0, there exists k0 ∈ N such that

P
(
B

(n)
k ≤ nP(D(n) = k)(z + ε)k for all k ∈ N>k0

)
> 1− ε1/2.

Observe that

P
(
B

(n)
k ≤ nP(D(n) = k)(z + ε)k for all k ∈ N≥k0

)
≥ 1−

∞∑
k=k0

P
(
B

(n)
k > nP(D(n) = k)(z + ε)k

)
.

Define
K(n)

0 (ε) =
{
k ∈ N>k0 ;nP(D(n) = k)(z + 3ε/4)k ≤ 1

}
.

We should prove that for every ε1 > 0, there exists k0 ∈ N such that
∞∑

k=k0+1

P
(
B

(n)
k > nP(D(n) = k)(z + ε)k

)
=

∑
k∈K(n)

0 (ε)

P
(
B

(n)
k > nP(D(n) = k)(z + ε)k

)
+

∑
k∈N>k0\K

(n)
0 (ε)

P
(
B

(n)
k > nP(D(n) = k)(z + ε)k

)
< ε1/2.
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To do this, we consider the two sums in the middle term separately.
We have ∑

k∈K(n)
0 (ε)

P
(
B

(n)
k > nP(D(n) = k)(z + ε)k

)
≤

∑
k∈K(n)

0 (ε)

P
(
B

(n)
k > 0

)
=

∑
k∈K(n)

0 (ε)

1−
(
1− (z + ε/2)k

)nP(D(n)=k)

≤
∑

k∈K(n)
0 (ε)

nP(D(n) = k)(z + 3ε/4)k
(
z + ε/2

z + 3ε/4

)k

≤
∑

k∈K(n)
0 (ε)

(
z + ε/2

z + 3ε/4

)k

≤
∞∑

k=k0+1

(
z + ε/2

z + 3ε/4

)k
=

(
z+ε/2
z+3ε/4

)k0+1
4(z+3ε/4)

ε ,

(A.8)

which is less than ε1/4 for all large enough k0.
Now consider ∑

k∈N>k0\K
(n)
0 (ε)

P
(
B

(n)
k > nP(D(n) = k)(z + ε)k

)
.

Let k′0 be such that (z+ε)k
′
0

(z+ε/2)k
′
0
> 7. Further assume that k0 was chosen such that k0 > k′0.

Then by [21, Cor. 2.4] we obtain that for k ∈ N>k0 \ K
(n)
0 (ε)

P
(
B

(n)
k > nP(D(n) = k)(z + ε)k

)
= P

(
B

(n)
k > nP(D(n) = k)(z + 3ε/4)k

(
z + ε

z + 3ε/4

)k)

≤ P

(
B

(n)
k >

(
z + ε

z + 3ε/4

)k)

≤ exp

[
−
(

1 +
ε

4z + 3ε

)k]

≤ exp

[
−
(

1 + k

(
ε

4z + 3ε

))]
.

So, ∑
k∈N>k0\K

(n)
0 (ε)

P
(
B

(n)
k > nP(D(n) = k)(z + ε)k

)

≤
∑

k∈N>k0\K
(n)
0 (ε)

e−1 exp

[
−k
(

ε

4z + 3ε

)]
≤ e−1

∞∑
k=k0+1

(
e−

ε
4z+3ε

)k
= e−1

(
e−

ε
4z+3ε

)k0+1 1

1− e−
ε

4z+3ε
,

which is less than ε1/4 for all large enough k0.
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So we have proved that for every ε1 > 0, there exists k0 ∈ N such that

∞∑
k=k0

P
(
B

(n)
k > nP(D(n) = k)(z + ε)k

)
< ε1/2

as desired. Together with (A.1) this implies that P(t
(n)
c (ε) < t′(K1)|M(n)) converges to 1

and thus that P(t
(n)
c (ε) <∞|M(n)) converges to 1.

To prove that

P

 ∑
v∈S(n)(∞)

dv1(dv ≥ k) ≥
∞∑
j=k

njP(D = j)(z − ε)j for all k ∈ N≤b1/εc


converges to 1, it is by (A.1) enough to prove that

P

 ∑
v∈S(n)

2

dv1(dv ≥ k) ≥
∞∑
j=k

njP(D = j)(z − ε)j for all k ∈ N≤b1/εc

 (A.9)

converges to 1. Using the same law of large numbers argument used throughout
this appendix we obtain that n−1

∑
v∈S(n)

2
dv1(dv ≥ k) converges in probability to∑∞

j=k jP(D = j)(z − ε/2)j , which immediately implies (A.9).
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