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Abstract

Given a hypergraph H, the H-bootstrap process starts with an initial set of infected
vertices of H and, at each step, a healthy vertex v becomes infected if there exists
a hyperedge of H in which v is the unique healthy vertex. We say that the set of
initially infected vertices percolates if every vertex of H is eventually infected. We
show that this process exhibits a sharp threshold when H is a hypergraph obtained by
randomly sampling hyperedges from an approximately d-regular r-uniform hypergraph
satisfying some mild degree and codegree conditions; this confirms a conjecture of
Morris. As a corollary, we obtain a sharp threshold for a variant of the graph bootstrap
process for strictly 2-balanced graphs which generalises a result of Korándi, Peled and
Sudakov. Our approach involves an application of the differential equations method.
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1 Introduction

Given a hypergraph H, the H-bootstrap process begins with an initial set of infected
vertices of H (a vertex that is not infected is healthy) and, in each step, a healthy vertex
becomes infected if there exists a hyperedge of H in which it is the unique healthy vertex.
The set of initially infected vertices is said to percolate if every vertex of H is eventually
infected. This process was first studied by Balogh, Bollobás, Morris and Riordan [10]
and is motivated by numerous connections to other variants of bootstrap percolation;
see Subsection 1.1.
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A sharp threshold for bootstrap percolation in a random hypergraph

The focus of this paper is on estimating the critical probability of the H-bootstrap
process, denoted pc(H), which is the infimal density at which a random subset of V (H)

is likely to percolate. More formally,

pc(H) := inf {p ∈ (0, 1) : P (V (H)p percolates) ≥ 1/2}

where, for a finite set X and p ∈ [0, 1], we let Xp denote a random subset of X obtained
by including each element with probability p independently of one another. Specifically,
we are interested in estimating the quantity pc (Hq), where H is a “sufficiently well
behaved” hypergraph and, for q ∈ [0, 1], Hq denotes the hypergraph obtained from H by
including each hyperedge of H independently with probability q. Our main result applies
to all r-uniform hypergraphs satisfying some mild conditions. To precisely state these
conditions we require a few standard definitions.

Given a hypergraph H and a set S ⊆ V (H), the codegree of S, denoted deg(S), is the
number of hyperedges e of H with S ⊆ e. For v ∈ V (H), the degree of v is defined to
be deg({v}) and is denoted by deg(v). For an r-uniform hypergraph H and 1 ≤ ` ≤ r, let
∆`(H) := max{deg(S) : S ⊆ V (H), |S| = `} and δ`(H) := min{deg(S) : S ⊆ V (H), |S| = `}.
We often write ∆1(H) as ∆(H) and δ1(H) as δ(H). We say that H is d-regular if δ(H) =

∆(H) = d. Given a vertex v of an r-uniform hypergraph H, define the neighbourhood (or
link ) of v to be NH(v) := {e \ {v} : e ∈ E (H) and v ∈ e}.

The following theorem is a corollary of our main result (Theorem 1.3 below), but
captures the main essence of the paper. In particular, it confirms (in a strong form) a
conjecture of Morris [33].

Theorem 1.1. Let r ≥ 3 and s, α, β > 0 be fixed. Let H be a d-regular, r-uniform
hypergraph on N vertices and let q := α · d−1/r−1. Suppose:

(a) N ≤ dβ ,

(b) |NH(u) ∩NH(v)| ≤ d1−s for distinct u, v ∈ V (H), and

(c) ∆`(H) ≤ d1− `−1
r−1−s for 2 ≤ ` ≤ r − 1.

Then

pc (Hq) =

(
r − 2

α1/(r−2)(r − 1)(r−1)/(r−2)
+ o(1)

)
· d−1/(r−1),

with high probability as d→∞.

Perhaps the most interesting feature of this theorem is that, for a certain range of
q and a broad class of hypergraphs H, the main term of the asymptotics of the critical
probability depends only on the value of r and not on the specific underlying structure of
H. The following definition is useful for stating the full version of our result.

Definition 1.2. Given an integer r ≥ 2 and real numbers d, ν > 0 and ρ ∈ [0, 1], we say
that an r-uniform hypergraph H is (d, ρ, ν)-well behaved if the following conditions hold:

(a) ∆(H) ≤ d,

(b) δ(H) ≥ d(1− ρ),

(c) ∆`(H) ≤ ρ · d1− `−1
r−1 for 2 ≤ ` ≤ r − 1,

(d) |NH(u) ∩NH(v)| ≤ ρ · d for distinct u, v ∈ V (H), and

(e) |V (H) | ≤ ν.

Observe that the conditions in Theorem 1.1 simply amount to H being r-uniform,
d-regular and

(
d, d−s, dβ

)
-well behaved. We are now ready to state the main result of the

paper. Here, and throughout the paper, log denotes the natural (base e) logarithm.

EJP 26 (2021), paper 97.
Page 2/85

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP650
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


A sharp threshold for bootstrap percolation in a random hypergraph

Theorem 1.3. For fixed r ≥ 3 and real numbers c, α, β, ε > 0 there exists a posi-
tive constant K = K(r, c, α) such that, for d sufficiently large, if H is an r-uniform(
d, log−K(d), dβ

)
-well behaved hypergraph, then

• if cr−2α < (r−2)r−2

(r−1)r−1 , then P
(
V (H)c/d1/(r−1) percolates in Hα/d1/(r−1)

)
≤ ε.

• if cr−2α > (r−2)r−2

(r−1)r−1 , then P
(
V (H)c/d1/(r−1) percolates in Hα/d1/(r−1)

)
≥ 1− ε.

Remark 1.4. The value of K is simply chosen large enough so that logK(d) grows faster
than any relevant constant power of log(d) that appears throughout the proof. We have
not attempted to optimise the dependence of K on r, c and α.

Theorem 1.3 is stronger than Theorem 1.1 in two ways. Firstly, it applies to a much
wider class of hypergraphs (allowing larger codegrees, neighbourhood intersections,
etc.) and, secondly, it implies that the probability of percolation transitions from close
to zero to close to one within a small window of the critical probability; i.e. the process
exhibits a sharp threshold.

1.1 Connections to other bootstrap processes

The H-bootstrap process is motivated by its connection to the so called graph boot-
strap process introduced by Bollobás [16] in 1968 (under the name “weak saturation”).
Given graphs G and F , the F -bootstrap process on G starts with an initial set of infected
edges of G and, at each step, a healthy edge becomes infected if there exists a copy of
F in G in which it is the unique healthy edge. Clearly, the F -bootstrap process on G is
equivalent to the HG,F -bootstrap process where HG,F is a hypergraph in which each
vertex of HG,F corresponds to an edge of G and the hyperedges of HG,F are precisely
the edge sets of copies of F in G.

The original motivation behind the F -bootstrap process stemmed from its connections
to the notion of “saturation” in extremal combinatorics. Because of this, most of the
known results on the F -bootstrap process are extremal in nature (see, e.g. [2, 27, 28,
35, 36, 34]). Balogh, Bollobás and Morris [9] were the first to analyse the behaviour of
the graph bootstrap process relative to a random initial infection. This line of research
is motivated by connections between the F -bootstrap process and the well-studied r-
neighbour bootstrap process which was introduced by physicists Chalupa, Leath and
Reich [19] in the late 1970s and has found many applications to modeling real-world
propagation phenomena; for more background see, e.g., [1, 7, 8, 17, 18, 24, 26, 4, 3, 34].
The central probabilistic problem for the F -bootstrap process in G is to estimate the
critical probability defined by

pc(G,F ) := inf {p ∈ (0, 1) : P(Gp percolates) ≥ 1/2}

where Gp is the graph obtained from G by including each edge of G with probability
p independently of one another. Following the initial paper of Balogh, Bollobás and
Morris [9], probabilistic questions regarding the F -bootstrap process have been studied
by Gunderson, Koch and Przykucki [23], Angel and Kolesnik [5] and Kolesnik [30].

The topic of the current paper (i.e. the conjecture of Morris [33]) was initially inspired
by a result of Korándi, Peled and Sudakov [31] which is essentially equivalent to the
special case of Theorem 1.1 where H = HKn,K3 and α = 1/2. As an application of
Theorem 1.1, we generalise their result to a wider class of graphs.

For a graph F with at least two edges, the 2-density of F is defined to be d2(F ) :=
|E(F )|−1
|V (F )|−2 . A graph F with at least two edges is said to be 2-balanced if d2(F ) ≥ d2(F ′)

for every proper subgraph F ′ of F with at least two edges. If the inequality is strict
for every such F ′, then we say that F is strictly 2-balanced. Given a graph F , observe
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that HKn,F is |E(F )|-uniform and d(n, F )-regular for some integer d(n, F ) such that
d(n, F ) = Θ

(
n|V (F )|−2

)
(the constant factor is related to the number of automorphisms

of F which fix an edge). We will derive the following result from Theorem 1.1.

Theorem 1.5. Let F be a strictly 2-balanced graph with at least three edges and define
r := |E(F )|, H := HKn,F and dn := d(n, F ). If qn := αd

−1/(r−1)
n for some fixed α > 0, then

lim
n→∞

(
pc (Hqn) · d1/(r−1)

n

)
=

(r − 2)

α1/(r−2)(r − 1)(r−1)/(r−2)
.

We remark that, for F strictly 2-balanced, Theorem 1.5 can be viewed as a sharp
threshold for a variant of the graph bootstrap process where we first “activate” each
copy of F in Kn with probability Θ

(
n−1/d2(F )

)
independently of one another and then,

given a random initial set of infected edges of Kn, at each step of the process a healthy
edge becomes infected if it is the unique healthy edge in an active copy of F .

1.2 The differential equations method

The main tool in our proof of Theorem 1.3 is the “differential equations method” which
was developed to a large extent by Ruciński and Wormald [37, 38]; see also the surveys
of Wormald [41, 42]. Roughly speaking, the method is described as follows. Suppose
X0, X1, . . . , XN is a discrete stochastic process. For example, given a hypergraph H,
consider the random greedy independent set algorithm in which X0 := ∅ and, for i ≥ 1,
the set Xi+1 is obtained from Xi by adding one vertex chosen uniformly at random from
all vertices v of V (H) \Xi such that Xi ∪ {v} contains no hyperedge (as long as such
a vertex exists). Suppose we wish to estimate a numerical parameter ϕ (Xi): e.g. the
number of hyperedges of H intersecting Xi on exactly three vertices. If we are able to
obtain good bounds on the expected and maximum change of our parameter at each
step, then we could apply a martingale concentration inequality to bound ϕ (Xi).

However, the change in ϕ(Xi) often depends on other parameters which must them-
selves be controlled (i.e. concentrated or bounded) in order to obtain useful bounds on
the change in ϕ(Xi). The key to applying the method is to find a collection of random
variables containing ϕ(Xi) whose “one step changes” can be expressed in terms of other
variables in the collection. These expressions form a system of difference equations
and the solution to the initial value problem for the corresponding system of differential
equations gives a natural guess for the “expected trajectory” of the variables.1 The last
step is to apply a martingale concentration inequality and a union bound to prove that
all of the variables in the collection (including the variable ϕ(Xi) that we care about) are
concentrated around their expected trajectory.

Some recent applications of this method include the analysis of the H-free process,
which can be thought of as the random greedy independent set algorithm applied to the
hypergraph HKn,H . Bohman [13] used the differential equations method to determine
the size of the largest independent set in the graph produced by the K3-free process
up to a constant factor. Far more detailed analysis of the K3-free process was famously
achieved independently by Bohman and Keevash [15] and Fiz Pontiferos, Griffiths and
Morris [21] by further developing the method and exploiting the “self-correcting” nature
of the process; this work yielded precise asymptotics of the independence number and
the best known lower bound on the Ramsey number R(3, k).

Bohman and Keevash [14] have also used the differential equations method to analyse
the H-free process for strictly 2-balanced graphs H. Even more generally, Bennett and
Bohman [11] used the method to show that the random greedy algorithm produces

1In this paper, we will not explicitly state or solve any actual differential equations; the expected trajectory
will instead be inferred from some simple heuristics.
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an independent set of size Ω
(
N (logN/d)

1/(r−1)
)

when applied to any hypergraph H
satisfying the hypotheses of Theorem 1.1. Our result extends the theorem of Korándi,
Peled and Sudakov [31] in a way which is roughly analogous to the generalisation of [13]
in [11], except that, due to the nature of the bootstrap process, we are able to simulta-
neously obtain a more precise result and handle larger codegrees and neighbourhood
intersections. For other recent applications of the method, see [12, 6].

1.3 Structure of the paper

The rest of the paper is organised as follows. In the next section, we give a detailed
outline of the proof of Theorem 1.3. While it does not contain any proofs, this section
is perhaps the most crucial to understanding the paper as it includes a description of
the discrete processes to be analysed in later sections and most of the key definitions
and statements to be proved. In Section 3 we state the main probabilistic tools (i.e.
concentration inequalities) that we will apply. A few preliminary lemmas will be proved
in Section 4 before moving on to the main meat of the proof. The proof of Theorem 1.3
is divided into four parts which are contained in Sections 5, 6, 7 and 8. Finally, in
Section 9 we use Theorem 1.1 to derive Theorem 1.5 and a generalisation of it to “strictly
k-balanced hypergraphs” (defined in the section itself).

2 Outline of the proof

Rather than attempting to apply the differential equations method to theHq-bootstrap
process directly (which is completely deterministic and, therefore, ill-suited to the
method), we will analyse two different random processes in which the hypergraph Hq is
revealed iteratively and the infection spreads in a way which depends on the structure
of Hq unveiled so far. These processes, to be defined shortly, are equivalent to the
Hq-bootstrap process in the sense that the final set of infected vertices is the same. The
purpose of this section is to provide a fairly detailed outline of the proof of Theorem 1.3;
in particular, we will describe the two random processes that we will analyse and will
define (and motivate) the variables that we wish to track.2

The analysis is divided into two phases. The first phase involves an application of
the differential equations method and is done in essentially the same way regardless of

whether cr−2α is smaller or larger than (r−2)r−2

(r−1)r−1 . The analysis in the second phase differs
depending on which of these cases we are in. Throughout both phases, we will track a
family of variables which will allow us to determine, with high probability, whether or
not the initial infection percolates.

Before diving deeply into the details, we fix some parameters and notation that will
be used throughout the paper. Let r, c, α, β > 0 be fixed, let K be large with respect to r, c

and α and, for large d, let H be an r-uniform
(
d, log−K(d), dβ

)
-well behaved hypergraph

(defined in Definition 1.2). Set N := |V (H)|. Note that, by property e of Definition 1.2,
we have N ≤ dβ. Since each set of size r contains exactly

(
r
`

)
sets of size `, by the

pigeonhole principle, for 1 ≤ ` ≤ r − 1 we have,

∆`(H) ≥
|E(H)|

(
r
`

)(
N
`

) ≥
δ(H)N

(
r
`

)
r
(
N
`

) .

2Throughout the paper, when we say that we track a random variable, it will always mean one of two things:
either (a) we show that it is concentrated or (b) we show that it satisfies a certain upper bound with high
probability (i.e. with probability tending to 1 as V (H)→∞).
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Rearranging this expression gives

N `−1 ≥ aδ(H)

∆`(H)
,

for some constant a. Now applying conditions b and c of Definition 1.2, we obtain

N `−1 ≥ ad(1− ρ)

d1− `−1
r−1 ρ

= ad
`−1
r−1

1− ρ
ρ

.

Setting ρ := log−K(d) and ` = 2 gives

N = Ω
(
d1/(r−1) logK(d)

)
. (2.1)

In particular,

log(N) = Θ (log(d)) . (2.2)

In what follows, we will write p := c · d−1/(r−1) and q := α · d−1/(r−1).

2.1 The first phase

Here we define the random hypergraph process that we will analyse during the first
phase. At time m, we will have a hypergraph H(m) formed by the unsampled hyperedges
of H and a set of infected vertices I(m) (where H(m) and I(m) will be formally defined
below). Both H(m) and I(m) depend on the outcomes of the process up to this point.

Due to the nature of the H-bootstrap process, it should come as no surprise that the
most important variable for us to track is the number of hyperedges containing a unique
healthy vertex; to this end, define

Q(m) := {e ∈ E(H(m)) : |e \ I(m)| = 1}. (2.3)

We refer to the hyperedges in Q(m) as open hyperedges. In what follows, to sample a
hyperedge e of H means to determine whether or not it is contained in Hq. The sampling
of the hyperedge e is said to be successful if e is contained in Hq.
The First Phase Process. At time zero, we let I(0) := V (H)p be the set of initially
infected vertices and let H(0) := H. Now, for m ≥ 0, given I(m) and H(m), we obtain
I(m + 1) and H(m + 1) in the following way: if Q(m) = ∅, then set H(m + 1) := H(m)

and I(m+ 1) := I(m); otherwise, choose an open hyperedge e from Q(m) uniformly at
random and sample it. If the sampling is successful, then set I(m + 1) := I(m) ∪ {v}
where v is the unique vertex of e \ I(m) and, otherwise, set I(m+ 1) := I(m). In either
case, set H(m+ 1) := H(m) \ {e}.

As a slight abuse of notation, for a collection X(m) of subhypergraphs or vertices
of H(m) we will often write |X(m)| simply as X(m) (for example, we will write Q(m)

to mean |Q(m)| and I(m) to mean |I(m)|). In all cases, it should be clear from context
whether we are referring to the collection X(m) or its cardinality.

We will run the first phase process up to some time M at which point, with high
probability, Q(M) will be either large enough or small enough to be able to determine if
the infection is likely to percolate by other methods in the second phase (summarised
in Subsection 2.2). Our goal in the first phase will be to show that Q(m) stays close to
its expected trajectory with high probability. As was described in Subsection 1.2, this
will involve finding a suitable collection of random variables containing Q(m) whose
“one step changes” depend on other variables in the collection and to apply martingale
concentration inequalities to get control over all of these variables simultaneously.
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It is sometimes more convenient to think of our random variables as depending on a
continuous variable t rather than the discrete variable m. The scaling that we will use
when moving between discrete and continuous settings is

t = tm := m/N, (2.4)

for m ≥ 0. Throughout the paper we will alternate between the discrete and continuous
settings without further comment. In the first phase, we will only consider values of m
up to {

O (N) if cr−2α < (r−2)r−2

(r−1)r−1 ,

O (N log(d)) if cr−2α > (r−2)r−2

(r−1)r−1 .
(2.5)

The fact that m does not get too large during the first phase will be used in some of the
heuristic discussions which follow.

At time zero, each vertex is infected with probability p and, provided that Q(m− 1) 6=
∅, at the mth step of the process a new vertex is infected with probability q. So if
Q(m− 1) 6= ∅ then we would expect

I(m) ≈ pN +mq.

Letting M be the number of steps we run the first phase for, using the Chernoff bound
(Theorem 3.2) we will prove the following (see Lemma 6.3 of Section 6).

Proposition 2.1. For 0 ≤ m ≤M , with probability at least 1−N−Ω(
√

logN),

I(m) = O
(

logN ·Nd−1/(r−1)
)
.

We will use the fact that H is well behaved to show that I(m) behaves similarly
to a random infection in which each vertex is infected independently with probability
p + qtm (which we shall call a uniformly random infection of density p + qtm), in the
sense that Q(m) is close to the value that one would expect in this case. First, let us
determine the value of Q(m) which we would expect if I(m) were a uniformly random
infection of density p+qtm. If this were the case, then a particular hyperedge of H would
contain r − 1 infected vertices with probability r · (p + qtm)r−1(1 − (p + qtm)) which is
approximately r · (p+ qtm)r−1 since p+ qtm = o(1). Since H is roughly d-regular, we have
|E(H)| ≈ d ·N/r. Also, recall that, at each step, we sample precisely one open hyperedge
which is immediately discarded from the hypergraph. Thus, we would expect

Q(m) ≈ r · (p+ qtm)r−1|E(H)| −m ≈ [(c+ αtm)r−1 − tm] ·N. (2.6)

The main point of the first phase is to show that, up to a small error, Q(m) follows
this trajectory (see Lemma 2.4). Before stating this more precisely, let us discuss the
motivation behind the choice of M .

Define
γ(t) := (c+ αt)r−1 − t. (2.7)

Observe that
γ′(t) = α(r − 1)(c+ αt)r−2 − 1.

Therefore, since c, α > 0, we have that γ′(t) has exactly one real root if r is odd and two
real roots (one positive, one negative) if r is even. The rightmost root of γ′(t) is a local
minimum for γ(t) located at

tmin :=
1

α

((
1

α(r − 1)

)1/(r−2)

− c

)
.
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t

f(t)

Figure 1: The red curve gives an example of the trajectory of Q(m) when r = 3 and

cr−2α > (r−2)r−2

(r−1)r−1 . The blue curve is an example of the trajectory of Q(m) when r = 3 and

cr−2α < (r−2)r−2

(r−1)r−1 .

Now,

γ (tmin) =

(
1

α(r − 1)

)(r−1)/(r−2)

−

(
1

α

(
1

α(r − 1)

)1/(r−2)

− c

α

)

=

(
2− r

(α(r − 1))(r−1)/(r−2)

)
+
c

α

which is negative if and only if cr−2α < (r−2)r−2

(r−1)r−1 .

From this and the fact that γ(0) > 0, we see that, if cr−2α < (r−2)r−2

(r−1)r−1 , then γ(t)

has precisely two distinct positive real roots, say T0 and T1 where 0 < T0 < tmin < T1.

Coming back to the random process, this tells us that if cr−2α < (r−2)r−2

(r−1)r−1 , then we expect
the number of open hyperedges to become very small as tm approaches T0 from the left.
What we will do in this case is track our variables until γ(t) < ζ where ζ is a constant
chosen small with respect to r, c and α; the value of ζ is given in Definition 7.1. At
this point we initiate the second phase in which we prove that, with high probability,
percolation does not occur.

On the other hand, if cr−2α > (r−2)r−2

(r−1)r−1 , then γ (tmin) > 0 and γ(t) has no positive

real roots. Since p + qtm = o(1) for all values of m that we consider in the first phase
(see (2.9)), we expect our supply of open hyperedges not to run out (in fact, when
tm > tmin, we expect the number of open hyperedges to be typically increasing). What

we will do in this case is track the above variables until step N
⌊

log(N)
α

⌋
= O (N log(d)),

at which point the number of open hyperedges will be large enough that we can deduce
that percolation occurs with high probability in the second phase. See Figure 1 for
examples of how the trajectory of Q(m) depends on the relationship between α, c and r.

Remark 2.2. Let us briefly discuss why we have chosen to focus on values of p and q of
order d−1/(r−1). As we have argued above, if the infection at time m resembles a uniform
infection of density p+ qtm, then we expect the variable Q(m) to be roughly

N [d(p+ qtm)r−1 − tm].

The nice thing about considering p and q of order d−1/(r−1) is that the expression inside
the square brackets becomes a function of tm only. Thus, as long as tm is bounded
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by a constant, open hyperedges are both being created and discarded at a constant
rate independent of d. It would of course be natural (and interesting) to consider more
general values of p and q, but one would likely require a different approach.3

As we said above, the main aim of the first phase is to show that for 0 ≤ m ≤M , the
value of Q(m) is within a small error term of γ(tm) ·N . The following function describes
the relative error that we will allow ourselves in these bounds,

ε(t) :=
(t+ 1)K/10

logK/5(d)
. (2.8)

Note that ε(t) = o(1) when t = O (log(d)). In what follows, we write an interval of the
form [(1− ε)g(t), (1 + ε)g(t)] as (1± ε)g(t) for brevity. To summarise, we track the process
for M steps, where

M :=

min{m ≥ 0 : (1 + 4ε(tm))γ(t) < ζ} if cr−2α < (r−2)r−2

(r−1)r−1 ,

N
⌊

log(N)
α

⌋
if cr−2α > (r−2)r−2

(r−1)r−1 .
(2.9)

Define
T := M/N. (2.10)

Remark 2.3. Observe that, by definition of M , on the interval [0, T ] the function γ(t) is
always bounded away from zero by a function of r, c and α.

We are now ready to formally state the bounds we will prove on Q(m) in the first
phase.

Lemma 2.4. With high probability the following statement holds. For all 0 ≤ m ≤M ,

Q(m) ∈ (1± 4ε(tm))γ(tm) ·N.

One way to prove that Q(m) is controlled in this way, or indeed to prove bounds
for any of our variables, involves determining their expected and maximum change
(conditioned on what has previously occurred during the process) at each time step and
applying a martingale concentration inequality. Before thinking in more detail about the
expected change of Q(m) we introduce some notation that will be helpful.

For each v ∈ V (H) \ I(m) we write

Qv(m) := {e ∈ Q(m) : e \ I(m) = {v}}. (2.11)

For u 6= v ∈ V (H), the sets Qu(m) and Qv(m) are disjoint. Note that,

Q(m) =
⋃

v∈V (H)\I(m)

Qv(m).

Let us now think about the expected change of Q(m). Firstly, which open hyperedges
from Q(m) are not present in Q(m+ 1)? At each step, the hyperedge e we sample from
H(m) is deleted and is not present in H(m + 1). Also, with probability q, the unique
healthy vertex v of e becomes infected and so all the hyperedges in Q(m) whose unique
healthy vertex is v are no longer open. This results in a loss of (Qv(m)− 1) hyperedges
(in addition to e). Now let us consider how we gain a new open hyperedge. This occurs

3Actually, one can apply Theorem 1.3 directly to get a result in the case that d−1+o(1) ≤ q � d−1/(r−1).
Choose q′ and q′′ so that q′q′′ = q and q′′ = (q′d)−1/(r−1). Given a d-regular hypergraph H satisfying some
appropriate conditions, one can deduce that, with high probability, the random hypergraph Hq′ satisfies the
conditions of Theorem 1.3 with (1+ o(1))q′d playing the role of d. Thus, we get a sharp threshold for bootstrap
percolation in

(
Hq′

)
q′′ = Hq . The case q � d−1/(r−1), on the other hand, is likely to require different ideas.
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when some hyperedge e is successfully sampled, and the vertex v of e that becomes
infected is contained in a hyperedge e′ with exactly r−2 infected vertices (the hyperedge
e′ will now be open).

Observe that for each vertex v ∈ V (H) \ I(m), the probability an open hyperedge
containing v is sampled is Qv(m)/Q(m). Given the above discussion, we can express the
expectation of Q(m+ 1)−Q(m) conditioned on H(m) and I(m) as

− 1−
∑

v∈V (H)\I(m)

q · Qv(m)

Q(m)
(Qv(m)− 1) +

∑
v∈V (H)\I(m)

q · Qv(m)

Q(m)
Y r−2
v (m), (2.12)

where
Y r−2
v (m) := {e ∈ H(m) : |e ∩ I(m)| = r − 2, v ∈ e}.

So to be able to determine (2.12) we can see that we would need to have control over
Y r−2
v (m). So let us consider how a new copy of Y r−2 is created at a time step. One

way a member of Y r−2
v (m + 1) \ Y r−2

v (m) can be created is from a pair of hyperedges
{e1, e2} ⊆ E(H) where: v ∈ e1 \ e2; e2 is open; e1 has exactly r − 3 infected vertices and
intersects e2 on its unique healthy vertex; and e2 is successfully sampled at time m. Thus
to determine the expected change of Y r−2

v (m), we need to also have control over this
family Z of pairs. And similarly, to do this there are a number of other variables that we
must keep track of.

To summarise this train of thought, to prove Lemma 2.4 we must have control over a
number of families of variables; in particular, variables of the two types described above.
We briefly remark that, in our proof, we do not explicitly calculate the expected change
of Q(m) in the manner we have alluded to above. In fact, we show that having control
over a more general family of variables will imply the required bounds on Q(m) in a
different way (see Lemma 4.1). However to prove bounds on our other variables, we do
calculate their expected and maximum changes. The point of performing this thought
exercise on Q(m) was to illustrate its interdependence on a number of other variables
and to motivate the following discussion.

In order to formally describe the families of variables that we wish to track, it is
helpful to introduce a few definitions. Each variable that we wish to control counts the
number of “copies” of some particular subhypergraph F ⊆ H(m) such that these copies
of F are “rooted” at a particular subset S ⊆ V (H) (in the sense that these vertices are
contained within the copy) and some particular vertices of these copies are infected (i.e.
contained in I(m)). We begin by introducing some notation to describe the particular
structures (which we call configurations) we are interested in counting “copies” of.

Definition 2.5. A configuration is a triple X = (F , R,D), where F is an r-uniform
hypergraph in which every vertex is contained in at least one hyperedge and R and D
are disjoint subsets of V (F). The vertices of R are called the roots of X, the vertices of
D are called the marked vertices of X, and the vertices of V (F) \ (D ∪R) are called the
neutral vertices of X.

Now that we have a good way to describe the things we are interested in counting,
we will formally define what we mean by a copy of a configuration.

Definition 2.6. For m ≥ 0, given a configuration X = (F , R,D) and a set S ⊆ V (H), a
copy of X in H(m) rooted at S is a subhypergraph F ′ of H(m) such that there exists
an isomorphism φ : F → F ′ with φ(R) = S and φ(D) ⊆ I(m). Also define XS(m) to be
the collection of copies of X in H(m) rooted at S. We denote X{v}(m) by Xv(m) for
v ∈ V (H).

Take note that a copy of a configuration (F , R,D) in H(m) can contain elements
of I(m) apart from those in φ(D). In particular, it is even possible for the set φ(R) to
contain elements of I(m) (despite the fact that R and D are disjoint).
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Before discussing specific families of configurations, let us discuss heuristically how
many copies we expect there to be of some fixed configuration X = (F , R,D) in H(m)

rooted at S ⊆ V (H). If X̂S is the number of copies of (F , R, ∅) rooted at S in H, then if
I(m) is a uniformly random infection of density p+ qtm, we would expect

XS(m) ≈ X̂S · (p+ qtm)|D|,

as each vertex is independently infected with probability p+ qtm. That is, each infected
vertex contributes a factor of at most logO(1)(d) · d−

1
r−1 (as tm = O (log(d))).

Now, heuristically, how do we bound X̂S? In our proof, for some families of configura-
tions we will only require an upper bound, but for some we need to be more careful and
also need a lower bound. All the configurations X = (F , R,D) that we are interested
in tracking during the first phase will satisfy the following properties: F is connected
and contains at most r + 1 hyperedges, no vertex of F is contained in the intersection of
more than two hyperedges, every root is contained in a unique hyperedge, and |R| ≥ 1.

So suppose X satisfies these conditions. To find a bound on X̂S , we can break F up
into its hyperedges e1, . . . , ek, where |e1∩R| ≥ 1 and each ei intersects

⋃
`<i e`, and bound

the number of choices for each hyperedge using properties c and d of Definition 1.2.
Let S1, . . . , Sk be a fixed partition of S such that |Si| =

∣∣R ∩ ei \⋃`<i e`∣∣. We will bound

the number of members of X̂S in H such that Si ⊆ ei \
⋃
`<i e`. As there are O(1) such

partitions of S, the total number of members of X̂S will be a constant factor away from
this.

First consider the number of ways to choose e1. By conditions a, b and c of Defini-
tion 1.2, if |R| = 1, then the number of choices is within (1± log−K(d)) · d and, if |R| ≥ 1,

then it is at most d1− |R|−1
r−1 · log−K(d). Similarly, we can then bound the number of ways

to choose e2. By our choice of hyperedge order, e2 intersects e1. Given a choice of e1,
there are O(1) ways e2 can intersect it. Defining b := |e2 ∩ (R ∪ e1)| (by assumption on
hyperedge order b ≥ 1), by conditions a and c of Definition 1.2 there are at most

O (∆b(H)) = O
(
d1− b−1

r−1

)
= O

(
d

r−b
r−1

)
choices for e2. When 2 ≤ b ≤ r − 1, using condition c of Definition 1.2 gives a stronger
bound of

O (∆b(H)) = O
(
d

r−b
r−1 log−K(d)

)
choices for e2.

Given these bounds, the number of choices for e2 can be thought of as being O
(
d

a
r−1
)
,

where a is the number of vertices of e2 that are not in e1 or R (i.e. the number of “new”
vertices). We can bound the number of choices for e3, . . . , ek analogously. A more careful
version of this argument will be applied later to give the bound in Lemma 2.11.

So, heuristically, for most configurations X, up to a logO(1)(d) factor we generally

expect there to be about d
|V (F)|−|R|−|D|

r−1 copies of X rooted at S in H(m). One way of
thinking about this is to imagine each hyperedge contributes a factor of d, but for each
vertex that is either in the intersection of two hyperedges or not neutral we lose a factor
of d

1
r−1 (up to some powers of log(d)). Alternately, (again up to some powers of log(d))

we get a factor of d
1

r−1 for each neutral vertex in the configuration. It will be helpful to
bear this rough heuristic in mind throughout the calculations which come later.

We now introduce our most important family of configurations, the Y configurations.
These are a generalisation of the two variables Y r−2

v and Z discussed above. The control
we have over these more general variables in H(m) dictates the bounds we can prove on
Q(m) (see Lemma 4.1) and on the Y configurations in H(m+ 1). The two further sets
of variables we will discuss below (see Definitions 2.9 and 2.13) do affect how the Y
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R
Y 1,0 Y 0,1 Y 1,1 Y 1,2

R R R

Figure 2: Some examples of Y configurations in the case r = 4. The marked vertices
are shaded, the neutral vertices are white, the root is labelled with an R and the central
hyperedge is drawn with a thick outline.

v v vY 1,2 Y 4,1 Y 1,2

Figure 3: Some examples of copies of Y configurations rooted at v in the case r = 6. The
infected vertices are shaded, the healthy vertices are white and the central hyperedge is
drawn with a thick outline. Each copy is labelled by which configuration it is a copy of.
Notice that a copy of a configuration could have more infections than marked vertices in
the configuration itself, as is demonstrated by the third example.

configurations behave, but due to the codegree conditions on H (see Definition 1.2), we
can ensure that they only contribute lower order terms.

In general, the Y configurations consist of a hyperedge e containing a root and a fixed
number of marked vertices, with open hyperedges that are disjoint from one another
and only intersect e on their unique unmarked vertex. See Figure 2 for a visualisation of
some of these configurations in the case r = 4. See also Figure 3 for some examples of
copies of Y configurations in the case r = 6.

We now formally define the family of Y configurations.

Definition 2.7. For non-negative integers i and j such that i+ j ≤ r − 1, let Y i,j denote
the configuration (F , R,D) such that F is a hypergraph containing a hyperedge e, called
the central hyperedge, such that

(a) e contains exactly i marked vertices,

(b) there is a unique root and e is the only hyperedge of F containing the root,

(c) F has exactly j non-central hyperedges,

(d) for each non-central hyperedge e′ we have |e ∩ e′| = 1 and the unique element of
e ∩ e′ is neutral,

(e) every vertex of V (F) \ e is marked, and
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(f) no two non-central hyperedges intersect one another.

Observe that for v ∈ V (H) \ I(m), we have that Y r−1,0
v (m) is precisely the set of open

hyperedges in which v is the unique healthy vertex; i.e. Y r−1,0
v = Qv(m). Given that

Q(m) ≈ γ(tm) ·N , if the open hyperedges were distributed uniformly among the healthy
vertices, then for each v ∈ V (H) \ I(m) we would expect

Qv(m) ≈ γ(tm), (2.13)

since by Proposition 2.1, at time tm < T , we have I(m) = o(N) with high probability (so at
time tm there are (1− o(1))N healthy vertices). However, when M = O(N), the quantity
γ(tm) is constant, and so we cannot hope to prove that Qv(m) is concentrated around
γ(tm). However, as we will see in a moment, we should be able to prove concentration
for Y i,jv (m) when i + j 6= r − 1. This is why we need to track all of the configurations
Y i,jv (m) individually and cannot just bound Y i,jv (m) by Y i,0v (m) ·

(
r−1−i
j

)
·Qj , where Q is

an upper bound on Qv(m) which holds for all v ∈ V (H) \ I(m) with high probability. That
is, we would not be able to get a good enough bound on Q to prove bounds as tight as
we would like on Y i,jv (m).

Now we discuss how we expect the variables Y i,jv (m) to behave. Consider first the
variable Y i,0v (m) for 0 ≤ i ≤ r − 2 and v ∈ V (H). By properties a and b of Definition 1.2,
every vertex has degree between (1− o(1)) d and d. Therefore if I(m) is a uniformly
random infection of density p+ qtm, then we would expect

Y i,0v (m) ≈
(
r − 1

i

)
d(p+ qtm)i =

(
r − 1

i

)
(c+ αtm)id1− i

r−1 . (2.14)

Now, let us consider Y i,jv (m) for j ≥ 1. One can express Y i,jv (m) as the sum over all
F ′ ∈ Y i,0v (m) and all subsets U of V (F ′) \ {v} with |U | = j and | (V (F ′) ∩ I(m)) \U | ≥ i of
the number of ways to choose one open hyperedge rooted at each element of U in such a
way that (a) no two such hyperedges intersect and (b) each of them intersects V (F ′) on
exactly one vertex. Given (2.14), most copies of Y i,0 rooted at v have precisely i infected
vertices. We will show by bounding other configurations (see Lemma 2.12) that the vast
majority of choices of U and open hyperedges rooted at vertices of U satisfy (a) and (b).
So, if I(m) is a uniformly random infection of density p+ qtm, then using (2.13) we would
expect that

Y i,jv (m) ≈ Y i,0v (m)

(
r − i− 1

j

)
γ(tm)j

≈
(
r − 1

i

)(
r − 1− i

j

)
(c+ αtm)iγ(tm)jd1− i

r−1 .

Before stating the bounds we wish to prove on the Y configurations, it is helpful to
introduce the following notation which will be used throughout the paper. Define

yi,0(t) :=

(
r − 1

i

)
(c+ αt)i, (2.15)

and

yi,j(t) :=

(
r − 1− i

j

)
yi,0(t)γ(t)j . (2.16)

We will prove the following.

Lemma 2.8. With high probability the following statement holds. For all 0 ≤ m ≤ M ,
for all v ∈ V (H), for all 0 ≤ i ≤ r − 2 and all 0 ≤ j ≤ r − 1− i,

Y i,jv (m) ∈ (1± ε(tm)) yi,j(tm)d1− i
r−1 .
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To track the Y configurations and thus prove Lemma 2.8 we will bound the expectation
of Y i,jv (m+ 1)− Y i,jv (m) given H(m) and I(m). Let us consider how a new copy of Y i,j

rooted at v is created. Let Y i,j = (F , R,D). For each new copy Y of Y i,j rooted at
v, there exists some u ∈ D such that Y is created from a copy of a configuration
X = (F , R ∪ {u}, D \ {u}), such that the image of u in H(m) is the unique healthy vertex
of a hyperedge that gets successfully sampled. So in fact it is created from a copy of
configuration X ′ = (F ′, R,D′), where F ′ is the union of F and one new hyperedge e

whose intersection with F contains some u ∈ D, and D′ is the union of D\{u} and e\{u}.
See Figure 4 for some examples of this.

v

u

v

u

v

u

v

u

Figure 4: Four examples of ways that a copy of Y 1,2 rooted at v can be created when
r = 4. Such a copy is created if the open hyperedge containing u (drawn with a thick
outline) is successfully sampled.

Either e intersects F on precisely one vertex, or e intersects F on several vertices,
including vertices of D. In the first case, as we will see in Section 6, X ′ can be expressed
as a combination of Y configurations. However, the family of Y configurations does
not contain the type of intersections we get in the second case, so we need to control
another family of variables which includes those with such intersections. In Section 6.3
the calculation of the expectation of Y i,jv (m+ 1)− Y i,jv (m) given H(m) and I(m) will be
presented in full detail; for now we have motivated the introduction of our next family,
the secondary configurations. These configurations are so called because they will
not usually contribute to the main order term in our calculations, but still need to be
controlled. See Figure 5 for some examples of these configurations.

The family of secondary configurations contains configurations with multiple roots
and more complicated intersections of hyperedges than the Y configurations. Due to
the codegree conditions on H (see Definition 1.2), we are able to prove stronger upper
bounds on secondary configurations than on Y configurations. Therefore we do not need
to prove that the secondary configurations are concentrated. It will suffice to prove an
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R

R

R

R

R

Figure 5: Three examples of secondary configurations X in the case r = 4. The marked
vertices are shaded, the neutral vertices are white, the root is labelled with an R and the
central hyperedge is drawn with a thick outline.

upper bound that shows that they do not affect the main order term in our calculations
for the Y configurations.

This will ensure that any way of creating Y configurations using secondary configura-
tions (the second case above) is a lower order term than those terms given by the first
case above. So the dominant behaviour of each Y configuration is dictated purely by
other Y configurations. This is one reason why it is important for us to have codegree
conditions on H.

Definition 2.9. Say that a configuration X = (F , R,D) is secondary if 1 ≤ |E(F)| ≤ 3

and F contains a hyperedge e called the central hyperedge such that

(a) e contains at least one root and at least one neutral vertex,

(b) for every non-central hyperedge e′ we have that e ∩ e′ contains at least one neutral
vertex,

(c) every vertex of F is contained in at most two hyperedges of F and

(d) at least one of the following holds:

• |R| ≥ 2,
• |E(F)| = 2 and the two hyperedges of F intersect on more than one vertex, or
• |E(F)| = 3, each non-central hyperedge intersects e on only one vertex and the

two non-central hyperedges intersect one another.

Remark 2.10. If X = (F , R,D) is a secondary configuration and u ∈ D, then both
(F , R,D \ {u}) and (F , R ∪ {u}, D \ {u}) are secondary configurations.

In order to determine how we expect X(m) to behave, we require the following
lemma giving an upper bound on XS(m) when X is a secondary configuration with no
marked vertices. This lemma will be proved in the next section and applied throughout
the rest of the paper.

Lemma 2.11. Let X = (F , R,D) be a secondary configuration with D = ∅. Then, for
any set S ⊆ V (H) of cardinality |R|, the number of copies of X in H(m) rooted at S is

O
(
d
|V (F)|−|R|

r−1 log−K(d)
)
.

We now consider what the expected number of copies of any secondary configuration
X = (F , R,D) in H(m) rooted at S would be, if I(m) were a uniformly random infection
with density p + qtm. The case D = ∅ is covered by Lemma 2.11, so now we consider
the case that D 6= ∅. By Remark 2.10, the configuration X̃ := (F , R, ∅) is also a
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secondary configuration and so, by Lemma 2.11, the expected number of copies of X̃ is

O
(
d
|V (F)|−|R|

r−1 log−K(d)
)

. For any such copy, if I(m) were a uniformly random infection

with density p+ qtm, then the probability that every vertex of the image of D in this copy
is infected would be precisely (p + qtm)|D|. Putting this together we get that, if I(m)

were uniform, then we would expect

XS(m) = O
(

(p+ qtm)|D|d
|V (F)|−|R|

r−1 log−K(d)
)
.

Now we formally describe the upper bound that we will prove on XS(m) for a general
secondary configuration X = (F , R,D) with central hyperedge e.

Lemma 2.12. With high probability the following statement holds. For all 0 ≤ m ≤M ,
for all secondary configurations X = (F , R,D) and all S ⊆ V (H) of cardinality |R|:

XS(m) ≤ log2|D|r4(d)d
|V (F)|−|R|−|D|

r−1 log−3K/5(d).

By Definition 2.9, every secondary configuration contains at least one neutral vertex.
To bound the maximum change of our variables we will also need to have control over
configurations that consist of a single hyperedge with no neutral vertices. So now we
will define the final set of variables we wish to control.

Definition 2.13. For 1 ≤ i ≤ r, let W i denote the configuration (F , R,D) where F
is a hypergraph consisting of r vertices contained in a single hyperedge, |R| = i and
D = V (F) \R.

See Figure 6 for an illustration of some of these configurations in the case r = 6.

R R

R R

W 1 W 3

Figure 6: Some examples of W configurations in the case r = 6. The marked vertices
are shaded and the roots are labelled with an R.

Of course, the variable W 1
v (m) is the same as Y r−1,0

v (m), which is the same as Qv(m)

if v /∈ I(m). For i = 1 and S = {v}, the degree of v in H is at most d and so, if I(m) were
a uniformly random infection with density p+ qtm, then we would expect W 1

S(m) to be at
most d·(p+ qtm)

r−1. For i ≥ 2, by condition c of Definition 1.2, the number of hyperedges

of H(m) containing S is at most d1− i−1
r−1 log−K(d). So, if I(m) were a uniformly random

infection with density p+ qtm, then we would expect W i
S(m) to be at most

(p+ qtm)
r−i · d1− i−1

r−1 log−K(d) = (p+ qtm)
r−i

d
r−i
r−1 log−K(d) = (α+ ctm) log−K(d) = o(1).

Here, we use the fact K is large and that we are only considering values of t up to
O (log(d)).

Thus we cannot hope to prove tight concentration bounds for these variables. How-
ever, we will prove the following.

Lemma 2.14. With high probability the following statement holds. For all 1 ≤ i ≤ r, for
all S ⊆ V (H) of cardinality i and all 0 ≤ m ≤M ,

W i
S(m) ≤ logr

3(r−i)(d).
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The parts of the paper concerning the first phase are structured as follows. In
Section 4 we show (in Lemma 4.1) that Lemma 2.4 can be deduced from Proposition 2.1
and Lemmas 2.8 and 2.14. Then we prove the case m = 0 of Lemmas 2.8, 2.12 and 2.14
in Section 5 using a version (Corollary 3.6) of the Kim–Vu Inequality (Theorem 3.5). The
case 1 ≤ m ≤M of Lemmas 2.8, 2.12 and 2.14 are proved in Section 6 using Freedman’s
Inequality (Theorem 3.8) and the differential equations method. This concludes our
discussion of the first phase of the proof of Theorem 1.3.

2.2 The second phase

In the second phase of the proof of Theorem 1.3 we define a different process which
involves sampling a large set of open hyperedges in each round, rather than sampling
one hyperedge at a time like we did in the first phase. As a slight abuse of notation, in
the second phase we let I(0) denote I(M) and H(0) denote H(M); that is, after the first
phase, we “restart the clock” from zero before running the second phase process. The
second phase process will be defined slightly differently depending on whether we are
in the subcritical or supercritical case.

For m ≥ 1, in round m we will sample a set of open hyperedges and use the outcomes
to define I(m+ 1) and H(m+ 1). Again we will let Q(m) be the set of hyperedges e of
H(m) such that |e \ I(m)| = 1 (the set of open hyperedges). Analogous to the first phase,
for each configuration X = (F , R,D), S ⊆ V (H) with |S| = |R| and integer m ≥ 0, we
let XS(m) denote the set of copies of X in H(m) rooted at S. As before, we still write
XS(m) when referring to |XS(m)| and Q(m) when referring to |Q(m)|.

We now define the number of steps for which we will run the processes in the second
phase. For λ < 1/8 depending on only r, c and α (λ is defined in (7.2)):

M2 :=

2
⌈
log1/(1−λ)(N)

⌉
if cr−2α < (r−2)r−2

(r−1)r−1 ,

min
{
m : (logN)(

3
2 )

m

> d
1

r−1 + 1
10

}
if cr−2α > (r−2)r−2

(r−1)r−1 .
(2.17)

2.3 The subcritical case

First, let us consider the “subcritical case”; i.e. when cr−2α < (r−2)r−2

(r−1)r−1 . Recall that,
in this case, we track the first phase process until the number of open hyperedges is
bounded above by ζN for some constant ζ chosen small with respect to r, c and α.

The Second Phase Process in the Subcritical Case. We obtain I(m+1) andH(m+1)

in the following way. For m ≥ 0, sample every hyperedge in Q(m). We let I(m+ 1) be
the union of I(m) and all of the vertices in hyperedges which were successfully sampled
and let H(m+ 1) := H(m) \Q(m).

Our main result in the subcritical case is the following lemma, which immediately

implies Theorem 1.3 in the case cr−2α < (r−2)r−2

(r−1)r−1 .

Lemma 2.15. If cr−2α < (r−2)r−2

(r−1)r−1 , then with high probability,

(i) Q(M2) = 0, and

(ii) |I(M2)| = N ·logO(1)(N)
d1/(r−1) = o(N).

The key ingredient in the proof Lemma 2.15 is the following bound on E(Q(m)):

E(Q(m)) ≤ (1− λ)m2ζ ·N, (2.18)

for some λ < 1/8 depending only on r, c and α (λ is defined in (7.2)). For m = M2, (2.18)
implies that E(Q(M2)) = o(1), and so (i) follows from Markov’s Inequality (Theorem 3.1).
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To deduce (2.18), consider how a member of Q(m + 1) is created. (As every open
hyperedge is sampled at each time step, Q(m+ 1)∩Q(m) = ∅.) A member of Q(m+ 1) is
created from a hyperedge e ∈ H(m) such that 0 ≤ |e∩I(m)| ≤ r−2, but |e∩I(m+1)| = r−1.
So in particular, in round m each healthy vertex of e but one is contained in an open
hyperedge that is successfully sampled. Since Q(m+ 1) ∩Q(m) = ∅, e contains at least
one healthy vertex that is contained in a successfully sampled hyperedge of Q(m).

So a member of Q(m+ 1) is created when we have a hypergraph consisting of:

(1) a hyperedge e /∈ Q(m) such that e * I(m),

(2) a hyperedge eu ∈ Qu(m), for each healthy vertex u in e except one,

and each open hyperedge chosen in (2) is successfully sampled at time m.
Given such a hypergraph, picking a hyperedge e′ 6= e and deleting it gives a hyper-

graph that may be a copy of a Y configuration (rooted at the healthy vertex of e ∩ e′),
or may not be (because of additional overlaps between the non-central hyperedges). In
order to track Q(m) in the second phase, we wish to track these sorts of configurations.
The reason that we consider configurations of this type (where the edge e′ is not present
rather than with it also included), is that we wish to express Q(m+ 1) in terms of Q(m)

and breaking up the configuration this way allows us to do this (see for example (2.20)
below). This motivates the introduction of another family of configurations: the Z

configurations.

R

R

R

R

Figure 7: Some examples of possible members of Z2,2
v (m) in the case r = 6. The root is

labelled by R, the infected vertices are shaded, the healthy vertices are white and the
central hyperedge is drawn with a thick outline.
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Definition 2.16. Given v ∈ V (H), 0 ≤ i ≤ r − 2, 0 ≤ j ≤ r − 1 − i and 0 ≤ m ≤ M2 let
Zi,jv (m) be the union of Zv(m) over all configurations Z = (F , R,D) such that F is a
hypergraph containing a hyperedge e, called the central hyperedge, such that

(a) e contains exactly i marked vertices,

(b) there is a unique root and e is the only hyperedge of F containing the root,

(c) F has exactly j non-central hyperedges,

(d) every non-central hyperedge contains exactly r − 1 marked vertices,

(e) for each non-central hyperedge e′, the unique neutral vertex of e′ is contained in e,
and

(f) no neutral vertex is contained in two non-central hyperedges.

See Figure 7 for some examples in the case r = 6. These configurations can be
thought of as a more general version of the Y configurations, in fact the main order term
of Zi,jv (m) comes from Y i,jv (m). The following simple observation provides a helpful way
of thinking about the Z configurations.

Observation 2.19. Let Z be a member of Zi,jv (m). If each of the non-central hyperedges
intersects the central hyperedge e on only one vertex and no pair of them intersect
one another then Z is a member of Y i,jv (m). Also observe that Y i,jv (m) ⊆ Zi,jv (m), as
every member of Y i,jv (m) is a member of Zi,jv (m) of this type. If one of the non-central
hyperedges intersects e on more than one vertex or two of them intersect one another,
then Z consists of a copy F ′ of a secondary configuration with one root, r − 1− i neutral
vertices and a set of at most j − 1 copies of W 1 rooted at vertices of F ′.

We will see in Lemma 7.3 that the members of Zi,jv (m) that come from secondary con-
figurations just contribute a lower order term. Given the above discussion, conditioned
on H(m) and I(m) the expected value of Q(m+ 1) is at most

∑
Q∈Q(m)

∑
w∈Q\I(m)

r−2∑
j=0

Zr−2−j,j
w (m)qj+1. (2.20)

The proof of Lemma 2.15 comes down to proving that Zr−2−j,j
w (m) satisfies strong enough

upper bounds (with high probability) so that evaluating this expression gives the bound
in (2.18).

So to prove Lemma 2.15, it suffices to control Zi,jv (m). To do this, we must also
keep control over Y i,jv (m), XS(m) and W i

S(m), as before. This is achieved via multiple
applications of a version of the Kim–Vu Inequality (Corollary 3.6). Full details will be
given in Section 7.

2.4 The supercritical case

The strategy in the “supercritical case”, i.e. when cr−2α > (r−2)r−2

(r−1)r−1 , is somewhat
similar, but the details are a little different.

The Second Phase Process in the Supercritical Case. We obtain I(m + 1) and
H(m + 1) in the following way. Each round contains two steps. In the first step we
choose some Q′(m) ⊆ Q(m) and sample every open hyperedge of Q′(m). We define
Q′(0) = Q(0). For m > 0 we choose Q′v(m) to be a subset of Qv(m) with cardinality

min
{
Qv(m), (logN)(

3
2 )

m}
and define

Q′(m) :=
⋃

v∈V (H)\I(m)

Q′v(m).
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We let I0(m + 1) be the union of I(m) and all of the hyperedges of Q′(m) that were
successfully sampled. We let H0(m+ 1) := H(m) \Q′(m).

For i ≥ 0 and v ∈ V (H) \ Ii(m+ 1), define Qiv(m+ 1) to be the set of open hyperedges
containing v in Hi(m+ 1) (for i ≥ 1, Ii(m+ 1) and Hi(m+ 1) will be defined shortly). Say

that Qiv(m+ 1) is large if it has cardinality at least d
1

r−1 + 1
10 .

In the second step, for i ≥ 0, let Li(m+1) be the set of vertices v such that Qiv(m+1) is
large. We sample every open hyperedge contained in Q′′i (m+ 1) := ∪v∈Li(m+1)Q

i
v(m+ 1).

Define Hi+1(m + 1) := Hi(m + 1) \Q′′i (m + 1) and let Ii+1(m + 1) be the union of Ii(m)

and the vertices of all of the hyperedges of Q′′i (m+ 1) that were successfully sampled.
The second step ends when we reach j such that there is no healthy vertex v ∈ Hj(m+ 1)

such that Qjv(m+ 1) is large. We define H(m+ 1) := Hj(m+ 1), and I(m+ 1) := Ij(m+ 1).

We will see that when Qiv(m) is large, with high probability, v will become infected
when we sample every hyperedge in Qiv(m).

The proof of Theorem 1.3 relies on the following bound:

Qv(m) ≥ (logN)(
3
2 )

m

, (2.21)

for each 0 ≤ m ≤ M2 and all v ∈ V (H) \ I(m). To prove this bound, we use a version
of Janson’s Inequality for the lower tail (Theorem 3.7). Given (2.21), after at most
O (log logN) rounds, every healthy vertex has at least d1/(r−1)+1/10 open hyperedges
containing it. Now, by the Chernoff Bound (Theorem 3.2) and the fact that N = dO(1) (by
property b of Definition 1.2), with high probability every vertex is infected after only one
additional round. Therefore, percolation occurs with high probability. See Section 8 for
full details. This concludes our outline of the proof.

3 Probabilistic tools

Here, for convenience, we collect together the probabilistic tools we apply throughout
the paper. We will also formally define the probability space that we are working in.

3.1 Standard concentration inequalities

The following two theorems will be repeatedly applied in the rest of the paper. The
first is Markov’s Inequality, which is perhaps the simplest concentration inequality in
probability theory.

Theorem 3.1 (Markov’s Inequality). If X is a non-negative random variable and a > 0,
then

P(X ≥ a) ≤ E(X)

a
.

The second is a version of the Chernoff Bound, which can be found in [20, Theo-
rem 1.1].

Theorem 3.2 (The Chernoff Bound). Let X1, . . . , Xn be a sequence of independent [0, 1]-
valued random variables and let X =

∑n
i=1Xi. Then, for 0 < ε < 1,

P (X < (1− ε)E(X)) ≤ e−
ε2E(X)

2 ,

P (X > (1 + ε)E(X)) ≤ e−
ε2E(X)

3 .

Moreover, if t > 2eE(X), then

P(X > t) < 2−t.
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3.2 Kim–Vu and janson inequalities

A central theme in the study of large deviation inequalities is that if a random variable
X depends on a sequence of independent trials in which, for any outcome of the trials,
changing the result of a small set of the trials does not influence the value of X too much,
then X is often concentrated (see, e.g., [32, 40, 20] for further discussion). In our case,
it is clear that the value of any of the variables that we track at time zero depends on the
N independent random trials which determine whether or not each vertex of V (H) is
contained in I(0). However, as it turns out, our codegree and neighbourhood similarity
conditions (conditions c and d of Definition 1.2) are not strong enough to obtain good
control over the worst case influence of changing a small set of trials. Fortunately for
us, there exist a number of different tools for obtaining strong concentration when the
worst case influence is rather large, but the typical influence is small.

The tool that we use in Section 5 to prove bounds on our variables when m = 0

is a version of the Kim–Vu Inequality [29] due to Vu [39] which is particularly well
suited to our situation. Other such tools include large deviation versions of Janson’s
Inequality (Theorem 3.7), which we apply in Section 8, and the “method of typical
bounded differences” developed by Warnke [40]. Before stating the Kim–Vu inequality,
we require some definitions.

Definition 3.3. Let V be a finite index set and let f be a multivariate polynomial in
variables {xv : v ∈ V }. Given a multiset A of indices from V , let ∂Af denote the partial
derivative of f with respect to the variables {xv : v ∈ A} (with multiplicity).

Definition 3.4. Let X be a random variable of the form f (ξv : v ∈ V ) where V is an
index set with N elements, f is a multivariate polynomial of degree k in variables
{xv : v ∈ V } with coefficients in [0, 1] and {ξv : v ∈ V } is a collection of independent
random variables taking values in {0, 1}. For 0 ≤ j ≤ k, define

Ej(X) := max
|A|≥j

E (∂Af (ξv : v ∈ V ))

where the maximum is taken over all multisets of indices from V with cardinality at least
j.

Theorem 3.5 (Vu [39]). There exist positive constants ck and Ck such that if X is a
random variable as in Definition 3.4 and E0 > E1 > · · · > Ek = 1 and ` are positive
numbers such that Ej(X) ≤ Ej for 0 ≤ j ≤ k, and Ej/Ej+1 ≥ `+ j logN for 0 ≤ j ≤ k − 1,
then

P
(
|X − E(X)| ≥

√
`E0E1

)
≤ Cke−ck`.

In order to apply Theorem 3.5 to some random variable of the form f (ξv : v ∈ V ),
we require that the coefficients of f are in [0, 1]. Therefore, in practice, to apply this
theorem to most of our variables we first need to rescale them, then apply the theorem,
then scale them back to get the bounds we want on the original variable. For this reason,
we prove a corollary to Theorem 3.5 which applies this theorem in precisely the form we
will use it throughout the paper. This should make the later calculations easier to follow.

Corollary 3.6. Let X = f (ξv : v ∈ V ) be a random variable where V is an index set with
N elements, f is a multivariate polynomial of degree k in variables {xv : v ∈ V } with
non-negative coefficients and no variable in f has an exponent greater than 1. Let τ and
E0 ≥ log2k+1N be positive numbers such that

(i) E(X) ≤ τ · E0, and

(ii) Ej(X) ≤ τ , for 1 ≤ j ≤ k.
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Then for N sufficiently large, with probability at least 1−N−20
√

logN ,

X ∈ E(X)±O
(
τ logk(N)

√
E0
)
.

Proof. Define
Z = g (ξv : v ∈ V ) := τ−1 · f (ξv : v ∈ V ) .

We show that Z is close to its expectation with high probability and use this to obtain
bounds on X which hold with high probability. Using the definition of Z, from (i) we
obtain that

E(Z) = τ−1 · E(X) ≤ E0 (3.1)

and from (ii) we obtain that for 1 ≤ j ≤ k,

Ej(Z) = τ−1 · Ej(X) ≤ 1. (3.2)

In particular this implies that, when N is sufficiently large, every term of g has a
coefficient which is at most one. Indeed, for a monomial

∏
u∈A xu appearing with a

non-zero coefficient in g, its coefficient is precisely E (∂Ag) ≤ E|A| (Z).
Set ` := log2(N), Ek := 1 and Ej := (` + j logN)Ej+1 for 1 ≤ j < k. By hypothesis,

E0 ≥ log2k+1(N), which is at least (`+j logN)E1 for N sufficiently large, and so Ej/Ej+1 ≥
`+ j logN for 0 ≤ j ≤ k − 1.

By (3.1) and (3.2), we have Ej(Z) ≤ Ej for all 0 ≤ j ≤ k. Therefore, we may apply
Theorem 3.5 to obtain that

P
(
|Z − E(Z)| ≥

√
`E0E1

)
≤ e−Ω(log2N) ≤ N−20

√
logN .

Since by definition ` · E1 = O
(

log2k(N)
)

, we have
√
`E0E1 = O

(
logk(N)

√
E0
)

. There-

fore with probability at least 1−N−20
√

logN ,

Z ∈ E(Z)±O
(

logk(N)
√
E0
)
.

Now rescaling by τ gives that with probability at least 1−N−20
√

logN ,

X ∈ E(X)±O
(
τ logk(N)

√
E0
)
,

as required.

We will also use Corollary 3.6 to prove bounds on our variables for the “subcritical”
case during the second phase. For the “supercritical” case, we find it more convenient
to apply the following lower tail version of Janson’s Inequality.

Theorem 3.7 (Janson’s Inequality for the Lower Tail [25]). Let G be a hypergraph and,
for p ∈ (0, 1) and e ∈ E(G), let Ie be the indicator variable for the event e ⊆ V (G)p. Set

X :=
∑

e∈E(G)

Ie,

µ := E(X), and

δ :=
∑

(e,e′)∈E(G)2

e 6=e′
e∩e′ 6=∅

E (IeIe′) ,

where the final sum is over all ordered pairs, (so each pair is counted twice). Then, for
any ε ∈ [0, 1],

P (X ≤ (1− ε)E(X)) ≤ exp
(
−ϕ(−ε)µ2/(µ+ δ)

)
,

where ϕ(x) = (1 + x) log(1 + x)− x.
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3.3 Martingales and concentration

In Section 6 we will use standard martingale concentration inequalities to prove
bounds on our variables throughout the first phase for m > 0. Recall that a sequence
0 = B(0), B(1), . . . of random variables is said to be a supermartingale with respect to a
filtration F(0),F(1), . . . if, for all m ≥ 0, we have that B(m) is F(m)-measurable and

E (B(m+ 1) | F(m)) ≤ B(m).

In what follows, when we say that B(0), B(1), . . . is a supermartingale, it is always with
respect to the natural filtration corresponding to our process (which will be formally
defined in the next subsection). A sequence B(0), B(1), . . . is a submartingale if the
sequence −B(0),−B(1), . . . is a supermartingale. Also, a sequence B(0), B(1), . . . is said
to be η-bounded if, for all m ≥ 0,

−η ≤ B(m+ 1)−B(m) ≤ η.

Our main tool in Section 6 is the following concentration inequality of Freedman [22].

Theorem 3.8 (Freedman [22]). Let 0 := B(0), B(1), . . . be a η-bounded supermartingale
and let

V (m) :=

m−1∑
`=0

Var(B(`+ 1)−B(`) | F`).

Then, for all a, ν > 0,

P(B(m) ≥ a and V (m) ≤ ν for some m) ≤ exp

(
− a2

2(ν + aη)

)
.

3.4 The probability space

A natural candidate for the probability space on which to view our process is

Ω := {0, 1}N × E(H)|E(H)| × P(E(H))|E(H)| × {0, 1}|E(H)|

where P(E(H)) is the collection of all subsets of E(H). For any point in Ω, the first N
coordinates determine the infection at time zero, the next |E(H)| coordinates list the
hyperedges sampled during the first phase process (although, note that the first phase
stops before |E(H)| hyperedges have been sampled), the next |E(H)| coordinates list
the sets of hyperedges sampled during the second phase process and the last |E(H)|
coordinates determine which hyperedges of H are contained in Hq.

One should notice that Ω contains a large number of infeasible points (i.e. points
of measure zero); for example, it contains points corresponding to evolutions of the
processes in which some hyperedges are sampled more than once, or the mth hyperedge
sampled in the first phase is not even chosen from Q(m − 1), etc. We let Ω′ be the
subspace of Ω consisting of only those points which have positive measure.

For m ≥ 0, let Fm be the σ-algebra generated by the partitioning of Ω′ in which two
points are in the same class if they correspond to evolutions of the processes which
have the same initial infection and which are indistinguishable after ` steps of the first
phase process for every ` in the range 1 ≤ ` ≤ m. For example, any two points of Ω′

corresponding to evolutions in which the first phase process runs for fewer than m steps
are in the same class if and only if they are indistinguishable at every step of the first
phase. Similarly, for m ≥ 0, let F ′m be the σ-algebra generated by the partitioning of Ω′

in which two points are in the same class if they are indistinguishable at every step of
the first phase and, for every 1 ≤ ` ≤ m, they are indistinguishable after the `th step of
the second phase process. We will work in this probability space throughout the proof
without further comment.
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4 Preliminaries

In this section, we will prove four preliminary results. First we prove Proposition 2.1,
which gives a bound on the number of infected vertices at each step of the first phase.
Then we deduce that, in order to track Q(m), it is enough to have control over the Y and
W configurations and the number of infected vertices at time m. After that, we will prove
Lemma 2.11, which bounds the number of copies of any secondary configuration (F , R, ∅)
in H(m) rooted at S (where |S| = |R|), for any 0 ≤ m ≤ M . At the end of the section,
we will prove an analytic lemma that will be used in the application of the differential
equations method in Section 6.

We restate here Proposition 2.1 from Section 2, to aid the reader.

Proposition 2.1 (Restated). For 0 ≤ m ≤M , with probability at least 1−N−Ω(
√

logN),

I(m) = O
(

logN ·Nd−1/(r−1)
)
.

Proof. The expected number of vertices which are infected at time zero is cNd−1/(r−1).
By the Chernoff bound (Theorem 3.2) with ε = 1/2, we have that, with probability at

least 1− e−Ω(Nd−1/(r−1)), there are at most 3c
2 Nd

−1/(r−1) vertices infected at time zero.
At each step, one hyperedge is sampled and becomes infected with probability q.

As the total number of hyperedges sampled is at most M = O (logN ·N), the expected

number of vertices infected by successfully sampling an open hyperedge is O
(
N ·log(N)
d1/(r−1)

)
.

Applying the Chernoff bound with ε = 1/2, we get that with probability at least

1−N−Ω(
√

logN) there are at most O
(
N ·log(N)
d1/(r−1)

)
vertices infected by successfully sampling

an open hyperedge. By choosing K large enough and (2.1), we have 1−e−Ω(Nd−1/(r−1)) ≥
1−N−10

√
logN . So with probability at least 1−N−10

√
logN ,

I(M) =
3c

2
Nd−1/(r−1) +O

(
N · log(N)

d1/(r−1)

)
= O

(
N · log(N)

d1/(r−1)

)
.

As I(`) ≤ I(M) for any ` ≤M , this completes the proof.

As mentioned in Section 2, to prove Lemma 2.4, it is sufficient to prove Lemmas 2.8
and 2.14 and Proposition 2.1. More formally:

Lemma 4.1. If for every choice of 0 ≤ m ≤M , v ∈ V (H), 0 ≤ i ≤ r − 2 and 0 ≤ j ≤ r − 1

we have:

(i) Y i,jv (m) ∈ (1± ε(tm)) yi,j(tm)d1− i
r−1 ,

(ii) W 1
v (m) ≤ logr

4

(d), and

(iii) I(m) = O
(
logN ·Nd−1/(r−1)

)
,

then for every 0 ≤ m ≤M ,

Q(m) ∈ (1± 4ε(tm))γ(tm) ·N.

Proof. The sum

S :=
∑

w∈V (H)\I(m)

(r − 1)Qw(m)
(
Y 0,0
w (m)− Y 1,0

w (m)
)

(4.1)

counts the number of ways of choosing

(1) a vertex w ∈ V (H) \ I(m),
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(2) a hyperedge e′ ∈ Qw(m),

(3) a hyperedge e ∈ H(m) disjoint from I(m) containing w, and

(4) a vertex v ∈ e \ {w}.

Viewing v as the root, such a configuration is a copy of Y 0,1 rooted at v but not a copy
of Y 1,1. Define S2 :=

∑
v∈V (H)\I(m)

(
Y 0,1
v (m)− Y 1,1

v (m)
)
. Then S2 counts the number of

ways of choosing

(1) a vertex v ∈ V (H) \ I(m),

(2) a hyperedge e ∈ H(m) containing v and at most one infected vertex,

(3) a vertex w ∈ e \ {v} such that if e ∩ I(m) 6= ∅ then w ∈ I(m), and

(4) a hyperedge e′ ∈W 1
w(m),

which contains everything that S counts. So S ≤ S2. The configurations counted by S2

but not S are those given by choosing

(1) a vertex v ∈ V (H) \ I(m),

(2) a hyperedge e ∈ H(m) containing v such that e has a unique infected vertex w,

(3) a hyperedge e′ ∈W 1
w(m).

See Figure 8 for an illustration of the difference between what is counted in S and S2

when r = 6.

v

w

Figure 8: Here r = 6. Copies of this hypergraph are counted by S only when w is healthy.
Copies are counted by S2 whether w is infected or not. The (unlabelled) vertices shaded
dark grey are infected, the unshaded vertices are healthy.

Applying hypotheses (i) and (ii) to bound Y 1,0
v (m) and W 1

w(m) for all v ∈ V (H) \ I(m)

and w ∈ I(m), we see that S2 − S is bounded above by∑
v∈V (H)\I(m)

(
Y 1,0
v (m)− Y 2,0

v (m)
)

logr
4

(d) = N · d
r−2
r−1 logO(1)(d).

Thus,
S ∈ S2 ±N · d1− 1

r−1 logO(1)(d).

Using the definition of S2 and applying the bounds on Y 1,1
v (m) given by the hypotheses

of the lemma, we have

S ∈
∑

v∈V (H)\I(m)

Y 0,1
v (m)±N · d1− 1

r−1 logO(1)(d). (4.2)
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Using the bounds on Y 1,0
v (m) and (for w ∈ V (H) \ I(m)) the bounds on Qw(m) =

W 1
w(m) given by the hypotheses of the lemma, from (4.1) we get

S ∈
∑

w∈V (H)\I(m)

(r − 1)Qw(m)Y 0,0
w (m)±N · d1− 1

r−1 logO(1)(d). (4.3)

Combining (4.3) and (4.2) gives∑
w∈V (H)\I(m)

(r − 1)Qw(m)Y 0,0
w (m) ∈

∑
v∈V (H)\I(m)

Y 0,1
v (m)±N · d1− 1

r−1 logO(1)(d).

We also have by hypothesis that∑
w∈V (H)\I(m)

(r − 1)Qw(m)Y 0,0
w (m) ∈

∑
w∈V (H)\I(m)

(r − 1)Qw(m) (1± ε(tm)) d

⊆ Q(m)(r − 1) (1± ε(tm)) d

and ∑
v∈V (H)\I(m)

Y 0,1
v (m) ∈ |V (H) \ I(m)| (1± ε(tm)) (r − 1)γ(tm) · d.

Putting all this together gives

Q(m) ∈ |V (H) \ I(m)| (1± ε(tm)) (r − 1)γ(tm)± d−
1

r−1N logO(1) d

(r − 1) (1∓ ε(tm))

⊆ N(1± 4ε(tm))γ(tm)

since 1±x
1±x ∈ 1± 3x for x sufficiently small and I(m) = O

(
logN ·Nd−1/(r−1)

)
by hypothe-

sis (iii). The result follows.

We will now present the proof of Lemma 2.11. It may be helpful to first recall the
definition of a secondary configuration from Definition 2.9. We restate here the result
from Section 2 to aid the reader.

Lemma 2.11 (Restated). Let X = (F , R,D) be a secondary configuration with D = ∅.
Then, for any set S ⊆ V (H) of cardinality |R|, the number of copies of X in H(m) rooted
at S is

O
(
d
|V (F)|−|R|

r−1 log−K(d)
)
.

Proof. Let X = (F , R,D) be a secondary configuration. First we see that, for any
ordering e1, . . . , e|E(F)| of the hyperedges of F , we have that

|V (F)| = |R|+
|E(F)|∑
i=1

r −
∣∣∣∣∣∣ei ∩

R ∪ i−1⋃
j=1

ej

∣∣∣∣∣∣
 . (4.4)

To see this, count the number of vertices by first counting the vertices of R and then,
for each i in turn, count the vertices of ei which have not yet been counted. This will be
used several times in the calculations below.

Our goal is to bound the number of copies of X in H(m) rooted at a set S ⊆ V (H)

of cardinality |R|. By construction, H(m) is a subhypergraph of H(0) = H. Therefore,
it suffices to upper bound the number of copies of X in H(0) = H rooted at S. We do
this in the way we described in the previous section, by breaking F up into individual
hyperedges and bounding the number of ways to choose each one individually, given the
previous choices. We will consider a number of different cases.
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First, suppose there exists a hyperedge e1 ∈ E(F) such that |e1∩R| ≥ 2. By definition
of a secondary configuration, every hyperedge of a secondary configuration contains a
neutral vertex, so e1 * R and |e1 ∩ R| is between 2 and r − 1. Thus, by condition c of
Definition 1.2 the number of hyperedges f1 in H intersecting S in exactly |e1∩R| vertices
is (

|S|
|e1 ∩R|

)
·∆|e1∩R|(H) = O

(
d

r−|e1∩R|
r−1 log−K(d)

)
.

Note that this bound is already enough to complete the proof in the case |E(F)| = 1

since, by definition of a secondary configuration, the unique hyperedge of F contains at
least two roots. So, in what follows, we may assume that |E(F)| ≥ 2.

Let e2 be a hyperedge which intersects e1 (which exists by definition of a secondary
configuration) and, if |E(F)| ≥ 3, then let e3 be the remaining hyperedge. The number of
copies of X rooted at S is at most the number of ways to choose a hyperedge f1 of H
intersecting S on exactly |e1 ∩R| vertices, a hyperedge f2 intersecting S ∪ f1 on exactly
|e2 ∩ (R ∪ e1)| vertices and, if |E(F)| ≥ 3, a hyperedge f3 intersecting S ∪ f1 ∪ f2 on
exactly |e3 ∩ (R ∪ e1 ∪ e2)| vertices. Using the bound that we have already proven for the
number of ways of choosing f1, we get that this is

O

|E(F)|∏
i=1

∆|ei∩(R∪⋃i−1
j=1 ej)|(H)

 = O

log−K(d) ·
|E(F)|∏
i=1

d
r−|ei∩(R∪

⋃i−1
j=1

ej)|
r−1


By (4.4), the exponent of d in the above expression is precisely |V (F)|−|R|

r−1 , and so we are
done when there exists some hyperedge e1 such that |e1 ∩R| ≥ 2.

So from now on we assume that every hyperedge of F contains at most one root. In
particular, by definition of a secondary configuration, the central hyperedge has exactly
one root.

Now, let e1 denote the central hyperedge and suppose that there is a non-central
hyperedge e2 such that e2 ⊆ R ∪ e1. Then, since e2 contains at most one root, we must
have that |e1 ∩ e2| = r − 1 and that the unique vertex of e2 \ e1 is a root. The vertex of
e1 \ e2 is also a root because, by definition of a secondary configuration, e1 contains a
root and this root cannot be contained in e2 (as every hyperedge contains at most one
root). By condition d of Definition 1.2, the number of ways to choose two vertices x, y of
S and two hyperedges f1 and f2 of H such that f14f2 = {x, y} is

O
(
d · log−K(d)

)
.

If e1 and e2 are the only two hyperedges of F , then |V (F)|− |R| = r−1 and so this bound
is what we wanted to prove. If |E(F)| = 3, then there are

O
(
∆|e3∩(R∪e1∪e2)|(H)

)
= O

(
d

r−|e3∩(R∪e1∪e2)|
r−1

)
ways to choose a third hyperedge to form a copy of F . Combining this with the bound
on the number of ways to choose the first two hyperedges and applying (4.4) gives the
desired bound.

So every non-central hyperedge contains at least one non-root vertex which is not
contained in the central hyperedge. We can now conclude the proof in the case |E(F)| =
2. Indeed, let e1 be the central hyperedge and e2 be the non-central hyperedge. We can
bound the number of copies of X by

O
(
∆(H) ·∆|e2∩(e1∪R)|(H)

)
.
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By definition of a secondary configuration and the fact that e1 has at most one root, we
know that |e2 ∩ (e1 ∪R)| must be at least two. Also, it is at most r − 1 by the result of the
previous paragraph. So, by condition c of Definition 1.2, we get an upper bound of

O
(
d · d

r−|e2∩(e1∪R)|
r−1 · log−K(d)

)
which, by (4.4) and the fact that |e1 ∩R| = 1, is the desired bound.

It remains to consider the case |E(F)| = 3. Let e1 be the central hyperedge and let
e2 and e3 be the other two hyperedges. Suppose that |R| ≥ 2. Then, since e1 contains
exactly one root, there must be a non-central hyperedge, say e2, such that e2 \e1 contains
a root. We can now bound the number of copies of X by

O
(
∆(H) ·∆|e2∩(R∪e1)|(H) ·∆|e3∩(R∪e1∪e2)|(H)

)
.

Since |e2 ∩ (R ∪ e1)| is at least two and at most r − 1, this is bounded above by

O
(
d · d

r−|e2∩(R∪e1)|
r−1 · d

r−|e3∩(R∪e1∪e2)|
r−1 · log−K(d)

)
and so, in this case, we are again done by (4.4) and the fact that |e1 ∩R| = 1.

Thus, there is exactly one root and it is contained in e1. By definition of a secondary
configuration, this implies that e1 ∩ e2 ∩ e3 = ∅ and that e2 intersects e3. In particular,
it implies that |e3 ∩ (e1 ∪ e2)| ≥ 2. We assume that e2 was chosen to be the non-central
hyperedge such that |e1 ∩ e2| is maximised. As above, the number of copies of X is
bounded above by

O
(
∆(H) ·∆|e2∩e1|(H) ·∆|e3∩(e1∪e2)|(H)

)
which gives the desired bound by condition c of Definition 1.2 unless |e2 ∩ e1| = 1 and
|e3 ∩ (e1 ∪ e2)| = r (since we already know that |e3 ∩ (e1 ∪ e2)| ≥ 2). So, we assume that
F satisfies these conditions. By our choice of e2, we also get that |e3 ∩ e1| = 1 as well.
The last case to consider is therefore when e2 and e3 each intersect e1 on on a single
vertex (where these two vertices are distinct) and |e2 ∩ e3| = r − 1. In this case, the
number of copies of X is bounded above by the number of ways to choose a hyperedge
f1 containing S, choose two vertices x, y of f1 \ S and then choose two hyperedges f2, f3

such that f24f3 = {x, y}. By condition d of Definition 1.2, this is bounded above by

O
(
d2 log−K(d)

)
,

which is what we needed since |V (F)| − |R| = 2(r − 1) in this case. This completes the
proof.

In our application of the differential equations method in Section 6, it is often useful
for us to approximate certain sums by a related integral. For this, we use the following
simple lemma. We remark that a very similar statement is derived in [31, Claim 3.5]
using the same proof.

Lemma 4.2. For T > 0, let s(t) be a function which is differentiable and has bounded
derivative on [0, T ]. Then, for non-negative integers N and m such that m ≤ TN , we
have ∣∣∣∣∣

∫ m/N

0

s(t)dt− 1

N

m−1∑
i=0

s(i/N)

∣∣∣∣∣ ≤ m · supt∈[0,T ] |s′(t)|
2N2

.

Proof. Let a, b ∈ [0, T ] with a ≤ b. As for all t ∈ [a, b], s(t) ≤ s(a) + (t− a) supt∈[a,b] |s′(t)|,
we have that ∫ b

a

s(t)dt ≤
∫ b

a

(
s(a) + (t− a) sup

x∈[a,b]

|s′(x)|

)
dt
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= (b− a)s(a) +

(
(b− a)2

2

)
sup
t∈[a,b]

|s′(t)|

and, similarly, ∫ b

a

s(t)dt ≥ (b− a)s(a)−
(

(b− a)2

2

)
sup
t∈[a,b]

|s′(t)|.

So, setting a = i/N and b = (i+ 1)/N for 0 ≤ i ≤ m− 1, we obtain∣∣∣∣∣
∫ (i+1)/N

i/N

s(t)dt− s(i/N)

N

∣∣∣∣∣ ≤
(

1

2N2

)
sup
t∈[0,T ]

|s′(t)|.

Summing up these expressions and applying the triangle inequality, we have∣∣∣∣∣
∫ m/N

0

s(t)dt−
m−1∑
i=0

s(i/N)

N

∣∣∣∣∣ ≤ ( m

2N2

)
sup
t∈[0,T ]

|s′(t)|

as desired.

5 Concentration at time zero

Our goal in this section is to prove Lemmas 2.8, 2.12 and 2.14 in the case m = 0.
Lemma 2.4 will follow from Lemmas 2.8 and 2.14 and Proposition 2.1 via Lemma 4.1.
In fact, we will actually prove the following stronger bounds in order to give ourselves
some extra room in the next section.

Lemma 5.1. With probability at least 1 − N−10
√

log(N) the following statement holds.
For each 1 ≤ i ≤ r and set S ⊆ V (H), we have

W i
S(0) ≤ log2r(d).

Lemma 5.2. With probability at least 1 − N−10
√

log(N) the following statement holds.
For every secondary configuration X = (F , R,D) and set S ⊆ V (H), we have

XS(0) ≤ d
|V (F)|−|R|−|D|

r−1 log−4K/5(d)

Recall the definitions of yi,0(t) and yi,j(t) from (2.15) and (2.16). We will prove the
following.

Lemma 5.3. With probability at least 1 − N−10
√

log(N) the following statement holds.
For every pair of non-negative integers i and j such that i ≤ r − 2 and i+ j ≤ r − 1 and
any vertex v ∈ V (H), we have

Y i,jv (0) ∈
(

1± log−3K/10(d)
)
yi,j(0)d1− i

r−1 .

Note that we get the following concentration result for Q(0) from Lemmas 5.1, 5.3
and Proposition 2.1 via Lemma 4.1.

Lemma 5.4. With probability at least 1−N−9
√

log(N), we have

Q(0) ∈ (1± 4ε(0))γ(0) ·N.

We will prove Lemmas 5.1, 5.2 and 5.3 by applying Corollary 3.6. Although the Y
configurations are arguably the most important, we save proving Lemma 5.3 until last;
the proofs of the first two lemmas involve more simple applications of Corollary 3.6 and
hence provide a more gentle introduction for the reader to the style of arguments we
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will be using throughout the section. We remark that in the proof of Lemma 5.1, we
technically do not need to rescale our random variable, and so could apply Theorem 3.5
directly. However it is marginally simpler to apply Corollary 3.6, so this is what we shall
do.

We will use the following random variables throughout the rest of the section. Given
w ∈ V (H), let ξw be the Bernoulli random variable which is equal to one if and only if
w ∈ I(0). Without further ado we present the proofs of Lemmas 5.1, 5.2 and 5.3.

Proof of Lemma 5.1. Let S ⊆ V (H) be a set of cardinality i. If i = r, then clearly
W i
S(0) ≤ 1 and so we may assume that 1 ≤ i ≤ r − 1. Observe that W i

S(0) can be written
as f (ξv : v ∈ V (H)) where

f (xv : v ∈ V (H)) :=
∑

e∈E(H)
S⊆e

 ∏
v∈e\S

xv

 .

Observe that no variable in f has an exponent greater than 1 and the degree of f is r− i.
We wish to apply Corollary 3.6 to obtain an upper bound on W i

S(0) which holds with high
probability. In order to do this, we must bound Ej(W i

S(0)) for 0 ≤ j ≤ r − i.
Let A be a set of at most r − i vertices of H disjoint from S. We have

∂Af (xv : v ∈ V (H)) =
∑

e∈E(H)
A∪S⊆e

 ∏
v∈e\(S∪A)

xv

 .

Therefore, by linearity of expectation and independence we have

E (∂Af (ξv : v ∈ V (H))) =
∑

e∈E(H)
A∪S⊆e

pr−i−|A|.

In the case that |A| = r − i, the above expression is simply equal to 0 or 1 (depending on
whether A ∪ S is a hyperedge of H or not). Otherwise,

E (∂Af (ξv : v ∈ V (H))) =
∑

e∈E(H)
A∪S⊆e

pr−i−|A| ≤ ∆|A|+i (H) · pr−i−|A|

= ∆|A|+i (H) cr−i−|A|d
|A|+i−1

r−1 −1.

By conditions a and c of Definition 1.2, this expression is o(1) if |A|+ i ≥ 2 and is at most
cr−1 otherwise (i.e. if A = ∅ and i = 1).

This analysis gives
E(W i

S(0)) ≤ cr−1

and for 1 ≤ j ≤ r − i,
Ej(W

i
S(0)) ≤ 1.

Set τ := 1 and E0 := log2rN . As E(Ws(0)) = O(1) and

τ logr−iN
√
Eo = o

(
log2r(d)

)
,

applying Corollary 3.6 gives that with probability at least 1−N−20
√

logN ,

W i
S(0) ≤ cr−1 + o

(
log2r(d)

)
< log2r(d).

The result now follows by taking a union bound over all values of i and all subsets of
V (H) of cardinality i.
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Before proving Lemmas 5.2 and 5.3 it is helpful to introduce the following definition
and simple claim.

Definition 5.5. Let X = (F , R,D) be a configuration and S be a subset of V (H). Let
TX,S be the collection of all pairs (F ′, D′), with F ′ a subhypergraph of H and D′ ⊆ V (F ′),
such that there exists an isomorphism φ from F to F ′ such that φ(R) = S and φ(D) = D′.

Claim 5.6. Let X = (F , R,D) be a configuration and S ⊆ V (H). Then XS(0) is bounded
above by f (ξv : v ∈ V (H)), where

f (xv : v ∈ V (H)) :=
∑

(F ′,D′)∈TX,S

( ∏
v∈D′

xv

)
.

Proof. Let F ′ ⊆ H(0). By Definition 2.6, F ′ is a copy of X rooted at S in H(0) only if
there exists an isomorphism φ : F → F ′ with φ(R) = S and D′ := φ(D) ⊆ I(0). For such
a φ and D′, say that (F ′, φ,D′) is a witness triple for F ′.

The number of copies of X rooted at S in H(0) is at most the number of F ′ ⊆ H(0)

such that there exists some φ and D′ where (F ′, φ,D′) is a witness triple for F ′. This is
at most the number of pairs (F ′, D′) in TX,S such that D′ ⊆ I(0).

Therefore XS(0) is bounded above by f (ξv : v ∈ V (H)), where

f (xv : v ∈ V (H)) :=
∑

(F ′,D′)∈TX,S

( ∏
v∈D′

xv

)
,

as required.

Observation 5.1. Let F ′ be a copy of X = (F , R,D) rooted at S inH(0). Let us consider
how F ′ may be counted multiple times by f (ξv : v ∈ V (H)). This will happen precisely
when there exist two witness triples (defined in the proof above) for F ′ of the form
(F ′, φ1, D1) and (F ′, φ2, D2) such that D1 6= D2 (and so φ1 6= φ2).

When |I(0) ∩ F ′| = |D|, there is only one choice for the set D′ in a witness triple
and so no such pair (F ′, φ1, D1) and (F ′, φ2, D2) exists. However, if |I(0) ∩ F ′| > |D|,
then there may exist subsets D1 6= D2 of F ′ (and isomorphisms φ1 and φ2) such that
(F ′, φ1, D1) and (F ′, φ2, D2) are both witness triples for X. In this case both (F ′, D1) and
(F ′, D2) are in TX,S and F ′ is counted multiple times by f (ξv : v ∈ V (H)).

So the difference between XS(0) and f (ξv : v ∈ V (H)) is at most O(1) times the
number of copies of configurations X ′ = (F , R,D′), where D′ := D ∪ {u}, for some
u ∈ V (F) \ (D ∪R).

We will now return to proving Lemmas 5.2 and 5.3.

Proof of Lemma 5.2. Let X = (F , R,D) be a secondary configuration and let S ⊆ V (H)

be a set of cardinality |R|. If D = ∅, XS(0) is simply bounded above by the number of

copies of X in H rooted at S. By Lemma 2.11, this is O
(
d
|V (F|−|R|

r−1 log−K(d)
)

, and this

bound is actually stronger than we need. So, from now on, we assume that D 6= ∅.
By Claim 5.6, letting T := TX,S , we have that the variable XS(0) is bounded above by

f (ξv : v ∈ V (H)) where

f (xv : v ∈ V (H)) :=
∑

(F ′,D′)∈T

( ∏
v∈D′

xv

)
.

Observe that the degree of f is |D| and no variable in f has an exponent greater than 1.
We wish to apply Corollary 3.6 with

τ := d
|V (F)|−|R|−|D|

r−1 log−9K/10(d)
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and E0 := log2|D|+1(N) to obtain an upper bound for XS(0) which holds with high
probability. As above, in order to apply Corollary 3.6 we must bound Ej(XS(0)) for
0 ≤ j ≤ |D|.

If A contains an element of S, then ∂Af = 0. On the other hand, if A is a subset of
V (H) \ S of cardinality at most |D|, then

∂Af(xv : v ∈ V (H)) =
∑

(F ′,D′)∈T
A⊆D′

 ∏
v∈D′\A

xv


and so, by linearity of expectation and independence,

E (∂Af(ξv : v ∈ V (H))) =
∑

(F ′,D′)∈T
A⊆D′

p|D
′\A|. (5.2)

Recalling Remark 2.10, we see that the number of (F ′, D′) ∈ T with A ⊆ D′ is at most
the sum of X ′S∪A(0) over all secondary configurations X ′ with |V (F)| vertices, |R|+ |A|
roots and zero marked vertices multiplied by a constant factor (as there is a choice for
which |A| roots are in D′). So, by Lemma 2.11, we get that the right side of (5.2) is
bounded above by

O
(
d
|V (F)|−|R|−|A|

r−1 log−K(d)p|D|−|A|
)

= O
(
d
|V (F)|−|R|−|D|

r−1 log−K(d)
)

= O
(
τ log−K/10(d)

)
= o(τ).

So for 0 ≤ j ≤ |D|,
Ej(XS(0)) = o(τ).

As X is secondary, |D| ≤ 3r − 1. So for K large with respect to r,

τ log|D|(N)
√
E0 ≤ d

|V (F)|−|D|−|R|
r−1 log6r(d) log−9K/10(d)

= o
(
d
|V (F)|−|D|−|R|

r−1 log−4K/5(d)
)
.

Using this and the fact that E(XS(0)) = o(τ), applying Corollary 3.6 gives that

XS(0) = o
(
d
|V (F)|−|D|−|R|

r−1 log−4K/5(d)
)
.

with probability at least 1 − N−20
√

log(N). The result follows by taking a union bound
over all secondary configurations and choices of S.

5.1 Proof of Lemma 5.3

First, note that it suffices to consider the case that i and j are not both zero, since
Y 0,0
v (0) = deg(v) and so the bounds hold for Y 0,0

v (0) by conditions a and b of Definition 1.2.
Thus, from now on, we assume i+ j ≥ 1.

Write the configuration Y i,j as (F , R,D). By Claim 5.6, setting T := TY i,j ,{v} gives

that the variable Y i,jv (0) is bounded above by Ỹ i,jv := f(ξu : u ∈ V (H)) where

f (xu : u ∈ V (H)) :=
∑

(F ′,D′)∈T

( ∏
u∈D′

xu

)
.

Note that by definition of Y i,j , f has degree i+ j(r − 1). Observe that no variable in f
has an exponent greater than 1.

We will prove the following.
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Proposition 5.7. For each v ∈ V (H), 0 ≤ i ≤ r − 2 and 0 ≤ j ≤ r − 1 − i such that

i+ j ≥ 1, with probability 1−N−20
√

log(N) we have

Ỹ i,jv ∈
(

1± o
(

log−3K/10(d)
))

yi,j(0)d1− i
r−1 .

We now show that Ỹ i,jv is a good approximation for Yv(0), and hence it suffices to
prove Proposition 5.7.

Proposition 5.8. If for all v ∈ V (H), 0 ≤ i ≤ r − 2 and 0 ≤ j ≤ r − 1 − i such that
i+ j ≥ 1,

Ỹ i,jv ∈
(

1± o
(

log−3K/10(d)
))

yi,j(0)d1− i
r−1 ,

and for all w ∈ V (H),

W 1
w(0) ≤ log2r(d),

then

Y i,jv (0) ∈
(

1± log−3K/10(d)
)
yi,j(0)d1− i

r−1 .

The proof of Lemma 5.3 follows from Propositions 5.7 and 5.8 and Lemma 5.1 by
applying the union bound.

Proof of Propostion 5.8. Fix v ∈ V (H). By Observation 5.1, it may be the case that Ỹ i,jv
counts an element F ′ of Y i,jv (0) more than once if it contains more than i + (r − 1)j

elements of I(0). However, we have

Y i,jv := Ỹ i,jv − Y i,jv (0) = O

 ∑
F ′′∈Y i+1,0

v (0)

∑
U⊆V (F ′′)\{v}

|U |=j

∏
u∈U

W 1
u(0)

 . (5.3)

We now prove that

Y i,jv = o
(
d1− i

r−1 log−3K/10(d)
)
,

from which the claim follows. If i = r − 2, then Y i+1,0
v (0) = W 1

v (0), so by hypothesis

(using the fact that j < r) we have Y i,jv = O
(

log2r2(d)
)

. Otherwise, for i < r− 2 we have

by hypothesis that

Y i+1,0
v (0) ≤ Ỹ i+1,0

v = O
(
d1− i+1

r−1

)
.

Using this, as j < r, from (5.3) we get

Y i,jv = O

 ∑
F ′′∈Y i+1,0

v (0)

∑
U⊆V (F ′′)\{v}

|U |=j

∏
u∈U

W 1
u(0)


= O

(
Y i+1,0
v (0) log2rj(d)

)
= O

(
d1− i+1

r−1 log2r2(d)
)

= o
(
d1− i

r−1 log−3K/10(d)
)
,

as required. The claim follows.

It remains to prove Proposition 5.7.
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Proof of Proposition 5.7. Fix v ∈ V (H). We wish to apply Corollary 3.6 with

τ := d1− i
r−1 log−9K/10(d)

and E0 := logK(d) to obtain bounds on Ỹ i,jv that hold with high probability. As before, in

order to apply Corollary 3.6, we must bound E
(
Ỹ i,jv

)
for 0 ≤ ` ≤ i+ (r − 1)j.

Claim 5.9. We have

E
(
Ỹ i,jv

)
=
(

1± 3r log−K(d)
)
yi,j(0)d1− i

r−1 ,

and for 1 ≤ ` ≤ i+ (r − 1)j we have

E`

(
Ỹ i,jv

)
= o(τ).

Proof. If A contains v, then ∂Af = 0. On the other hand, if A is a subset of V (H) \ {v} of
cardinality at most i+ (r − 1)j, then

∂Af (xu : u ∈ V (H)) =
∑

(F ′,D′)∈T
A⊆D′

 ∏
u∈D′\A

xu


and so, by linearity of expectation and independence,

E (∂Af (ξu : u ∈ V (H))) =
∑

(F ′,D′)∈T
A⊆D′

p|D
′\A|. (5.4)

Now let us bound the number of (F ′, D′) ∈ T with A = ∅. This is the number of ways to:

(1) choose a hyperedge e ∈ H such that v ∈ e,
(2) choose vertices {v1, . . . , vi} in e \ {v},
(3) choose vertices {w1, . . . , wj} in e \ {v, v1, . . . , vj},
(4) choose hyperedges e1, . . . , ej , sequentially, such that ek ∩

(
e ∪
⋃
a<k ea

)
= {wk}.

By condition a of Definition 1.2, there are are (1 ± log−K(d))d choices of e for (1).
Given the choice of e, by conditions b and c of Definition 1.2, there are (1± log−K(d))d

choices for each of e1, . . . , ej . Therefore

|T | ∈
(

1± log−K(d)
)j+1

(
r − 1

i

)(
r − i− 1

j

)
dj+1

⊆
(

1± 3r log−K(d)
)(r − 1

i

)(
r − i− 1

j

)
dj+1

Therefore, applying (5.4) to the case A = ∅, we have

E
(
Ỹ i,jv

)
∈
(

1± 3r log−K(d)
)(r − 1

i

)(
r − i− 1

j

)
dj+1pi+j(r−1)

=
(

1± 3r log−K(d)
)
yi,j(0)d1− i

r−1 .

Now, if A 6= ∅, then the number of (F ′, D′) ∈ T with A ⊆ D′ is at most the number of
ways to partition A into j + 1 sets A0, . . . , Aj (some of which may be empty) and do the
following:
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(1) choose a hyperedge e such that e ∩ (A ∪ {v}) = A0 ∪ {v},

(2) choose a subset W = {w1, . . . , wj} of e \ (A0 ∪ {v}),

(3) for k = 1, . . . , j, choose a hyperedge ek of H containing Ak ∪ {wk}.

The number of such partitions of A is O(1). For any such partition A0, . . . , Aj , by
condition c of Definition 1.2 and the fact that |A| ≥ 1, the number of elements of T
generated by the above procedure is at most

O

(
j∏

k=0

∆|Ak|+1(H)

)
= O

(
dj+1− |A|r−1 log−K(d).

)
Combining this with (5.4), we get that

E (∂Af (ξu : u ∈ V (H))) = O
(
dj+1− |A|r−1 log−K(d)pi+j(r−1)−|A|

)
= O

(
d1− i

r−1 log−K(d)
)

= O
(
τ log−K/10(d)

)
= o(τ).

This completes the proof of Claim 5.9.

The degree of f can be crudely bounded by r2. So as for K sufficiently large with
respect to r,

τ logr
2

N
√
E0 = o

(
d1− i

r−1 log−3K/10
)
,

using the value of E
(
Ỹ i,jv

)
given by Claim 5.9 and applying Corollary 3.6 gives that with

probability at least 1−N−20
√

logN we have

Ỹ i,jv (0) ∈
(

1± o
(

log−3K/10(d)
))

yi,j(0)d1− i
r−1 .

This completes the proof of Proposition 5.7.

Proposition 5.7 was the final piece for the proof of Lemma 5.3. Thus this completes
the proof of Lemma 5.3 and hence our analysis of m = 0 is now complete.

6 The first phase after time zero

In this section, we use the differential equations method to prove Lemmas 2.8, 2.12
and 2.14 for 1 ≤ m ≤M , where M is defined in (2.9).

Definition 6.1. For 0 ≤ m ≤ M , let Bm be the event (in Ω′, which was defined in
Subsection 3.4) that there exists 0 ≤ ` ≤ m such that, for some v ∈ V (H) or S ⊆ V (H),
one of the following four statements fails to hold.

(B.1) For all 0 ≤ i ≤ r − 2 and 0 ≤ j ≤ r − 1− i:

Y i,jv (`) ∈ (1± ε(t`)) yi,j(t`) · d1− i
r−1 .

(B.2) For any secondary configuration X = (F , R,D),

XS(`) ≤ log2|D|r4(d) · d
|V (F)|−|R|−|D|

r−1 log−3K/5(d).

(B.3) For all 1 ≤ i ≤ r,
W i
S(`) ≤ logr

3(r−i)(d).
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(B.4) I(m) = O
(
logN ·Nd−1/(r−1)

)
.

Note that these are precisely the bounds we wish to prove for Lemmas 2.14, 2.12
and 2.8 and Proposition 2.1. One should think of Bm as the event that one of the variables
that we are tracking has strayed far from its expected trajectory at or before the mth
step.

In this section, we prove the following lemma.

Lemma 6.2.
P (BM ) ≤ N−2

√
logN .

Observe that Lemmas 2.8, 2.12 and 2.14 all follow immediately from Lemma 6.2. By
Lemma 4.1, when ω /∈ BM , we obtain

Q(m) ∈ (1± 4ε(tm))γ(tm) ·N. (6.1)

so Lemma 2.4 is implied as well.
Now, given a point ω ∈ BM , let

J = J (ω) := min{i : ω ∈ Bi}. (6.2)

That is, ω corresponds to a trajectory of the process in which at least one of the variables
strays far from its expectation at step J but not before. Define Z to be the set of all
ω ∈ BM such that (B.4) is violated at time J (ω) for some set S ⊆ V (H). Similarly, define
Y, X andW to be the events that (B.1), (B.2) and (B.3) are respectively violated at time
J (ω). By definition,

BM =W ∪X ∪ Y ∪ Z.

Our goal is to show that the probability of each of the events W, X , Y and Z is small,
from which Lemma 6.2 will follow.

Getting a sufficient bound on P(Z) follows directly from Proposition 2.1. We obtain
the following.

Lemma 6.3.
P(Z) ≤ N−5

√
logN .

Proof. The event Z is contained within the event that there exists some 0 ≤ ` ≤M , such
that the bound

I(`) = O
(

logN ·Nd−1/(r−1)
)

fails to hold. By Proposition 2.1, the result follows.

We devote the rest of the section to proving that each of W, X and Y occurs with
probability at most N−Ω(

√
logN). To prove this, we will apply the differential equations

method and Theorem 3.8. The sequences of variables that we track are not themselves
supermartingales or submartingales and so we cannot apply Theorem 3.8 to them directly.
What we do is show that the difference between each variable in the sequence and its
expected trajectory, plus or minus some appropriate (growing) error function, is bounded
above by an η-bounded supermartingale and below by an η-bounded submartingale
(actually we only need to bound W i

S(m) and XS(m) from above). As in many applications
of the differential equations method, the trick to verifying that these sequences are
indeed η-bounded sub- or supermartingales is to define them in such a way that, if none
of our sequences have strayed far from their expected trajectory, then we can use the
fact that they have not strayed to prove that the properties hold and, otherwise, the
properties hold for trivial reasons.

As in Section 5, despite the Y configurations being the most important, we first
consider the W configurations, then the X configurations, then the Y . This is because
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the proofs of their respective lemmas increase in complexity and it is helpful for the
reader to first see a more simple application of Theorem 3.8, before diving into the
proof of Lemma 6.14. In the proof of Lemma 6.14, we need to be more careful than for
Lemmas 6.9 and 6.4. This is because we are proving that the Y configurations are tightly
concentrated, whereas we just prove weak upper bounds on the X and W configurations.

6.1 Tracking the W configurations

Roughly speaking, our goal is to determine the probability that (B.3) is the first bound
to be violated. More precisely, to determine the probability that (B.3) is violated at the
first time any of (B.1), (B.2), (B.3) and (B.4) are violated. We will prove the following.

Lemma 6.4.

P(W) ≤ N−4
√

logN .

When i = r, (B.3) cannot be violated, so we assume i < r. For 0 ≤ i ≤ r − 1 and
S ⊆ V (H) with |S| = i, defineW(S) to be the set of all ω ∈ BM such that the bound

W i
S(m) ≤ logr

3(r−i)(d) (6.3)

is violated at time m = J (ω), where J (ω) is defined in (6.2). Observe that the bound (6.3)
is precisely the bound (B.3) for our fixed choices of i and S. It follows that

W =
⋃

S⊆V (H)
1≤|S|≤r−1

W(S).

Therefore the following proposition will imply the lemma, via an application of the
union bound over all choices of i and S.

Proposition 6.5. For all 0 ≤ i ≤ r − 1 and S ⊆ V (H) with |S| = i,

P(W(S)) ≤ N−6
√

logN .

Proof. For ` ≥ 0 define E` to be the event that W i
S(`+ 1) ≥W i

S(`). We remark that it is
possible for W i

S(`) to decrease in a step. This will happen if a copy of W i rooted at S is
an open hyperedge which is successfully sampled. However, our choice of martingale
will reflect the fact that we are only concerned with proving an upper bound on W i

S(`).
Given an event E, we let 1E denote the indicator function of E. For ` ≥ 0, define

a` :=
αyr−2,1(t`) (1 + ε(t`)) + α log−K/2(d)

Nγ(t`)(1− 4ε(t`))

and

AS(`) :=

{
1E`
(
W i
S(`+ 1)−W i

S(`)
)
− a` if ω /∈ B`,

0 otherwise,

where yr−2,1(t) is defined in (2.16) and γ(t) is defined in (2.7). Also, set

BS(m) :=

m−1∑
`=0

AS(`).

Note that, by definition, BS(0) = 0. Also, if ω /∈ Bm−1, then

W i
S(m) ≤ BS(m) +W i

S(0) +

m−1∑
`=0

a`. (6.4)
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Therefore, to obtain an upper bound on W i
S(m), it suffices to bound the three quantities

on the right side of this expression. Since ε(t`) = o(1) for all ` ≤M and γ(t) is bounded
away from zero (by Remark 2.3) the sum can be bounded above in the following way:

m−1∑
`=0

a` ≤
m−1∑
`=0

2αyr−2,1(t`)

Nγ(t`)

= 2α(r − 1)

(
1

N

m−1∑
`=0

(c+ αt`)
r−2

)
= o

(
logr

3(r−i)(d)
)

as m ≤ M ≤ N log(N)
α = O (N log(d)) by (2.2). Still assuming ω /∈ Bm−1, by the above

analysis and (6.4), if W i
S(0) ≤ log2r(d) = o

(
logr

3(r−i)(d)
)

we have

W i
S(m) ≤ Bs(m) + o

(
logr

3(r−i)(d)
)
.

It follows that the eventW(S) is contained within the event that either W i
S(0) > log2r(d)

or that BS(m) > 1
2 logr

3(r−i)(d) for some 0 ≤ m ≤M .
By Lemma 5.1,

P
(
W i
S(0) > log2r(d)

)
≤ N−10

√
logN ,

so to prove Proposition 6.5 it suffices to show that BS(m) is unlikely to be large. We will
show that

P

(
BS(m) >

1

2
logr

3(r−i)(d) for some 0 ≤ m ≤M
)
≤ N−6

√
logN . (6.5)

We wish to apply Theorem 3.8 to the sequence BS(0), . . . , BS(M). In order to do this, we
must show that BS(0), . . . , BS(M) is an η-bounded supermartingale and we must also
bound the sum

∑m−1
`=0 Var(As(`) | F`).

Claim 6.6. BS(0), . . . , BS(M) is a supermartingale.

Proof. This is equivalent to showing that, for 0 ≤ ` ≤ M − 1, the expectation of AS(`)

given F` is non-positive. For ω ∈ B` we have AS(`) = 0, and so it suffices to consider
ω /∈ B`. That is, we can assume that none of the variables that we track has strayed at
or before time `. The only hyperedges e which can be counted by W i

S(`+ 1) but not by
W i
S(`) are those which contain S and have the property that there is a unique vertex

x ∈ e \ S such that x /∈ I(`). Also, such a hyperedge e contributes to W i
S(`+ 1)−W i

S(`) if
and only if an open hyperedge e∗ 6= e containing x is successfully sampled at the (`+ 1)th
step. Let T be the set of all such pairs (e, e∗). As the probability that a particular open
hyperedge is successfully sampled is q

Q(`) and as ω /∈ B`, using (6.1) we have

E
[
1E`
(
W i
S(`+ 1)−W i

S(`)
) ∣∣∣ F`] ≤ ∑

(e,e∗)∈T

q

Q(`)

≤ α|T |
Nγ(t`)(1− 4ε(t`))d1/(r−1)

, (6.6)

where γ(t) is defined in (2.7). Therefore it suffices to bound |T |.
If i ≥ 2, then e is a copy of a secondary configuration (F , R,D) where F is a single

hyperedge, |R| = i and |D| = r − i− 1. Then since ω /∈ B` we can use (B.2) to bound the
number of such e and (B.3) to bound the number of choices for e∗ to get

|T | ≤ log2r4(r−1)(d) · d
1

r−1 log−3K/5(d) · logr
3(r−1)(d) ≤ d

1
r−1 log−K/2(d), (6.7)
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for K chosen large with respect to r.
Now, suppose that i = 1 and let v be the unique element of S. The number of

such pairs (e, e∗) with |e ∩ e∗| = 1 is precisely Y r−2,1
v (`) which, since ω /∈ B`, is at most

(1 + ε(t`))yr−2,1(t`)d
1/(r−1). When |e∩ e∗| ≥ 2, we have that e∪ e∗ is a copy of a secondary

configuration with a single neutral vertex. So, as ω /∈ B`, by (B.2) the number of pairs
(e, e∗) with |e ∩ e∗| ≥ 2 is at most d

1
r−1 log−K/2(d), as above. Therefore when i = 1, we

have
|T | ≤ (1 + ε(t`))yr−2,1(t`)d

1/(r−1) + d
1

r−1 log−K/2(d). (6.8)

Putting together (6.6), (6.7) and (6.8) gives

E
[
1E`
(
W i
S(`+ 1)−W i

S(`)
) ∣∣∣ F`] ≤ a`, (6.9)

which implies that the expectation of AS(`) given F` is non-positive, as desired. This
completes the proof of the claim.

Claim 6.7. BS(0), . . . , BS(M) is η-bounded for

η := logr
3(r−i−1)(d).

Proof. First we bound the maximum value of |AS(`)|. Again, we can assume that ω /∈ B`
as, otherwise, |AS(`)| is simply equal to zero. By definition of AS(`), the minimum
possible value of AS(`) is

−a` = −o(1).

Now we bound the maximum possible value of W i
S(` + 1) −W i

S(`). The only way that
this quantity can be positive is if some vertex, say x, becomes infected in the (`+ 1)th
step. Given that x becomes infected, the maximum value that W i

S(` + 1) −W i
S(`) can

achieve is precisely W i+1
S∪{x}(`). This is at most logr

3(r−i−1)(d) by (B.3) since ω /∈ B`. So

|AS(`)| ≤ η for 0 ≤ ` ≤M and BS(0), . . . , BS(M) is η-bounded, as required.

Claim 6.8.
m−1∑
`=0

Var (AS(`) | F`) = O
(

logr
3(r−i−1)+(r−1)(d)

)
Proof. When ω ∈ B`, we have that Var (AS(`) | F`) = 0. So now consider when ω /∈ B`.
Since for a constant c and any random variable X we have Var(X−c) = Var(X) ≤ E

(
X2
)
,

by definition of As(`) we have

Var(AS(`) | F`) ≤ E
(
1E`
(
W i
S(`+ 1)−W i

S(`)
)2 | F`) .

Now,

E
(
1E`
(
W i
S(`+ 1)−W i

S(`)
)2 | F`) =

∞∑
k=1

k2P
(
W i
S(`+ 1)−W i

S(`) = k | F`
)
. (6.10)

By Claim 6.7, W i
S(`+ 1)−W i

S(`) ≤ η for ω /∈ B`. So, the right hand side of (6.10) can be
rewritten as

η∑
k=1

k2P
(
W i
S(`+ 1)−W i

S(`) = k | F`
)
.

The sum
η∑
k=1

kP
(
W i
S(`+ 1)−W i

S(`) = k | F`
)
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is precisely the expected value of 1E`
(
W i
S(`+ 1)−W i

S(`)
)

given F`. So by (6.9), definition
of η, γ(t) and yr−2,1(t), and the fact that t = O (log(d)) we have,

η∑
k=1

k2P
(
W i
S(`+ 1)−W i

S(`) = k | F`
)
≤ η · a`

= O

(
logr

3(r−i−1)(d)yr−2,1(t`)

Nγ(t`)

)
= O

(
logr

3(r−i−1)(d) (c+ αt`)
r−2

N

)

= O

(
logr

3(r−i−1)(d) logr−2(d)

N

)
.

So by the above analysis,

m−1∑
`=0

Var (AS(`) | F`) = O

(
M logr

3(r−i−1)+(r−2)(d)

N

)
= O

(
logr

3(r−i−1)+(r−1)(d)
)
,

since M = O (N log(d)). This completes the proof of the claim.

Set ν := logr
3(r−i−1)+r(d) and a := 1

2 logr
3(r−i)(d). Using Claims 6.6, 6.7 and 6.8, we

can apply Theorem 3.8 to show that

P (BS(m) ≥ a for some 0 ≤ m ≤M) ≤ exp

(
− a2

2(ν + aη)

)
� N−6

√
log(N),

as required for (6.5). This completes the proof of Proposition 6.5.

Hence Lemma 6.4 is proved.

6.2 Tracking the X configurations

Now we determine the probability that (B.2) is violated at the first time any of (B.1),
(B.2), (B.3) and (B.4) are violated. We will prove the following.

Lemma 6.9.

P(X ) ≤ N−4
√

logN .

For a secondary configuration X = (F , R,D) and S ⊆ V (H) with |S| = |R|, define
X (X,S) to be the set of all ω ∈ BM such that the bound

XS(m) ≤ log2|D|r4(d) · d
|V (F)|−|R|−|D|

r−1 log−3K/5(d) (6.11)

is violated at time m = J (ω), where J (ω) is defined in (6.2). Observe that the
bound (6.11) is precisely the bound (B.2) for our fixed choices of X and S. Therefore,

X =
⋃
X,S

X (X,S).

So the following proposition will imply Lemma 6.9, via an application of the union
bound over all choices of X and S.

Proposition 6.10. For all secondary configurations X = (F , R,D) and S ⊆ V (H) such
that |S| = |R|,

P(X (X,S)) ≤ N−6
√

logN .
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Proof. Define E` to be the event that XS(`+ 1) ≥ XS(`). For ` ≥ 0, define

a` :=
logr

4(2|D|−1)(d) · d
|V (F)|−|R|−|D|

r−1

N log3K/5(d)

and

AS(`) :=

{
1E` (XS(`+ 1)−XS(`))− a`, if ω /∈ B`,
0 otherwise

and let

BS(m) :=

m−1∑
`=0

AS(`).

If ω /∈ Bm−1, then
XS(m) ≤ BS(m) +XS(0) +m · a`.

So if XS(0) ≤ d
|V (F)|−|R|−|D|

r−1 log−4K/5(d) = o
(

log2r4|D|(d) · d
|V (F)|−|R|−|D|

r−1 log−3K/5(d)
)

,

then
XS(m) ≤ BS(m) + o

(
log2r4|D|(d) · d

|V (F)|−|R|−|D|
r−1 log−3K/5(d)

)
(6.12)

by the fact that m = O (N log(d)).
It follows that the event X (X,S) is contained within the event that either

XS(0) > d
|V (F)|−|R|−|D|

r−1 log−4K/5(d)

or

BS(m) >
1

2
log2|D|r4(d) · d

|V (F)|−|R|−|D|
r−1 log−3K/5(d)

for some 0 ≤ m ≤M .
By Lemma 5.2,

P
(
XS(0) > d

|V (F)|−|R|−|D|
r−1 log−4K/5(d)

)
≤ N−10

√
logN ,

so to prove Proposition 6.5 it suffices to show that BS(m) is unlikely to be large. We will
show that

P

(
BS(m) >

1

2
log2|D|r4−3K/5(d) · d

|V (F)|−|R|−|D|
r−1 for some 0 ≤ m ≤M

)
≤ N−6

√
logN .

(6.13)
We will apply Theorem 3.8. In order to apply Theorem 3.8 we must show that the

sequence BS(0), . . . , BS(M) is an η-bounded supermartingale and we also need to bound
the sum

∑m−1
`=0 Var(As(`) | F`).

Claim 6.11. BS(0), . . . , BS(M) is a supermartingale.

Proof. This is equivalent to showing that, for 0 ≤ ` ≤ M − 1, the expectation of AS(`)

given F` is non-positive. For ω ∈ B` we have AS(`) = 0, and so it suffices to consider
ω /∈ B`. For each u ∈ D, let Xu denote the configuration (F , R,D \ {u}). By Remark 2.10,
Xu is a secondary configuration. Every element of XS(` + 1) \ XS(`) comes from an
element of Xu

S(`), for some u ∈ D, and an open hyperedge e containing the image of
u such that e is successfully sampled. As ω /∈ B`, using (6.1) and the fact that γ(t`) is
bounded below by a function of r, c and α (see Remark 2.3) gives that the probability
that any particular open hyperedge is successfully sampled is

q

Q(`)
≤ α

γ(t`)(1− 4ε(t`))d1/(r−1)N
= O

(
1

d1/(r−1)N

)
.
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Also, since ω /∈ B`, we can apply (B.2) to Xu
S(`) and (B.3) to the number of open

hyperedges containing the image of u to get that the expected number of copies of X
created in the (`+ 1)th step is

O

(
1

d1/(r−1)N
· log2r4(|D|−1)(d)d

|V (F)|−|R|−|D|+1
r−1

log3K/5(d)
· logr

3(r−1)(d)

)

= O

(
a` ·

logr
3(r−1)(d)

logr
4

(d)

)
= o (a`) (6.14)

and therefore the expectation ofAS(`) given F` is negative. This proves that the sequence
BS(0), . . . , BS(M) is a supermartingale.

Claim 6.12. BS(0), . . . , BS(M) is η-bounded for

η := logr
4(2|D|−1)+1(d) · d

|V (F)|−|R|−|D|
r−1 log−3K/5(d).

Proof. We first bound the maximum value of |AS(`)|. Again, assume ω /∈ B`. By (2.1) and
the definition of AS(`), we have

AS(`) ≥ −a` = o
(
d
|V (F)|−|R|−|D|−1

r−1

)
.

For u ∈ D, define X̃u to be the configuration (F , R ∪ {u}, D \ {u}). By Remark 2.10 this
configuration is secondary. The value of AS(`) can only be positive if some vertex, say x,
becomes infected in the (` + 1)th step. Given that x becomes infected, the number of
copies of X rooted at S created is at most

∑
u∈D X̃

u
S∪{x}(`). Since ω /∈ B`, by (B.2) this is

O
(

log2r4(|D|−1)(d) · d
|V (F)|−|R|−|D|

r−1 log−3K/5(d)
)
.

So we have |AS(`)| ≤ η for 0 ≤ ` ≤M , as required.

Claim 6.13.

m−1∑
`=0

Var (AS(`) | F`) ≤
log2r4(2|D|−1)+1(d) · d

2(|V (F)|−|R|−|D|)
r−1

log6K/5(d)
.

Proof. When ω ∈ B`, we have that Var (AS(`) | F`) = 0. So now consider when ω /∈ B`.
We have

Var(AS(`) | F`) ≤ E(AS(`)2 | F`) ≤ E
(
1E` (XS(`+ 1)−XS(`))

2 | F`
)
.

As in the proof of Claim 6.8, we have

E
(
1E` (XS(`+ 1)−XS(`))

2 | F`
)

=

η∑
k=1

k2P (XS(`+ 1)−XS(`) = k | F`) ,

and

E (1E` (XS(`+ 1)−XS(`)) | F`) =

η∑
k=1

kP (XS(`+ 1)−XS(`) = k | F`) .

So, by (6.14) and definition of η, we get that Var(AS(`) | F`) is at most

o (η · a`) = o

(
log2r4(2|D|−1)(d) · d

2(|V (F)|−|R|−|D|)
r−1

N log6K/5(d)

)
.
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By the above analysis,
∑m−1
`=0 Var (AS(`) | F`) is therefore at most

ν :=
log2r4(2|D|−1)+1(d) · d

2(|V (F)|−|R|−|D|)
r−1

log6K/5(d)
, (6.15)

as M = O (N log(d)).

Set ν as in (6.15) and a := 1
2 log2|D|r4(d) · d

|V (F)|−|R|−|D|
r−1 log−3K/5(d). Applying Theo-

rem 3.8 shows that

P (BS(m) ≥ a for some 0 ≤ m ≤M) ≤ exp

(
− a2

2(ν + aη)

)
� N−6

√
logN ,

as required for (6.13). This completes the proof of Proposition 6.10.

Therefore, the proof of Lemma 6.9 is concluded.

6.3 Tracking the Y configurations

Much of the analysis in this subsection is similar to the previous two; however, we
must be more careful since we are aiming at tight concentration bounds (not just crude
upper bounds). As we require both upper and lower bounds, we will be dealing with
both a supermartingale and a submartingale.

We wish to bound the probability that (B.1) is violated at the first time any of (B.1),
(B.2), (B.3) and (B.4) are violated. We will prove the following.

Lemma 6.14.

P(Y) ≤ 1

2
N−2

√
logN .

For 0 ≤ i ≤ r − 2, 0 ≤ j ≤ r − 1− i and v ∈ V (H), define Y(i, j, v) to be the set of all
ω ∈ BM such that the bound

Y i,jv (m) ∈ (1± ε(t)) d1− i
r−1 yi,j(tm) (6.16)

is violated at time m = J (ω), where J (ω) is defined in (6.2) and yi,j(t) is defined in (2.16).
Observe that the bound (6.16) is precisely the bound (B.1) for our fixed choices of i, j
and v. Note that

Y =
⋃
i,j,v

Y(i, j, v).

Thus the following proposition will imply the lemma, via an application of the union
bound over all choices of i, j and v.

Proposition 6.15. For 0 ≤ i ≤ r − 2, 0 ≤ j ≤ r − 1− i and v ∈ V (H),

P(Y(i, j, v)) ≤ N−3
√

logN .

The proof of the proposition relies on two claims (Claim 6.16 and Claim 6.17), which
will be stated where they are needed once the relevant variables have been defined.
They will be proved later after completing the proof of the proposition assuming the
claims.

Proof of Proposition 6.15. For ` ≥ 0, define

a±` := d1− i
r−1

(
y′i,j(t`)

N
∓

20 ·
∣∣y′i,j(t`)∣∣ · ε(t`)

N

)
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and

A±v (`) :=

{(
Y i,jv (`+ 1)− Y i,jv (`)

)
− a±` if ω /∈ B`,

0 otherwise,

where yi,j(t) is defined in (2.16). We clarify that we are defining two different random
variables A+

v (`) and A−v (`). The superscript denotes whether we expect the variable to
be typically positive or typically negative. Given this definition, we define the following
pair of random variables:

B±v (m) :=

m−1∑
`=0

A±v (`).

Thus if ω /∈ Bm−1, by definition,

Y i,jv (m) = B±v (m) + Y i,jv (0) + d1− i
r−1

(
m−1∑
`=0

y′i,j(t`)

N
∓ 20

m−1∑
`=0

∣∣y′i,j(t`)∣∣ · ε(t`)
N

)
. (6.17)

Our strategy is to obtain a concentration result for Y i,jv (m) by analysing each of the
terms on the right side of this expression.

The proposition will follow from the next two claims.

Claim 6.16. If ω /∈ Bm−1 and

Y i,jv (0) ∈
(

1± log−3K/10(d)
)
yi,j(0)d1− i

r−1 ,

then the following bounds hold:

Y i,jv (m) ≤ B−v (m) + d1− i
r−1

(
1 +

ε(tm)

2

)
yi,j(tm),

Y i,jv (m) ≥ B+
v (m) + d1− i

r−1

(
1− ε(tm)

2

)
yi,j(tm).

Claim 6.17. With probability at least 1−N−4
√

log(N), both the following bounds hold for
all 0 ≤ m ≤M :

B−v (m) ≤ 1

2
ε(tm)d1− i

r−1 yi,j(tm),

B+
v (m) ≥ −1

2
ε(tm)d1− i

r−1 yi,j(tm).

Indeed, by Claim 6.16, the event Y(i, j, v) is contained within the event that either

Y i,jv (0) 6∈
(

1± log−3K/10(d)
)
yi,j(0)d1− i

r−1 ,

or one of the following bounds hold:

B−v (m) >
1

2
ε(tm)d1− i

r−1 yi,j(tm)

B+
v (m) < −1

2
ε(tm)d1− i

r−1 yi,j(tm)

By Lemma 5.3,

P
(
Y i,jv (0) 6∈

(
1± log−3K/10(d)

)
yi,j(0)d1− i

r−1

)
≤ N−10

√
logN .

Combining this with Claim 6.17 completes the proof of the proposition.

We now prove Claims 6.16 and 6.17.
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Proof of Claim 6.16. We will analyse each term in the right hand side of (6.17). By
Lemma 4.2 with s(t) = y′i,j(t), we have

m−1∑
`=0

y′i,j(t`)

N
∈
∫ tm

0

y′i,j(t)dt±
m · supt∈[0,T ]

∣∣y′′i,j(t)∣∣
2N2

∈ yi,j(tm)− yi,j(0)± logr
2

(d)

N
,

(6.18)

as m = O (N log(d)).
Next, we analyse the second summation in the parentheses of (6.17). First, by

definition of ε(t) (given in (2.8)),

20

m−1∑
`=0

∣∣y′i,j(t`)∣∣ · ε(t`)
N

=

(
20

logK/5(d)

)
m−1∑
`=0

∣∣y′i,j(t`)∣∣ · (t` + 1)K/10

N
. (6.19)

The function yi,j(t) is a polynomial with positive leading coefficient and, by Remark 2.3,
yi,j(t) is bounded away from zero by a function of r, c and α for all t ∈ [0, T ]. Therefore,
there exists a positive constant C = C(r, c, α) such that∣∣y′i,j(t`)∣∣ · (t` + 1)K/10 ≤ C · yi,j(t`) · (t` + 1)(K/10)−1.

Combining this with (6.19) gives

20

m−1∑
`=0

∣∣y′i,j(t`)∣∣ · ε(t`)
N

≤

(
20 · C

logK/5(d)

)
m−1∑
`=0

yi,j(t`) · (t` + 1)(K/10)−1

N
.

Now, applying Lemma 4.2 and choosing K sufficiently large with respect to r,

m−1∑
`=0

yi,j(t`) · (t` + 1)(K/10)−1

N
≤
∫ tm

0

yi,j(t) · (t+ 1)(K/10)−1dt+
logK/9(d)

N
.

Consider the integral on the right side of the above inequality. By definition of yi,j(t)
(given in (2.15) and (2.16)) and definition of γ(t) in (2.7), we have∫ tm

0

yi,j(t) · (t+ 1)(K/10)−1dt ≤
∫ tm

0

(
r − 1

i

)(
r − 1− i

j

)
(t+ 1)K/10−1(c+ αt)i+(r−1)jdt.

Letting C ′ :=
(
r−1
i

)(
r−1−i
j

)
· (max{1, c, α})r3 , gives that this is at most

C ′
∫ tm

0

(t+ 1)i+(r−1)j+K/10−1dt ≤ 10C ′

K
(tm + 1)i+(r−1)j+K/10

≤ C̃ · yi,j(tm) · (tm + 1)K/10,

for some positive constant C̃ depending on r, c, α and K. Moreover, by choosing K large
with respect to r, c and α, we may take C̃ arbitrarily close to zero. So, provided that K is
large enough, we have

20

m−1∑
`=0

∣∣y′i,j(t`)∣∣ · ε(t`)
N

≤

(
20 · C

logK/5(d)

)(
C̃ · yi,j(tm) · (tm + 1)K/10 +

logK/9(d)

N

)

≤ yi,j(tm)ε(tm)

4
, (6.20)
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as we may choose C̃ arbitrarily close to zero. Now let us combine (6.17), (6.18) and (6.20)
with our hypothesis to give an upper bound for Y i,jv (m):

Y i,jv (m) ≤ B−v (m) +
(

1 + log−3K/10(d)
)
yi,j(0)d1− i

r−1

+ d1− i
r−1

(
yi,j(tm)− yi,j(0) +

logr
2

(d)

N
+
yi,j(tm)ε(tm)

4

)
.

By the definition of ε(t) in (2.8) we can absorb the error term log−3K/10(d)yi,j(0)d1− i
r−1

into the main error term. This gives

Y i,jv (m) ≤ B−v (m) +

(
1 +

ε(tm)

2

)
d1− i

r−1 yi,j(tm).

Similarly, we get

Y i,jv (m) ≥ B+
v (m) +

(
1− ε(tm)

2

)
d1− i

r−1 yi,j(tm),

as required.

It remains to prove Claim 6.17.

Proof of Claim 6.17. To prove these bounds, we show that B−v (0), . . . , B−v (m) is a super-
martingale and that B+

v (0), . . . , B+
v (m) is a submartingale which satisfy certain maximum

change and variance increment bounds and apply Theorem 3.8. This amounts to bound-
ing the expectation, maximum/minimum possible values and variance of A±v (`). As in the
previous two subsections, we will always assume ω /∈ B(`); otherwise, we have A±v (`) = 0

and so all of the required bounds hold trivially. Recall the definition of yi,j(t) from (2.15)
and (2.16) and the definition of γ(t) from (2.7). The following expression, obtained by
differentiating yi,j(t), will be useful in what follows:

y′i,j(t) =

(
r − 1

i

)(
r − 1− i

j

)(
α · i(c+ αt)i−1γ(t)j + (c+ αt)ijγ′(t)γ(t)j−1

)
=

(j + 1)αyi−1,j+1(t)

γ(t)
+

(r − i− j)αyi,j−1(t)yr−2,1(t)

γ(t)
− jyi,j(t)

γ(t)
. (6.21)

Subclaim 6.22. B+
v (0), . . . , B+

v (M) is a submartingale and B−v (0), . . . , B−v (M) is a super-
martingale.

Proof of Subclaim 6.22. First, we bound the expectation of Y i,jv (`+ 1)− Y i,jv (`) given F`.
To do this we must consider copies of Y i,j rooted at v that are created by successfully
sampling an open hyperedge at the (` + 1)th step, and also copies that are destroyed.
Let C`+1 be the number of copies of Y i,j rooted at v which are present in the (`+ 1)th
step but not in the `th step. Any such copy must come from either:

(1) an element F ′ of Y i−1,j
v (`) \ Y i,jv (`) such that a healthy vertex of F ′, say x, contained

only in the central hyperedge becomes infected in the (`+ 1)th step, or

(2) an element F ′ of Y i,j−1
v (`) and a copy G′ of Y r−2,0 in H(`) where:

• G′ contains precisely r − 2 infected vertices,
• G′ is rooted at some non-root u ∈ F ′, where u is contained only in the central

hyperedge of F ′,
• G′ ∩ F ′ = {u},
• the unique healthy non-root x of G′ becomes infected at the (`+ 1)th step.
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See Figure 9 for examples of (1) and Figure 10 for examples of (2) (both in the case
r = 6). See also Figure 4 for other examples of these (u there plays the role of x here).
Both (1) and (2) will contribute to the main term in the expectation of Y i,jv (`+ 1)−Y i,jv (`)

given F`.

v

x x

x x

v

v v

Figure 9: Here r = 6. Some examples of ways that a copy of Y 3,1 rooted at v can be
created via (1) when the hyperedge shaded light grey becomes sucessfully sampled and
x becomes infected. The central hyperedge of the copy of Y 3,1 created is drawn with a
thick outline. Infected vertices are shaded dark grey and healthy vertices are unshaded.

The only way that a vertex can become infected is if one of the open hyperedges
containing that vertex is successfully sampled. The probability that any given open
hyperedge is successfully sampled is

q

Q(`)
∈ α

(1∓ 4ε(t`))γ(t`)Nd1/(r−1)
. (6.23)

Let us count the number of ways that we can create a copy of Y i,j rooted at v that is not
present in the `th step using (1). We will break this into two cases. If e∗ is the hyperedge
that is successfully sampled at the (`+ 1)th step, then either |e∗ ∩F ′| = 1, or |e∗ ∩F ′| > 1.
Consider the first case.

We wish to count the number of ways to choose:

• an element F ′ of Y i−1,j
v (`) \ Y i,jv (`);

• a healthy vertex x contained only in the central hyperedge of F ′; and

• an open hyperedge e∗ containing x such that e∗ intersects the copy of Y i−1,j only
on x.

Observe that, in this case, e∗ ∪ F ′ is a member of Y i−1,j+1
v (`) that contains exactly i− 1

infected vertices in its central hyperedge. For each such member of Y i−1,j+1
v (`), there

are j + 1 possible choices of the hyperedge e∗.
Therefore the number of ways to create a member of Y i,jv (`+1) via (1) when |e∗∩F ′| =

1 is at most (j + 1)Y i−1,j+1
v (`). However, this also unnecessarily counts (j + 1) times the

number of copies of Y i−1,j+1 rooted at v that contain at least i infected vertices in their
central hyperedge. Therefore we need to subtract off (j + 1) times the number of such
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x
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v v

u u

x

v

u

x

v

u

Figure 10: Here r = 6. Some examples of ways that a copy of Y 3,1 rooted at v can be
created via (2) when the hyperedge shaded light grey becomes successfully sampled and
x becomes infected. The central hyperedge of the copy of Y 3,1 created is drawn with a
thick outline. Infected vertices are shaded dark grey and healthy vertices are unshaded.

copies. Let us now crudely bound these. Such a copy consists of a member F ′′ of Y i,0v (`)

and j + 1 copies of W 1 rooted at vertices of F ′′. Since ω /∈ B`, by (B.3) we have that
W 1
u(`) = logO(1)(d) for all u ∈ V (H).
So the number of ways to create a member of Y i,jv (`+ 1) via (1) when |e∗ ∩ F ′| = 1, is

within

(j + 1)Y i−1,j+1
v (`)± Y i,0v (`) logO(1)(d).

Since ω /∈ B`, we have

(j + 1)Y i−1,j+1
v (`)± Y i,0v (`) logO(1)(d) ∈ (j + 1)(1± 2ε(t`))yi−1,j+1(t`)d

1− i−1
r−1 . (6.24)

Now consider the case when |e∗ ∩ F ′| > 1. As we will see, this will give a lower order
term. In this case, e∗∪F ′ is a member of Zi−1,j+1

v (`)\Y i−1,j+1
v (`). So by Observation 2.19,

e∗ ∪ F ′ consists of:

(a) a copy of a secondary configuration X = (F∗, R∗, D∗) inH(`) with a unique root and
precisely i−1 marked vertices in the central hyperedge such that every non-central
hyperedge has a unique neutral vertex (also contained in the central hyperedge),
and

(b) at most j copies of W 1 rooted at vertices of the central hyperedge.

So we can bound the number of ways of creating a member of Y i,jv (`+ 1) via (1) in
the second case by the sum of Xv(`) multiplied by logO(1)(d) (for the copies of W 1), over
all secondary configurations X satisfying (a).
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Since ω /∈ B` and |V (F∗)| − |R∗| − |D∗| = r − i for each secondary configuration X

satisfying (a), by (B.2) this is at most

logO(1)(d) · d1− i−1
r−1 log−3K/5(d) = o

(
d1− i−1

r−1 ε(t`)
)
. (6.25)

Putting (6.24) and (6.25) together with (6.23) shows that the expected number of copies
of Y i,j rooted at v created via (1) is

α(j + 1)(1± 5ε(t`))yi−1,j+1(t`)d
1− i

r−1

(1∓ 4ε(t`))γ(t`)N
⊆ α(j + 1)(1± 20ε(t`))yi−1,j+1(t`)d

1− i
r−1

γ(t`)N
, (6.26)

since
∣∣∣ 1+5x

1−4x

∣∣∣ ≤ 1± 20x for x sufficiently small.

Counting the number of ways to create a copy of Y i,j rooted at v via (2) (recall that
Figure 10 provides examples of this) is equivalent to counting

• the number of ways to choose an element F ′ of Y i,j−1
v (`);

• a healthy vertex u ∈ V (F ′) \ {v} contained only in the central hyperedge;

• an element G′ of Y r−2,0
u (`) (a single edge) that contains exactly r − 2 infected

vertices and intersects F ′ precisely on u,

• an element e∗ of Qx(`), where x is the unique healthy vertex of G′ \ {u}. (e∗ is the
hyperedge shaded light grey in the examples in Figure 10.)

As ω 6∈ B`, there are at most O
(
d1− i+1

r−1 logO(1)(d)
)

members of Y i,j−1
v (`) that do not

contain exactly i infected vertices in their central hyperedge (as we just did in (1), we
can bound the number of possible central hyperedges by Y i+1,0

v (`) and other hyperedges
(which are copies of W 1) using (B.3)). For each F ′, the number of choices of u is precisely
the number of healthy vertices in the central hyperedge of F ′. So, the number of ways
to choose such an F ′ and u is contained in

(r − i− j)Y i,j−1
v (`)±O

(
d1− i+1

r−1 logO(1)(d)
)
.

As ω 6∈ B`, by (B.1) this is contained in

(r − i− j) (1± 2ε(t)) yi,j−1(t)d1− i
r−1 . (6.27)

Let C(F ′, u,G′′) be the number of ways to pick such an F ′ and u multiplied by the
number of ways to pick some G′′ = G′∪{e∗} ∈ Y r−2,1

v (`). So as ω /∈ B`, by (B.1) and (6.27)
we have

C(F ′, u,G′′) = (r − i− j) (1± 4ε(t)) yi,j−1(t)yr−2,1(t)d1− i−1
r−1 . (6.28)

The quantity C(F ′, u,G′′) both fails to count some triples we wish to count and also
counts some triples we do not want to count. However, we will show that both these
terms are of a lower order. So up to an error term, the number of ways to create a copy
of Y i,j rooted at v via (2) is C(F ′, u,G′′). See Figure 11 for examples of the triples we
fail to count and Figure 12 for examples of the triples we count unwantedly.

The triples which C(F ′, u,G′′) fails to count are those where e∗ intersects G′ in more
than one vertex. However, for such a pair G′ and e∗, we have that G′ ∪ e∗ is a copy in H(`)

of a secondary configuration X rooted at u with precisely one neutral vertex. As ω /∈ B`,
by (B.2) we have Xu(`) ≤ d

1
r−1 log−2K/5. Summing over all such configurations X, and

using (6.27) gives that there are

O
(
d1− i−1

r−1 log−2K/5
)

(6.29)

triples that are not counted in C(F ′, u,G′′).
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Figure 11: Here r = 6, i = 3 and j = 1. Two examples of hypergaphs that are not counted
in C(F ′, u,G′′). If the shaded hyperedge were successfully sampled, this would create a
copy of Y 3,1 whose central hyperedge is drawn with a thick outline. Infected vertices
are shaded dark grey and healthy vertices are unshaded.
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e∗

x

e∗

x
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x
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F ′

F ′
F ′

G ′

G ′
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Figure 12: Here r = 6, i = 3 and j = 2. Three examples of hypergraphs that are
unwantedly counted in C(F ′, u,G′′). Observe that |F ′ ∩ G′| ≥ 2 and F ′ ∪ G′ consists of a
copy X of a secondary configuration (whose edges are drawn with a thick outline) and
some additional copies of W 1 rooted at healthy vertices of X. The central hyperedge of
X is the hyperedge containing v. In any of these cases, if the shaded hyperedge were
successfully sampled, it would not turn F ′ ∪ G′ into a copy of Y 3,2.

Now consider the triples which C(F ′, u,G′′) counts that we do not want (Figure 12
provides examples of these). The triples we wish to exclude are precisely those where
|F ′ ∩ G′| ≥ 2. Note that G′ could intersect either the central hyperedge or a non-central
hyperedge of F ′ (or both). However for any such pair, F ′ ∪ G′ ∪ e∗ consists of:

(a) a copy in H(`) of a secondary configuration X with a unique root (v) and exactly i
marked (so at least i infected) vertices in the central hyperedge, and

(b) at most j copies of W 1 (one is e∗ and the others are the non-central hyperedges of
F ′). (The reason we have at most j is because the secondary configuration could
contain 2 or 3 hyperedges.)
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So similarly to the second case of (1) above, since ω /∈ B` and |V (F∗)| − |R∗| − |D∗| =
r − (i+ 1) for each secondary configuration X = (F∗, R∗, D∗) satisfying (a), by (B.2) and
(B.3) the number of triples we wish to exclude is

logO(1)(d)d1− i
r−1 log−3K/5(d) = O

(
d1− i

r−1 log−2K/5
)
, (6.30)

for K chosen sufficiently large with respect to r (once F ′, u and G′′ are chosen, by (B.3)
there are logO(1)(d) choices for e∗).

So putting (6.28), (6.29) and (6.30) together, the number of ways to choose F ′, u, G′
and e∗ is contained in

(r − i− j) (1± 5ε(t)) yi,j−1(t)yr−2,1(t)d1− i−1
r−1 . (6.31)

Combining (6.31) and (6.23) gives that the expected number of copies of Y i,j rooted
at v created in the second way is contained in

α(r − i− j)(1± 20ε(t`))yi,j−1(t`)yr−2,1(t`)d
1− i

r−1

γ(t`)N
. (6.32)

Therefore, by (6.26) and (6.32) we have:

E(C`+1 | F`) ∈
α(1± 20ε(t`))d

1− i
r−1 ((j + 1)yi−1,j+1(t`) + (r − i− j)yi,j−1(t`)yr−2,1(t`))

γ(t`)N
.

(6.33)
By Definition 2.6, we see that the only way in which a copy of Y i,j rooted at v can be
destroyed in the (` + 1)th step is if one of its hyperedges is sampled. Let D`+1 be the
number of such destroyed copies. As discussed above, since ω /∈ B`, all but at most

logO(1) (d) ·d1− i+1
r−1 copies of Y i,j in H(`) rooted at v have exactly i infected vertices in the

central hyperedge. A copy whose central hyperedge is open is destroyed with probability
(j + 1)q/Q(`). However, for the vast majority of copies of Y i,j rooted at v, the central
hyperedge is not open. Using (6.23), the probability that any such copy is destroyed is
precisely

jq

Q(`)
∈ αj

(1∓ 4ε(t`))γ(t`)N
.

Therefore we have

E(D`+1 | F`) ∈
αj(Y i,jv (`)− logO(1) (d) · d1− i+1

r−1 )± α(j + 1) logO(1) (d) · d1− i+1
r−1

(1∓ 4ε(t`))γ(t`)N
.

As ω /∈ B`, by (B.1) we have

E(D`+1 | F`) ∈
αj(1± 5ε(t`))yi,j(t`)d

1− i
r−1

(1∓ 4ε(t`))γ(t`)N
⊆ αj(1± 20ε(t`))yi,j(t`)d

1− i
r−1

γ(t`)N
. (6.34)

As Y i,jv (`+ 1)− Y i,jv (`) = C`+1 −D`+1, by linearity of expectation, (6.33) and (6.34) we
get that

E
(
Y i,jv (`+ 1)− Y i,jv (`) | F`

)
∈

(1± 20ε(t`))y
′
i,j(t`)

N
d1− i

r−1 , (6.35)

by (6.21). Therefore the expectation of A+
v (`) given F` is positive and the expectation of

A−v (`) given F` is negative. So we have that B+
v (0), . . . , B+

v (M) is a submartingale and
B−v (0), . . . , B−v (M) is a supermartingale, as required for Subclaim 6.22.

Now, let us bound the maximum and minimum possible values of A±v (`).
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Subclaim 6.36. Both B+
v (0), . . . , B+

v (M) and B−v (0), . . . , B−v (M) are η-bounded, for

η := d1− i
r−1 log−K/2(d).

Proof. The maximum value of Y i,jv (`+ 1)− Y i,jv (`) occurs when the (`+ 1)th sampling is
successful and the newly infected vertex creates many new copies of Y i,j rooted at v in
either the first or second way (see above). For each u ∈ D let Ỹ u denote the configuration
(F , R ∪ {u}, D \ {u}). If some vertex, say x, becomes infected in the (`+ 1)th step, the
number of copies of Y i,j created is

∑
u∈D Ỹ

u
S∪x. Each configuration Ỹ u consists of a copy

F ′ of firstly a secondary configuration with (r−1− i) neutral vertices, and secondly some
additional copies of W 1 rooted at vertices of F ′. So as ω /∈ B` the maximum number of
copies of Y i,j rooted at v that can be created in a time step is

logO(1)(d) · d1− i
r−1 log−3K/5(d) = o(η). (6.37)

As mentioned above, a copy of Y i,j rooted at v can only be destroyed in the (`+ 1)th
step if it contains an open hyperedge which is sampled. As ω /∈ B`, the number of copies
of Y i,j rooted at v in which the hyperedge containing v is open is logO(1)(d). If x 6= v

is the unique healthy vertex in the sampled hyperedge, then the maximum number of
copies that can be destroyed is at most the number of hyperedges containing {v, x}
and i (other) infected vertices, multiplied by logO(1)(d) (for the other hyperedges, which
are copies of W 1). A hyperedge containing {v, x} and i infected vertices is either a
copy in H(`) of W 2 rooted at {v, x} (when i = r − 2) or a copy in H(`) of a secondary
configuration X = (F , R,D) where F is a single hyperedge, |R| = 2 and |D| = i (when
i < r − 2). So as ω 6∈ B`, by (B.2) and (B.3), the maximum number of copies that can be
destroyed in a time step is

max{logO(1)(d), logO(1)(d) · d1− i+1
r−1 log−3K/5(d)} = o(η). (6.38)

As t = O (log(d)), N ≥ d
1

r−1 logbK(d) and K is chosen to be large with respect to r, c and
α,

a±` =
logO(1)(d)d1− i

r−1

N
= o(η). (6.39)

By (6.37), (6.38) and (6.39), B+
v (0), . . . , B+

v (M) andB−v (0), . . . , B−v (M) are η-bounded.

Now we bound the variance of A±v (`) given F`.
Subclaim 6.40.

m−1∑
`=0

Var (AS(`) | F`) ≤ d2− 2i
r−1 log−9K/20(d).

Proof. The calculation follows similarly to the calculations for Claim 6.8 and Claim 6.13.
When ω ∈ B`, we have Var (AS(`) | F`) = 0. So now consider when ω 6∈ B`. We have

Var
(
A±S (`) | F`

)
≤ E

((
Y i,jv (`+ 1)− Y i,jv (`)

)2 | F`)
≤ E

(
|Y i,jv (`+ 1)− Y i,jv (`)| | F`

)
· sup |Y i,jv (`+ 1)− Y i,jv (`)|. (6.41)

In the proof of Subclaim 6.36 we saw that the maximum value of |Y i,jv (`+ 1)− Y i,jv (`)|
is η. So we have

Var
(
A±S (`) | F`

)
≤ η · E

(
|Y i,jv (`+ 1)− Y i,jv (`)| | F`

)
.

By expressing Y i,jv (` + 1) − Y i,jv (`) as C`+1 −D`+1 as in the proof of Subclaim 6.22,
we have

E
(
|Y i,jv (`+ 1)− Y i,jv (`)| | F`

)
≤ E (C`+1 +D`+1 | F`) .
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By (6.33), (6.34) and definition of η, this is at most

η(1 + 20ε(t`))d
1− i

r−1

(
(j + 1)αyi−1,j+1(t`)

γ(t`)N
+

(r − i− j)αyi,j−1(t)yr−2,1(t`)

γ(t`)N
+
jαyi,j(t`)

γ(t`)N

)

= o

(
d2− 2i

r−1

M log9K/20(d)

)
.

So the sum of Var(A±v (`) | F`) over 0 ≤ ` ≤ M is at most d2− 2i
r−1 log−9K/20(d), as

required.

Set
ν := d2− 2i

r−1 log−9K/20(d),

and set a := 1
2ε(tm)yi,j(tm)d1− i

r−1 . Theorem 3.8 implies that

P
(
B−v (m) ≥ a

)
≤ exp

(
− a2

2(ν + aη)

)
� N−5

√
log(N)

and

P
(
B+
v (m) ≤ −a

)
≤ exp

(
− a2

2(ν + aη)

)
� N−5

√
log(N).

This completes the proof of Claim 6.17.

This claim was the final piece in the proof of Lemma 6.14. Proving Lemma 6.14
completes the proof of Lemma 6.2 and concludes our discussion of the first phase.

7 The second phase in the subcritical case

In this section we will complete the proof of Theorem 1.3 in the subcritical case. It
may be helpful to recall the definition of the processes we run in the second phase in
the subcritical case from Subsection 2.3 and the definition of F ′m from Subsection 3.4.
Remember that in the second phase we “restart the clock” again from time zero letting
H(0) := H(M), I(0) := I(M). The number of steps in the second phase is M2, which was
defined in (2.17). We repeat the definition of M2 in the subcritical case here, for the
sake of convenience:

M2 = 2
⌈
log1/(1−λ)(N)

⌉
. (7.1)

We begin by presenting some technical definitions of various constants that will be
used throughout this section. These constants are required to state our main lemmas
and are useful to simplify future calculations.

First we present some further analysis of the function γ(t) (defined in (2.7)). We have

γ′(t) = α(r − 1)(c+ αt)r−2 − 1.

Recall that tmin was chosen to be the unique positive root of γ′(t) and that T0 < tmin < T1

where T0, T1 are the only two positive roots of γ(t). As γ(0) > 0, γ(T0) = 0 and T0 < tmin,
the function γ(t) is strictly decreasing in the interval [0, tmin] and so γ′(T0) < 0. Therefore
α(r − 1)(c+ αT0)r−2 − 1 < 0, which implies that

(r − 1)(c+ αT0)r−2 <
1

α
.

So there exists a constant 0 < λ < 1/8 such that

(r − 1)(c+ αT0)r−2 <
1− 4λ

α
. (7.2)
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Recall from (2.9) and (2.10) that we run the first phase process until time T , where

T :=
1

N
min{m ≥ 0 : (1 + 4ε(tm))γ(tm) < ζ}

and ζ will be chosen in a moment (in Definition 7.1). Using the fact that T < T0 and that
(r − 1)(c+ αt)r−2 is increasing for positive t, we obtain the following from (7.2),

(r − 1)(c+ αT )r−2 <
1− 4λ

α
. (7.3)

We are now ready to define ζ and some other useful constants.

Definition 7.1. For 0 ≤ i ≤ r − 2, define

χ(i, 0) :=

(
r − 1

i

)(
1− 4λ

α(r − 1)

) i
r−2

+
λ

α
.

Also, define
χmax := max

0≤i≤r−2
χ(i, 0),

χmin := min
0≤i≤r−2

χ(i, 0),

ζ :=
λ2χmin

r6r+1 (1 + α+ αr)
2

(1 + χmax)
3 ,

and
χ(r − 2, 1) := (1 + χmax) · ζ.

For 0 ≤ i ≤ r − 3 and 1 ≤ j ≤ r − i− 1, define

χ(i, j) := r3rχ(i, 0)(1 + αj)χ(r − 2, 1)j .

Note that as λ < 1 and χmin < 1 + χmax,

χ(r − 2, 1) := (1 + χmax) · ζ =
λ2χmin

r6r+1 (1 + α+ αr)
2

(1 + χmax)
2 < 1. (7.4)

Note in addition that

χ(r − 2, 0) =
1− 3λ

α
. (7.5)

Also observe that as λ is a function of r, c and α, so is ζ. Before presenting the main
results and proofs of the section, let us deduce a simple fact about χ(i, j) which will be
used a number of times below.

Proposition 7.2. For 0 ≤ i ≤ r − 3 and 1 ≤ j ≤ r − i− 1,

χ(i, j) <
λ2

r3r+1αj+1
.

Proof. Note that, for any α > 0 and 1 ≤ j ≤ r− 1, we have that 1 +α+αr is greater than
both 1 + αj and αj+1. Thus, for 0 ≤ i ≤ r − 3 and 1 ≤ j ≤ r − 1− i, we have

χ(i, j) =
[
r3rχ(i, 0)(1 + αj)χ(r − 2, 1)

]
χ(r − 2, 1)j−1

=
[
r3rχ(i, 0)(1 + αj)(1 + χmax) · ζ

]
χ(r − 2, 1)j−1

=

(
r3rχ(i, 0)(1 + αj)λ2χmin

r6r+1(1 + α+ αr)2(1 + χmax)2

)
χ(r − 2, 1)j−1

<

(
λ2χmin

r3r+1(1 + α+ αr)(1 + χmax)

)
χ(r − 2, 1)j−1 (7.6)

<
λ2

r3r+1αj+1
,

as by (7.4), χ(r − 2, 1) < 1.
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Throughout the section we will also use the following function.

ψ(m) := max
{

(1− λ)m, log−10(N)
}
. (7.7)

We have now completed the tedious technicalities and are able to present the real
meat of the section. Let us briefly outline how the proof will proceed. For each time m,
we will define Am (similarly to how we defined Bm for the first phase) to be the event
that some bound on the number of copies of a particular configuration in H(m) fails to
hold. The event A0 will be formally defined in Definition 7.6 and, for 0 < m ≤M2, Am
will be defined in Definition 7.7.

We will use the following lemma. (Recall Definition 2.16 for the definition of Zi,j .)

Lemma 7.3. Let 0 ≤ m ≤ M2. When ω /∈ Am and K is sufficiently large, the following
statement holds. For all S and v contained in V (H):

(L.1) For 0 ≤ i ≤ r − 2,
Y i,0v (m) ≤ χ(i, 0)d1− i

r−1 .

(L.2) For 0 ≤ i ≤ r − 2 and 1 ≤ j ≤ r − 1− i,

Y i,jv (m) ≤ ψ(m)χ(i, j)d1− i
r−1 .

(L.3) For 1 ≤ i ≤ r,
W i
S(m) ≤ (m+ 1) logr

3(r−i)(d).

(L.4) For every secondary configuration X = (F , R,D),

XS(m) ≤ (m+ 1) log2|D|r7(d) · d
|V (F)|−|R|−|D|

r−1 log−3K/5(d).

(L.5) For 0 ≤ i ≤ r − 2 and 1 ≤ j ≤ r − 1− i,

Zi,jv (m) ≤
(

1 +
λ2

r3r

)
ψ(m)χ(i, j)d1− i

r−1 .

We will also prove that with high probability AM2
does not occur.

Lemma 7.4.
P (AM2) ≤ N−

√
log(N).

As we will see in Definition 7.7, the eventAM2
contains the eventsAm for 0 ≤ m < M2.

Thus Lemma 7.4 implies that with high probability for all S and v contained in V (H) and
all 0 ≤ m ≤M2 the bounds (L.1)-(L.5) hold.

We now derive Lemma 2.15 from Lemmas 7.4 and 7.3, which implies Theorem 1.3 in
the subcritical case. After this, we will focus on the proof of Lemmas 7.4 and 7.3.

Proof of Lemma 2.15. Our goal is to show that, with probability 1− o(1), we have

(i) Q(M2) = ∅, and

(ii) |I(M2)| = N ·logO(1)(N)
d1/(r−1) .

From this, it follows easily that the probability of percolation is at most ε.
For i, by Markov’s Inequality (Theorem 3.1), we have

P(Q(M2) > 0) ≤ E(Q(M2)).

Thus, it suffices to show that the right side is o(1). This is implied by combining our
choice of M2 (see (7.1)) with the following claim.
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Claim 7.5. For 0 ≤ m ≤M2,

E(Q(m)) ≤ 2(1− λ)mζ ·N.

Proof. The proof proceeds by induction on m. First consider the base case m = 0. By
definition of T , Lemma 6.2 and Lemma 4.1, we have Q(0) ≤ ζ · N with probability at

least 1−N−2
√

log(N). As H has maximum degree d, we have Q(0) ≤ N · d and so

E(Q(0)) ≤ ζ ·N +N · d ·N−2
√

logN ≤ 2ζ ·N,

as required.
Now suppose that the statement of the claim is proved for all 0 ≤ ` ≤ m and we wish

to show it holds for m+ 1. If Q(m) = ∅ we are done, so we may assume that Q(m) 6= ∅.
Recall that in each round of the second phase, every open hyperedge is sampled. Thus,
Q(m+ 1)∩Q(m) = ∅. This implies that, for each e ∈ Q(m+ 1), there must be at least one
vertex x of e such that x ∈ I(m + 1) \ I(m); that is, x /∈ I(m) and there is a hyperedge
e∗ ∈ Q(m) containing x which was successfully sampled in the mth step. Therefore,
conditioned on F ′m, the expectation of Q(m+ 1) is at most the product of

• the number of ways to choose a hyperedge e∗ ∈ Q(m) containing a vertex x /∈ I(m),
and

• the sum of Zr−2−j,j
x (m)qj+1 over all 0 ≤ j ≤ r − 2.

When ω 6∈ Am (and K is sufficiently large), by Lemma 7.3 for every w ∈ V (H) and
1 ≤ j ≤ r − 2, we have the following two bounds. First, using (L.5) we have

Zr−2−j,j
w (m)qj+1 ≤

(
1 +

λ2

r3r

)
ψ(m)χ(r − 2− j, j)d

j+1
r−1 qj+1 ≤ 2χ(r − 2− j, j)αj+1

≤ 2

(
λ2

r3r+1αj+1

)
αj+1 <

λ

2r
.

and by (7.5) and (L.1) we have

Zr−2,0
w (m)q = Y r−2,0

w (m)q ≤ χ(r − 2, 0)α = 1− 3λ.

So when ω /∈ Am, we have

E(Q(m+ 1) | F ′m) ≤
∑

Q∈Q(m)

∑
w∈Q\I(m)

r−2∑
j=0

Zr−2−j,j
w (m)qj+1

≤ Q(m)

(1− 3λ) +

r−2∑
j=1

λ

2r


≤ Q(m) (1− 2λ) .

As H has maximum degree d, we have Q(m) ≤ N · d. So, letting 1E be the indicator
function of the event E occuring, we have

E(Q(m+ 1) | F ′m) ≤ Q(m) (1− 2λ) · 1Ac
m

+N · d · 1Am

≤ Q(m) (1− 2λ) +N · d · 1Am . (7.8)

So using Lemma 7.4 to bound P(Am), by (7.8) and the law of iterated expectation we
have

E(Q(m+ 1)) = E(E(Q(m+ 1) | F ′m))

≤ (1− 2λ)E(Q(m)) +N−
√

logN ·N · d
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Applying our induction hypothesis gives that this is at most

(1− 2λ) 2 (1− λ)
m
ζ ·N +N−Ω(1).

Since (1− λ)m ≥ (1− λ)M2 = N−Θ(1), the above expression is at least

2 (1− λ)
m+1

ζ ·N

which completes the proof of the claim.

To complete the proof we show that ii also holds with probability 1 − o(1). By

Proposition 2.1, with probability 1−N−Ω(
√

logN) the number of vertices infected during

the first phase is O
(
N ·log(N)
d1/(r−1)

)
.

By (L.3) of Lemma 7.3 and Lemma 7.4 and letting K be large, with probability at

least 1 − N−
√

log(N) for every 0 ≤ m ≤ M2 and v ∈ V (H) \ I(m), we have Qv(m) =

logO(1)(N). Using this, with high probability the number of edges sampled in each round
is N · logO(1)(N). So as M2 = logO(1)(d) by (7.1), the expected number of vertices infected

during phase two is N ·logO(1)(N)
d1/(r−1) . Applying the Chernoff bound, by (2.1) we get that with

probability at least 1−N−100 there are at most N ·logO(1)(N)
d1/(r−1) vertices infected during phase

two. So overall, with high probability there are at most N ·logO(1)(N)
d1/(r−1) = o(N) infected

vertices when the process terminates. This completes the proof.

The remainder of the subsection is devoted to proving Lemma 7.3 and Lemma 7.4.

7.1 Defining Am and Proof of Lemma 7.3

We begin by formally defining the events Am, for 0 ≤ m ≤M2. It will be convenient
for the proof of Lemma 7.4 to define A0 separately. Recall the definitions of λ and χ(i, j)

from (7.2) and Definition 7.1, respectively.

Definition 7.6. Let A0 be the event (in Ω′, which was defined in Subsection 3.4) that
for some v ∈ V (H) or S ⊆ V (H) one of the following statements fails to hold.

(A0.1) For all 0 ≤ i ≤ r − 2,

Y i,0v (0) ≤
(
χ(i, 0)− λ

α

)
d1− i

r−1 .

(A0.2) For 0 ≤ i ≤ r − 2 and 1 ≤ j ≤ r − 1− i,

Y i,jv (0) < χ(i, j)d1− i
r−1 .

(A0.3) For 1 ≤ i ≤ r,
W i
S(0) ≤ logr

3(r−i)(d).

(A0.4) For any secondary configuration X = (F , R,D),

XS(0) ≤ log2|D|r4(d) · d
|V (F)|−|R|−|D|

r−1 log−3K/5(d).

We remark that the case i = 0 of (L.1) in Lemma 7.3 always holds trivially as ∆(H) ≤ d.
This is reflected below in our definition of Am.

Definition 7.7. For 1 ≤ m ≤ M2, let Am be the event (in Ω′, which was defined in
Subsection 3.4) that either A0 occurs, or there exists 1 ≤ ` ≤ m such that, for some
v ∈ V (H) or S ⊆ V (H) one of the following statements fails to hold:
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(A.1) For 1 ≤ i ≤ r − 2,

Y i,0v (`)− Y i,0v (`− 1) ≤ ψ(`− 1)

(
λ2

2α

)
d1− i

r−1 .

(A.2) For 0 ≤ i ≤ r − 2 and 1 ≤ j ≤ r − 1− i,

Y i,jv (`) ≤ ψ(`)χ(i, j)d1− i
r−1 .

(A.3) For 1 ≤ i ≤ r,
W i
S(`)−W i

S(`− 1) ≤ logr
3(r−i)(d).

(A.4) For every secondary configuration X = (F , R,D),

XS(`)−XS(`− 1) ≤ log2|D|r7(d) · d
|V (F)|−|R|−|D|

r−1 log−3K/5(d).

We now present the proof of Lemma 7.3.

Proof of Lemma 7.3. We first show that if ω /∈ Am, then (L.1)-(L.4) hold. When m = 0

this follows by definition of A0 as ψ(0) = 1. Now consider m > 0.
Note that (A.2) is precisely the same statement as property (L.2). Observe in addition

that if ω /∈ Am, then clearly (L.3) and (L.4) hold. Also, if ω /∈ Am, then using the definition
of ψ (see (7.7)),

Y i,0v (m) = Y i,0v (0) +

m∑
`=1

(
Y i,0v (`)− Y i,0v (`− 1)

)
≤

(
χ(i, 0)− λ

α
+

(
λ2

2α

) M2∑
`=1

ψ(`− 1)

)
d1− i

r−1

≤

(
χ(i, 0)− λ

α
+

(
λ2

2α

)( ∞∑
`=0

(1− λ)
`

+

M2∑
`=1

log−10(N)

))
d1− i

r−1

≤
(
χ(i, 0)− λ

α
+

(
λ2

2α

)(
1

λ
+ o(1)

))
≤ χ(i, 0)d1− i

r−1 ,

since M2 = O (logN). Hence, ω /∈ Am implies that (L.1) holds.
We now show that if (L.1)-(L.4) hold at timem, then so does (L.5). By Observation 2.19,

each member of Zi,jv (m) is either a member of Y i,jv (m) or consists of a copy F ′ of a
secondary configuration with r−1− i neutral vertices and a set of copies of W 1 rooted at
vertices of F ′. By (L.3), (L.4) and the fact that m ≤M2 = O (logN) (from (2.2) and (7.1)),
the number of members of this type is at most

logO(1)(d) · d1− i
r−1 · log−3K/5(d),

This is o
(
ψ(m)d1− i

r−1

)
, provided that K is sufficiently large. The result now follows by

the bound on Y i,jv (m) given by (L.2).

7.2 Proof of Lemma 7.4

Given a point ω ∈ AM2
\ A0, let

J = J (ω) := min{i : ω ∈ Ai}.
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Define Y0 to be the set of ω ∈ AM2
\ A0 such that (A.1) is violated at time J (ω) for some

v ∈ V (H) (the superscript 0 represents that j = 0 in the configurations we consider in
(A.1)). Similarly, define Y>0,W and X respectively to be the events that (A.2), (A.3) and
(A.4) are violated at time J (ω).

So the event AM2 is contained within the events A0, and Y0 ∪ Y>0 ∪W ∪ X . First we
bound the probability of A0 occurring. The following Lemma is an easy consequence of
Lemma 6.2.

Lemma 7.8.
P(A0) ≤ N−2

√
log(N).

Proof. First suppose ω /∈ A0. By definition of BM (see Definition 6.1), with probability at

least 1−N−2
√

log(N) the bounds (B.1), (B.2) and (B.3) hold for all v ∈ V (H) and S ⊆ V (H)

when ` = M .
When (B.1) holds, for 0 ≤ i ≤ r − 2 and 0 ≤ j ≤ r − 1− i, we have

Y i,jv (0) ≤ (1 + ε(T ))

(
r − 1

i

)(
r − 1− i

j

)
(c+ αT )iγ(T )jd1− i

r−1

By (7.3) and the fact that (1 + ε(T ))γ(T ) < ζ (by (2.9)), the above inequality implies that

Y i,jv (0) ≤
(
r − 1

i

)(
r − 1− i

j

)(
1− 4λ

α(r − 1)

) i
r−2

ζjd1− i
r−1

≤
(
χ(i, 0)− λ

α

)(
r − 1− i

j

)
ζjd1− i

r−1 .

(7.9)

For 0 ≤ i ≤ r − 2 and j = 0, (7.9) implies that

Y i,0v (0) ≤
(
χ(i, 0)− λ

α

)
d1− i

r−1 ,

as required for (A0.1). Also, if i = r − 2 and j = 1, (7.9) implies that

Y r−2,1
v (0) ≤ χ(r − 2, 0) · ζ · d

1
r−1 < χ(r − 2, 1)d

1
r−1 , (7.10)

thus proving (A0.2) when i = r−2. Now, for 0 ≤ i ≤ r−3 and 1 ≤ j ≤ r−1− i, using (7.9)
and the fact that ζ < χ(r − 2, 1), gives

Y i,jv (0) ≤ χ(i, 0)

(
r − 1− i

j

)
ζj · d1− i

r−1 < χ(i, j)d1− i
r−1 ,

completing the proof of (A0.2). For 1 ≤ i ≤ r and S ⊆ V (H), when (B.3) holds at ` = M ,

W i
S(0) ≤ logr

3(r−i)(d),

thus proving (A0.3). Finally, for any secondary configuration X = (F , R,D) and S ⊆
V (H), when (B.2) holds at ` = M ,

XS(0) ≤ log2|D|r4(d) · d
|V (F)|−|R|−|D|

r−1 log−3K/5(d),

as required for (A0.4).

Our goal now is to show that the probability of each of Y0, Y>0, W and X occur-
ring is N−10

√
logN , from which Lemma 7.4 will follow. This will be done in Proposi-

tions 7.11, 7.13, 7.15 and 7.17 to come.
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Given a (general) configuration X that we care about controlling, we wish to apply
Corollary 3.6 to bound the probability of XS(m+ 1)−XS(m) being too large for each
S ⊆ V (H). It will be helpful to introduce some general framework, which will aid us in
our application of Corollary 3.6. Before stating the next lemma, we require quite a few
technical definitions. Let us briefly motivate the definitions before stating them formally.

For a fixed configuration X = (F , R,D) and non-empty U ⊆ D, we will define a family
XU of configurations, such that each configuration in the family is created by changing
the set U of marked vertices of X into neutral vertices and, for each u ∈ U , adding a
hyperedge eu containing u such that the vertices in eu \ {u} are all marked. The family
XU will be helpful when bounding how many new copies of X are made at some time
step. Indeed, a new copy of X is made from a copy of a configuration in XU when the
open hyperedges rooted at vertices of U are all successfully sampled in some time step.

We will also define a configuration XU,U ′ created by taking some set U of marked
vertices of X, turning some subset U ′ ⊆ U into roots and turning U \ U ′ into neutral
vertices. This will be used to bound ∂Af (where f will be an upper bound on XS(m +

1) −XS(m) and A ⊆ V (H)) in the application of Corollary 3.6. As it turns out, we will
always be able to express bounds on the number of copies of some X ′ ∈ XU or XU,U ′ in
terms of copies of configurations we are keeping control over.

For a configuration X = (F , R,D), call a hyperedge of F with r − 1 vertices in D

unstable. If F contains an unstable hyperedge then every copy of X in H(m) is destroyed
in the (m+ 1)th time step, as at each time step every open hyperedge is sampled and
deleted from our hypergraph. So in particular, a new copy of X can only be made from
some XU such that U intersects every unstable hyperedge of F . Call such a set U
fruitful.

We apologise that the following set of definitions are fairly technical. But the introduc-
tion of these concepts and Lemma 7.10 will greatly simplify and clarify the calculations
that are to come in the proof of Lemma 7.3.

Definition 7.9. Let X = (F , R,D) be a configuration and let ∅ 6= U ⊆ D be fruitful and
U ′ ⊆ U . Define XU,U ′ to be the configuration X = (F , R ∪ U ′, D \ U).

Say that U1, U2 ⊆ D are non-isomorphic if the configurations (F , R,D \ U1) and
(F , R,D \ U2) are not isomorphic. Define U(X) to be a maximal collection of pairwise
non-isomorphic fruitful subsets of D.

For k, a ≥ 0, define
Xk,a :=

⋃
U∈U(X)
U ′⊆U

|U |−|U ′|=k
|U ′|=a

XU,U ′ .

Also, define XU to be the set of all configurations X ′ = (F ′, R′, D′) such that

(a) F ′ ⊇ F , R′ = R and D′ ∩D = D \ U (so the vertices of U are neutral here);

(b) E(F ′) \ E(F) = {eu : u ∈ U}, where for each u ∈ U , eu is an unstable hyperedge of
F ′ containing u. (So D′ := D \ U ∪

⋃
u∈U eu \ {u}.)

See Figure 13 for an example of a configuration in XU and a configuration XU,U ′ .

Throughout the rest of the section we will condition on F ′m and assume that ω /∈ Am.
We may not always write explicitly that we are assuming this and conditioning on F ′m.
We will use the following random variables throughout. Given w ∈ V (H), let ξw be the
Bernoulli random variable which is equal to one if w ∈ I(m+1)\I(m) and zero otherwise.
Also, for e ∈ Q(m), we let ξe be the Bernoulli random variable which is equal to one if
e is successfully sampled and zero otherwise. Clearly, for each v /∈ I(m), we have that
ξv is equal to one if and only if ξe = 1 for some e ∈ Qv(m). From this (and as we are
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R

Y 2,2

X ′ ∈ ΥU

ΥU,U ′

U

U

U

U

U

U ′

U

U ′

R R

Figure 13: Here Υ := Y 2,2 and r = 6. For a particular choice of fruitful U ⊆ D and
U ′ ⊆ U , we have an example of some configuration X ′ ∈ ΥU and a configuration ΥU,U ′ .
The vertices of U ′ are labelled with a U ′ and the vertices of U \ U ′ are labelled with a
U . The root is labelled by R, the marked vertices are dark grey, the neutral vertices
are white and the central hyperedge is drawn with a thick outline. The hyperedges⋃
u∈U eu are shaded light grey. Observe that if each of these hyperedges in a copy of

X ′ is successfully sampled in the (m+ 1)th step, then this creates a new copy of Y 2,2 in
H(m+ 1).

conditioning on F ′m), we have that ξu is independent of ξw for u,w distinct vertices of
V (H) \ I(m). Also, we have

ξv ≤
∑

e∈Qv(m)

ξe. (7.11)

Lemma 7.10. Let X = (F , R,D) be a configuration and let S be a subset of V (H) such
that |S| = |R|. If (L.3) holds at time m, then there exists a polynomial f(xw : w ∈ V (H))

of degree at most |D| where no variable has an exponent greater than 1 such that:

(i) XS(m+ 1)−XS(m) ≤ |XS(m+ 1) \XS(m)| ≤ f(ξw : w ∈ V (H))

(ii) For any set A ⊆ V (H),

E(∂Af(ξw : w ∈ V (H)) | F ′m) ≤
|D|−|A|∑
k=0

∑
X′∈Xk,|A|

X ′S∪A(m)(logr
4

(d)q)k.

(iii)

E(f(ξw : w ∈ V (H)) | F ′m) ≤
|D|∑
k=1

∑
U∈U(X)
|U |=k

∑
X′∈XU

X ′S(m)qk.
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We remark that (ii) does gives a bound on everything we need to apply Corollary 3.6.
However, when dealing with W 1 and the Y configurations we need a more careful bound
on the expected change and this is why we have (iii).

Proof of Lemma 7.10. If (L.3) holds at time m, as m = O (log(d)) (by (7.1) and (2.2)),
by (7.11) we have

E(ξv | F ′m) ≤ q · (m+ 1) logr
3(r−1)(d) ≤ q logr

4

(d). (7.12)

Let us consider how a copy of X rooted at S which is present in the (m+ 1)th step,
but not the mth step is created. Such a copy can only come from a subhypergraph
F ′ ⊆ H containing S that is like a copy of X missing some infections. F ′ will become a
new copy of X when it gains these missing infections.

More formally, a new copy comes from a subhypergraph F ′ ⊆ H(m), a non-empty
fruitful set U ⊆ D and subsets D′, V ′ ⊆ V (F ′) such that:

(1) there exists an isomorphism φ from F to F ′ with φ(R) = S, φ(U) = V ′ and
φ(D \ U) = D′,

(2) V ′ ∩ (S ∪ I(m)) = ∅ and D′ ⊆ I(m),

(3) every vertex v ∈ V ′ becomes infected at the (m+ 1)th step.

Let Z(X) be the set of triples (F ′, V ′, D′) that satisfy (1), (2) and (3). Then the
variable XS(m+ 1)−XS(m) is bounded above by f(ξw : w ∈ V (H)), where

f(xw : w ∈ V (H)) :=
∑

(F ′,V ′,D′)∈Z(X)

(∏
v∈V ′

xv

)
. (7.13)

As V ′ ⊆ D, f has degree at most |D|. Observing that no variable in f has an exponent
greater than 1 completes the proof of (i).

By definition, V ′ is a subset of V (F ′) \ (S ∪ I(m)). So if A contains an element of
(S ∪ I(m)), then ∂Af = 0. So suppose that A is a subset of V (H) \ (S ∪ I(m)), Then for
any such A, we have

∂Af =
∑

(F ′,V ′,D′)∈Z(X)
A⊆V ′

 ∏
v∈V ′\A

xv

 . (7.14)

We can partition the set Z(X) by the cardinality of each V ′. So for 0 ≤ k ≤ |D| − |A|, let

Zk(X) := {(F ′, V ′, D′) ∈ Z(X) : |V ′| − |A| = k}.

So we can rewrite (7.14) as follows.

∂Af =

|D|−|A|∑
k=0

∑
(F ′,V ′,D′)∈Zk(X)

A⊆V ′

 ∏
v∈V ′\A

xv

 . (7.15)

Now recall Definition 7.9 and observe that any (F ′, V ′, D′) ∈ Zk(X) such that A ⊆ V ′ is
in fact a copy of XU,U ′ rooted at S∪A for some U ′ ⊆ U ⊆ D with |U | = |V ′|, |U ′| = |A| and
|U | − |U ′| = k. So from (7.15) and (7.12), as the variables ξw are independent (because
V ′ \A ⊆ V (H) \ I(m) and we are conditioning on F ′m) we have

E(∂Af(ξw : w ∈ V (H)) | F ′m) ≤
|D|−|A|∑
k=0

∑
X′∈Xk,|A|

X ′S∪A(m)(logr
4

(d)q)k,
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as required for (ii).
Now substituting (7.11) into (7.13) gives

f(ξw : w ∈ V (H)) ≤ g(ξe : e ∈ E(H))) :=
∑

(F ′,V ′,D′)∈Z(X)

∏
v∈V ′

∑
e∈Qv(m)

ξe

 .

Notice that the random variables on the right hand side are now associated to hyperedges,
not vertices.

Given a fixed (F ′, V ′, D′) ∈ Z(X), let G′ be a subhypergraph of H containing F ′ such
that E(G′) \ E(F ′) = {ev : v ∈ V ′}, where ev ∈ Qv(m) for all v ∈ V ′. Recall Definition 7.9
again. By definition of Z(X), there exists some non-empty fruitful U ⊆ D such that G′ is
a copy of some X ′ ∈ XU rooted at S in H(m).

As, for e, e′ distinct hyperedges in H(m), we have ξe is independent of ξe′ and

E(g(ξe : e ∈ E(H)) | F ′m) ≤
∑

U∈U(X)

∑
X′∈XU

X ′S(m)q|U |.

By considering the cardinality of U , this can be rewritten as

E(g(ξe : e ∈ E(H)) | F ′m) ≤
|D|∑
k=1

∑
U∈U(X)
|U |=k

∑
X′∈XU

X ′S(m)qk,

as required for (iii).

Now we have developed our tools, we are all set to prove Lemma 7.7. As usual we
begin with the proof of the bound on W i

S(m), as it is the simplest case.

Proposition 7.11.
P(W) ≤ N−10

√
logN .

Proof. For 0 ≤ m ≤ M2 − 1 and S ⊆ V (H), let W(S,m+ 1) be the set of ω in AM2 such
that J (ω) = m+ 1 and, for some 1 ≤ i ≤ r,

W i
S(m+ 1)−W i

S(m) > logr
3(r−i)(d).

It follows that
W =

⋃
0≤m≤M2−1
S⊆V (H)

W(S,m+ 1).

We will prove that for 0 ≤ m ≤M2 − 1,

P(W(S,m+ 1) | F ′m) ≤ N−20
√

logN .

The proof of the proposition will then follow by taking the union bound over all 0 ≤ m ≤
M2 − 1 and S ⊆ V (H) of size at most r − 1.

Conditioning on F ′m for m ≥ 0, the events Am and W(S,m + 1) are disjoint and so
we assume that ω /∈ Am. Fix S ⊆ V (H). We wish to apply Lemma 7.10 along with
Corollary 3.6 to obtain the required bound on P(W(S,m+ 1)). As ω /∈ Am, (L.3) holds at
time m and we may apply Lemma 7.10. So let Υ := W i and let W̃ := f(ξw : w ∈ V (H)),
where f(xw : w ∈ V (H)) is the polynomial of degree at most r − i obtained by applying
Lemma 7.10 to Υ.

We wish to apply Corollary 3.6 with

τ := 2M2 logr
3(r−i−1)(d)

and E0 := log2r(N) to obtain an upper bound on W̃ which holds with high probability. In
order to apply Corollary 3.6 we must bound Ej(W̃ | F ′m) for 0 ≤ j ≤ r − i.
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Claim 7.12. Let ω /∈ Am. For 0 ≤ a ≤ r − i, we have

Ea(W̃ | F ′m) ≤ τ.

Proof. By Lemma 7.10 (ii), for any set A ⊆ V (H) with |A| = a,

E(∂Af(ξw : w ∈ V (H)) | F ′m) ≤
r−i−a∑
k=0

∑
Υ′∈Υk,a

Υ′S∪A(m)(logO(1)(d)q)k. (7.16)

So let us evaluate this expression. Recalling Definition 7.9 we see that Υk,a contains only
one configuration, the configuration Υk,a = (F ′, R′, D′) where F ′ is a set of r vertices
contained in a single hyperedge with i+ a roots and k neutral vertices (and therefore
r − i− (k + a) marked vertices).

We will break the cases up by the value of a+ i. First suppose a+ i = r. Here k = 0

and E(∂AW̃ ) ≤ 1 since H contains no hyperedge with multiplicity greater than one.
Now suppose a ≥ 1 and a+ i < r, so 2 ≤ a+ i < r. When k ≥ 1, Υk,a is a secondary

configuration, and as ω /∈ Am, by (L.4) we have

Υk,a
S∪A(m) ≤ (m+ 1) logO(1)(d)d

k
r−1 log−3K/5(d). (7.17)

When k = 0, as ω /∈ Am, by (L.3) we have

Υ0,a
S∪A(m) = W i+a

S∪A(m) ≤ (m+ 1) logr
3(r−i−a)(d). (7.18)

Using (7.17) and (7.18) to evaluate (7.16) gives that, when ω /∈ Am and a ≥ 1, the
expectation of ∂Af(ξv : v ∈ V (H)) conditioned on F ′m is at most

r−i−a∑
k=0

Υk,a
S∪A(m)(logO(1)(d)q)k ≤ (m+ 1) logr

3(r−i−a)(d) +

r−i−a∑
k=1

logO(1)(d) · log−
3K
5 (d).

Provided that K is large enough, this is at most τ when a ≥ 1. This concludes the
argument in the case when a ≥ 1.

It remains to bound Ea(W̃ | F ′m) when a = 0 and i < r. We need to be more careful
here. By Lemma 7.10 (iii),

E(W̃ | F ′m) ≤
r−i∑
k=1

∑
U∈U(Υ)
|U |=k

∑
Υ′∈ΥU

Υ′S(m)qk. (7.19)

Recall Definition 7.9 and observe that, for each k ≥ 1, there is precisely one U ∈ U with
|U | = k.

First consider when i = 1. We see that when |U | = k, we have ΥU = Zr−1−k,k. So as
ω /∈ Am, applying (L.5) to evaluate (7.19) gives that the expectation of W̃ given F ′m is at
most

r−1∑
k=1

Zr−1−k,k
v (m)qk ≤

(
1 +

λ2

r3r

)
ψ(m)

r−1∑
k=1

χ(r − 1− k, k)αk = O(1) ≤ τ.

When 1 < i < r and |U | = k, we see each configuration Υ ∈ ΥU consists of:

(i) a secondary configuration X = (G, R′, D′), where G consists of one hyperedge
containing i roots and k neutral vertices, and in addition

(ii) a collection of k unstable hyperedges rooted at neutral vertices of G that are not in
the non-central hyperedge.
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So in this case, using (L.3) and (L.4) as ω /∈ Am gives

Υ′S(m) ≤ XS(m)
(

(m+ 1) logr
3(r−1)(d)

)k
≤ (m+ 1)k+1 log2|D|rr (d) · d

k
r−1 log−3K/5(d) logkr

3(r−1)(d)

= logO(1)(d) · log−3K/5(d) · d
k

r−1 .

Using this to evaluate (7.19) gives that the expectation of W̃ given F ′m is at most

r−i∑
k=1

logO(1)(d) · log−3K/5(d) · d
k

r−1 qk = o(1),

for large enough K. This concludes the proof of the claim.

Recall that E0 := log2r(N). As 2r + 1 < r3, by Claim 7.12 we have

E(W̃ | F ′m) ≤ τ = o
(

logr
3(r−i)(d)

)
.

We also have
τ logr−i(N)

√
E0 = o

(
logr

3(r−i)(d)
)
,

Thus applying Corollary 3.6 gives that

P(W(S,m+ 1) | F ′m) ≤ N−20
√

log(N),

as required.

Proposition 7.13.
P(X ) ≤ N−10

√
logN .

Proof. For a secondary configuration X = (F , R,D), S ⊆ V (H) with |S| = |R| and
0 ≤ m ≤M2 − 1, let X (X,S,m+ 1) be the set of ω in AM2

such that J (ω) = m+ 1 and

XS(m+ 1)−XS(m) > log2|D|r7(d) · d
|V (F)|−|R|−|D|

r−1 log−3K/5(d).

It follows that
X =

⋃
X,S,m+1

X (X,S,m+ 1).

We will prove that for 0 ≤ m ≤M2 − 1,

P(X (X,S,m+ 1) | F ′m) ≤ N−20
√

logN .

The proof of the proposition will then follow by taking the union bound over all choices
of X, S and m.

Conditioning on F ′m for m ≥ 0, the events Am and X (X,S,m+ 1) are disjoint and so
we assume that ω /∈ Am. Fix S ⊆ V (H) and a secondary configuration X = (F , R,D).
We wish to apply Lemma 7.10 along with Corollary 3.6 to obtain the required bound on
P(X (X,S,m+ 1)). As ω /∈ Am, (L.3) holds at time m and we may apply Lemma 7.10. So
let X̃ := f(ξw : w ∈ V (H)), where f(xw : w ∈ V (H)) is the polynomial of degree at most
|D| obtained by applying Lemma 7.10 to X.

We wish to apply Corollary 3.6 with

τ := log2(|D|−1)r7+3r6+1(d) · d
|V (F)|−|R|−|D|

r−1 log−3K/5(d)

and E0 := log2|D|+1(d) to obtain an upper bound on X̃ which holds with high probability.
We will prove the following claim.
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Claim 7.14. Let ω /∈ Am. For 0 ≤ j ≤ |D|,

Ej(X̃|F ′m) = o(τ).

Proof. By Lemma 7.10 (ii), for any set A ⊆ V (H) with |A| = a,

E(∂Af(ξw : w ∈ V (H)) | F ′m) ≤
|D|−a∑
k=0

∑
X′∈Xk,a

X ′S∪A(m)(logr
4

(d)q)k.

So let us evaluate this expression. By Remark 2.10, every X ′ ∈ Xk,a is a secondary
configuration (F ′, R′, D′) with |D′| ≤ |D|−1 and |V (F ′)|−|R′|−|D′| = |V (F)|−|R|−|D|+k.
By definition, |Xk,a| = O(1). So as ω /∈ Am and |D| < 3r, using (L.4) to bound each such
X ′S∪A(m) gives that E(∂Af(ξw : w ∈ V (H)) | F ′m) is at most

O

|D|−a∑
k=0

(m+ 1) log2(|D|−1)r7(d) · d
|V (F)|−|R|−|D|+k

r−1 log−3K/5(d)
(

logr
4

(d)q
)k

= O
(

log2(|D|−1)r7+3r6(d) · d
|V (F)|−|R|−|D|

r−1 log−3K/5(d)
)

= o(τ),

as required.

As X is secondary, |D| ≤ 3r and

τ log|D|(d)
√

E0 = o
(

log2|D|r7(d) · d
|V (F)|−|R|−|D|

r−1 log−3K/5(d)
)
.

Using this and the fact that E(X̃) = o(τ) (by Claim 7.14), applying Corollary 3.6 gives
that

P(X (X,S,m+ 1) | F ′m) ≤ N−20
√

logN ,

as required.

Proposition 7.15.
P(Y0) ≤ N−10

√
logN .

Proof. For v ∈ V (H), 1 ≤ i ≤ r− 2 and 0 ≤ m ≤M2 − 1, let Y0(v, i,m+ 1) be the set of ω
in AM2 such that at time J (ω) = m+ 1,

Y i,0v (m+ 1)− Y i,0v (m) > ψ(m)

(
λ2

2α

)
d1− i

r−1 .

It follows that
Y0 =

⋃
0≤m≤M2−1
v∈V (H)
0≤i≤r−2

Y0(v, i,m+ 1).

We will prove that for 0 ≤ m ≤M2 − 1,

P(Y0(v, i,m+ 1) | F ′m) ≤ N−20
√

logN .

The proof of the proposition will then follow by taking the union bound over all choices
of v, i and m.

Conditioning on F ′m for m ≥ 0, the events Am and Y0(v, i,m + 1) are disjoint and
so we assume that ω /∈ Am. Fix v ∈ V (H), 1 ≤ i ≤ r − 2 and set Υ := Y i = (F , R,D).
We wish to apply Lemma 7.10 along with Corollary 3.6 to obtain the required bound on
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P(Y0(v, i,m+ 1)). As ω /∈ Am, (L.3) holds at time m and we may apply Lemma 7.10. So
let Ỹ := f(ξw : w ∈ V (H)), where f(xw : w ∈ V (H)) is the polynomial of degree at most i
obtained by applying Lemma 7.10 to Υ.

We wish to apply Corollary 3.6 with

τ :=
ψ(m)d1− i

r−1

logr
2

(N)

and E0 := logr
2+1(N) to obtain an upper bound on Ỹ which holds with high probability.

We will prove the following claim.

Claim 7.16. Let ω /∈ Am. For 1 ≤ a ≤ i,

Ea

(
Ỹ | F ′m

)
= o(τ).

Also,

E(Ỹ | F ′m) ≤ ψ(m)

(
λ2

4α

)
d1− i

r−1 .

Proof. By Lemma 7.10 (ii), for any set A ⊆ V (H) with |A| = a,

E(∂Af(ξw : w ∈ V (H)) | F ′m) ≤
i−a∑
k=0

∑
Υ′∈Υk,a

Υ′{v}∪A(m)(logO(1)(d)q)k.

So let us evaluate this expression. When |A| ≥ 1, as i ≤ r − 2 each Υ′ ∈ Υk,a is a
secondary configuration (F ′, R′, D′) with |V (F ′)| = r, |R′| = |A|+ 1, |D′| = i− |A| − k. So
|V (F ′)| − |R′| − |D′| = r− 1− i+ k. Also, |Υk,a| = O(1). So as ω /∈ Am and |D| < 3r, using
(L.4) to bound each such Υ′{v}∪A(m) gives that E(∂Af(ξw : w ∈ V (H)) | F ′m) is at most

O

(
i−a∑
k=0

(
(m+ 1) log2|D|r7(d) · d

r−1−i+k
r−1 log−3K/5(d)

)(
logr

4

(d)q
)k)

= O
(

logO(1)(d) log−3K/5(d)d1− i
r−1

)
= o(τ),

when K is large as m ≤M2 = O (log(d)). This proves the first statement of the claim.

In the case A = ∅, we need to bound the expectation of f(ξw : w ∈ V (H)) more
carefully. By Lemma 7.10 (iii),

E(Ỹ | F ′m) ≤
i∑

k=1

∑
U∈U(Υ)
|U |=k

∑
Υ′∈ΥU

Υ′v(m)qk. (7.20)

Recall Definition 7.9 and observe that in this case, for each 1 ≤ k ≤ i, there is precisely
one U ∈ U with |U | = k. Here, we see that ΥU = Zi−k,k. So as ω /∈ Am, applying (L.5)
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and using (7.2) to bound χ(i− k, k) (as i− k ≤ r − 3) to evaluate (7.20) gives

E(Ỹ | F ′m) ≤
i∑

k=1

Zi−k,kv (m)qk

≤
i∑

k=1

(
1 +

λ2

r3r

)
ψ(m)χ(i− k, k)αkd1− i

r−1

≤
i∑

k=1

2ψ(m)

(
λ2

r3r+1αk+1

)
αkd1− i

r−1

≤ ψ(m)

(
λ2

4α

)
d1− i

r−1 .

So

E(Ỹ | F ′m) ≤ ψ(m)

(
λ2

4α

)
d1− i

r−1 .

This proves the second statement of the claim.

As

τ logi(N)
√

E0 = o
(
ψ(m)d1− i

r−1

)
,

then applying Corollary 3.6 with the bound on E(Ỹ ) obtained in Claim 7.16 gives that

P(Y0(v, i,m+ 1) | F ′m) ≤ N−20
√

logN ,

as required.

Proposition 7.17.

P(Y>0) ≤ N−10
√

logN .

Proof. For v ∈ V (H), 0 ≤ i ≤ r−2, 1 ≤ j ≤ r−1 and 0 ≤ m ≤M2−1, let Y>0(v, i, j,m+1)

be the set of ω in AM2 such that at time J (ω) = m+ 1,

Y i,jv (m+ 1) > ψ(m+ 1)χ(i, j)d1− i
r−1 .

It follows that

Y>0 =
⋃

m,v,i,j

Y>0(v, i, j,m+ 1).

We will prove that for 0 ≤ m ≤M2 − 1,

P(Y>0(v, i, j,m+ 1) | F ′m) ≤ N−20
√

logN .

The proposition will then follow by taking the union bound over all choices of v, i, j and
m.

Conditioning on F ′m for m ≥ 0, the events Am and Y>0(v, i,m + 1) are disjoint and
so we assume that ω /∈ Am. Fix v ∈ V (H), 0 ≤ i ≤ r − 2, 1 ≤ j ≤ r − 1 and set
Υ := Y i,j = (F , R,D). We wish to apply Lemma 7.10 along with Corollary 3.6 to obtain
the required bound on P(Y>0(v, i, j,m + 1)). As ω /∈ Am, (L.3) holds at time m and we
may apply Lemma 7.10. So let Z̃ := f(ξw : w ∈ V (H)), where f(xw : w ∈ V (H)) is the
polynomial of degree at most i+ (r − 1)j obtained by applying Lemma 7.10 to Υ.

As j ≥ 1, Y i,j contains an unstable hyperedge and so every copy of Y i,j in H(m) is
destroyed when we sample every open hyperedge in Q(m). So Y i,jv (m+ 1) ∩ Y i,jv (m) = ∅.
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We wish to apply Corollary 3.6 with

τ :=
ψ(m)d1− i

r−1

logr
6

(N)

and E0 := logr
6+1(N) to obtain an upper bound on Y i,jv (m) which holds with high proba-

bility. We will use the following claim.

Claim 7.18. Let ω /∈ Am. For 1 ≤ a ≤ i+ (r − 1)j,

Ea(Z̃ | F ′m) = o(τ).

Also,

E(Z̃ | F ′m) ≤
(

1− 3λ

2

)
ψ(m)χ(i, j)d1− i

r−1 .

Proof. By Lemma 7.10 (ii), for any set A ⊆ V (H) with |A| = a,

E(∂Af(ξw : w ∈ V (H)) | F ′m) ≤
i+(r−1)j−a∑

k=0

∑
Υ′∈Υk,a

Υ′{v}∪A(m)(logr
4

(d)q)k. (7.21)

First let us evaluate this expression when |A| ≥ 1. For some 0 ≤ k ≤ i + (r − 1)j − a,
consider Υ′ = (F ′, R′, D′) ∈ Υk,a (as |A| ≥ 1, we have |R′| ≥ 2). By definition, F ′ is
isomorphic to F (ignoring which vertices are roots and marked). In particular, F ′ =

e0∪e1∪· · ·∪ej , where e0 is the central hyperedge, the hyperedges e1, . . . , ej are pairwise
disjoint and each ei intersects e in a neutral vertex vi.

For each 0 ≤ ` ≤ j, define R` := e` ∩R′ and define D` := e` ∩D′. For 1 ≤ ` ≤ j define
the configuration Z` := (e`, R` ∪ {v`}, D`). By Definition 7.9, Υ′ is obtained from Y i,j by
making a fruitful set ∅ 6= U ⊆ D neutral and turning some subset U ′ ⊆ U into roots. So
as U is fruitful, |D`| < r − 1 for each `.

For each 1 ≤ ` ≤ j, the configuration Z` satisfies one of the following.

(1) R` = ∅ and |D`| = s for some s ≤ r − 2: in this case Z` = Y s,0.

(2) R` 6= ∅ and Z` contains a neutral vertex: in this case Z` is a secondary configura-
tion.

(3) R` 6= ∅ and Z` contains no neutral vertex: in this case Z` = W |R`|+1.

Let S ⊆ V (H) be a set of cardinality |R`| + 1. If Z` satisfies (1) then as ω /∈ Am, using
(L.1) gives

Z`S(m) ≤ χ(s, 0)d1− s
r−1 = O

(
d

r−1−|R`|−|D`|
r−1

)
(7.22)

If Z` satisfies (2), then using (L.4) (as ω /∈ Am) and the fact that m = O (log(d)) gives

Z`S(m) ≤ logO(1)(d) · d
r−1−|R`|−|D`|

r−1 log−3K/5(d). (7.23)

If Z` satisfies (3), then using (L.3) (as ω /∈ Am) and the fact that m = O (log(d)) gives

Z`S(m) ≤ logr
4

(d) = O
(

logO(1)(d) · d
r−1−|R`|−|D`|

r−1

)
(7.24)

We consider two cases. Firstly |e0∩R′| = 1. Then as |A| ≥ 1, without loss of generality
|e1 ∩R′| ≥ 1. In this case, the configuration Ẑ := (e0 ∪ e1, R0 ∪R1, D0 ∪D1) is secondary.
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Let S be the set of all partitions P := (S1, . . . , Sj) of {v} ∪A such that |S1| = |R0 ∪R1|
and for 2 ≤ ` ≤ j, |S`| = |R`|. Using this notation, we can bound the number of copies of
Υ′ = (F ′, R′, D′) ∈ Υk,a rooted at {v} ∪A. We have

Υ′{v}∪A(m) ≤
∑
P∈S

∑
Z∈ẐS1

(m)

∑
(u2,...,uj)⊆V (Z)

j∏
`=2

Z`S`∪{u`}(m) (7.25)

where the sum is taken over all distinct ordered (u2, . . . , uj).
For any S1 ⊆ V (H) with |S1| = |R0 ∪R1|, as ω /∈ Am we can use (L.4) to give

ẐS1(m) ≤ logO(1)(d) · d
2r−1−|R0∪R1|−|D0∪D1|

r−1 log−3K/5(d).

As |S| = O(1), using this with (7.22), (7.23) and (7.24) to evaluate (7.25) gives

Υ′{v}∪A(m) = logO(1)(d)d
(j+1)r−j−

∑j
`=0

(|R`|+|D`|)
r−1 log−3K/5(d).

As Υ′ ∈ Υk,a, we have j(r− 1) + i+ 1 = |R|+ |D| = |R′|+ |D′|+ k, therefore |R′|+ |D′| =
j(r − 1) + i+ 1− k and

(j + 1)r − j −
j∑
`=0

(|R`|+ |D`|) = (j + 1)r − j − |R′| − |D′|

= (j + 1)r − j − j(r − 1)− i− 1 + k

= r − 1− i+ k.

So in this case,
Υ′{v}∪A(m) = logO(1)(d)d1− i−k

r−1 log−3K/5(d).

Now consider Υ′ = (F ′, R′, D′) ∈ Υk,a such that |e0 ∩ R′| > 1. This case follows
very similarly to the previous case. As j > 1, there is a neutral vertex of e0. So the
configuration Z0 := (e0, R0, D0) is secondary.

This time, let S be the set of all partitions P := (S0, . . . , Sj) of {v} ∪ A such that
|S0| = |R0| and for 1 ≤ ` ≤ j, |S`| = |R`|. As in the previous case, |S| = O(1). Using this
notation, we can bound the number of copies of Υ′ = (F ′, R′, D′) ∈ Υk,a rooted at {v}∪A.
As ω /∈ Am, we can use (L.4) to bound Z0

S0
and, for 1 ≤ ` ≤ j, we can use (7.22), (7.23)

and (7.24) as in the previous case to bound Z`S`∪{u`}. This gives

Υ′{v}∪A(m) ≤
∑
P∈S

∑
Z∈Z0(m)

∑
(u1,...,uj)⊆V (Z)

j∏
`=1

Z`S`∪{u`}(m)

= logO(1)(d)d
(j+1)r−j−

∑j
`=0

(|R`|+|D`|)
r−1 log−3K/5(d)

= logO(1)(d)d1− i−k
r−1 log−3K/5(d),

where, as before, the sum is taken over all distinct ordered (u1, . . . , uj).
Now we are able to evaluate (7.21) for |A| ≥ 1. As |Υk,a| = O(1),

E(∂Af(ξw : w ∈ V (H)) | F ′m) ≤
i+(r−1)j−a∑

k=0

∑
Υ′∈Υk,a

Υ′{v}∪A(m)(logr
4

(d)q)k

=

i+(r−1)j−a∑
k=0

logO(1)(d)d1− i−k
r−1 log−3K/5(d)(logr

4

(d)q)k

= logO(1)(d)d1− i
r−1 log−3K/5(d)

= o(τ),
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when K is sufficiently large, as required for the first statement of the claim.
In the case A = ∅, we need to bound the expectation of f(ξw : w ∈ V (H)) more

carefully. By Lemma 7.10 (iii),

E(Z̃ | F ′m) ≤
i+(r−1)j∑
k=1

∑
U∈U(Υ)
|U |=k

∑
Υ′∈ΥU

Υ′v(m)qk. (7.26)

Recall the definition of ΥU from Definition 7.9. Consider Υ′ := (F ′, D′, R′) ∈ ΥU for some
∅ 6= U ⊆ D. Recall that F ′ ⊇ F . Let e0 be the central hyperedge of F and let e1, . . . , ej
be the non-central hyperedges of F .

For 0 ≤ ` ≤ j, define U` := e` ∩ U . By definition, each vertex u of U is the unique
neutral vertex of an unstable hyperedge eu in F ′. Without loss of generality, suppose that
|U1| ≥ |U2| ≥ . . . ≥ |Uj |. As (by definition) U is fruitful (i.e. it intersects every unstable
hyperedge of Υ′) it must intersect every hyperedge e1, . . . , ej and hence |U`| ≥ 1 for all
1 ≤ ` ≤ j.

We will now define some configurations that will help us break up Υ′ in order to
bound the number of copies of it in H(m). For each 0 ≤ ` ≤ j, define G` to be the
subhypergraph of F ′ containing e` ∪ {eu : u ∈ U`}. Define R0 := R′ (= {v}) and, for
1 ≤ ` ≤ j, define R` := e` ∩ e0 (so |R`| = 1). For 0 ≤ ` ≤ j, define D` := G` ∩D′ and let Y `

be the configuration (G`, R`, D`).
First consider Y 0. We have |R0| = 1 and |D0| ≥ i − |U0|. If |U0| ≥ 1, we have

Y 0 ∈ Zi−|U0|,|U0|. If |U0| = 0, we have Y 0 = Y i,0. Hence as ω /∈ Am, by (L.1) and (L.5) we
have for any v ∈ V (H),

Y 0
v (m) ≤

χ(i, 0)d1− i
r−1 if |U0| = 0,(

1 + λ2

r3r

)
ψ(m)χ(i− |U0|, |U0|)d1− i−|U0|

r−1 otherwise.
(7.27)

Note that when |U0| = 0, we can write χ(i, 0)d1− i
r−1 = χ(i− |U0|, |U0|)d1− i−|U0|

r−1 .

Now when 1 ≤ ` ≤ j, we have |U`| ≥ 1 (as U is fruitful), |R`| = 1 and |U`|+ |e` ∩D′| =
r − 1. So in particular, for each 1 ≤ ` ≤ j, we have Y ` ∈ Zr−1−|U`|,|U`|.

For Z ∈ Y 0
v (m), let h(Z) denote the central hyperedge of Z. Putting this together and

applying (L.5) (as ω /∈ Am) gives

Υ′v(m) ≤
∑

Z∈Y 0
v (m)

∑
(u1,...,uj)∈h(Z)\({v}∪I(m))

j∏
`=1

Zr−1−|U`|,|U`|
u`

(m)

≤ Y 0
v (m)

(r − 1− i)!
(r − 1− i− j)!

j∏
`=1

((
1 +

λ2

r3r

)
ψ(m)d

|U`|
r−1 χ(r − 1− |U`|, |U`|)

)
.

Applying (7.27) to this gives

Υ′v(m) ≤ Ci,j · χ(i− |U0|, |U0|)d1− i−|U0|
r−1

j∏
`=1

(
d
|U`|
r−1 · χ(r − 1− |U`|, |U`|)

)
, (7.28)

where

Ci,j :=
(r − 1− i)!

(r − 1− i− j)!

(
1 +

λ2

r3r

)j
ψj(m) ·max

{
1,

(
1 +

λ2

r3r

)
ψ(m)

}
. (7.29)

Rewriting the right hand side of (7.26) gives

E(Z̃ | F ′m) ≤
i∑

b=0

∑
U∈U(Υ)
|U0|=b

∑
Υ′∈ΥU

Υ′v(m)q|U |.
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So using (7.28) to bound Υ′v(m) and using the fact that |U | =
∑j
`=0 |U`| gives

E(Z̃ | F ′m) ≤ Ci,j ·
i∑

b=0

qb
∑

U∈U(Υ)
|U0|=b

χ(i− b, b)d1− i−b
r−1

j∏
`=1

d
|U`|
r−1 ·χ(r− 1− |U`|, |U`|)q|U`|. (7.30)

Now for each distinct ordered partition (k1, . . . , kj) of [k] where k1 ≥ . . . ≥ kj and for
each b, by the definition of U(Υ) (in Definition 7.9) and the definition of Y i,j (recall
Definition 2.7), there is precisely one U ∈ U(Υ) such that (|U1|, . . . , |U`|) = (k1, . . . , k`)

and |U0| = b. Therefore, from (7.30) we have

E(Z̃ | F ′m) ≤ Ci,j ·
i∑

b=0

qbχ(i− b, b)d1− i−b
r−1

(
r−1∑
`=1

q`χ(r − 1− `, `)d
`

r−1

)j

= Ci,j · d1− i
r−1 ·

i∑
b=0

αbχ(i− b, b)

(
r−1∑
`=1

α`χ(r − 1− `, `)

)j
. (7.31)

Consider the first summation in (7.31). We have

i∑
b=0

χ(i− b, b)αb = χ(i, 0) +
i∑

b=1

χ(i− b, b)αb

= χ(i, 0)

(
1 +

i∑
b=1

χ(i− b, b)αb

χ(i, 0)

)

≤ χ(i, 0)

(
1 +

i∑
b=1

αb

χ(i, 0)
· λ2χmin

r3r+1(1 + α+ αr)
· χ(r − 2, 1)b−1

)
, (7.32)

where in the final line (7.6) was used to bound χ(i− b, b) (and we ignored the factor of
(1 + χmax)). Now using (in this order) the fact that αs < 1 + α+ αr for 0 ≤ s ≤ r − 1, the
fact that χmin ≤ χ(i, 0) (by definition) and that χ(r − 2, 1) < 1, we have

αb

χ(i, 0)
· λ2χmin

r3r+1(1 + α+ αr)
· χ(r − 2, 1)b−1 <

χmin

χ(i, 0)
· λ2

r3r+1
· χ(r − 2, 1)b−1

<
λ2

r3r+1
· χ(r − 2, 1)b−1

≤ λ2

r3r+1
. (7.33)

Using (7.32) and (7.33), as i < r we obtain the bound

i∑
b=0

χ(i− b, b)αb < χ(i, 0)

(
1 +

λ2

r3r

)
. (7.34)

Now consider the second summation in (7.31). We have

r−1∑
`=1

χ(r−1−`, `)α` = χ(r−2, 1)α+

r−1∑
`=2

χ(r−1−`, `)α`

= χ(r−2, 1)α

(
1 +

r−1∑
`=2

χ(r−1−`, `)α`−1

χ(r−2, 1)

)

= χ(r−2, 1)α

(
1 +

r−1∑
`=2

α`−1

χ(r−2, 1)
· λ2χmin

r3r+1(1 + α+ αr)
· χ(r−2, 1)`−1

)
,

(7.35)
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where in the final line (7.6) was used to bound χ(r − 1− `, `). We will now show that we

can bound the second term within the bracket in (7.35) by λ2

r3r , which will give

r−1∑
`=1

χ(r − 1− `, `)α` < χ(r − 2, 1)α

(
1 +

λ2

r3r

)
. (7.36)

To bound the second term within the bracket in (7.35), we will bound each term of
the sum by λ2

r3r+1 . First, observe that as ` ≥ 2 and χ(r − 2, 1) < 1, we have

α`−1

χ(r−2, 1)
· λ2χmin

r3r+1(1 + α+ αr)
· χ(r−2, 1)`−1 ≤ α`−1 λ2χmin

r3r+1(1 + α+ αr)

≤ λ2χmin

r3r+1

α`−2

(1 + α+ αr)

≤ λ2χmin

r3r+1
,

where for the second inequality we used that χmin ≤ χ(r − 2, 0) = 1−3λ
α (by (7.5)),

and for the final inequality we used that ` ∈ {2, . . . , r − 1} so α`−2

(1+α+αr) < 1. Putting
together (7.31), (7.34) and (7.36) gives

E(Z̃ | F ′m) ≤ Ci,j · d1− i
r−1 · χ(i, 0)

(
1 +

λ2

r3r

)(
χ(r − 2, 1)α

(
1 +

λ2

r3r

))j
≤ Ci,j

(
1 +

λ2

r3r

)j+1

χ(i, 0)χ(r − 2, 1)jαjd1− i
r−1 (7.37)

First consider the case (i, j) 6= (r − 2, 1). By Definition 7.1 and (7.37) we have

E(Z̃ | F ′m) ≤ Ci,j
r3r

(
1 +

λ2

r3r

)j+1

χ(i, j)d1− i
r−1 . (7.38)

Using the definition of Ci,j (in (7.29)), we have

Ci,j
r3r

(
1 +

λ2

r3r

)j+1

=
1

r3r

(r − 1− i)!
(r − 1− i− j)!

(
1 +

λ2

r3r

)2j+1

ψj(m) max

{
1,

(
1 +

λ2

r3r

)
ψ(m)

}
≤ 1

r2r

(
1 +

λ2

r3r

)2j+1

ψ(m) max

{
1,

(
1 +

λ2

r3r

)
ψ(m)

}

≤ 1

r2r

(
1 +

λ2

r3r

)2j+2

ψ(m)

≤ 1

r2r
(1 + λ2)ψ(m)

≤
(

1− 3λ

2

)
(1− λ)ψ(m)

=

(
1− 3λ

2

)
ψ(m+ 1), (7.39)

where the final inequality follows from the fact that λ < 1/8 and r ≥ 3. Combining (7.38)
with (7.39) gives

E(Z̃ | F ′m) ≤
(

1− 3λ

2

)
ψ(m+ 1)χ(i, j)d1− i

r−1 ,

as required. This completes the case when (i, j) 6= (r − 2, 1).
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In the case i = r − 2 and j = 1, from (7.29) we have

Cr−2,1 ≤
(

1 +
λ2

r3r

)2

ψ(m). (7.40)

So from (7.40), (7.37) and (7.5) we have

E(Z̃ | F ′m) ≤ Cr−2,1

(
1 +

λ2

r3r

)2

χ(r − 2, 0)χ(r − 2, 1)αd1− r−2
r−1

≤ Cr−2,1

(
1 +

λ2

r3r

)2
1− 3λ

α
χ(r − 2, 1)αd1− r−2

r−1

≤
(

1 +
λ2

r3r

)4

(1− 3λ)ψ(m)χ(r − 2, 1)d1− r−2
r−1

≤
(

1− 3λ

2

)
(1− λ)ψ(m)χ(r − 2, 1)d1− r−2

r−1

≤
(

1− 3λ

2

)
ψ(m+ 1)χ(r − 2, 1)d1− r−2

r−1 ,

where the penultimate expression follows from the fact that λ < 1/8 and r ≥ 3.
To summarise, when ω /∈ Am we have

E(Z̃ | F ′m) ≤
(

1− 3λ

2

)
ψ(m+ 1)χ(i, j)d1− i

r−1 ,

as required.

As
τ logi+(r−1)j(N)

√
E0 = o

(
ψ(m)d1− i

r−1

)
,

then applying Corollary 3.6 with the bound on E(Z̃) obtained in Claim 7.18 we get that

P(Y>0(v, i, j,m+ 1) | F ′m) ≤ N−20
√

logN ,

as required.

This completes the proof of Lemma 7.3 and the proof of Theorem 1.3 in the subcritical
case.

8 The second phase in the supercritical case

In this section we prove the “supercritical case” of Theorem 1.3 (i.e. when cr−2α >
(r−2)r−2

(r−1)r−1 ). Recall, as in the previous section, that we have “restarted the clock” and that

in this case the first phase runs until time T :=
⌊

1
α logN

⌋
. It may be helpful to recall the

exact process we run in this phase, given in Subsection 2.4. Let us repeat the definition
of M2 from (2.17) in the supercritical case for the sake of convenience:

M2 = min
{
m : (logN)(

3
2 )

m

> d
1

r−1 + 1
10

}
(8.1)

Theorem 1.3 in this case is implied by the following lemma.

Lemma 8.1. With probability at least 1−N−7: For all 1 ≤ m ≤M2 the bound

Qv(m) ≥ (logN)(
3
2 )

m

holds for all v ∈ V (H) \ I(m).
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We first show how the supercritical case of Theorem 1.3 follows from Lemma 8.1,
before proving Lemma 8.1.

Proof of Theorem 1.3 in the supercritical case. By Lemma 8.1 and the definition of M2

(see (8.1)), with probability at least 1−N−7 the bound

Qv(M2) ≥ d
1

r−1 + 1
10 ,

holds for all v ∈ V (H) \ I(M2). We now sample every open hyperedge in Q(M2). As each
hyperedge is independently in Hq, the probability that some vertex v fails to be infected
after this is

(1− q)Qv(M2) ≤ (1− q)d
1

r−1
+ 1

10 ≤ e−qd
1

r−1
+ 1

10 ≤ e−αd
1
10 < N−10

√
logN . (8.2)

So by the union bound, with probability at least 1−N−5, every healthy vertex becomes
infected in this round. This completes the proof of Theorem 1.3 in the supercritical
case.

Recall from Subsection 2.4 that in the supercritical case each round consists of two
steps. In the first step a subset Q′(m) ⊆ Q(m) is chosen and every hyperedge in Q′(m)

is sampled. In the second step, for any healthy vertex contained in a large number of
open hyperedges, all hyperedges containing that vertex are sampled.

Definition 8.2. Define A0 := BM (given in Definition 6.1). For 1 ≤ m ≤M2, define Am
to be the event (in Ω′, which was defined in Subsection 3.4) that either A0 occurs, or
there exists some v ∈ V (H) \ I(m) such that either:

(S.1) Qv(m) < (logN)(
3
2 )

m

, or

(S.2) Qiv(`) is large, for some ` ≤ m.

So to prove Lemma 8.1, it suffices to prove that

P(AM2) ≤ N−7. (8.3)

As mentioned above, to prove Lemma 8.1 we use a lower tail version of Janson’s
Inequality, Theorem 3.7. In each of our applications of Theorem 3.7, we will simply set
ε = 1/2 and use the fact that ϕ(−1/2) = (1/2) log(1/2) + (1/2) ≥ 1/10. We are now ready
to complete the proof of Lemma 8.1.

Proof of Lemma 8.1. Given a point ω ∈ AM2 , let

J = J (ω) := min{i : ω ∈ Ai}.

For 0 ≤ m ≤M2−1 and v ∈ V (H), let S(v,m+ 1) be the set of ω ∈ AM2
such that ω /∈ A0,

J (ω) = m+ 1, v /∈ I(m+ 1) and either:

(i) Qv(m+ 1) < (logN)(
3
2 )

m+1

, or

(ii) Qiv(m+ 1) is large.

We remark that as J (ω) = m+ 1, Qiv(`) is not large for ` < m+ 1.
It follows that

AM2
= A0 ∪

⋃
0≤m≤M2−1
v∈V (H)

S(v,m+ 1). (8.4)

We will prove that for all 0 ≤ m ≤M2 − 1 and v ∈ V (H),

P(S(v,m+ 1)) ≤ N−10. (8.5)
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By Lemma 6.2, P(A0) ≤ N−2
√

logN . Lemma 8.1 will follow from (8.5) by taking the union
bound over all m and v ∈ V (H) (as M2 = O (log log(d)) by (2.2) and (8.1)).

So for 0 ≤ m ≤M2− 1, assume ω /∈ Am. Fix v ∈ V (H) \ I(m) and consider S(v,m+ 1).
First let us bound the probability that v /∈ I(m+ 1) but (ii) holds.

Suppose Qiv(m + 1) is large. By the argument above (culminating in (8.2)), with
probability at least 1 − N−10

√
logN the vertex v becomes infected (and is hence not

present in I(m+ 1)) when every hyperedge of Qiv(m+ 1) is sampled. So the probability
that v /∈ I(m+ 1) but (ii) holds is at most N−10

√
logN .

We will now show that when ω /∈ Am,

P
(
Qv(m+ 1) < (logN)(

3
2 )

m+1
∣∣∣F ′m) ≤ N−15. (8.6)

Then (8.5) will follow from this and the argument of the previous paragraph.
As ω /∈ Am, for all u ∈ V (H) \ I(m) we have

Qu(m) ≤ d
1

r−1 + 1
10 . (8.7)

(By definition of the process, if Qu(m) > d
1

r−1 + 1
10 then we would have sampled these

open hyperedges.) Recall from Subsection 2.4 that Q′(0) := Q(0) and for m > 0, for each

v ∈ V (H) \ I(m) we choose Q′v(m) to be a subset of Qv(m) with cardinality (logN)(
3
2 )

m

(which is possible here by definition of Am) and set

Q′(m) :=
⋃

v∈V (H)\I(m)

Q′v(m).

Fix v ∈ V (H) \ I(m). Define s := s(m), to be the integer in [0, r − 2] such that the
cardinality of Y sv (m) := Y s,0v (m) − Y s+1,0

v (m) is maximised (Y sv (m) is the number of
hyperedges of H(m) containing v and exactly s infected vertices). As ω /∈ A0, by (B.1)
from Definition 6.1 we have s(0) = 0.

Define G := G(m) to be the (r − 1 − s)-uniform hypergraph on vertex set Q′(m),
where S := {e1, . . . , er−1−s} ∈ E(G) if and only if there exists some F ∈ Y sv (m) such that
V (F) \ ({v} ∪ I(m)) = V (S) \ I(m). In other words, for each healthy vertex x of F \ {v}
there is a hyperedge in S containing x. Then F will become a member of Qv(m) if each
of e1, . . . , er−1−s is successfully sampled from Q′(m).

Recall the definition of Q0
v(m+ 1) from the description of the second phase process

in the supercritical case, given in Subsection 2.4. Given e ∈ E(G), let ξe be the Bernoulli
random variable which is equal to 1 if and only if e ⊆ V (G)q and define

X :=
∑

e∈E(G(m))

ξe.

The random variable X counts the number of sets {e1, . . . , er−1−s} of open hyperedges in
Q′(m) whose unique healthy vertices are precisely the r − 1− s healthy vertices, other
than v, in an element of Y sv (m) such that all of e1, . . . , er−1−s are successfully sampled.
Therefore, to bound the cardinality of Q0

v(m+ 1) for some v /∈ I0(m+ 1), it is useful to
consider the cardinality of X. However, note that several of the events counted by X
may give rise to the same open hyperedge in Q0

v(m+ 1), as many different sets of open
hyperedges in Q′(m) may have the same set of healthy vertices. However, due to the
way that we defined Q′(m), we have some control over the amount of “over-counting”
that occurs.

Let us formalise this intuition. For 0 ≤ m ≤M2, define

b(m) :=


log log(N) if (logN)(

3
2 )

m

< d
1

2(r−1)

(log(N))2 if d
1

2(r−1) ≤ (logN)(
3
2 )

m

< (log(N))
2

(100q)−1

2q · (logN)(
3
2 )

m

otherwise.
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Say that a vertex w of V (H) \ I(m) is bad at time m if at least b(m) hyperedges of Q′w(m)

are successfully sampled. Let us pause briefly to show that, with high probability, there
are no bad vertices at any point in the second phase.

Claim 8.3. Let 0 ≤ m ≤M2. If ω /∈ Am, then, with probability at least 1−N−Ω(log log(N)),
there are no bad vertices at time m.

Proof. First, suppose that m satisfies

(logN)(
3
2 )

m

< d
1

2(r−1) .

For any such m, since ω ∈ Am, we know that Q′w(m) < d
1

2(r−1) for every vertex w /∈ I(m)

(note that this is also clearly true in the case m = 0). The expected number of subsets of
Q′w(m) of cardinality log log(N) which are all successfully sampled is at most(

Q′w(m)

log log(N)

)
qlog log(N) ≤ (Q′w(m)q)log log(N) = N−Ω(log log(N)).

So, by Markov’s Inequality, the probability that there is at least one such set is at most
N−Ω(log log(N)), as is the probability that there is at least one bad vertex.

Next, suppose that

d
1

2(r−1) ≤ (logN)(
3
2 )

m

< (log(N))
2

(100q)−1.

In this case, since ω /∈ Am, for any vertex w /∈ I(m), the expected number of successfully
sampled open hyperedges in Q′w(m) is Q′w(m) ·q < (log(N))

2
/100. By the Chernoff bound,

the probability that there are more than (log(N))2 successful samples is at most

2−(log(N))2 = o
(
N−Ω(log log(N))

)
.

By Markov’s Inequality, we again get that the probability of having at least one bad
vertex is at most N−Ω(log log(N)).

Finally, suppose that

(logN)(
3
2 )

m

≥ (log(N))
2

(100q)−1.

Since ω /∈ Am, the expected number of successfully sampled hyperedges in Q′w(m) is

q · (logN)(
3
2 )

m

for any vertex w /∈ I(m). By the Chernoff bound, the probability that

2q · (logN)(
3
2 )

m

are successfully sampled is at most

e
−Ω

(
q·(logN)(

3
2 )

m)
≤ e−Ω((log(N))2) = o

(
N−Ω(log log(N))

)
.

Again, the result follows by Markov’s Inequality.

Therefore, the above claim tells us that, with high probability,

Q0
v(m+ 1) ≥ X/b(m)r−1−s. (8.8)

So, to prove (8.5), it suffices to prove a lower bound onX which hold with high probability.
Before analysing the variable X, it is useful to bound |E(G)|.
Claim 8.4. If ω /∈ A0:

d

4
· (logN)(r−1)2 ≤ |E(G(0))| ≤ 4d · (logN)(r−1)2

and, for m ≥ 1, if ω /∈ Am:

d

2(r − 1)
(logN)(r−1−s)( 3

2 )
m

≤ |E(G(m))| ≤ d · (logN)(r−1−s)( 3
2 )

m

.
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Proof. First consider E(G(0)). As mentioned above, as ω /∈ A0 we have that s(0) = 0 and
so G(0) is a (r−1)-uniform hypergraph on vertex set Q′(0) = Q(0). For an open hyperedge
e, let h(e) be the healthy vertex of e. By definition, the set {e1, . . . , er−1} is a hyperedge
of G(0) if and only if there exists a hyperedge {v, h(e1), . . . , h(er−1)} ∈ E(H(m)).

Say that a member of Z0,r−1
v (m) is centrally healthy if its central hyperedge contains

no vertex of I(m) and let Z̃0,r−1
v (0) be the set of centrally healthy members of Z0,r−1

v (0).
Consider the map φ from E(G(0)) to Z̃0,r−1

v (0) which maps {e1, . . . , er−1} ∈ E(G(0)) to
the unique member of Z̃0,r−1

v (0) with central hyperedge {v, h(e1), . . . , h(er−1)} and non
central hyperedges e1, . . . , er−1. By definition of G(0), we have that φ is a bijection.

So to give a lower bound on |E(G(0))|, it suffices to prove a lower bound on the
number of centrally healthy members of Z0,r−1

v (`). By definition of Z0,r−1, a lower bound
is given by the number of centrally healthy members of Y 0,r−1

v (0). We will bound this
number from below.

First let us bound the number of Y in Y 0,r−1
v (0) that are not centrally healthy. Each

such Y can be thought of as the union of some Y ′ in Y 1,r−2
v (0) with a copy of W 1 rooted

at the vertex of Y ′ representing the marked vertex of Y 1,r−2. So in particular, as ω /∈ A0,
using (B.1) and (B.3) from Definition 6.1 we can bound the number of such Y above by

logO(1)(d) · d
r−2
r−1 .

So by the previous two paragraphs, the number of members of Y 0,r−1
v (0) that are not

centrally healthy is logO(1)(d) · d
r−2
r−1 . As ω /∈ A0, using (B.1) from Definition 6.1 we have

Y 0,r−1
v (0) ∈ (1± o(1))d((c+ αT )r−1 − T )r−1. (8.9)

So
1

2
d((c+ αT )r−1 − T )r−1 ≤ |E(G(0))|. (8.10)

Now let us think about an upper bound for |E(G(0))|. By the above discussion we
have |E(G(0))| ≤ Z0,r−1

v (0). We bound Z0,r−1
v (0) analogously to in the proof of Lemma 7.3.

The variable Z0,r−1
v (m) counts the number of ways to choose

(a) a hyperedge e = {v, w1, . . . , wr−1} ∈ H(m) containing v, and

(b) hyperedges e1, . . . , er−1 such that e` ∈W 1
w`

(m) for 1 ≤ ` ≤ r − 1.

The number of choices in which each of the hyperedges e1, . . . , er−1 intersects e on only
one vertex and no pair of them intersect one another is precisely Y 0,r−1

v (m). If one of the
hyperedges e1, . . . , er−1 intersects e on more than one vertex or two of them intersect
one another, then the union of e and e1, . . . , er−1 consists of a copy F ′ of a secondary
configuration with r − 1 neutral vertices and a set of copies of W 1 rooted at vertices of
F ′. As ω /∈ A0, by (B.2) and (B.3) from Definition 6.1 the number of choices in this case
is at most

logO(1)(d) · d · log−3K/5(d),

This is o(d), provided that K is sufficiently large.
As ω /∈ A0, by (B.1) from Definition 6.1 and the previous argument we have

Z0,r−1
v (0) ≤ (1 + o(1))Y 0,r−1

v (0).

So |E(G(0))| ≤ 2 · Y 0,r−1
v (0) and combining this with (8.9) and (8.10) gives

1

2
d((c+ αT )r−1 − T )r−1 ≤ |E(G(0))| ≤ 2d((c+ αT )r−1 − T )r−1. (8.11)

By definition of T (see 2.10), for N sufficiently large we have

1

2
(log(N))(r−1)2 ≤ ((c+ αT )r−1 − T )r−1 ≤ 2(log(N))(r−1)2 . (8.12)
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Combining (8.11) and (8.12) gives

d

4
· (logN)(r−1)2 ≤ |E(G(0))| ≤ 4d · (logN)(r−1)2 ,

as required for the first part of the claim.

Now consider E(G(m)) form ≥ 1. First let us bound Y sv (m) for any v ∈ V (H(m))\I(m).
As ω /∈ Am, v was never in an open hyperedge sampled in the second step of any round.
So by (8.7), definition of the process and definition of M2 (see 8.1):

(1) at most m ·d
1

r−1 + 1
10 = o(d) open hyperedges containing v have been sampled during

the second phase up until now,

(2) Qv(m) ≤ d
1

r−1 + 1
10 .

As ω /∈ Am, by (B.1) from Definition 6.1 we have Y 0
v (0) ≥ (1 − o(1))d. So putting this

together with (1) and (2) gives that there are at least (1 − o(1))d ≥ d/2 hyperedges
containing v in H(m) \Qv(m).

So by the pigeonhole principle,

d

2(r − 1)
≤ Y sv (m) ≤ d.

By definition of G(m), we have

|E(G(m))| =
∑

Y ∈Y s
v (m)

∏
u∈V (Y )\({v}∪I(m))

Q′u(m).

Using the definition of Q′u(m) with the previous two expressions gives

d

2(r − 1)
(logN)(r−1−s)( 3

2 )
m

≤ |E(G(m))| ≤ d · (logN)(r−1−s)( 3
2 )

m

,

completing the proof of the claim.

As E(ξe) = qr−1−s, Claim 8.4 implies that when m = 0 we have

αr−1

4
· (logN)(r−1)2 ≤ E (X | F ′m) ≤ 2αr−1 · (logN)(r−1)2 , (8.13)

and when m > 0, we have

αr−1−s

2(r − 1)
d

s
r−1 ·(logN)

(r−1−s)( 3
2 )

m

≤ E (X | F ′m) ≤ αr−1−sd
s

r−1 ·(logN)
(r−1−s)( 3

2 )
m

. (8.14)

For any m ≥ 0, as 0 ≤ s ≤ r − 2, the lower bound of (8.13) and lower bound in (8.14)
yield

E (X | F ′m) ≥ 2 · (logN)(
3
2 )

m+1

b(m)r−1−s.

We require one more claim before we can apply Theorem 3.7.

Claim 8.5. For 0 ≤ m ≤M2 − 1, when ω /∈ Am,∑
e,e′∈E(G(m))

e∩e′ 6=∅

E (ξeξe′ | F ′m) = O
(
E (X | F ′m)

2
log−

3
2 N

)
.
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Proof. We have

∑
e,e′∈E(G(m))

e∩e′ 6=∅

E (ξeξe′ | F ′m) =
∑

e∈E(G(m))

r−2∑
j=1

∑
e′∈E(G(m))
|e∩e′|=j

E (ξeξe′ | F ′m) .

For fixed e ∈ E(G(m)), recall that e = {e1, . . . , er−s−1} where each ei ∈ Q′(m). The
quantity |{e′ ∈ E(G) : |e ∩ e′| = j}| is bounded above by the number of copies Z of
Zs,r−1−s rooted at v in H(m) such that Z contains some {e′1, . . . , e′j} ⊆ {e1, . . . , er−s−1}.
There are O (∆j+1(H)) ways to choose the hyperedge f of Z containing v. Given the
choice of f , for each u that is not contained in a hyperedge of {e′1, . . . , e′j} there are
precisely Q′u(m) ways to choose the open hyperedge rooted at u.

So when m = 0, as ω /∈ A0, by (B.3) from Definition 6.1 for each v ∈ V (H) \ I(0) we

have Qv(0) ≤ logr
4

(d) and so

∑
e,e′∈E(G(0))
e∩e′ 6=∅

E (ξeξe′ | F ′m) ≤ 1

2

∑
e∈E(G(0))

r−2∑
j=1

∆j+1(H) · (logN)r
4(r−1−j)q2(r−1)−j

= O
(

(logN)r
4(r−2)+(r−1)2−K

)
,

where in the last line we used the upper bound on |E(G(0))| given by Claim 8.4. Using
the upper bound of (8.13), we see the required bound for m = 0 follows when K is taken
to be large with respect to r.

When m ≥ 1, again using Claim 8.4 we have

∑
e,e′∈E(G(m))

e∩e′ 6=∅

E (ξeξe′ | F ′m) ≤
∑

e∈E(G(m))

r−2∑
j=1

∆j+1(H) ·
(

(logN)(
3
2 )

m)(r−1−s−j)
q2(r−1−s)−j

= O
(
d

2s
r−1 (logN)(2(r−1−s)−1)( 3

2 )
m−K

)
.

Using the upper bound in (8.14), we see that the required bound holds for m > 0.

So we can apply Theorem 3.7 with ε = 1/2 to give

P

(
X ≤ 1

2
E(X)

∣∣∣F ′m) ≤ e−Ω
(

log
3
2 N

)
.

So combining the lower bounds given in (8.13) and (8.14) with (8.8) yields

P
(
Q0
v(m+ 1) < (logN)(

3
2 )

m+1
∣∣∣ F ′m) ≤ N−20.

If v is contained in an open hyperedge sampled in the second step of this round, it
becomes infected with probability at least 1−N−10

√
logn (by the argument culminating

in (8.2)). As Q0
v(m) = Qv(m) for any healthy vertex v not contained in an open hyperedge

sampled in the second step of this round, this completes the proof of (8.6) and hence the
proof of Lemma 8.1.

This concludes our discussion of the second phase and therefore the proof of Theo-
rem 1.3.
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9 Strictly k-balanced hypergraphs

In this final section, using Theorem 1.1 we prove Theorem 1.5 as well as a gener-
alisation of it to strictly k-balanced k-uniform hypergraphs, which we define now. The
following two definition generalise the notion of 2-density and 2-balancedness for graphs.

Definition 9.1. Given a k-uniform hypergraph F with at least two hyperedges, the
k-density of F is defined by dk(F) := |E(F)|−1

|V (F)|−k .

Definition 9.2. Say that a k-uniform hypergraph F with at least two hyperedges is
k-balanced if dk(F ′) ≤ dk(F) for every proper subhypergraph F ′ of F with at least two
hyperedges. Say that F is strictly k-balanced if this inequality is strict for all such
subhypergraphs.

For hypergraphs G and F , define HG,F to be the hypergraph whose vertices are the
hyperedges of G and whose hyperedges are the sets of hyperedges which form copies
of F in G. Let K(k)

n denote the complete k-uniform hypergraph on n vertices. For any
k-uniform hypergraph F , we have that H

K
(k)
n ,F is |E(F)|-uniform and d(n,F)-regular for

some integer d(n,F) such that d(n,F) = Θ
(
n|V (F)|−k) (the constant factor is related to

the number of automorphisms of F which fix a hyperedge).
Now we state a generalisation of Theorem 1.5 to strictly k-balanced k-uniform

hypergraphs.

Lemma 9.3. Let F be a strictly k-balanced k-uniform hypergraph with at least three
hyperedges satisfying δ(F) ≥ 2. Define r := |E(F)|, H := H

K
(k)
n ,F and d := d(n,F). If

q := αd−1/(r−1) for some fixed α > 0, then

pc (Hq) =

(
r − 2

α1/(r−2)(r − 1)(r−1)/(r−2)
+ o(1)

)
· d−1/(r−1).

Below, we show that Theorem 1.5 follows from Theorem 1.1 and the case k = 2 of the
following proposition. Theorem 9.3 follows from the same proof.

Proposition 9.4. For k ≥ 2, let F be a k-uniform hypergraph with at least 3 hyperedges
and let n ≥ |V (F)|. Define r := |E(F)|, H := H

K
(k)
n ,F and d := d(n,F).

(i) If F is strictly k-balanced and δ(F) ≥ 2, then H is (d, ρ, ν)-well behaved where

ρ = O
(
d−

1
(|E(F)|−1)(|V (F)|−k)

)
and ν = O

(
d

k
|V (F)|−k

)
.

(ii) If F is not strictly k-balanced, then for every hyperedge of H, there exists some

2 ≤ ` ≤ r − 1 and a set S of ` vertices, such that deg(S) = Ω
(
d1− `−1

|E(F)|−1

)
.

(iii) If δ(F) = 1, then for every e1 ∈ V (H) there exists some e2 ∈ V (H) such that
|NH(e1) ∩NH(e2)| = Ω(d).

The purpose of parts ii and iii of Proposition 9.4 is to show that both hypotheses in
part i of Proposition 9.4 are necessary (in a strong sense). That is, in order for H

K
(k)
n ,F

to be (d(n,F), ρ, ν)-well behaved where ρ and ν are functions of n such that ρ tends to
zero as n→∞, one requires both that F is strictly k-balanced and that δ(F) ≥ 2.

As it turns out, every strictly 2-balanced graph F with at least three edges satisfies
δ(F ) ≥ 2 (see the proof of Theorem 1.5 below). Thus, in this case, the assumption that
δ(F ) ≥ 2 in part i of Proposition 9.4 is redundant. However, for k-uniform hypergraphs
with k ≥ 3, this is no longer the case. For example, a “loose k-uniform cycle” is strictly
k-balanced and contains vertices of degree one; see Figure 14 for an example.

We first show that Proposition 9.4 implies Theorem 1.5 before proving the proposition
itself.
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Figure 14: A loose 3-uniform triangle.

Proof of Theorem 1.5. First, we show that d2(F ) ≥ 1. If not, then F contains at most
|V (F )| − 2 edges, and so F is disconnected. If F contains a connected component F ′

with at least two edges, then d2(F ′) ≥ 1 > d2(F ), contradicting the fact that F is strictly
2-balanced. Otherwise, every component of F contains at most one edge, which implies
that d2(F ) ≤ 1/2. In this case, we let F ′ be a subgraph of F consisting of two edges and
four vertices. Since F has at least three edges, we have that F ′ is a proper subgraph of
F . Also, d2(F ′) = 1/2 ≥ d2(F ), which contradicts the fact that F is strictly 2-balanced.

By the previous paragraph, we have d2(F ) ≥ 1. In particular, this implies that F
cannot contain a vertex v of degree one; otherwise, let F ′ := F \ {v} and observe
that F ′ has at least two edges and that d2(F ′) ≥ d2(F ). Thus, δ(F ) ≥ 2 and so we
can apply part i of Proposition 9.4 to get that there exists β, s > 0 such that HKn,F is(
d(n, F ), d(n, F )−s, d(n, F )β

)
-well behaved for n sufficiently large. The result now follows

by applying Theorem 1.1 to HKn,F .

We now present the proof of Proposition 9.4.

Proof of Proposition 9.4. First suppose that F is strictly k-balanced and that δ(F) ≥ 2.
As H is d-regular, conditions a and b of Definition 1.2 hold for H. Also, |V (H)| =

(
n
k

)
and

so, as d = Θ
(
n|V (F)|−k), we have

|V (H)| = O
(
nk
)

= O
(
n(|V (F)|−k) k

|V (F)|−k

)
= O

(
d

k
|V (F)|−k

)
.

Therefore, condition e of Definition 1.2 holds.
Next, we show that condition c of Definition 1.2 is satisfied. For 2 ≤ ` ≤ r − 1, let

S be a set of ` vertices of H and let F ′ be the subhypergraph of K(k)
n induced by the

hyperedges corresponding to elements of S. If F ′ is not isomorphic to a subhypergraph
of F , then deg(S) = 0 and we are done. Otherwise, we have

deg(S) = Θ
(
n|V (F)|−|V (F ′)|

)
.

Now, since F is strictly k-balanced,

|E(F ′)| − 1

|V (F ′)| − k
<
|E(F)| − 1

|V (F)| − k
⇒ (|E(F ′)| − 1) (|V (F)| − k)

|E(F)| − 1
< |V (F ′)| − k

⇒ |V (F)| − |V (F ′)| < (|V (F)| − k)

(
1− |E(F ′)| − 1

|E(F)| − 1

)
= (|V (F)| − k)

(
1− `− 1

|E(F)| − 1

)
.

Since the above inequality is strict, we get

deg(S) = Θ
(
n|V (F)|−|V (F ′)|

)
= O

(
n(|V (F)|−k)(1− `−1

|E(F)|−1 )n−
1

|E(F)|−1

)
= O

(
d1− `−1

|E(F)|−1n−
1

|E(F)|−1

)
= O

(
d1− `−1

|E(F)|−1 d−
1

(|E(F)|−1)(|V (F)|−k)

)
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which implies condition c of Definition 1.2 is satisfied.
Next we show that if δ(F) ≥ 2, then condition d of Definition 1.2 holds. Let e1 and e2

be two distinct hyperedges of K(k)
n and let v1 be a vertex of e1 which is not contained

in e2. Suppose that F ′ is a copy of F in K
(k)
n containing e2 such that (F ′ \ {e2}) ∪ {e1}

is also a copy of F . Then, as δ(F) ≥ 2, we have that F ′ also contains v1. However, the

number of copies of F in K(k)
n containing e2 and v1 is

O
(
n|V (F)|−k−1

)
= O

(
d1− 1

|V (F)|−k

)
= o

(
d1− 1

(|E(F)|−1)(|V (F)|−k)

)
since F has at least two hyperedges. Therefore, H satisfies condition d of Definition 1.2.
This completes the proof of part i.

Now suppose that F is not strictly k-balanced and let F ′ be a subgraph of F with at
least 2 hyperedges such that dk(F ′) ≥ dk(F) and define ` = |E(F ′)|. Let e be a hyperedge

of H (by definition the corresponding hyperedges of K(k)
n induce a copy of F ′). So we can

pick S be a set of ` vertices of e such that the corresponding hyperedges of K(k)
n induce

a copy of F ′. Once again, we get that deg(S) = Θ
(
n|V (F)|−|V (F ′)|

)
. This time, though,

|V (F)| − |V (F ′)| ≥ (|V (F)| − k)

(
1− `− 1

|E(F)| − 1

)
.

Therefore, deg(S) = Ω
(
d1− `−1

|E(F)|−1

)
. This completes the proof of part ii.

To prove iii, suppose that F contains a vertex of degree one and let e be a hyperedge
of F containing such a vertex. Let t denote the number of vertices of degree one
contained in e. Fix e1 ∈ V (H) and let e2 be any hyperedge of K(k)

n which intersects e1

on k − t vertices. The number of copies of F in K
(k)
n containing e1 but not containing

any vertex of e2 \ e1 is at least a constant multiple of
(
n−|e2\e1|
|V (F)|−k

)
= Ω

(
n|V (F)|−k). For any

such copy, say F ′, we have that F ′ \ {e1} ∪ {e2} is also a copy of F . So

|NH(e1) ∩NH(e2)| = Ω
(
n|V (F)|−k

)
= Ω(d),

as d = Θ
(
n|V (F)|−k). This completes the proof of part iii, and of the proposition.

As we have proved, we can apply Theorem 1.1 to H
K

(k)
n ,F if and only if F is strictly

k-balanced and δ(F) ≥ 2. However, not only are these properties of F required to apply
the theorem, but if they are violated, then the critical probability may take on a different
value; in particular it may be lower than the result stated by our theorem.

Let us heuristically discuss why this is so. First consider the hypothesis that F
is strictly k-balanced. By Proposition 9.4 (ii), if F is not strictly k-balanced, then
there exists 2 ≤ ` ≤ r − 1 such that every hyperedge contains a set S of ` vertices

such that deg(S) = Ω
(
d1− `−1

r−1

)
. In particular, the bounds on the `-codegrees are not

sufficient to ensure that the secondary configurations remain a lower order term to
the Y configurations. For example, consider the secondary configuration X = (G, R,D)

where |V (G)| = 2r − `, E(G) = {e1, e2}, e1 ∩ e2 = {v1, v2, . . . , v`}, |R| = 1, R ⊆ e1 \ e2 and
D = V (G) \R ∪ {v1}. Letting ` be as in Proposition 9.4 (ii), we would expect

Xv(0) = Θ
(
d ·∆` · p2r−`−2

)
= Ω

(
d

1
r−1

)
,

which is the same order as Y r−2,1
v (0). So right from the start of the process the Y

configurations and hence the number of open hyperedges will grow faster than they
would if the infection were uniform. Given this, we would expect the critical probability
to be lower.
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Similarly, if δ(F) = 1, then by Proposition 9.4 (iii), for every vertex e1 ∈ V (H)

there exists some e2 such that |NH(e1) ∩NH(e2)| is large. We needed condition d of
Definition 1.2 to bound the secondary configurations with no infected vertices. As in the
previous paragraph, if this bound is relaxed, the secondary configurations are no longer
forced to be a lower order term compared to the Y configurations and we expect this to
cause the open hyperedges to grow faster than they would if the infection was uniform.
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