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Abstract

We prove the first eigenvalue repulsion bound for sparse random matrices. As a
consequence, we show that these matrices have simple spectrum, improving the
range of sparsity and error probability from work of the second author and Vu. We
also show that for sparse Erdős–Rényi graphs, weak and strong nodal domains are the
same, answering a question of Dekel, Lee, and Linial.
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1 Introduction

The gaps between eigenvalues of symmetric random matrices have been extensively
studied by mathematicians and physicists. For the classical integrable ensembles, the
Gaussian Orthogonal Ensemble and Gaussian Unitary Ensemble, the limiting spectral
distribution follows the semicircle law. For an individual eigenvalue gap, however, the
limiting distribution was only recently obtained [60]. Rapid progress in random matrix
theory has permitted the extension of this result to a large class of random matrix models
[2, 3, 11, 16, 17, 18, 19, 25, 26, 27, 28, 30, 37, 51, 57, 58, 59, 61, 69].

Much effort has been expended on understanding the extremal eigenvalue gaps, in
particular the largest eigenvalue gap in the bulk of the spectrum, δmax. Ben Arous and
Bourgade [12] demonstrated that for the n× n GUE normalized so that its spectrum is
supported on [−2, 2], so that the typical inter-particle distance in the bulk is about n−1,
the largest bulk gap is of order n−1

√
log n. Figalli and Guionnet extended this result to

β-ensembles with β = 2 [34]. In [32], Feng and Wei showed that the fluctuations of the
largest gap are of order n−1

√
log n and computed the limiting distribution. In work of the

first author with Landon and Marcinek, the largest gap results of [12, 32] were extended
to generalized Wigner matrices [38], including those with discrete entry distributions.
We note that recent work of Bourgade [14], which presents a concise analysis of the
convergence to equilibrium of Dyson Brownian motion, is able to recover the same result
at the cost of imposing a weak smoothness assumption on the matrix entries.

While we now have a substantial understanding of the largest eigenvalue gap, the
smallest gap, δmin, is more difficult to investigate because it lies well below the typical
inter-particle distance. Bourgade and Ben Arous [12] showed using the determinantal
structure of the GUE that its smallest gap is of order n−4/3. In [31], Feng, Tian, and Wei
identified the normalized limit of the smallest eigenvalue gap of the GOE and found that
the gap is of order n−3/2; their argument builds on techniques previously developed by
Feng and Wei to study circular β-ensembles [33]. Currently, the smallest gap lies outside
of the purview of traditional universality results such as the Four Moment Theorem [62],
and the techniques in the recent work [38] are not applicable. The strongest available
result is in the recent work of Bourgade [14], which shows universality of the smallest
gap, but requires that the matrix entries possess a weak form of smoothness. At present,
no universality results exist for the smallest gap for matrices that are sparse or have
discrete entry distributions, such as a matrix of Bernoulli random variables.

While tail bounds are known for the individual gaps when the matrix entries are more
general random variables [58, 61], the error rates are not strong enough to take a union
bound to conclude anything about the minimum gap. We now scale the matrices so that
their spectrum lies on [−2

√
n, 2
√
n], which makes the average inter-particle distance

n−1/2; we take this convention to match the existing tail bound literature, and it remains
in force throughout the rest of the paper. For Hermitian matrices, under stringent
smoothness and decay assumptions on the random variables, a result of Erdős, Schlein,
and Yau [29] implies that there exists a small constant c > 0 such that

P

(
δmin ≤

δ

n1/2

)
= o(nδ3) + exp(−cn)
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Tail bounds for gaps between eigenvalues

for any δ > 0. For discrete random variables, it was a milestone just to show that δmin > 0

[63]. In particular, Tao and Vu showed that for any A > 0, with probability at least
1 − n−A a random symmetric matrix has simple spectrum, meaning every eigenvalue
appears with multiplicity one. In follow-up work with Nguyen [48], they showed the
following tail bound for the eigenvalue gaps. Given eigenvalues λi labeled in ascending
order, we denote the gaps by δi = λi+1 − λi.
Theorem 1.1 ([48, Theorem 2.1]). There exists a constant c > 0 such that the following
holds for the eigenvalue gaps, δi, of a real symmetric Wigner matrix. For any n−c ≤ α ≤ c
and δ ≥ n−c/α,

sup
1≤i≤n−1

P

(
δi ≤

δ

n1/2

)
= O

(
δ

α1/2

)
.

Setting α = n−c, one can deduce that a real symmetric random matrix has simple
spectrum with probability at least 1−O(exp(−nc)). A related problem, posed by Babai,
is whether the adjacency matrix of an Erdős–Rényi random graph has simple spectrum.
This was resolved affirmatively for all dense random graphs in [48, 63]. A consequence
in complexity theory is that for such random graphs the graph isomorphism problem is
in complexity class P [6].

In this work we study the eigenvalue gaps of sparse random matrices. The theory
of sparse random matrices is of interest in its own right, but it also has innumerable
applications in computer science and statistics. In contexts where sparse random matri-
ces have similar spectral guarantees as their dense counterparts, they offer significant
advantages as they require less space to store, allow quicker multiplication, and need
fewer random bits to generate [5, 7, 8, 21, 22, 47]. A popular model for such matrices is
to consider the Hadamard (entrywise) product of a dense random matrix and a sparse
matrix of independent (up to symmetry) indicator variables with expectation p = p(n).
Much work has been done to transfer the results known for dense random matrices to
the sparse setting [9, 10, 15, 37, 39, 42, 55, 68]. Although the results resemble their
dense analogues, the sparsity brings about a variety of complications in the proofs. Only
recently, the second author and Vu showed that for a large class of random variables and
for p ≥ n−1+ε with ε > 0, a sparse random matrix has simple spectrum with probability at
least 1−Oε(exp(−(np)1/128)) [43], where this notation indicates that the implied constant
depends on ε. This implies that the graph isomorphism problem restricted to this class
of sparse random graphs is in complexity class P.

Our main contribution is to go beyond verifying such matrices have simple spectrum
and prove a tail bound for the minimal eigenvalue gap of sparse random matrices with
p ≥ C log7+ε(n)/n. In comparison with [43], our results represent an improvement in
both error probability and the range of sparsity considered. As an application of our tail
bound, we show that for sparse Erdős–Rényi graphs, weak and strong nodal domains are
the same, answering a question of Dekel, Lee, and Linial [24]. Our results also expand
the range of sparse graphs for which the graph isomorphism problem is known to be
in P. Related to this last application is the graph matching problem, for which various
algorithms contingent on simple spectrum are known [1, 44, 65]; our results similarly
extend their range of applicability.

2 Main Results

We begin with a formal definition of our random matrix model.

Definition 2.1. We let Mn denote a symmetric random matrix with entries

mij = ξijχij ,

EJP 26 (2021), paper 130.
Page 3/26

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP669
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Tail bounds for gaps between eigenvalues

where the ξij are independent (for i ≥ j), mean zero, variance one, and subgaussian
with subgaussian moment B, and the χij are independent (for i ≥ j) Bernoulli random
variables with Eχij = p.

Theorem 2.2. Let Mn be as in Definition 2.1, and fix ν > 0. There exist constants
C2.2, c2.2, c

′
2.2 > 0, depending only on the subgaussian moment B, such that for

C2.2 log7+ν n

n
≤ p ≤ 1

and

(np)−1/(7+ν) ≤ α ≤ c′2.2
log n

,

the following holds for the gaps between the eigenvalues, δi = λi+1 − λi. For any
δ ≥ exp(−α−1),

sup
1≤i≤n−1

P

(
δi ≤ δ exp

(
−c2.2

log(1/p)

log np

)√
p

n

)
≤ C2.2

δ

α
.

Observe that there is a trade-off in the strength of the error bound and the size of the
eigenvalue gap, determined by the value of α. For example, if we choose α = c2.2/ log n,
we obtain the following result.

Corollary 2.3. Let Mn be as in Definition 2.1, and fix ν > 0. There exist C2.3, C
′
2.3 > 1,

such that for p ≥ C2.2 log7+ν n
n ,

sup
1≤i≤n−1

P

(
δi ≤ δ exp

(
−c2.2

log(1/p)

log np

)√
p

n

)
≤ C2.3δ log n.

for δ ≥ n−C′2.3 . By a union bound,

P

(
δmin ≤

√
p

n3/2+o(1)

)
= o(1).

At the other extreme, setting α = (np)−1/(7+ν) and δ = exp(−α−1), we have the
following result.

Corollary 2.4. Let Mn be as in Definition 2.1, and fix ν > 0. For p ≥ C2.2 log7+ν n
n ,

P(Mn has eigenvalues with multiplicity) ≤ exp
(
− 1

2
(np)1/(7+ν)

)
.

Observe that when p = 1, which is the dense case considered in [48], the above two
corollaries recover [48, Corollary 2.2] and [48, Corollary 2.3], which are the analogous
extreme cases of the bound in [48, Theorem 2.1].

Remark 2.5. This result improves the range of sparsity in [43] from n−1+ε for some
ε > 0 to log n7+ν/n. Even in the regime p ≥ n−1+ε, our result improves on the bound in
[43] where the probability of not having a simple spectrum was less than exp(−(np)1/124).
However, we suspect that the optimal bound should be exp(−cnp) for some constant
c > 0. The sparsity range of Theorem 2.2 is near optimal as p = o(log n/n) yields multiple
rows and columns entirely of zeros. This generates repeated eigenvalues at 0.

We also have the same result for adjacency matrices of random Erdős–Rényi graphs.
Let G(n, p) denote the random graph on n vertices with edges appearing independently
and with probability p.
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Theorem 2.6. Let An be the adjacency matrix of the random Erdős–Rényi graph G(n, p),
and fix ν > 0. There exist constants C2.2, c2.2, c

′
2.2 > 0, depending only on the subgaussian

moment B, such that for

C2.2 log7+ν n

n
≤ p ≤ 1− C2.2 log7+ν n

n

and

(np)−1/(7+ν) ≤ α ≤ c′2.2
log n

,

the following holds for the gaps between the eigenvalues, δi = λi+1 − λi. For any
δ ≥ exp(−α−1),

sup
1≤i≤n−1

P

(
δi ≤ δ exp

(
−c2.2

log(1/p)

log np

)√
p

n

)
≤ δ

α
. (2.1)

Remark 2.7. Note that an upper bound on p is necessary in this case as p = 1 generates
a deterministic matrix with repeated eigenvalues. Additionally, our argument can be
easily applied to random perturbations of a finite rank matrix; see Remark 6.2. However,
for perturbations of an arbitrary matrix, new ideas are needed as many of the delicate
net arguments cannot be adapted when the operator norm of the perturbed matrix is
large. For dense random graphs, this was done in [48, Theorem 2.6].

2.1 Non-degeneration of eigenvectors and nodal domains of a random graph

Consider the eigenfunctions of the Laplacian on a Riemannian manifold. The zero sets
of these eigenfunctions partition the space into so-called nodal domains. These domains
are of great interest to geometers and have been intensively studied (see [20, 40, 46]
and the references therein). Here we consider a discrete analogue, the nodal domains
of eigenvectors for adjacency matrices of random graphs, which has its roots in graph
theory and has recently found uses in data science [23, 24, 35]. Given an eigenvector
u of an adjacency matrix A, we call a subset D of the vertices a weak nodal domain
if it is connected, u(x)u(y) ≥ 0 for x, y ∈ D, and D is a maximal subset under these
two conditions. A strong nodal domain is defined similarly using the strict inequality
u(x)u(y) > 0. Dekel, Lee, and Linial conjectured that the notions of strong and weak
domains are equivalent for random graphs [24], and this was shown for G(n, p) with
constant p in [48]. A consequence of the following non-degeneration result is that we
are able to resolve this conjecture for p ≥ C2.2 log7+ν(n)/n.

Theorem 2.8. Let An be the adjacency matrix of the random graph G(n, p), and fix
ν > 0. For any D > 0, there exists a C = C(D) > 0 such that for

C2.2 log7+ν n

n
≤ p ≤ 1− C2.2 log7+ν n

n
,

the probability that there exists an eigenvector v = (v1, . . . , vn) of An with |vi| ≤ n−C for
some i is at most Cn−D.

Theorem 2.8 provides a quantitative lower bound on the mass of the eigenvector
components, complementing the vast literature on eigenvector delocalization, which
provides upper bounds (see [50, Section 4] and [13]).

Corollary 2.9. For any D > 0, there exists C = C(D) > 0 such that with probability at
least 1− Cn−D, the strong and weak nodal domains of G(n, p) are the same.
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Arora and Bhaskara [4] showed that for random graphs G(n, p) with p ≥ n−c, where
c is a constant that may be determined explicitly,1 all non-first eigenvectors of the
adjacency matrixAn ofG(n, p) have exactly two weak nodal domains with high probability.
Recall that since the adjacency matrix is not centered, the eigenvector corresponding
to the largest eigenvalue behaves differently, tending to align itself with the all ones
vector [45]. Combining this result with our previous corollary yields the following simple
statement.

Corollary 2.10. There exists c > 0 such that the following holds. For any D > 0 and
p ≥ n−c, there exists C = C(D) > 0 such that with probability at least 1− Cn−D, each
eigenvector of G(n, p) (except the first) has exactly two strong nodal domains which
partition the vertices.

An identical non-degeneration result applies to matrices Mn defined in Definition 2.1.

Theorem 2.11. Fix ν > 0. For any D > 0, there exists a C = C(D) > 0 such that for

p ≥ C2.2 log7+ν n

n

the probability that there exists an eigenvector v = (v1, . . . , vn) of Mn with |vi| ≤ n−C for
some i is at most Cn−D.

Remark 2.12. Theorems 2.8 and 2.11 represent specific examples of a range of possible
results. Specifically, varying α in Theorem 2.2 can lead to trade-offs in the size of the
entries and the strength of the probability bound. We have chosen to give a simple
polynomial bound on the size and probability for the sake of simplifying the presentation.

We also remark that nodal domains were studied in the recent work [36], which
showed that there exists a constant c ≥ 0 such that for p ≥ n−c the two nodal domains
identified in [4] are balanced, meaning they each contain close to n/2 vertices with high
probability. Further, [54] shows that, with high probability, any vertex is connected to
some vertex in the other domain.

The remainder of the paper is organized as follows. In Section 3, we outline the key
steps and intuition for the proof of Theorem 2.2. In Sections 4 and 5, we prove several
preliminary results about eigenvectors of sparse random matrices. In Section 6.1, we
provide the proof of Theorem 2.2. In Section 6.2 we provide the necessary modifica-
tions to extend Theorem 2.2 to non-centered random matrices, such as the adjacency
matrices of Erdős–Rényi graphs, proving Theorem 2.6. Finally, in Section 6.3, we prove
Theorem 2.8.

3 Proof Strategy

The proof follows the same broad outline as [43]. For Mn as in Definition 2.1, we
decompose the matrix as

Mn =

(
Mn−1 X

XT mnn

)
, (3.1)

where X = [x1, . . . , xn−1] ∈ R1×(n−1). For a matrix W , let λn(W ) ≥ · · · ≥ λ1(W ) be the
eigenvalues of W . Fix an integer i such that 1 ≤ i ≤ n and let v = (x, a) (where x ∈ Rn−1

and a ∈ R) be the unit eigenvector associated to λi(Mn). By definition we have(
Mn−1 X

XT mnn

)(
x

a

)
= λi(Mn)

(
x

a

)
.

1The authors give an exact value. However, the published version of an eigenvector delocalization estimate
used to prove the result differs slightly from the version given in [4], where it is cited by the authors in
pre-publication form. The value of the constant should be adjusted in light of this.
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For the top n− 1 coordinates this gives (writing λi(Mn) for λi(Mn) Id)

(Mn−1 − λi(Mn))x+ aX = 0.

Let w be the eigenvector of Mn−1 corresponding to λi(Mn−1). Multiplying on the left by
wT , we obtain

|awTX| = |wT (Mn−1 − λi(Mn))x| = |λi(Mn−1)− λi(Mn)||wTx|. (3.2)

By the Cauchy interlacing theorem, we have λi(Mn) ≤ λi(Mn−1) ≤ λi−1(Mn).
Since the entries of Mn are subgaussian, we have with high probability that

λi ∈ [−K√pn,K√pn]

for some constant K that depends only on the subgaussian moment B of the entries.

Therefore, the average size of an eigenvalue gap is roughly O
(√

pn

n

)
= O

(√
p
n

)
. For any

δ̂ > 0, let Ei = Ei
(
δ̂
)

denote the event that

λi+1 − λi ≤ δ̂
√
p

n
.

We also let Gi be the intersection of the event Ei with the event that the eigenvector
v = (x, a) with eigenvalue λi has |a| ≥ n−1/2. Therefore, by (3.2) and using |wTx| ≤ 1, on
the event Gi, we have

|wTX| ≤ δ̂√p. (3.3)

We wish to show this is unlikely.
Recall that the theory of small ball probability (e.g. [49]) examines the probability

that a random variable takes values in a small interval. Therefore, we have reduced the
problem to understanding the small ball probability of the inner product of a random
vector with the eigenvector w. It is known that this small ball probability is related to
the amount of “disorder” in the coordinates of the eigenvector. Broadly speaking, a large
amount of disorder implies the small ball probability is small. We deal with the case that
w has high disorder eigenvectors using these results. To exclude all eigenvectors with
low disorder, we employ a covering argument, varying our approach according to the
structure of the eigenvector.

The covering argument is completed in multiple stages. For a fixed λ, we consider
Mn − λ Id acting on the unit sphere, where Id is the identity operator. Following the
prescription initiated in a series of works [9, 10, 41, 53, 56, 64], we decompose the
sphere into several sets that each offer their own advantages. Compressible vectors
are those vectors that are close to m-sparse vectors for some parameter m. In [9], it
was shown that the product of the matrix with a compressible vector has many large
coordinates and therefore large `2 norm. We adapt this argument to our symmetric
matrix case to exclude compressible vectors. We next consider dominated vectors, which
are those vectors whose coordinates outside the m largest coordinates have a small ratio
of `2 norm to `∞ norm. This type of vector was introduced in [9]. As these vectors are
also nearly sparse, they can be excluded similarly to the compressible vectors.

Finally, for vectors that are neither compressible nor dominated, we use a stratifica-
tion according to a measure of structure, the LCD. The LCD was introduced in [56] and
is defined later. As our random matrix is symmetric, there is dependence between the
rows which prevents us from applying small ball probability estimates to each coordinate
independently.2 To address this problem, for a fixed v we partition the coordinates

2This obstacle is what prevents us from reaching the optimal threshold for p by simply following the
argument in [9], which considered non-symmetric matrices for p ≥ (C logn)/n.
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of v into small subsets; this is similar to the method used in [66]. For a fixed subset,
after conditioning on the columns of Mn − λ outside of the subset, we can extract more
independent coordinates to use in small ball estimates. There is some flexibility in
the size of these subsets, and this ultimately results in the trade-off between the error
probability and gap size in Theorem 2.2.

The previous steps are done for a fixed λ and hold with exponentially high probability.
Taking a union bound over a fine enough net of the interval [−K√pn,K√pn] completes
the argument.

A similar approach was applied in [43], under the assumption that p ≥ n−1+ε for some
ε > 0 and therefore small polynomial terms could often be neglected. In our current
setting, where p is on the order of logC n/n, it turns out that the above decomposition is
insufficient primarily because the vectors that are not dominated or compressible can
have a wide range of `2 mass in their coordinates outside of the m largest. Therefore,
we further decompose the vectors by their `2 mass in the relevant coordinates. Working
in each of these classes allows some key technical estimates that bypass the small
polynomial losses from [43]. These technical improvements generate the improvement
in the range of sparsity and the error probability. Furthermore, in [43], the result was
only concerned with a non-zero separation of the eigenvalues. A more careful accounting
of the small ball probability greatly improves the (implicit) small ball estimate in [43].

4 Compressible and Dominated Vectors

The goal of this section is to prove Proposition 4.6, which shows that any eigenvector
of Mn cannot be close to a sparse vector, in a certain quantitative sense (with high
probability). Before proceeding to its proof, we introduce a few necessary definitions
and lemmas.

4.1 Decomposition of the sphere

We now formally define the decomposition of the unit sphere used in the proof sketch
of Section 3.

Definition 4.1. Fix m < n. The set of m-sparse vectors is given by

Sparse(m) = {x ∈ Rn : | supp(x)| ≤ m}.

Furthermore, for δ > 0, we define the compressible and incompressible vectors by

Comp(m, δ) = {x ∈ Sn−1 : ∃y ∈ Sparse(m) such that ‖x− y‖2 ≤ δ},

and
Incomp(m, δ) = {x ∈ Sn−1 : x /∈ Comp(m, δ)}.

For any 1 ≤ n ≤ n′, we let [n] denote the set {1, 2, . . . , n} and [n : n′] denote the set
{n, n+ 1, . . . , n′}.
Definition 4.2. For any x ∈ Sn−1, let πx : [n]→ [n] be a permutation which arranges the
absolute values of the coordinates of x in non-increasing order. For 1 ≤ m ≤ m′ ≤ n

denote by x[m:m′] ∈ Rn the vector with coordinates

x[m:m′](j) = xj · 1[m:m′](πx(j)).

For any c < 1 and m ≤ n, define the set of vectors with dominated tail by

Dom(m, c) = {x ∈ Sn−1 : ‖x[m+1:n]‖2 ≤ c
√
m‖x[m+1:n]‖∞}.

This definition was first given in [9]. Like compressible vectors, vectors with domi-
nated tail are close to being sparse, though in a different way. This approximate sparsity
facilitates the proof of the following key bound, Proposition 4.4.
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4.2 Bounds for compressible and dominated vectors

We first state a high probability bound on the operator norm of Mn, which was defined
in Definition 2.1.

Lemma 4.3 ([43, Proposition 5.2] and [67, Proposition 1.10]). For Mn defined in Defi-
nition 2.1, there exist constants C4.3,K, c4.3 > 0, depending only on the subgaussian
moment B, such that for p ≥ C4.3 logn

n and n ≥ (c4.3)−1,

P(‖Mn‖ ≥ K
√
pn) ≤ exp(−c 4.3pn).

For the remainder of this work, all references to the constant K refer to the K provided
by Lemma 4.3.

The compressible and dominated vectors were previously resolved in [43] down to
the optimal scale p ≥ C log n/n. Given some C̄4.4 > 0, we define the parameters

`0 =

⌈
log 1/(8p)

log
√
pn

⌉
, ρ = (C̄4.4)−`0−6.

Proposition 4.4 ([43, Proposition 5.3]). There exist constants C4.4, C̄4.4, c 4.4, c
′
4.4, > 0,

depending only on the subgaussian moment B of Definition 2.1, such that the following
holds. If p,m, λ satisfy

p ≥ C4.4 log n

n
, p−1 ≤ m ≤ c4.4n, and λ ∈ [−K√pn,K√pn], (4.1)

then with probability at least 1− exp(−c′4.4pn),

‖(Mn − λ)x‖2 ≥ c4.4ρ
√
pn

for all x ∈ Comp(m, ρ) ∪Dom(m, c′4.4) and n > (c′4.4)−1.

Remark 4.5. Note that if p ≥ n−1+c for some constant c > 0, then ρ is bounded below
by a constant. At the optimal scale p = C log n/n, there exist constants C1, C2.c1, c2 > 0

such that
C1 exp(−c1 log n/ log log n) ≤ ρ ≤ C2 exp(−c2 log n/ log logn).

We now come to the main result of this section, which combines the previous two
proposition to exclude the possibility of compressible or dominated eigenvectors.

Proposition 4.6. Let be Mn as in Definition 2.1 with p ≥ C4.4
logn
n . For p−1 ≤ m ≤ c4.4n

and n ≥ (c4.6)−1,

P(there exists an eigenvector v ∈ Comp(m, ρ) ∪Dom(m, c4.4)) ≤ exp(−c 4.6pn)

for some constant c4.6 > 0.

Proof. Let N denote a c4.4ρ
√
pn-net of the interval [−K√pn,K√pn] with

|N | ≤ 4K

c4.4ρ
. (4.2)

If there exists a compressible or dominated eigenvector v with eigenvalue λ ∈
[−K√pn,K√pn], then there exists a λ0 ∈ N such that

‖(Mn − λ0)v‖2 = ‖(λ− λ0)v‖2 ≤ c4.4ρ
√
pn.

By a union bound and Proposition 4.4, the probability of this event is bounded by

|N | exp(−c4.4pn) ≤ exp(−c 4.6pn).

for large enough C4.4 and small enough c4.6; to bound |N |, we used Remark 4.5. Finally,
the event that that there exists an eigenvalue outside of the interval [−K√pn,K√pn] is
bounded by exp(−c4.3pn), by Lemma 4.3. Shrinking c4.6 allows us to take a union bound
to include this event, and concludes the proof.
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Tail bounds for gaps between eigenvalues

5 Incompressible Vectors

In this section, we show that Mn does not have structured eigenvectors. We begin
with Section 5.1, where we elucidate the connection between small ball probability
and our measure of structure, the Least Common Denominator (LCD). Section 5.2 and
Section 5.3 are devoted to the proof of Proposition 5.17, which shows it is unlikely
an eigenvector of Mn has an LCD lying in a given level set. This proposition is the
main technical achievement of this section. Finally, we derive Proposition 5.18 as a
straightforward consequence of Proposition 5.17 and a union bound, which excludes
the possibility of structured eigenvectors altogether. Together with Proposition 4.6,
Proposition 5.18 will allow us to complete the outline of Section 3 and prove our main
theorems in the next section.

5.1 Small ball probability

Recall from the proof sketch in Section 3 that we wish to bound the probability that
the inner product of an eigenvector and a random vector is small. This motivates the
definition of Lévy concentration, which bounds the small ball probabilities of a random
vector Z.

Definition 5.1. The Lévy concentration of a random vector Z ∈ Rn is defined to be

L(Z, ε) = sup
u∈Rn

P(‖Z − u‖2 ≤ ε).

When X is a random vector and v is a fixed vector, the structure of v will greatly
influence the Lévy concentration of the random variable v ·X. To formalize this concept,
we begin with a measure of arithmetic structure for a unit vector.

Definition 5.2 ([66, Definition 6.1]). Let p be as in Theorem 2.2. We define the least
common denominator (LCD) of x ∈ Sn−1 as

D(x) = inf

{
θ > 0 : dist(θx,Zn) <

(
log+(

√
γpθ)

γp

)1/2
}
,

where γ is an appropriate constant that is defined in Remark 5.3 below.

Remark 5.3. There exist constants γ, ε̄0 ∈ (0, 1) such that for any ε ≤ ε̄0,

L(ξχ, ε) ≤ 1− γp,

where χ is a Bernoulli random variable such that P(χ = 1) = p and ξ is a subgaussian
random variable with unit variance. We fix such a γ in Definition 5.2.

Proposition 5.4 ([9, Proposition 4.2]). Let X ∈ Rn be a random vector with i.i.d. coordi-
nates of the form ξjχj , where the χj ’s are Bernoulli random variables with P(χj = 1) = p

and the ξj ’s are random variables with unit variance and finite fourth moment. Then for
any v ∈ Sn−1,

L (X · v,√pε) ≤ C 5.4

(
ε+

1
√
pD(v)

)
,

where C5.4 depends only on the fourth moment of ξ.

We may tensorize Proposition 5.4 to obtain a bound on the Lévy concentration of
Mnx. The argument is almost identical to the proof of [9, Proposition 4.3], and we note
only the necessary modifications here. Recall the notation x[m:m′] from Definition 4.2.
For any index set J ⊂ [n], we extend this notation to xJ in the canonical way.
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Tail bounds for gaps between eigenvalues

Proposition 5.5 (Small ball probabilities of Mnx via regularized LCD). There exists a
constant C5.5 such that for any α, ε > 0 and index set I of size dαne,

L(Mnx, ε‖vI‖2
√
pn) ≤ Cn−dαne5.5

(
ε+

1
√
pD(vI/‖vI‖2)

)n−dαne
.

Proof Sketch. We first observe that conditioning on elements of Mn never decreases
(and may increase) L(Mnx, ε‖vI‖2

√
pn). We therefore condition on all elements not in

columns indexed by elements of I, and also condition the elements whose indices (i, j)

satisfy i, j ∈ I. The remaining elements are i.i.d. and consist of n − dαne rows. The
remainder of the argument is nearly identical to the one leading to [9, Proposition 4.3],
where an analogous statement was shown for non-symmetric matrices.

The following lemma provides a lower bound for the LCD in terms of the `∞ norm.

Proposition 5.6 (Lemma 6.2, [66]). For all x ∈ Sn−1,

D(x) ≥ 1

2‖x‖∞
.

As in [66], we define a regularized version of the LCD. However, our definition
is slightly different than the one in [66]. Recall the notation Incomp(m, δ) given after
Definition 4.1, and observe that the set I0 in the following definition takes a distinguished
role and is not included in the maximum. Here, k0 represents a parameter that will be
fixed later, in the material preceding (5.2).

Definition 5.7 (Regularized LCD). Let {Ij}k0j=0 be any partition of [n] with k0 elements..
We define the regularized LCD of a vector v ∈ Incomp(m, δ) as

D̂(v) = D̂(I, v) = max
1≤j≤k0

D
(
xIj/‖xIj‖2

)
.

In our use of Definition 5.7 below, I0 will be (approximately) the m largest coordinates
of v. Hence D̂(v) gives a measure of the structure of the elements of v left over after
approximating v by an m-sparse vector.

5.2 Decomposition of incompressible vectors

In this section, we define a way to decompose incompressible vectors, which is used
in the proof of Proposition 5.15 below. In order to give this decomposition, we first
introduction a classification of the incompressible vectors, which allows us to control
the amount of mass that is not in the m largest coordinates.

Definition 5.8. For ρ ≤ ρ1 ≤ ρ2 ≤ 1 and c < 1, define

Incompρ,c(m, ρ1, ρ2) ={
v ∈ Sn−1 ∩ (Comp(m, ρ) ∪Dom(m, c))

c
: ρ1 ≤ ‖v[m+1:n]‖2 < ρ2

}
.

Remark 5.9. By definition, ‖v‖2 ≤ ρ for any v ∈ Comp(m, ρ), which gives rise to the
condition ρ ≤ ρ1 in the preceding definition.

We will consider the sets of incompressible vectors Incompρ,c′4.4(m, 2j−1ρ, 2jρ) for
j ∈ N, where m is a parameter that will be chosen later. For brevity, we introduce the
shorthand

Incomp(m, 2j−1ρ, 2jρ) = Incompρ,c′4.4(m, 2j−1ρ, 2jρ).

For the remainder of this section we primarily use the fact that the vectors in Incomp(m,

2j−1ρ, 2jρ) are not dominated. That they are not compressible is used only in the proof
of Proposition 5.17.

EJP 26 (2021), paper 130.
Page 11/26

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP669
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Tail bounds for gaps between eigenvalues

We begin with a straightforward upper bound. Recall ρ was defined in Proposition 4.4.
Fix j ∈ Z and consider a vector v ∈ Incomp(m, 2j−1ρ, 2jρ). Since v /∈ Dom(m, c′4.4),

‖v[m+1:n]‖2 > c′4.4
√
m‖v[m+1:n]‖∞.

Furthermore, since ‖v[m+1:n]‖2 < 2jρ by definition,

c′ −1
4.4

2jρ√
m
> ‖v[m+1:n]‖∞. (5.1)

On the other hand, we can also find a large set of coordinates that are uniformly
lower-bounded.

Lemma 5.10. For v ∈ Incomp(m, 2j−1ρ, 2jρ), the set

σ(v) =

{
i ∈ [n] : |vi| ≥

2j−1ρ

2
√
n

and i ∈ π−1
v ([m+ 1 : n])

}
satisfies |σ(v)| ≥ (c′4.4)2m/8.

Proof. For the sake of contradiction, assume that |σ(v)| < (c′4.4)2m/8. Then by (5.1),

‖v[m+1:n]‖2 ≤
√
‖v[m+1:n]‖2∞|σ(v)|+ n

22(j−1)ρ2

4n
< 2j−1ρ,

contradicting the definition of Incomp(m, 2j−1ρ, 2jρ).

We now define a partitioning procedure. For this, we introduce some new notation.

Definition 5.11. For a set I ∈ [n] with |I| ≥ k2 > k1, we use I〈k1:k2〉 to denote all the
elements from the k1-th to the k2-th in I (inclusive), where we order the elements from
least to greatest. For example, if I = {2, 4, 5, 6, 9} then I〈2:4〉 = {4, 5, 6}.

Let v ∈ Sn−1 be a vector, let ω = ω(n) be a parameter satisfying

n−1/7 ≤ ω ≤ 1

log n
,

and set m = ωn. We define k0 as the largest number of disjoint subsets with dωne
elements one can have of [n] whose union does not contain the indices of the m largest
elements of v. We consider disjoint index sets I1, . . . , Ik0 , each of size dωne, each not
containing any indices of the m largest elements of v. Therefore,

1

2ω
≤
⌊
n−m
dωne

⌋
= k0 ≤

1

ω
. (5.2)

In our definition, the index sets Ij depend on v, but we suppress this dependence
in the notation. For a vector v ∈ Sn−1, let τ(v) denote the set of indices of the m

largest coordinates. By Lemma 5.10, we can choose a subset σ̂(v) ⊂ σ(v) of size exactly
d(c′4.4)2m/8e, where σ(v) was defined in the statement of that lemma. We observe that
σ̂(v) and τ(v) are disjoint.

Let σ(v) = [n] \ (τ(v) ∪ σ̂(v)). For 1 ≤ k < k0, we define

r′ =

⌈
(c′4.4)2m

8

⌉
, r =

⌊
r′

k0

⌋
, s = dωne − r,

Ik = σ̂(v)〈1+(k−1)r:kr〉 ∪ σ(v)〈1+(k−1)s:ks〉. (5.3)

For the rest of this work, we drop floor and ceiling functions because they do not
influence the argument in a substantial way.
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Tail bounds for gaps between eigenvalues

Finally, we define I0 = [n] \ ∪k0k=1Ik. In words, I0 contains the m largest coordinates
and the smaller coordinates left over from divisibility issues. In particular, |I0| ≤ m+dωne.
Since the sets Ik were chosen to be disjoint for k ≥ 1, it follows that {Ik}k0k=0 is a partition
of [n].

The primary objective of this partition is recorded in the following lemma, where we
also define the constants ρ′j .

Lemma 5.12. For v ∈ Incomp(m, 2j−1ρ, 2jρ) and 1 ≤ k ≤ k0,

ρ′j := c′4.42j−3ρω ≤ ‖vIk‖2 ≤ c
′ −1
4.4 2jρ = 23(c′4.4)−2ρ′jω

−1. (5.4)

Also,
D̂(v) ≥ (c′4.4)22−5n1/2ω3/2.

Proof. The bounds on ‖vIk‖2 follow from the coordinate-wise bounds of our construction.
For the lower bound, we ignore all elements not in σ̂(v). We obtain√

|σ̂(v)|
k0

2j−1ρ

2
√
n
≤ ‖vIk‖2 ≤

√
|Ik|‖v[m+1:n]‖∞.

The claim (5.4) then follows from Lemma 5.10, (5.1), and (5.2).
For the second claim, applying Proposition 5.6 and recalling Definition 5.7 yields

D̂(v) ≥ min
k≥1

{
‖vIk‖2

2‖vIk‖∞

}
. (5.5)

Then the claim follows from the lower bound on ‖vIk‖2 in the previous paragraph
and (5.1).

5.3 Vectors with small LCD

We now exclude vectors with small regularized LCD as potential eigenvectors of Mn.
This is the content of the next proposition, Proposition 5.15, which shows that any vector
in Incomp(m, 2j−1ρ, 2jρ) with small regularized LCD is unlikely to be near an eigenvector.
We first define level sets of vectors according to their regularized LCD.

Definition 5.13. For any L > 0, we define the level sets

SL = {v ∈ Incomp(m, ρ) : L ≤ D̂(v) < 2L}.

We also require a preliminary lemma. Recall γ was defined in Remark 5.3.

Lemma 5.14 (Lemma 6.13, [43]). Let ω > 0, and let f(n) be a function such that

lim
n→∞

f(n) =∞.

Then for L > f(n), the set of unit vectors

{v ∈ Sωn−1 : f(n) ≤ D(v) ≤ L}

admits a β-net of size at most (
12 +

c̄L√
ωn

)ωn
log(L)

where c̄ > 0 is a universal constant and

β =
2
√

log(2
√
γpL)

L
√
γp

.
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Tail bounds for gaps between eigenvalues

We now state and prove the main technical result of this section. Recall SL was de-
fined in (5.13), ρ′j was defined in Lemma 5.12, and K is the constant given by Lemma 4.3.

Proposition 5.15. Fix ν > 0. There exist constants C5.15, c5.15, c
′
5.15, c̃5.15 > 0 such that

for p ≥ C5.15
log7+ν n

n , λ ∈ [−K√pn,K√pn], j ∈ N, and for any

(np)−1/(7+ν) ≤ α ≤ c′5.15

log n

and
c̃5.15α

3/2n1/2 ≤ L ≤ p−1/2 exp(α−1),

the following holds for n ≥ (c′5.15)−1:

P
(
∃v ∈ Incomp(αn, 2j−1ρ, 2jρ) ∩ SL s.t. ‖(Mn − λ)v‖2 ≤ c5.15ε0ρ

′
j

√
pn
)
≤ exp(−c′5.15n),

where

ε0(L) = min

{
c′5.15

√
αn

L
,
c′5.15

√
log r(log log n)

α2r

}
and r =

c̃5.15

2
α3/2(np)1/2.

Proof. We set m = αn, and define

K = Incomp(m, 2j−1ρ, 2jρ) ∩ SL.

In outline, this proof implements the following steps:

1. Construct a suitable netM for K.

2. Upper bound the size ofM.

3. Show the claim holds for all v ∈M.

4. Extend the result from all v ∈M to all v ∈ K.

For Step 1, let v ∈ K be a vector and consider the partition {Ik}k0k=0 of the coordinates
of v constructed in (5.3) with the parameter ω = α. For the coordinates I0, by a standard
volume estimate,3 there exists a c′5.15ρ

′
jε0/10K-net, N0, of the values [0, 1] such that

|N0| ≤

(
30K

c′5.15ε0ρ′j

)m+αn

,

where we recall |I0| ≤ m+ αn.
For the coordinates in Ik with k ≥ 1, we use a construction that exploits the LCD

structure. Observe that the hypothesis of Lemma 5.14 holds for vIk/‖vIk‖2 because

D(vIk/‖vIk‖2) ≥ (c′4.4)2m

25

√
α

n
=
c′4.4
25

α3/2n1/2, (5.6)

as shown in the proof of Lemma 5.12 (see (5.5)), and the lower bound tends to infinity as
n→∞. For Ik with k ≥ 1, let Nk denote the β-net guaranteed by Lemma 5.14 applied to
vIk/‖vIk‖2.4

We next implement a net of scaling factors. Let J be a c′5.15ε0ρ
′
j/10Kk0-net of [0, 1]

such that

|J | ≤ 30Kk0

c′5.15ε0ρ′j
.

3See for example [52, (5.7)].
4Observe we are applying this lemma when the upper limit is 2L, according to the definition of SL, not L.

The definition of β is adjusted accordingly below.
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As observed earlier, the partition {Ik}k≥0 of the coordinates of v is entirely determined
by the sets of indices τ and σ. To approximate all v ∈ K, we define the preliminary set

M′ =
⋃

τ,σ∈[n]:|τ |=m,|σ|=m/4

{
x0 +

k0∑
k=1

tkyk : x0 ∈ N0, yk ∈ Nk, tk ∈ J

}
. (5.7)

We currently have no guarantee that

M′ ⊂ Incomp(m, 2j−1ρ, 2jρ) ∩ SL.

However, this is easily fixed. If there exists x ∈ SL such that

‖x−m‖2 ≤
c5.15ρ

′
jε0

15K
,

we replace m by any such x. Otherwise, we discard m. This creates a new netM such
that |M| ≤ |M′|. This completes Step 1.

We now enter Step 2 of the proof and upper bound the size ofM. We may combi-
natorially determine the size ofM using the sizes of the Nk and J . This leads to the
following bound on the cardinality of our net:

|M| ≤
(
n

m

)(
n

m/4

)(
30K

c′5.15ε0ρ′

)m+αn k0∏
k=1

[(
12 +

c̄2L√
αn

)αn
log(L)

30Kk0

c′5.15ε0ρ′j

]
. (5.8)

The combinatorial factors come from the choices of τ and σ in (5.7).
We now proceed to simplify this bound. From the elementary bound(

n

k

)
≤ exp(k log(en/k))

we have the following exponential bound for |M|:

|M| ≤ exp
(

2m log(4en/m) + (m+ αn+ k0) log(30K/c′5.15ε0ρ
′
j)

+ k0 log(log(L)) + k0 log(k0)
)
×
(

12 +
c̄2L√
αn

)n−m
.

For the second factor, we recalled that |I0| ≥ m, so that the product from 1 to k0 in (5.8)
has at most n−m individual terms. Using L ≤ exp(2α−1), m = αn, k0 ≤ αn, and k0 ≤ α−1

(from (5.2)), we find

|M| ≤ exp

(
n

[
2α log(4e/α) + 3α log(30K/c′5.15ε0ρ

′
j) +

1

nα
log(2/α2)

])
×
(

12 +
c̄2L√
αn

)n−m
.

Recall that ρ′j was defined in terms of ρ in Lemma 5.12, and log(1/ρ) = O(log n/ log log n)

by Remark 4.5. Note also that log(1/α) = O(log n). Then there exists C > 0 such that

2α log(4e/α) ≤ C, 3α log(30K/c′5.15ρ
′
j) ≤ C,

1

nα
log(2/α2) ≤ C.

From this, we find

|M| ≤ exp (n [C + 3α log(1/ε0)])×
(

12 +
c̄2L√
αn

)n−αn
. (5.9)
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This completes Step 2.
We now begin Step 3 of the outline and prove the result for all the points in our net

M. Set
P = P

(
∃x ∈M s.t. ‖(Mn − λ)x‖2 ≤ c5.15ε0ρ

′
j

√
pn
)
.

By Proposition 5.5 applied with ε = c5.15ε0, for any v ∈M and k such that 1 ≤ k ≤ k0,

P
(
‖(Mn − λ)v‖2 ≤ c 5.15ε0ρ

′
j

√
pn
)
≤ Cn−dαne5.5

(
c 5.15ε0 +

1
√
pD(vIk/‖vIk‖2)

)n−dαne
,

where we recall from Lemma 5.12 that ρ′j ≤ ‖vIk‖2. Since v ∈ SL, by the definition of SL
we find there exists 1 ≤ k ≤ k0 such that D(vIk/‖vIk‖2) > L. We use this k in the above
expression to find

P
(
‖(Mn − λ)v‖2 ≤ c 5.15ε0ρ

′
j

√
pn
)
≤ Cn−dαne5.5

(
c 5.15ε0 +

1
√
pL

)n−dαne
.

Straightforward computations show

c′5.15

√
αn

L
≥ 2C5.5√

pL
and

c′5.15

√
log r(log log n)

α2r
≥ 2C5.5√

pL
. (5.10)

Recall that ε0 as defined as the minimum of the two upper bounds in (5.10), so

ε0 ≥
2C5.5√
pL

. (5.11)

Then

P
(
‖(Mn − λ)x‖2 ≤ c 5.15ε0ρ

′
j

√
pn
)
≤ Cn−dαne5.5

(
c 5.15ε0 + (2C5.5)−1ε0

)n−dαne
.

Setting c5.15 = (2C5.5)−1 and applying a union bound over all elements x ∈M, we obtain

P ≤ |M|εn−αn0 . (5.12)

To bound |M|εn−αn0 from (5.12), we use (5.9) and divide into two cases. First, suppose
2c̄L√
αn
≤ 1. By (5.9), we have

|M| ≤ exp (n [C + 3α log(1/ε0)])× 13n. (5.13)

Combining this with (5.12) and absorbing the 13n into the exponential yields

P ≤ exp (n [C + 3α log(1/ε0)])× εn−αn0 ,

so
P ≤ exp (n [C + 3α log(1/ε0)− (1− α) log(1/ε0)]) ≤ exp(−c′′5.15n).

In the last line we used α = o(1) and ε0 → 0 (the latter is by direct calculation), so
log(1/ε0)→∞ and the term inside the brackets tends to −∞.

For the case 2c̄L√
αn

> 1, recalling the definition of ε0 and that m = αn gives

P ≤ exp (n [C + 3α log(1/ε0)])×
(

13c̄L√
αn

)n−αn(
c′5.15

√
αn

L

)n−αn
, (5.14)

P ≤ exp (n [C + 3α log(1/ε0)])× (13c̄c′5.15)
n−αn

. (5.15)

Now (5.11) shows that
1

ε0
≤
√
pL

2C5.5
≤ exp(α−1)

2C5.5
.
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This, along with the stipulated range of α, implies that

3α log(1/ε0) < C.

Therefore, taking c′5.15 small enough in (5.15), we have

P ≤ exp(−c′′5.15n).

This completes Step 3.

We now proceed to Step 4. Having shown the result for all the points in the net, we
now extend to the entire level set K. Again, we divide into cases.

We assume first that

c′5.15

√
αn

L
≤ c′5.15

√
log r(log log n)

α2r
, so that ε0 =

c′5.15

√
αn

L
. (5.16)

For any w ∈ K, let m ∈M be the closest element of the netM. Then, by the definition
ofM,

‖w −m‖2 ≤
c5.15ρ

′
jε0

10K
+

k0∑
k=1

(∥∥∥wIk − ‖wIk‖2yk∥∥∥
2

+
∥∥∥‖wIk‖2yk − tkyk∥∥∥

2

)
≤
c5.15ρ

′
jε0

10K
+

k0∑
k=1

(∥∥∥∥ wIk
‖wIk‖2

− yk
∥∥∥∥

2

‖wIk‖2 +
∥∥∥‖wIk‖2yk − tkyk∥∥∥

2

)
≤
c5.15ρ

′
jε0

10K
+ k0ρ

′
jα
−1(c′4.4)−223β + k0

c′5.15ρ
′
jε0

10Kk0

≤
c5.15ρ

′
jε0

5K
+ Cγ(c′4.4)−2

ρ′j
α5/2L

√
p

≤
c5.15ρ

′
jε0

2K
.

In the third inequality, we used that there are k0 terms in the sum, that the yk form
a β-net, and the upper bound on ‖wk‖2 from (5.4). In the fourth inequality, we used
k0 ≤ α−1 from (5.2) and the inequality

β ≤ Cγα
−1/2

L
√
p

, (5.17)

where Cγ is a constant that depends only on γ. The inequality (5.17) follows from
the definition of β and the hypothesized upper bound log(

√
pL) ≤ α−1 on L. The last

inequality follows by direct calculation using the value of ε0 given in (5.16) and the
assumed lower bound on α.

For the other case, suppose

c′5.15

√
αn

L
≥ c′5.15

√
log r(log log n)

α2r
, so that ε0 =

c′5.15

√
log r(log log n)

α2r
. (5.18)

For any w ∈ K, let m ∈M be the closest element of the netM. Then, by the definition
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ofM,

‖w −m‖2 ≤
c5.15ρ

′
jε0

10K
+

k0∑
k=1

(∥∥∥wIk − ‖wIk‖2yk∥∥∥
2

+
∥∥∥‖wIk‖2yk − tkyk∥∥∥

2

)
≤
c5.15ρ

′
jε0

10K
+

k0∑
k=1

(∥∥∥∥ wIk
‖wIk‖2

− yk
∥∥∥∥

2

‖wIk‖2 +
∥∥∥‖wIk‖2yk − tkyk∥∥∥

2

)
≤
c5.15ρ

′
jε0

10K
+ k0ρ

′
jα
−1(c′4.4)−223β + k0

c5.15ρ
′
jε0

10Kk0

≤
c5.15ρ

′
jε0

5K
+ k0ρ

′
jα
−1(c′4.4)−223

√
log(4

√
γpL)

√
γpL

≤
c5.15ρ

′
jε0

5K
+ ρ′jα

−2(c′4.4)−224

√
log(4

√
γr)

√
γr

≤
c5.15ρ

′
jε0

5K
+
(

(c′4.4)−2(c′5.15)−1γ−1/225
)
ρ′jε0(log log n)−1

≤
c5.15ρ

′
jε0

2K
.

In the third line, we used that there are k0 terms in the sum, that the yk’s form a β-net,
and the upper bound on ‖wk‖2 from (5.4). The fourth line follows from the definition of β.
The fifth line is a result of the observation that

√
log x/x is a decreasing function for large

x, r →∞, and r < L
√
p. We also used the bound k0 ≤ α−1 from (5.2). In the sixth line,

we used the definition of ε0 in (5.18). For the the last line, we used (log log n)−1 = o(1)

and took n large enough.
Therefore, if ‖(Mn − λ)w‖2 ≥ 2c5.15ε0

√
pn, then using Lemma 4.3,

‖(Mn − λ)m‖2 ≥ 2c5.15ε0
√
pn− ‖Mn − λ‖

c5.15ε0

2K
≥ c 5.15ε0

√
pn,

with exponentially small error probability, which contradicts the conclusion of Step 3
above. After adjusting c5.15 by a factor of 2, this completes the proof.

Remark 5.16. As noted in Remark 2.5, the optimal result should permit p as small as
C log(n)/n. The restriction that p ≥ C log7+ν n/n in the above proof comes from the
requirement that ε0 → 0.

We now extend the previous result to all vectors with small LCD.

Proposition 5.17. Fix ν > 0. There exists a constant c5.17 > 0 such that for p ≥
C5.15

log7+ν n
n , λ ∈ [−K√pn,K√pn], j ∈ N and for any

(np)−1/(7+ν) ≤ α ≤ c′5.15

log n

the following holds. The probability that there exists v ∈ Incomp(αn, ρ) such that

‖(Mn − λ)v‖2 ≤ c5.15ε1ρ
′
1

√
pn and D̂(v) ≤ p−1/2 exp(α−1)

is at most exp(−c5.17n) for n ≥ (c5.17)−1, where

ε1 = exp(−c5.17n
1/7).

Proof. We set D0 = c′4.42−5α3/2n1/2 and recall that D̂(v) ≥ D0 by (5.6). We can decom-
pose the relevant vectors as

log2(p−1/2 exp(α−1))⋃
j′=0

log2 ρ
−1⋃

j=0

(
Incomp(m, 2jρ, 2j+1ρ) ∩ S2j′D0

)
,
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where we used D0 ≥ 1. Recall log(1/ρ) = O(log n/ log log n) by Remark 4.5. Similarly, the
number of j′ indices in the union is O(log n) because each of log2 p

−1/2 and log2 exp(α−1)

are O(log n). Therefore, taking a union bound, applying Proposition 5.15, and observing
ρ′j ≥ ρ′1 and ε0(L) ≥ ε1 for the ε0(L) defined in Proposition 5.15 yields the result.

5.4 Eigenvector bound

We now come to a key proposition used in the proof of the main theorem.

Proposition 5.18. For Mn as in Definition 2.1, there exists a constant c5.18 > 0 such
that for

(np)−1/(7+ν) ≤ α ≤ c′5.15

log n
,

the probability that Mn has an eigenvector v such that

v /∈ Comp(αn, ρ) ∪Dom(αn, c 4.4) and D̂(v) ≤ p−1/2 exp(α−1)

is at most exp(−c5.18n), for n ≥ (c5.18)−1.

Proof. Consider a c5.15ε1ρ
′
1
√
pn-net of [−K√pn,K√pn], where ε1 was defined in Proposi-

tion 5.17. For an eigenvalue λ ∈ [−K√pn,K√pn], there exists a point of the net λ0 such
that for corresponding eigenvector v we have

‖(Mn − λ0)v‖2 = |λ− λ0| ≤ c 5.15ε1ρ
′
1

√
pn.

However, by a union bound and Proposition 5.17, the probability of this event is
bounded by exp(−c5.18n) for some c5.18 > 0. By Lemma 4.3, decreasing the value
of c5.18 can account for the event that there exists an eigenvalue of Mn outside the
interval [−K√pn,K√pn]. This concludes the proof.

6 Proofs of Main Results

6.1 Proof of Theorem 2.2

In preparation for the main proof, we record the following lemma from [43].

Lemma 6.1 ([43, Lemma 6.1]). For any v ∈ Incomp(m, ρ),∣∣∣∣{i :
ρ2

√
2n
≤ |vi| ≤

1√
m

}∣∣∣∣ ≥ mρ2

2
.

Proof of Theorem 2.2. We repeat the decomposition described in Section 3. Let

Mn =

(
Mn−1 X

XT mnn

)
, (6.1)

where X = (x1, . . . , xn−1) ∈ Rn−1. Let v = (x, a) (where x ∈ Rn−1 and a ∈ R) be the unit
eigenvector associated to λi(Mn). Because v is an eigenvector with eigenvalue λi,(

Mn−1 X

XT mnn

)(
x

a

)
= λi(Mn)

(
x

a

)
.

Considering the top n− 1 coordinates gives

(Mn−1 − λi(Mn))x+ aX = 0.

Let w be the eigenvector of Mn−1 corresponding to λi(Mn−1). After multiplying on the
left by wT , we arrive at

|awTX| = |wT (Mn−1 − λi(Mn))x| = |λi(Mn−1)− λi(Mn)||wTx|. (6.2)
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Since |wTx| ≤ 1 by the Cauchy–Schwarz inequality, this implies

|wTX| ≤ 1

|a|
|λi(Mn−1)− λi(Mn)|. (6.3)

By the Cauchy interlacing law, we must have λi(Mn) ≤ λi(Mn−1) ≤ λi−1(Mn). For

any δ̂ > 0, let Ei = Ei
(
δ̂
)

denote the event that

λi+1 − λi ≤ δ̂
√
p

n
. (6.4)

On Ei, (6.3) implies

|wTX| ≤ δ̂
√
p

n

1

|a|
. (6.5)

Now note that the decomposition (6.1) can be done along any coordinate, not just
the last. For any A > 0, let nA be the number of coordinates with absolute value at least
A, and let N be a parameter. Therefore, repeating the argument leading to (6.5) with
the coordinate a chosen uniformly at random, and considering the probability that we
choose a coordinate with absolute value at least A, and Ei obtains, we find

P(Ei) =P(Ei ∩ {nA ≥ N}) + P(Ei ∩ {nA < N}) (6.6)

≤ n
N
P

(
|wTX| ≤ δ̂

√
p

n

1

A

)
+ P(nA < N). (6.7)

Setting m = c4.4n in Proposition 4.6 shows that any eigenvector v will not be
in Comp(c4.4n, ρ) with exponentially high probability. When v /∈ Comp(c4.4n, ρ), by
Lemma 6.1, there are greater than c4.4nρ

2/2 coordinates whose absolute values are
larger than ρ/

√
2n. We set N = c4.4nρ

2/2 and A = ρ/
√

2n in (6.7) to find

P(Ei) ≤
2

c4.4ρ2
P
(
|wTX| ≤ δ̂ρ−1

√
2p
)

+ exp(−c 4.6pn). (6.8)

With probability at least 1− exp(−c5.18pn),

D̂(w) ≥ p−1/2 exp(α−1)

by Proposition 4.6 (applied with m = αn) and Proposition 5.18. At this point, we would

like to apply Proposition 5.4 to control the probability P
(
|wTX| ≤ δ̂ρ−1

√
2p
)

in (6.8).

However, this proposition applies to the LCD D(w), not the regularized LCD D̂(w), so a
slightly more delicate argument is required.

By the definition of regularized LCD, there exists some subset J of coordinate indices
such that

D

(
wJ
‖wJ‖2

)
≥ p−1/2 exp(α−1).

To adjust for the regularized LCD, we observe that conditioning on a subset of X can
only increase the Lévy function L(wTX, ε) for any ε > 0. We condition on all the random
variables in X whose indices do not lie in the subset J . Also, to apply Proposition 5.4,
we need to normalize this subset to be on the unit sphere. Therefore, by Proposition 5.4,

L(wTX, δ̂ρ−1
√

2p) ≤ L

(
wTJ
‖wJ‖2

XJ ,
δ̂ρ−1

√
2p

‖wJ‖2

)
≤ 2
√

2C5.4δ̂ρ
−1

‖wJ‖2
, (6.9)

for all δ̂ ≥ ρe−α
−1

/
√

2. By Lemma 5.12, ‖wJ‖2 ≥ c′4.42−3ρα. Therefore, putting (6.9)
into (6.8), we find
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P(Ei) ≤
32
√

2

c4.4c′4.4ρ
4α
C5.4δ̂ + exp(−c 4.6pn). (6.10)

We set δ = δ̂ρ−4. Then the above holds for δ ≥ ρ−3e−α
−1

/
√

2. Recall that ρ−3 =

exp(O(log n/ log log n)). Thus, we obtain the theorem after lowering c′2.2, which constrains
the range of α.

6.2 Proof of Theorem 2.6

Let G(n, p) denote the Erdős–Rényi random graph on n vertices with edge probability
p, and let An denote the adjacency matrix of G(n, p). In other words, An is a symmetric
matrix of Bernoulli variables with parameter p, with all 0 entries on the diagonal. We
have EAn = p(Jn − In) where Jn is the matrix of all ones, so our main theorem does not
apply. However, only small modifications are necessary to handle this case, which we
detail in this section, following closely the analogous argument in [43, Section 8].

First, we observe that Proposition 4.4 can be adapted so that the proposition holds for
An in place of Mn. This was proved in [43, Appendix B]. It follows that Proposition 4.6
also holds for An (by repeating the proof of Proposition 4.6 using the analogue of
Proposition 4.4 for An).

Next, we claim that Proposition 5.17 can be adapted to hold for the matrix An −
p(Jn − In) in place of Mn, with the additional restriction that we must suppose p ≤ 1/2.
The restriction is due to the fact that we will write the off-diagonal entries of this matrix
as aij = δijξij , where δ is Bernoulli with parameter 2p and ξij is Bernoulli with parameter
1/2 (as in the definition of Mn). Our arguments for Proposition 5.17 revolved around
Lévy concentration and nets. The use of Lévy concentration in Proposition 5.5 does not
need to be modified for the random graph case, since it is invariant under changes in the
mean of the matrix.5 For the nets, we required the operator norm bound Lemma (4.3);
we claim the analogue of this statement for An− p(Jn− In) also holds. A straightforward
modification of the proof of [9, Theorem 1.7] shows

P(‖An − p(Jn − In)‖2 ≥ K ′
√
pn) ≤ exp(−c′pn) (6.11)

for some K ′, c′ > 0. We obtain that Proposition 5.17 holds for An − p(Jn − In), if p ≤ 1/2.
Additionally, we need a slight generalization of Proposition 5.17, which lower bounds

not just ‖(An − p(Jn − In)− λ)v‖2, but

‖(An − p(Jn − In)− λ)v − x‖2 (6.12)

for any fixed vector x. This generalization holds because the high probability lower
bounds used to prove Proposition 5.17 come from Proposition 5.5, and the latter proposi-
tion concerns Lévy concentration, which is by definition translation invariant.

We now turn to the proof of Theorem 2.6.

Proof of Theorem 2.6. Above, we established that the analogue of Proposition 5.17 holds
for An− p(Jn− In), if p ≤ 1/2. This restriction motivates the following division into cases.

Case I: p ≤ 1/2. Our preliminary goal to is establish that Proposition 5.18 holds for
An. We have

{Jnx : x ∈ Sn−1} = {θ · 1 : θ ∈ [−n, n]} (6.13)

where 1 is the vector (1, . . . , 1) of all ones. Set Xn = {κ · 1 : κ ∈ [−pn, pn]}. Let B be a
c5.17ε0ρ

′√pn-net of Xn such that

|B| ≤ 4pn

c5.17ε0ρ′
√
pn
≤ C exp(cn1/7). (6.14)

5However, it does require the aforementioned decomposition aij = δijξij , giving rise to the p ≤ 1/2
restriction.
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For x, x′ ∈ Xn, the reverse triangle inequality yields

|‖(An − p(Jn − In)− λ)v − x‖2 − ‖(An − p(Jn − In)− λ)v − x′‖2| ≤ ‖x− x′‖2, (6.15)

so any (An − p(Jn − In)− λ)v − y with y ∈ Xn can be well approximated by (An − p(Jn −
In)− λ)v − x for some x ∈ B.

Define

SD =
{
v ∈ Incomp(αn, ρ) : D̂(v) ≤ p−1/2 exp(α−1)

}
.

By (6.15), a union bound over the net B, and the analogue of Proposition 5.17 for (6.12)
stated above, we obtain

P( inf
x∈Xn

inf
v∈SD

‖(An − p(Jn − In)− λ)v − x‖2 ≤ c 5.17ε0ρ
′
1

√
pn) ≤ exp(−cn) (6.16)

for any single λ ∈ [−K ′√pn,K ′√pn]. After observing that

inf
x∈Xn

inf
v∈SD

‖(An − p(Jn − In)− λ)v − x‖2 ≤ inf
v∈SD

‖(An − (λ− p))v‖2, (6.17)

we find

P( inf
v∈SD

‖(An − (λ− p))v‖2 ≤ c5.17ε0ρ
′
1

√
pn) ≤ exp(−cn). (6.18)

Using (6.18) in place of Proposition 5.17 in the proof of Proposition 5.18, we find that
Proposition 5.18 holds for An in place of Mn.

We can now repeat the proof of Theorem 2.2 to prove theorem in this case, with the
appropriate analogues for An substituting for Proposition 5.18 and Proposition 4.6. (The
latter was noted at the beginning of Section 6.2.)

Case II: p > 1/2. Observe that the adjacency matrix An(p) of G(n, p) is equal in
distribution to Jn − In −An(1− p). Hence controlling

‖(An(p)− p(Jn − In)− λ)v‖2

is equivalent to controlling

‖(An(1− p)− (1− p)(Jn − In) + λ)v‖2.

This reduces the problem to Case I and completes the proof.

Remark 6.2. The size of the one-dimensional net B in (6.14) is compensated by the
exp(−cn) error probability used for the union bound in (6.16). For general finite-rank
perturbations by a finite linear combination of matrices of the form n ·vvT for v ∈ Sn, one
simply adds more one-dimensional nets and completes the argument in the same way.
However, for perturbations whose rank grows even moderately quickly, the combined
size of the necessary supplemental nets becomes too large.

6.3 Proof of Theorem 2.8

The following is essentially Lemma 9.1 of [48]. We provide the proof for completeness.

Lemma 6.3. For any A > 0 there exists B = B(A) > 0 such that the following holds with
probably at least 1−O(n−A). If there exist λ ∈ R and v ∈ Sn−1 such that ‖(An − λ)v‖ ≤
n−B, then An has an eigenvector ui0 ∈ Sn−1 and corresponding eigenvalue λi0 such that

|λi0 − λ| < n−B/4 and ‖v − ui0‖ < n−B/4.
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Proof. From our main result, Theorem 2.6, we may suppose that all eigenvalue gaps
satisfy |λj − λi| ≥ n−B/2. Let v =

∑
ciui express v as a linear combination of unit

eigenvectors of A. There must exist i0 such that ci0 ≥ n−1/2. So

‖(An − λ)v‖ =

(
n∑
i=1

c2i (λi − λ)2

)1/2

(6.19)

implies, assuming ‖(An − λ)v‖ ≤ n−B, that |λ − λi0 | ≤ n−B+1/2. This implies the first
conclusion. Then because all gaps satisfy |λj−λi| ≥ n−B/2 we have that |λ−λi| ≥ n−B/2/2
for all i 6= i0. But then we must have |ci| = O(n−B/2) for i 6= i0, implying the second
conclusion.

Proof of Theorem 2.8. We follow the proof of Theorem 3.3 in [48]. After adjusting C by
adding 1, it suffices to prove the claim for a single coordinate and use a union bound.
Write A = An and let its first column be (a11, X) where X is a vector of n− 1 coordinates.
Let v = (v1, v

′) be an eigenvector with eigenvalue λ so that

v1m11 + (v′)TX = λv1, (An−1 − λ)v′ = −v1X. (6.20)

Suppose that |v1| ≤ n−D where D will be chosen later. By taking D large enough, using
that the entries of A are bounded, and adding O(N−D) mass to the first component of v′

to make it unit norm, it suffices to show that

‖(An−1 − λ)v′‖ ≤ n−D/2 and |(v′)TX| ≤ n−D/2 (6.21)

occur jointly with low probability. By Lemma 6.3, if the first condition holds then there
exists an eigenvector u′ of An−1 with ‖u′− v′‖2 ≤ n−D/8. Then |(v′)TX| ≤ N−D/2 implies
|(u′)TX| ≤ n−D/16. We claim this contradicts a statement established in the proof of
Theorem 2.2.

In (6.9) and the following lines, we showed

P
(
|wTX| ≤ δρ3√p

)
≤ C ρ

2

α
δ, (6.22)

where δ was defined below (6.10) (in terms of δ̂). Now we take δ = n−D/16/ρ3√p,
α = (np)−1/(7+ν) and p > C log7+ν(n)/n, which proves the theorem after taking D large
enough.
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