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Abstract

We consider a class of Backward Stochastic Differential Equations with superlinear
driver process f adapted to a filtration supporting at least a d dimensional Brownian
motion and a Poisson random measure on Rm \ {0}. We consider the following class
of terminal conditions: ξ1 =∞· 1{τ1≤T} where τ1 is any stopping time with a bounded
density in a neighborhood of T and ξ2 =∞ · 1AT where At, t ∈ [0, T ] is a decreasing
sequence of events adapted to the filtration Ft that is continuous in probability at T
(equivalently, AT = {τ2 > T} where τ2 is any stopping time such that P(τ2 = T ) = 0).
In this setting we prove that the minimal supersolutions of the BSDE are in fact
solutions, i.e., they attain almost surely their terminal values. We note that the first
exit time from a time varying domain of a d-dimensional diffusion process driven by
the Brownian motion with strongly elliptic covariance matrix does have a continuous
density. Therefore such exit times can be used as τ1 and τ2 to define the terminal
conditions ξ1 and ξ2. The proof of existence of the density is based on the classical
Green’s functions for the associated PDE.
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1 Introduction and definitions

A stochastic differential equation with a prescribed terminal condition is called
a backward stochastic differential equation (BSDE). If a terminal condition can take
the value +∞ it is said to be singular. BSDE with singular terminal conditions has
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BSDEs with non-Markovian singular terminal conditions

received considerable attention at least since [33]. They generalize diffusion-reaction
partial differential equations (PDE) where the singularity of the terminal condition of
the BSDE corresponds to singularities in the final trace of the solution of the PDE (see
[17, 33, 34, 35] and [26]). Moreover BSDE with a singularity at time T is a useful tool
in the solution of optimal stochastic control problems with terminal constraints (see
[1, 17, 23] and the references therein). This type of control problem can be interpreted
as an optimal liquidation problem in finance (see the preceding references and [18] for
an overview). Given a BSDE with a terminal condition ξ at T , a process Y satisfying the
BSDE is said to be supersolution if

lim inf
t→T

Yt ≥ ξ (1.1)

holds almost surely; Y is said to be minimal if every other supersolution dominates it. As
explained below, minimal supersolutions and their properties play a key role our analysis.
We say Y solves the BSDE with singular terminal condition ξ if

lim
t→T

Yt = ξ; (1.2)

i.e., to go from a supersolution to a solution we need to replace the lim inf in (1.1) with
lim and ≥ with =. In the rest of this paper whenever we refer to the “solution” of a BSDE
with a singular terminal value, it will be in the sense of (1.2). The condition (1.2) means
that the process Y is continuous at time T ; for this reason we refer to the problem of
establishing that a candidate solution satisfies (1.2) as the “continuity problem.” We
further comment on the distinction between solutions (in the sense of (1.2)) and minimal
supersolutions below. While minimal supersolutions of BSDE with singular terminal
conditions is available in a general setting (see [23] and subsection 1.2 below), solutions
of BSDE with singular terminal conditions are mostly available for Markovian terminal
conditions, i.e., terminal conditions which are deterministic functions of an underlying
adapted Markov process; see subsection 1.2 for a summary of known results.

The first work to solve a BSDE with a non-Markovian singular terminal condition was
[39] treating the following problem:

Yt = Ys −
∫ t

s

Yr|Yr|q−1dr −
∫ t

s

ZrdWr, 0 < s < t < T, (1.3)

YT = ξ,

where q > 1 and W is a single dimensional Brownian motion,

ξ =∞ · 1{τ0≤T} or ξ =∞ · 1{τ0>T} (1.4)

and τ0 is the first exit time of W from an interval [a, b]. The goal of the present work is to
generalize these results in the following directions:

1. Work with a more general filtration supporting a d-dimensional Brownian motion
and a Poisson random measure,

2. More general driver processes f that is allowed to be an F-adapted process,

3. For ξ1 =∞·1{τ≤T} we allow τ to be any stopping time whose distribution around T
has a bounded density; we show that the exit time of a multidimensional continuous
diffusion process from a time varying domain satisfies the density condition.

4. Extend ξ2 = ∞ · 1{τ>T} to the more general terminal condition ξ2 = ∞ · 1AT
where At, t ∈ [0, T ] is a decreasing sequence of events adapted to FT that is left
continuous in probability at T .
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BSDEs with non-Markovian singular terminal conditions

Let (Ω,F ,P,F = (Ft)t≥0) be a filtered probability space. The filtration F is assumed
to be complete, right continuous, it supports a d dimensional Brownian motion W and
a Poisson random measure π with intensity µ(de)dt on the space E ⊂ Rm \ {0}. The
measure µ is σ-finite on E and satisfies∫

E
(1 ∧ |e|2)µ(de) < +∞.

The compensated Poisson random measure π̃(de, dt) = π(de, dt) − µ(de)dt is a martin-
gale with respect to the filtration F. In this framework we will study the following
generalization of (1.3):

Yt = Ys +

∫ s

t

f(r, Yr, Zr, ψr)dr −
∫ s

t

ZrdWr −
∫ s

t

∫
E
ψr(e)π̃(de, dr)−

∫ s

t

dMr, (1.5)

YT = ξ, (1.6)

0 ≤ t < s < T . We call (Y,Z, ψ,M) a solution to the BSDE (1.5,1.6) if (Y, Z, ψ,M) satisfies
(1.5,1.6) and Y is continuous at T , i.e.,

lim
t→T

Yt = YT = ξ;

The driver f , generalizing the deterministic −y|y|q−1 appearing in (1.3), is defined on
Ω× [0, T ]×R×Rk × B2

µ (B2µ is a functional space defined by (1.11)), and for any fixed y,
z, ψ, f(t, y, z, ψ) is assumed to be a progressively measurable process; thanks to a priori
bounds and comparison results proved in [22, 23, 24], we are able to work with a very
general class of drivers; to be able to use their bounds and comparison results we will
adopt the assumptions these works make on the filtration and on the driver, which are
listed in subsection 1.2 as conditions (A) and (B).

In Section 2 we solve the BSDE (1.5, 1.6) with1

ξ = ξ1 =∞ · 1{τ≤T},

where τ is any stopping time whose distribution in a neighborhood of T has a bounded
density. In Section 3 we treat terminal conditions of the form

ξ = ξ2 =∞ · 1AT ,

where At is a decreasing left continuous sequence of events adapted to our filtration
that is left continuous in probability at time T :

P

(⋂
t<T

At \AT

)
= 0. (1.7)

Lemma 3.2 of Section 3 shows that the formulation of the terminal condition ξ2 in terms
of a decreasing sequence of events is equivalent to setting {τ > T} where τ is a stopping
time with P(τ = T ) = 0.

We know from [23] that the BSDE (1.5) has a minimal supersolution Y min
t with

terminal condition ξ1. The goal of Section 2 is to prove that Y min
t is continuous at T and

has ξ1 as its limit- this implies that the supersolution is indeed a solution. Let Y∞ be the
solution of (1.5) with terminal condition ξ =∞ identically. The main idea in establishing
the continuity of the minimal supersolution is to use the solution of a linear BSDE with
terminal condition Y∞τ · 1{τ≤T} as an upper bound on the time interval [0, τ ∧ T ] (see

1We define 0 · ∞ := 0.
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BSDEs with non-Markovian singular terminal conditions

(2.2) and (2.3)). The proof that the upperbound process is well defined involves two
ingredients 1) the fact that τ has a density and 2) a priori upperbounds on Y∞ derived
in [23]. Although the approach of [39] is different from the one outlined above, it uses
these ingredients as well, both of which are elementary in the setup treated in [39]:
there is an explicit formula for the density of the exit time τ0 and the process t 7→ yt in
[39] corresponding to Y∞ is deterministic with an elementary formula so no a priori
bounds were needed in [39].

The treatment of ξ2 given in Section 3 is a generalization of the argument given
in [39] dealing with∞ · 1{τ0>T} where τ0 is the first time a one dimensional Brownian
motion leaves a bounded interval; the argument in [39] was based on a reduction to PDE
whereas in the present work we will be working directly with the BSDE. To deal with the
generality of the filtration, we impose a further technical assumption (see (C2), section
3): there exists a sequence tn ↗ T such that the filtration F is left continuous at all tn.
See Remark 3.1 in Section 3 for comments on this assumption. To solve the BSDE with
terminal condition ξ2, we construct two sequences of processes (all solutions of the BSDE
(1.5),(1.6) with different terminal conditions), one increasing and one decreasing such
that the decreasing sequence dominates the increasing one. The limit of the increasing
sequence is our candidate solution (in fact it is exactly the minimal supersolution of [23]
with terminal condition ξ2); the decreasing sequence is used to prove that the candidate
solution satisfies the terminal condition. The terminal condition for the increasing
sequence is YT = n · 1AT and for the decreasing sequence it is YT =∞ · 1Atn . That all
these sequences are in the right order will be proved by the comparison principle for the
BSDE (1.5) derived in [23].

An advantage of the results obtained in [39] is the following: they characterize
precisely the minimal super-solution as the pasting of two process at a stopping time τ .
We have a partial result in that direction for ξ1: Proposition 2.6 proves this character of
the minimal supersolution of the BSDE (1.5), (1.6) for the terminal condition ξ1 when
the filtration is assumed to be generated by W and π. The proof of an analogous result
for the terminal condition ξ2 remains for future work.

Both [39] and the present work relax the assumption on q > 3 imposed in [33, 35, 27]
(see subsection 1.3 for further comments on these works). Parallel to the analysis in
[39], the treatment of terminal conditions ξ1 and ξ2 in the present work involve different
assumptions on q: the proof of continuity of Y given in Section 2 for the terminal condition
ξ1 requires q > 2 whereas q > 1 suffices for ξ2 (Section 3). The reason for the difference
is essentially the same as in [39]: for ξ1 we construct an additional linear process for the
upperbound; for ξ2 the sequence of upperbounds are all solutions to the same BSDE with
different terminal conditions. An additional difference in assumptions not present in
[39]: an assumption adapted from the general framework of [23] introduces a constant
` > 1 (see (B2) below). In [39], this condition trivially holds and is not needed explicitly.
In the treatment of ξ1 we require ` > 2 (see Lemma 2.1); ` > 1 suffices for ξ2. The reason
for the difference is the same as for q: in the treatment of ξ1 we construct a linear BSDE
as the upperbound and this requires more stringent integrability conditions on terminal
values.

In Section 4 we identify a class of stopping times satisfying the assumptions made
on the stopping times above. The class of these stopping times is defined in terms of a
diffusion process X driven by the Brownian motion W :

Xt = x0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs, (1.8)

where a = σσ′ is assumed to be uniformly and strictly elliptic and a and b assumed
uniformly Hölder continuous; these assumptions are adopted from [16, page 8]. The
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BSDEs with non-Markovian singular terminal conditions

initial value x0 takes values in a bounded open set D0. Define

D =

T⋃
t=0

{t} ×Dt ⊂ Rd+1;

D satisfies the assumptions in [16], see Section 4 below. The class of stopping times
identified in this section are exit times of X from the domain D:

τ
.
= inf{t ≥ 0 : Xt ∈ Dc

t}. (1.9)

To prove that τ satisfies the assumptions of Sections 2 and 3 it suffices to show that it
has a continuous density. Despite the considerable literature on exit times of diffusions
we are not aware of a result in the currently available literature establishing that the
exit time τ of (1.9) has a density. Section 4 is devoted to the derivation of this density;
the natural tool for this is the Green’s function of the generator of X derived in [16].

The rest of this introduction discusses the implications of our results to stochastic
optimal control, lists the assumptions we adopt and the results we will be using from
prior work and gives a summary of what is known in the prior literature about the
continuity of the minimal supersolution of BSDE with singular terminal conditions. In
Section 5 we comment on possible future work.

1.1 Implications of continuity results for stochastic optimal control

Minimal supersolutions of the BSDE (1.5) with singular terminal conditions can
be used to represent the value function of a corresponding stochastic optimal control
problem with constraints, see [1, 23] and [39, Section 4] for the precise formulation
of the optimal control problem and a detailed discussion. In this connection between
the BSDE and its corresponding stochastic optimal control problem, changing the
terminal condition of the BSDE corresponds to changing the terminal payoff and the
constraints of the problem. A natural question: when these change, do the value function
and the optimal control of the control problem change? Surprisingly, and to the best
of our knowledge, for the control problems corresponding to the class of terminal
conditions treated in the present work, the current BSDE theory can’t answer this
question. The continuity results we prove in the present article establishing that a
minimal supersolution is a solution in the sense of (1.2) provides an answer as follows.
Suppose Y (1) and Y (2) are minimal supersolutions of the BSDE for two distinct terminal
conditions ξ(1), ξ(2). Suppose that Y (i) are solutions to the BSDE with these terminal
conditions in the sense of (1.2), i.e., that Y (i) are both continuous at time T . This and
ξ(1) 6= ξ(2) imply that Y (1) and Y (2) are distinct processes. To rephrase this in terms of
the control interpretation: changing the constraint and terminal value of the control
problem from ξ(1) to ξ(2) leads to distinct value functions (and hence optimal controls)
for the control problem.

We explain a further implication of the continuity results to optimal control through
the following example. Let X denote the state process of the corresponding optimal
control problem. As explained in [1, 23] the terminal condition ξ(1) = ∞ corresponds
to the constraint XT = 0. Let us relax this constraint to requiring XT = 0 only when
{τ > T} where τ is a stopping time of the filtration. The corresponding terminal condition
ξ = ∞ · 1{τ>T} belongs to the class we treat in Section 3. Two questions: 1) does this
relaxation lead to a lower value function? This question is a special case of the question
discussed in the previous paragraph, i.e., whether the same BSDE with distinct terminal
conditions have distinct solutions, and we know that continuity of the solution implies
that the solutions will be distinct. A more delicate question: 2) is the optimal control
tight, i.e., is it the case that, under the optimal control XT = 0 if and only if {τ < T}?
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BSDEs with non-Markovian singular terminal conditions

The continuity of the minimal supersolution implies that the answer to this question is
also affirmative. In finance applications a non-tight optimal control can be interpreted
as a strictly super-hedging trading strategy. Continuity results overrule such strategies.

As a last point in connection with optimal control and optimal liquidation we note
that the continuity of the minimal supersolution at terminal time appears in [3], as a
condition for the solution of an optimal targeting problem.

1.2 Assumptions and results from prior works

First let us state assumptions and results from the prior literature concerning non-
singular terminal condition ξ, that is there exists p > 1 such that

E|ξ|p < +∞. (1.10)

Let us define Lρµ = Lρ(E , µ;R), the set of measurable functions ψ : E → R such that

‖ψ‖ρ
L
ρ
µ

=

∫
E
|ψ(e)|ρµ(de) < +∞, and B2

µ =

{
L2
µ if p ≥ 2,

L1
µ + L2

µ if p < 2.
(1.11)

For the definition of the sum of two Banach spaces, see for example [21]. The introduction
of B2

µ is motivated in [24]. We assume that f : Ω× [0, T ]×R×Rm×B2
µ → R is a random

measurable function, such that for any (y, z, ψ) ∈ R×Rm ×B2
µ, the process f(t, y, z, ψ)

is progressively measurable. For notational convenience we write f0t = f(t, 0, 0,0), 0
denotes the null application from Rm to R.

The precise assumptions on the driver f , adapted from [23] are as follows:

(A1) The function y 7→ f(t, y, z, ψ) is continuous and monotone: there exists χ ∈ R such
that a.s. and for any t ∈ [0, T ] and z ∈ Rm and ψ ∈ B2

µ

(f(t, y, z, ψ)− f(t, y′, z, ψ))(y − y′) ≤ χ(y − y′)2.

(A2) sup|y|≤n |f(t, y, 0, 0)− f0t | ∈ L1((0, T )× Ω) holds for every n > 0.

(A3) There exists a progressively measurable process κ = κy,z,ψ,φ : Ω×R+×Rm×B2
µ →

R such that

f(t, y, z, ψ)− f(t, y, z, φ) ≤
∫
E
(ψ(e)− φ(e))κy,z,ψ,φt (e)µ(de)

with P⊗Leb⊗µ-a.e. for any (y, z, ψ, φ), −1 ≤ κy,z,ψ,φt (e) and |κy,ψ,φt (e)| ≤ ϑ(e) where
ϑ belongs to the dual space of B2

µ, that is L2
µ or L∞µ ∩ L2

µ.

(A4) There exists a constant Lf such that a.s.

|f(t, y, z, ψ)− f(t, y, z′, ψ)| ≤ Lf |z − z′|

for any (t, y, z, z′, ψ).

The set of conditions (A) guarantees the existence and uniqueness of the solution of the
BSDE (1.5) and (1.6) if for some p > 1, (1.10) holds together with

E

[
|ξ|p +

(∫ T

0

|f0t |dt

)p ]
< +∞.

(see [22, 24] and the references therein).
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BSDEs with non-Markovian singular terminal conditions

A key tool for BSDEs is the comparison principle which ensures that if ξ1 ≤ ξ2 a.s., if
we can compare the generators f1 ≤ f2 along one solution and if the drivers satisfy the
conditions (A), then the solutions can be compared: a.s. Y 1 ≤ Y 2. See, e.g., [12, Section
3.2], [22, Proposition 4] or [30, Section 5.3.6].

A second set of assumptions are needed to control the growth of the process Y
when the terminal condition can take the value +∞. These assumptions generalize the
superlinearity of y 7→ y|y|q−1 in (1.3) and are adapted from [23]:

(B1) There exists a constant q > 1 and a positive process η such that for any y ≥ 0

f(t, y, z, ψ) ≤ − y
ηt
|y|q−1 + f(t, 0, z, ψ).

(B2) There exists some ` > 1 such that

E

∫ T

0

[
(ηs)

`(p−1)
]
ds < +∞

where p is the Hölder conjugate of q.

(B3) The parameter ϑ of (A3) satisfies: for any $ > 2∫
E
|ϑ(e)|$µ(de) < +∞.

(B4) We suppose that f0 satisfies

f0t ≥ 0, t ∈ [0, T ] a.s., E

∫ T

0

(
f0s
)`
ds < +∞.

where ` > 1 is the constant in assumption (B2).

(B5) The filtration is left-continuous at time T (see the discussion in [35, Section 1.2] on
this condition).

We further suppose that the generator (t, y) 7→ −y|y|q−1/ηt satisfies the (A) assump-
tions, which means that η satisfies:

E

∫ T

0

1

ηt
dt < +∞. (1.12)

Remark 1.1 (On Assumption (B3)). In fact it is sufficient to assume that ϑ belongs to
some Lρµ for ρ large enough. But this generality leads to cumbersome conditions on `

and q in Theorem 2.5.

Remark 1.2 (On Condition (B4)). The work [23] introduces an integrability assumption
on (f0t )− = max(−f0t , 0) and on (f0t )+ (see conditions A4 and A6 in [23]). Hence (B4)
is stronger. The sign hypothesis could be relaxed at the expense of more technical
considerations and presentation.

The case
∫ T
0

(f0s )+ds = +∞ (excluded by our assumption (B4)) is not an obstacle
to the construction of minimal supersolutions, and [23], which constructs minimal
supersolutions allows

∫ T
0

(f0s )+ds = +∞. The problem with
∫ T
0

(f0s )+ds = +∞ is that
in its presence it is known that Y min may be discontinuous at T : see, [35, Section
3.1], for a BSDE that violates the integrability condition (B4) on f0, whose minimal
supersolution Y min explodes almost surely at time T for all terminal values ξ. Therefore,
the integrability condition (B4) is natural when one seeks continuity results for the class
of BSDE treated in the present work.
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BSDEs with non-Markovian singular terminal conditions

From [23, Theorem 1], under the setting of conditions (A) and (B), we know that
there exists a process (Y,Z, ψ,M) which is a minimal supersolution to the BSDE (1.5)
with singular terminal condition YT = ξ ≥ 0 in the sense that:

1. for all t < T :

E

(
sup
s∈[0,t]

|Ys|` +

(∫ t

0

|Zs|2ds
)`/2

+

(∫ t

0

∫
E
|ψs(e)|2π(de, ds)

)`/2
+ [M ]

`/2
t

)
< +∞;

2. Y is non-negative;

3. for all 0 ≤ s ≤ t < T :

Ys = Yt +

∫ t

s

f(u, Yu, Zu, ψu)du−
∫ t

s

ZsdWs −
∫ t

s

∫
E
ψu(e)π̃(de, du)−

∫ t

s

dMu.

4. The terminal condition (1.6) becomes (1.1), namely: a.s.

lim inf
t→T

Ys ≥ ξ.

5. For any other supersolution (Y ′, Z ′, ψ′,M ′) satisfying the first four properties, we
have Yt ≤ Y ′t a.s. for any t ∈ [0, T ).

As in [39], we denote this minimal supersolution by (Y min, Zmin, ψmin,Mmin). Let us
recall that the construction is done by approximation ([23, Theorem 1]). We consider
(Y (k), Z(k), ψ(k),M (k)) the unique solution of the BSDE:

Y
(k)
t = ξ ∧ k +

∫ T

t

fk(s, Y (k)
s , Z(k)

s , ψ(k)
s )ds

−
∫ T

t

Z(k)
s dWs −

∫ T

t

∫
E
ψ(k)
s (e)π̃(de, ds)−

∫ T

t

dM (k)
s , (1.13)

with truncated parameters, namely the terminal condition ξ ∧ k and the driver

fk(t, y, z, ψ) =
[
f(t, y, z, ψ)− f0t

]
+ (f0t ∧ k). (1.14)

Under (A) and (B4), existence and uniqueness of the solution is guaranteed by [22,
Theorem 3]. From the comparison principle ([22, Proposition 4]), the sequence Y (k) is
non-decreasing and converges to a limit Y min: a.s. for any t ∈ [0, T ]

lim
k→+∞

Y
(k)
t = Y min

t .

The sequence (Z(k), ψ(k),M (k)) converges to (Zmin, ψmin,Mmin): for any 0 ≤ t < T

lim
k→+∞

E

[(∫ t

0

|Z(k)
u − Zmin

u |2du
)`/2

+

(∫ t

0

∫
E
|ψ(k)
u (e)− ψmin

u (e)|2π(de, du)

)`/2
+
(

[M (k) −Mmin]t

)`/2 ]
= 0.

See the proof of [23, Proposition 3].
Finally following the arguments of [23, Propositions 2 and 3], we can prove the a

priori upper estimate on the supersolution: for any 1 < `′ ≤ `,

Y min
t ≤

Kϑ,Lf ,`′

(T − t)p−
`−`′
``′

[
E

( ∫ T

t

(
((p− 1)ηs)

p−1
+ (T − s)p(f0s )

)`
ds

∣∣∣∣Ft
)]1/`

(1.15)

where Kϑ,Lf ,`′ is a constant depending only on ϑ, Lf and `′. This estimate is valid for
any terminal value ξ. The proof of this estimate is given in Appendix A.
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BSDEs with non-Markovian singular terminal conditions

1.3 Continuity results in the prior literature

The present article addresses the following questions on the minimal supersolution
Y min of the BSDE (1.5) and the terminal conditions ξ1 and ξ2:

1. Does the limit limt→T Y
min
t exist?

2. Can the inequality (1.1) be an equality (if the filtration is left-continuous at time T ),
i.e., is the supersolution Y min

t in fact a solution?

Let us summarize the known results about these questions in the currently available
literature. The existence of a limit at time T is proved under a structural condition on
the generator f ([35, Theorem 3.1]) where the main idea is to show that Y is a non-linear
continuous transform of a non-negative supermartingale.

The second question is addressed in [33, 35, 39, 27]. In the first two papers [33, 35],
the terminal condition ξ is supposed to be Markovian2, that is ξ = g(XT ), where X

is given by (1.8)3. In [27], ξ is given by a smooth functional (in the sense of Dupire
[14, 9, 8]) on the paths of X. In these three papers, the proof is based on the Itô formula
and on a suitable control on Z and ψ, and requires that the q in (B1) is greater than 3.

The work [39] treating the BSDE (1.3) and the terminal conditions (1.4) was a first
attempt to obtain a positive answer to these questions with non-Markovian terminal
conditions. This work obtains the continuity of Y at time T under the assumption q > 2

for ξ =∞ · 1{τ0≤T} and q > 1 for ξ =∞ · 1{τ>T}. As we have already noted, the aim of
the present work is to extend [39] in the directions indicated in the list following (1.3).

2 Terminal condition ξ1

The goal of this section is to solve the BSDE (1.5) with terminal condition ξ1 =

∞ · 1{τ≤T} where τ is any stopping time whose distribution in a neighborhood of T has a
bounded density. We will see in Section 4 below that first exit times from time varying
domains of multidimensional diffusions driven by W satisfy this condition. Another
simple example is provided by jump times of compound Poisson processes, which are
Erlang distributed and they evidently have densities.

Recall that we suppose that the set of conditions (A) and (B) hold. Let Y (k) be the
solution of the BSDE (1.13) with terminal condition

Y
(k)
T = ξ ∧ k = k · 1{τ≤T}.

The minimal supersolution of (1.5), by definition, is

Y min
t = lim

k→∞
Y

(k)
t .

We will construct our solution by showing that Y min is in fact a solution, i.e., it satisfies

lim
t→T

Y min
t = ξ1. (2.1)

The results in [23] imply that (2.1) holds for ξ1 = ∞. Therefore, it suffices to show
(2.1) over the event {τ > T} where the right side of (2.1) is 0. We will do so by
constructing a positive upperbound process Y∞,u on Y min that converges to 0 over
the same event. Let Y∞ be the minimal supersolution of (1.5) with terminal condition
YT =∞ (if f(y) = −y|y|q−1, then Y∞t = ((q − 1)(T − t))−

1
q−1 ). Define

ξ
(τ)
1

.
= 1{τ<T}Y

∞
τ .

2No additional assumption is supposed on f , that is the setting is only half-Markovian.
3A jump component driven by the Poisson random measure could be added in the case.
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BSDEs with non-Markovian singular terminal conditions

The upperbound process Y∞,u is defined as the solution of the BSDE with the terminal
value ξ(τ)1 = Y∞τ 1τ≤T at the random time τ ∧ T and the (linear in y) generator

g(t, y, z, ψ) = χ · y + f(t, 0, z, ψ), (2.2)

where χ is the constant in (A1). For this to be well defined we need the following lemma:

Lemma 2.1. If the distribution of τ in a neighborhood of T has a bounded density and if

` > 2 of (B2) and q > 2 +
2

`− 2
, then there exists some % > 1

E(x,t)[(ξ
(τ)
1 )%] <∞.

Proof. The assumptions (B2) and (B4) imply that

Mt
.
= E

[∫ T

0

(
((p− 1)ηs)

p−1
+ (T − s)p(f0s )

)`
ds

∣∣∣∣Ft
]

is a well defined non-negative martingale. The hypotheses ηt > 0 and f0t ≥ 0 imply∫ T

0

(
((p− 1)ηs)

p−1
+ (T − s)p(f0s )

)`
ds ≥

∫ T

t

(
((p− 1)ηs)

p−1
+ (T − s)p(f0s )

)`
ds.

This and the a priori bound (1.15) on Y∞ imply for any 1 < % < `

E(x,t)[1{τ<T}(Y
∞
τ )%] ≤ E(x,t)

[
1{τ<T}

K%
ϑ,Lf ,`′

(T ∧ τ − t)p̂%
M

%
`

τ∧T

]

≤ K%
ϑ,Lf ,`′

E(x,t)

[
1{τ<T}

1

(T ∧ τ − t)κ

] `−%
`

E(x,t)

[
Mτ∧T

] %
`

where

κ =
p̂%`

`− %
, p̂ = p− `− `′

``′
,

and where we used the Hölder inequality since % < `.

Note that to show our result, from (1.15) it suffices to show E(x,t)

[
1{T−δ<τ<T} ×

1
(T∧τ−t)κ

]
< ∞ for some δ > 0. We have assumed that the distribution of τ in a

neighborhood of T has a bounded density, which we will denote by fτ (t, u). Then:

E(x,t)

[
1{T−δ<τ<T}

1

(T ∧ τ − t)κ

]
=

∫ T

T−δ

1

(u− t)κ
fτ (t, u)du,

for some δ > 0. The boundedness of fτ implies that we obtain the desired result if κ < 1,
that is if

p <
`− `′

``′
+
`− %
%`

.

The right side is maximal for `′ = % = 1. Recall that p > 1. Hence we need that ` > 2

and if q > 2 + 2
`−2 , then p < 2 `−1` . We can find % > 1 and `′ > 1 such that the desired

inequality holds.

Remark 2.2. In [39], the coefficients are bounded, that is, we can take ` = +∞ and we
get back the condition q > 2.
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BSDEs with non-Markovian singular terminal conditions

The driver g satisfies all conditions (A). Moreover the terminal time τ ∧ T is bounded.
Hence we apply [22, 24, Theorem 3] and ensure the existence and the uniqueness of the
solution (Y∞,u, Z∞,u, ψ∞,u,M∞,u) such that for any t ∈ [0, T ]

E

|Y∞,ut∧τ |% +

∫ τ∧T

0

|Y∞,us |%ds+

(∫ τ∧T

0

|Z∞,us |2ds

)%/2

+

(∫ τ∧T

0

∫
E
|ψ∞,us (e)|2π(de, ds)

)%/2
+ [M∞,u]

%/2
τ∧T

 < +∞. (2.3)

Note that if f0 ≡ 0 and f does not depend on z and ψ, then

Y∞,ut = E[eχ(τ−t)Y∞τ 1{τ<T}|Ft].

We next prove that Y∞,u does serve as an upper bound on Y (k):

Lemma 2.3. Y (k) admits the upper bound

Y
(k)
t ≤ Y∞,ut

a.s. on the random interval [[0, τ ∧ T ]].

Proof. The minimal solution Y∞ is constructed by approximation and for any n ≥ k, we
have: k · 1{τ≤T} ≤ n a.s. By the comparison principle for BSDEs, a.s. for any t ∈ [0, T ]:

Y
(k)
t ≤ Y∞t . Hence a.s.

Y
(k)
τ∧T = Y (k)

τ 1τ≤T ≤ Y∞τ 1τ≤T .

Since Y (k) solves the BSDE (1.5) on the whole interval [0, T ], the stopped process

Y (k),τ = Y
(k)
·∧τ solves the same BSDE on the random interval [[0, τ ∧ T ]].

Now Y∞,u is the solution of the BSDE with the terminal value ξ(1)τ = Y∞τ 1τ≤T at the
random time τ ∧ T and the generator

g(t, y, z, ψ) = χy + f(t, 0, z, ψ).

From the assumptions (A) on f , for any y ≥ 0, we have

f(t, y, z, ψ) ≤ f(t, y, z, ψ)− f(t, 0, z, ψ) + f(t, 0, z, ψ) ≤ χy + f(t, 0, z, ψ) = g(t, y, z, ψ).

Note that Y (k) and Y∞ are non-negative. Hence we can compare the drivers and deduce
the claimed result by the comparison principle.

We now prove that the upper bound process has the continuity property we need at
terminal time T :

Lemma 2.4. The upper bound process Y∞,u satisfies:

lim
t→T

Y∞,ut = 0.

a.s. on {τ > T}
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Proof. Indeed for any 0 ≤ t ≤ s:

Y∞,ut∧τ∧T = Y∞,us∧τ∧T +

∫ s∧τ∧T

t∧τ∧T
g(r, Y∞,ur , Z∞,ur , ψ∞,ur )dr

−
∫ s∧τ∧T

t∧τ∧T
Z∞,ur dWr −

∫ s∧τ∧T

t∧τ∧T

∫
E
ψ∞,ur (e)π̃(de, dr)−

∫ s∧τ∧T

t∧τ∧T
dM∞,ur

= Y∞,us∧τ∧T +

∫ s∧τ∧T

t∧τ∧T
χY∞,ur dr +

∫ s∧τ∧T

t∧τ∧T
f0r dr −

∫ s∧τ∧T

t∧τ∧T
dM∞,ur

+

∫ s∧τ∧T

t∧τ∧T
[f(r, 0, Z∞,ur , ψ∞,ur )− f(r, 0, 0, ψ∞,ur )] dr −

∫ s∧τ∧T

t∧τ∧T
Z∞,ur dWr

+

∫ s∧τ∧T

t∧τ∧T

[
f(r, 0, 0, ψ∞,ur )− f0r

]
dr −

∫ s∧τ∧T

t∧τ∧T

∫
E
ψ∞,ur (e)π̃(de, dr)

Using (A4), we can write

f(r, 0, Z∞,ur , ψ∞,ur )− f(r, 0, 0, ψ∞,ur ) = κ∞,ur Z∞,ur

where the process κ∞,u is bounded by Lf uniformly in r and ω. Using (A3) we have

f(r, 0, 0, ψ∞,ur )− f0r ≤
∫
E
ψ∞,ur (e)κ0,0,ψ

∞,u,0
r (e)µ(de).

From the comparison principle for BSDE and the explicit formula for the solution of a
linear BSDE, we have an explicit upper bound on Y∞,u:

Y∞,ut ≤ E

[
Et,τ∧TY∞τ 1τ≤T +

∫ τ∧T

t

Et,sf0s ds
∣∣∣∣Ft
]

= Γt,

where for t ≤ s

Et,s = exp

(
χ(s− t) +

∫ s

t

κ∞,ur dWr −
1

2

∫ s

t

|κ∞,ur |2 dr
)
V∞t,s

and V∞ is the Doléans-Dade exponential:

V∞t,s = 1 +

∫ s

t

∫
E
V∞t,u−κ

0,0,ψ∞,u,0
u (e)π̃(de, du).

From assumptions (B3) and (B4), and with the Hölder inequality, we obtain that

E

[∫ τ∧T

0

Et,sf0s ds

]
≤ E

[∫ τ∧T

0

|Et,s|`
∗
ds

] 1
`∗

E

[∫ τ∧T

0

(f0s )`ds

] 1
`

≤ CE

[∫ T

0

(f0s )`ds

] 1
`

where `∗ is the Hölder conjugate of `. Our framework implies that E·,· has moments of all
orders (see [38]). Thus a.s.

lim
t→T

E

[∫ τ∧T

t

Et,sf0s ds
∣∣∣∣Ft
]

= 0.

Same arguments, together with the integrability property proved in Lemma 2.1, lead to

E

[
Et,τ∧TY∞τ 1τ≤T

∣∣∣∣Ft] ≤ E [E%∗t,τ∧T ∣∣∣∣Ft] 1
%∗

E

[
(ξ

(τ)
1 )%

∣∣∣∣Ft] 1
%

.
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BSDEs with non-Markovian singular terminal conditions

From the left-continuity of the filtration at time T , a martingale cannot have a jump at
time T , hence

lim
t→T

E

[
(ξ

(τ)
1 )%

∣∣∣∣Ft] 1
%

= ξ
(τ)
1 .

Therefore if τ > T ,

0 ≤ lim
t→T

Y∞,ut ≤ lim
t→T

Γt = 0,

which achieves the proof of the lemma.

Combining the lemmas above we have the main result of this section:

Theorem 2.5. Under conditions (A) and (B), if the distribution of the stopping time τ is

given by a bounded density in a neighborhood of T , ` > 2 and q > 2 +
2

`− 2
, then the

minimal supersolution with terminal condition ξ1 satisfies

lim
t→T

Y min
t = ξ1 (2.4)

almost surely.

Proof. As stated in the beginning of this section it suffices to prove (2.4) over the event
{τ > T} where ξ1 = 0. By our assumptions on the driver f , Y (k) is non-negative; this and
Lemma 2.3 gives

0 ≤ Y (k)
t ≤ Y∞,ut .

On the other hand, by Lemma 2.4, the limit as t→ T of the right side is 0 over the event
{τ > T}. These imply (2.4).

This result generalizes the continuity result [39, Theorem 2.1]. If the setting of
this former result was less general, we were able to describe precisely the minimal
supersolution, namely that it is obtained by pasting two processes at time τ . The
presence of the orthogonal martingale M complicates this approach in the present
setting, but if the filtration is assumed to be generated by W and π alone then the same
technique can be used here as well. The details are as follows.

Let Y 1,τ be the solution of the BSDE (1.5) in the time interval [[0, τ ∧ T ]] with terminal

condition ξ(τ)1 (again we can apply [22, 24, Theorem 3] as for Y∞,u). Following the idea
of [39, Theorem 2.1], let us define

Ŷt
.
=

{
Y 1,τ
t , t ≤ τ ∧ T
Y∞t , τ < t ≤ T

where we assume that τ is an FW stopping time, that is it just depends on the paths of
W , and is predictable (exit times of Section 4 are a particular case). The jump times
of Y 1,τ

t and of Y∞ coincide with the jump times of the Poisson random measure or of
the orthogonal martingale component. A consequence of the Meyer theorem (see [36,
Chapter 3, Theorem 4]) implies that the jump times of π are totally inaccessible, hence
a.s. cannot be equal to τ . However we cannot exclude that the orthogonal martingale
may have a jump at time τ . The second issue is the definition of the martingale part
(Z,ψ,M). For the first two components, we can easily paste them together

Ẑt
.
=

{
Z1,τ
t , t ≤ τ ∧ T

Z∞t , τ < t ≤ T
, ψ̂t(e)

.
=

{
ψ1,τ
t (e), t ≤ τ ∧ T
ψ∞t (e), τ < t ≤ T

.

EJP 26 (2021), paper 64.
Page 13/27

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP619
https://imstat.org/journals-and-publications/electronic-journal-of-probability/
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Since τ is predictable, these two processes are also predictable and the stochastic
integrals ∫ ·

0

ẐtdWt,

∫ ·
0

∫
E
ψ̂t(e)π̃(de, dt)

are well-defined and are local martingales on [0, T ). Nonetheless if we define M̂ similarly,
we cannot ensure that this process is still a local martingale. For the parts with Z and ψ,
the local martingale property is due to the representation as a stochastic integral. Based
on these observations we provide the following result on the pasting method under the
assumption that the filtration is generated by W and π alone; the approach in the proof
of this proposition is the generalization of the approach used in [39].

Proposition 2.6. Assume that the filtration is generated by W and π and that τ is
predictable4. Then Ŷt solves the BSDE (1.5) on [0, T ] with terminal condition ŶT = ξ1
and satisfies the continuity property at time T . Moreover Ŷ = Y min.

Proof. Since there is no additional martingale M in the definition of Y 1,τ and Y∞ and
since τ is predictable, the resulting process Ŷ is continuous at time τ .

Now let us fix s < t < T . On the set {τ ≤ s}, Ŷr = Y∞r for any r ∈ [s, t]. Therefore we
have

Ŷs = Ŷt +

∫ t

s

f(r, Ŷr, Z
∞
r , ψ

∞
r )dr −

∫ t

s

Z∞r dWr −
∫ t

s

∫
E
ψ∞r (e)π̃(de, dr).

The dynamics of Y 1,τ is given by:

Y 1,τ
s∧τ∧T = Y 1,τ

t∧τ∧T +

∫ t∧τ∧T

s∧τ∧T
f(r, Y 1,τ

r , Z1,τ
r , ψ1,τ

r )dr

−
∫ t∧τ∧T

s∧τ∧T
Z1,τ
r dWr −

∫ t∧τ∧T

s∧τ∧T

∫
E
ψ1,τ
r (e)π̃(de, dr).

It implies that for {τ ≥ t}, Ŷ has the required dynamics. Finally for {τ ∈ (s, t)}, we have

Y 1,τ
s = Y 1,τ

τ +

∫ τ

s

f(r, Y 1,τ
r , Z1,τ

r , ψ1,τ
r )dr

−
∫ τ

s

Z1,τ
r dWr −

∫ τ

s

∫
E
ψ1,τ
r (e)π̃(de, dr)

and

Y∞τ = Y∞t +

∫ t

τ

f(r, Y∞r , Z∞r , ψ
∞
r )dr −

∫ t

τ

Z∞r dWr −
∫ t

τ

∫
E
ψ∞r (e)π̃(de, dr).

By the continuity of Ŷ at time τ , we get the desired dynamics also in this case.
Finally let us show that Ŷ is continuous at time T . On the set {τ < T}, we have

lim
t→T

Ŷt = lim inf
t→T

Ŷt = lim inf
t→T

Y∞t = +∞.

And on {τ ≥ T},
lim
t→T

Ŷt = lim
t→T

Y 1,τ
t = ξ

(τ)
1 = 0.

We can conclude that Ŷ satisfies the BSDE (1.5) on [0, T ] with terminal condition ŶT = ξ1
and is continuous at time T .

4It is sufficient to suppose that τ is accessible or that τ does not coincide with a jump time of the Poisson
measure.
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From the minimality of Y min, we have immediately that Y min
t ≤ Ŷt, a.s. for any

t ∈ [0, T ]. To obtain the converse inequality, let us define

Ŷ nt
.
=

{
Y 1,τ,n
t , t ≤ τ ∧ T
Y nt , τ < t ≤ T

where Y n (resp. Y 1,τ,n) is the solution of the BSDE (1.5) on [0, T ] (resp. on [0, τ ∧T ]) with
terminal condition n (resp. Y nτ 1τ≤T ). Then we have that for any k ≥ n, Ŷ n ≤ Y (k) ≤ Y min.
By construction of Y∞, Ŷ n converges to Ŷ . Therefore we conclude that Ŷ = Y min and
this achieves the proof of the Proposition.

3 Terminal condition ξ2

The goal of this section is to prove the continuity of the minimal supersolution for the
terminal condition

ξ = ξ2 =∞ · 1AT ,

where At is a decreasing sequence of events adapted to our filtration: for any s ≤ t,
At ⊂ As and At ∈ Ft. If τ0 is a stopping time, the set At = {τ0 > t} provides an example.
We also assume that:

(C1) Equality (1.7) holds, that is the sequence is left continuous at time T in probability:

P

(⋂
t<T

At \AT

)
= 0.

(C2) There exists an increasing sequence (tn, n ∈ N), tn < T for all n, limn→+∞ tn = T ,
and the filtration F is left continuous at time tn for any n. Recall that we already
assume left continuity of F at time T .

If At is defined as At = {τ0 > t} through a stopping time τ0, assumption (C1) is
equivalent to: P(τ0 = T ) = 0. In particular if τ0 has a density this condition is satisfied.
Therefore, as in the previous section, if τ0 is the jump time of an F-adapted compound
Poisson process, then it generates a sequence At satisfying (C1). The same comment
applies to the exit times whose densities are derived in the next section.

Remark 3.1 (On Condition (C2)). If the filtration F is quasi left-continuous, then (C2)
holds for any sequence tn. In particular our hypothesis is valid if F is generated by W
and π.

The notion of jumps for a filtration has been studied in [20] (see also [37, Section 2]).
Let us note that we are not able to construct a counter example, that is a filtration such
that (C2) does not hold.

If τ is a stopping time satisfying P(τ = T ) = 0, At = {τ ≥ t} defines a sequence satis-
fying the conditions above. Conversely, any decreasing sequence At can be associated
with a stopping time via the following definition:

τ
.
= inf{t : ω ∈ Act}.

Lemma 3.2. τ is a stopping time of the filtration F. If (1.7) holds, then AT = {τ ≥ T}.

Proof. The definition of τ and the fact that Acs is decreasing imply

{τ ≤ t} =

∞⋂
n=1

Act+1/n ∈
∞⋂
n=1

Ft+1/n. (3.1)
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The right continuity of the filtration F implies {τ ≤ t} ∈ Ft i.e., τ is a stopping time.

Again the definition of τ and Acs ↘ AcT as s↘ T imply {τ < T} =
⋃∞
n=1A

c
T−1/n and

{τ < T} ⊂ AcT .

The continuity in probability at time T of (At, t ≥ 0) implies

P(AcT \ {τ < T}) = 0,

which completes the proof of the lemma.

Let us denote again by Y∞ the minimal solution of the BSDE (1.5) with terminal
condition +∞ and set

χn
.
= 1Atn .

Let us define Yn as the solution of the BSDE over the interval [tn, T ] with generator

f̃(s, y, z, u) =
[
(f(s, (1− χn)y, z, u)− f0s

]
+ (1− χn)f0s

and terminal condition YnT = 0:

Ynt =

∫ T

t

[
(f(s, (1− χn)Yns ,Zns ,Uns )− f0s

]
ds+

∫ T

t

(1− χn)f0r dr

−
∫ T

t

Zns dWs −
∫ T

t

∫
E
Uns π̃(de, ds)−

∫ T

t

dMn
s .

The driver f̃ satisfies all assumptions (A) and (B4) holds. From [22, 24, Theorem 2],
there exists a unique solution to this BSDE satisfying

E

[
sup

t∈[tn,T ]

|Ynt |`
]
≤ E

∫ T

tn

|f0r |`dr.

Moreover by the comparison principle ([22, Proposition 4]), a.s. for all t ∈ [tn, T ], Ynt ≥ 0.
Let us also remark that if f0 ≡ 0, then Yn ≡ 0.

Define Y∞,u,n as the solution of the BSDE (1.5) on [0, tn] with terminal condition

Y∞,u,ntn = χnY
∞
tn + (1− χn)Yntn .

Note that from (1.15), this terminal condition is in L`(Ω), hence the solution is well-
defined on [0, tn]. We extend Y∞,u,n on the whole interval [0, T ]: for all tn ≤ t ≤ T :

Y∞,u,nt = χnY
∞
t + (1− χn)Ynt .

Lemma 3.3. The process Y∞,u,n satisfies the dynamics of the BSDE (1.5) on the whole
interval [0, T ]. Moreover a.s.

lim
t→T

Y∞,u,nt =∞ · 1Atn .

Proof. By the definition of Y∞, for any tn ≤ t < s < T , we have

Y∞t = Y∞s +

∫ s

t

f(r, Y∞r , Z∞r , ψ
∞
r )dr −

∫ s

t

Z∞r dWr −
∫ s

t

∫
E
ψ∞r (e)π̃(de, dr)−

∫ s

t

dM∞r ,
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hence multiplying both sides by χn, which is Ftn -measurable, we obtain

χnY
∞
t = χnY

∞
s +

∫ s

t

χnf(r, Y∞r , Z∞r , ψ
∞
r )dr

−
∫ s

t

χnZ
∞
r dWr −

∫ s

t

∫
E
χnψ

∞
r (e)π̃(de, dr)−

∫ s

t

dχnM
∞
r

= χnY
∞
s +

∫ s

t

[
f(r, χnY

∞
r , χnZ

∞
r , χnψ

∞
r )− f0r

]
dr +

∫ s

t

χnf
0
r dr

−
∫ s

t

χnZ
∞
r dWr −

∫ s

t

∫
E
χnψ

∞
r (e)π̃(de, dr)−

∫ s

t

χndM
∞
r .

And from the definition of Yn, we have

(1− χn)Ynt =

∫ T

t

(1− χn)
[
(f(s, (1− χn)Yns ,Zns ,Uns )− f0s

]
ds+

∫ T

t

(1− χn)f0r dr

−
∫ T

t

(1− χn)Zns dWs −
∫ T

t

∫
E
(1− χn)Uns π̃(de, ds)−

∫ T

t

(1− χn)dMn
s

=

∫ T

t

[
(f(s, (1− χn)Yns , (1− χn)Zns , (1− χn)Uns )− f0s

]
ds+

∫ T

t

(1− χn)f0r dr

−
∫ T

t

(1− χn)Zns dWs −
∫ T

t

∫
E
(1− χn)Uns π̃(de, ds)−

∫ T

t

(1− χn)dMn
s

Thereby Y∞,u,n satisfies the dynamics of the BSDE (1.5) on [tn, T ). Recall that the
solution of a BSDE may have a jump at some given time t if and only if the martingale
parts π̃ or M have a jump at time t. Hence from our assumption (C2), Y∞,u,n is
continuous at time tn and we can define

Z∞,u,nt
.
=

{
Z∞,u,nt , t ≤ tn,
χnZ

∞
t + (1− χn)Znt tn < t ≤ T,

ψ∞,u,nt (e)
.
=

{
ψ∞,u,nt (e), t ≤ tn
χnψ

∞
t (e) + (1− χn)Unt (e) tn < t ≤ T,

and

M∞,u,nt
.
=

{
M∞,u,nt , t < tn

χnM
∞
t + (1− χn)Mn

t tn ≤ t ≤ T.

Then we have that the process (Y∞,u,n, Z∞,u,n, ψ∞,u,n,M∞,u,n) satisfies the dynamics of
the BSDE (1.5) on the whole interval [0, T ) and with the singular terminal value∞ · 1Atn :
a.s.

lim
t→T

Y∞,u,nt =∞ · 1Atn .

The only remaining issue concerns M∞,u,n: it is not clear a priori that it is a martingale
on [0, T ). However (Y∞,u,n, Z∞,u,n, ψ∞,u,n,M∞,u,n) has the dynamics of the BSDE (1.5)
on the interval [0, tn+1], with terminal condition ζ = Y∞,u,ntn+1

= χnY
∞
tn+1

+ (1 − χn)Yntn+1
.

This terminal value belongs to L`(Ω). Hence there exists a unique solution (y, z, v,m) to
the BSDE (1.5) with terminal condition ζ. From uniqueness on [tn, tn+1], y = χnY

∞ +

(1− χn)Yn and m = χnM
∞ + (1− χn)Mn on this interval. And by uniqueness on [0, tn]

for the BSDE with driver f and terminal condition ytn , y = Y∞,u,n and m = M∞,u,n on
[0, tn]. Since the martingale m has no jump at time tn (Hypothesis (C2)), we obtain that
M∞,u,n is a martingale on [0, tn+1] and thus on [0, T ).
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Fix k > 0 and let (Y (k), Z(k), U (k),M (k)) denote the solution of the BSDE with the
truncated terminal condition

Y
(k)
T = ξ ∧ k = k1AT .

We have the following bound on Y (k):

Lemma 3.4. A.s. for all t ∈ [0, T ], k and n

0 ≤ Y (k)
t ≤ Y u,∞,nt .

Proof. Set

∂Ys = Y u,∞,ns − Y (k)
s , ∂Zs = Zu,∞,ns − Z(k)

s ,

∂ψs(e) = ψu,∞,ns (e)− ψ(k)
s (e), ∂Ms = Mu,∞,n

s −M (k)
s .

We have

f(t, Y u,∞,nt , Zu,∞,nt , ψu,∞,nt )− f(t, Y
(k)
t , Z

(k)
t , ψ

(k)
t )

= −ctŶt + btẐt + (f(t, Y
(k)
t , Z

(k)
t , ψu,∞,nt )− f(t, Y

(k)
t , Z

(k)
t , ψ

(k)
t ))

with

−ct =
f(t, Y u,∞,nt , Zu,∞,nt , ψu,∞,nt )− f(t, Y

(k)
t , Zu,∞,nt , ψu,∞,nt )

∂Yt
1∂Yt 6=0

and

bt =
f(t, Y

(k)
t , Zu,∞,nt , ψu,∞,nt )− f(t, Y

(k)
t , Z

(k)
t , ψu,∞,nt )

∂Zt
1∂Zt 6=0.

By assumption (A1) −ct ≤ χ and by (A4), |bt| ≤ Lf . For every t < T the process
(∂Y, ∂Z, ∂U, ∂M) solves the BSDE

d∂Ys =
[
cs∂Ys − bs∂Zs − (f0s − k)+ − (f(s, Y (k)

s , Z(k)
s , ψu,∞,ns )− f(s, Y (k)

s , Z(k)
s , ψ(k)

s ))
]
ds

+ ∂ZsdWs +

∫
E
∂ψs(e)π̃(de, ds) + d∂Ms

on [0, t] with terminal condition ∂Yt = Y u,∞,nt − Y (k)
t . Moreover, by Assumption (A3)

f(s, Y (k)
s , Z(k)

s , ψu,∞,ns )− f(s, Y (k)
s , Z(k)

s , ψ(k)
s ) ≥

∫
E
κk,u,∞,ns (e)∂ψs(e)µ(de)

where κk,u,∞,n = κY
(k),Z(k),ψ(k),ψu,∞,n . From [22, Lemma 10], we have

∂Ys ≥ E

[
∂YtΓs,t +

∫ t

s

Γs,u(f0u − k)+du

∣∣∣∣Fs]
where Γs,t = exp

(
−
∫ t
s
cudu+ 1

2

∫ t
s
(bu)2du−

∫ t
s
budWu

)
ζs,t and ζs,t solves

ζs,t = 1 +

∫ t

s

ζs,u−

∫
E
κk,u,∞,nu (e)π̃(de, du).

Our assumption (A3) ensures that ζ is non-negative and together with (A1), (A4) and
(B3), Γ verifies for any p ≥ 1

E [(Γs,T )
p
] < +∞.
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See the appendix in [38]. We have Y (k)
t ≤ (1 + T )k and hence ∂Yt ≥ −(1 + T )k. Thus

∂Y Γs,. is bounded from below by a process in Sm(0, T ) for some m > 1. We can apply
Fatou’s lemma to obtain

∂Ys = lim inf
t↗T

E

[
∂YtΓs,t +

∫ t

s

Γs,u(f0u − k)+du

∣∣∣∣Fs] ≥ E [lim inf
t↗T

(∂YtΓs,t)

∣∣∣∣Fs] .
The process (Γs,t, s ≤ t ≤ T ) is càdlàg and non-negative. Hence a.s.

lim inf
t↗T

(∂YtΓs,t) = (lim inf
t↗T

∂Yt)Γs,T−.

But
lim inf
t↗T

∂Yt =∞1Atn − k1AT ≥ 0

since AT ⊂ Atn . This implies Y u,∞,ns ≥ Y (k)
s for any s ∈ [0, T ] and k ≥ 0.

We now finish the proof of continuity of Y at time T :

Theorem 3.5. Under conditions (A), (B) and (C), the minimal supersolution with ter-
minal condition ξ2 satisfies

lim
t→T

Y min
t = ξ2 (3.2)

almost surely.

Proof. We know now that a.s.

0 ≤ Y (k)
t ≤ Y min

t ≤ Y u,∞,nt

and we want to prove that for a.e. ω ∈ AcT ,

lim
t→T

Y min
t = 0.

Recall that

P

(⋂
t<T

At \AT

)
= 0.

Let us fix ω ∈ AcT . We can assume (with probability 1) that ω belongs to
⋃
t<T A

c
t , that is

there exists n such that ω ∈ Actn . This implies:

lim sup
t→T

Y min
t (ω) ≤ Y u,∞,nT (ω) = 0.

4 Density formula in terms of Green’s function

As noted in the introduction, one of the key ingredients in [39] in the analysis of the
terminal condition 1{τ0<T} was the explicit formula available for the density of τ0, the
first exit time of the Brownian motion from an interval (a, b). The natural framework for
the generalization of this formula to higher dimensions is the duality between Potential
theory, elliptic / parabolic PDE and Diffusion processes [13]. Within this duality the exit
times and the distribution of the path of the process up to the exit time corresponds to
Green’s functions [29]. The paper [11] uses the connection between hitting times and
Green’s functions to prove that the exit time of a one dimensional diffusion from a region
has a density. A similar one dimensional computation is also given in [32]. Although
the term “Green’s function” doesn’t appear in them, the works [19, 28] compute the
Green’s function for the Brownian motion in rectangular domains using the method
of images; the work [5] extends this to three dimensions. The work [31], represents
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the distribution of the exit time of a d-dimensional diffusion from a fixed domain as the
solution of a parabolic PDE. It identifies a smooth solution to the PDE whose derivative
gives the density of the stopping time. The solution of the same PDE can be expressed in
terms of the Green’s function derived in the classical PDE book [16] by Friedman for
the underlying parabolic PDE. The same Green’s function can be used to prove that exit
times of diffusions from domains that vary over time have densities. Given the duality
between Green’s functions and exit times, this is a natural result. But we have not been
able to identify a reference in the current literature stating and proving it and therefore
give its details in the present work.

The time variable in [16] corresponds to the time to maturity in the present setup.
We state all definitions and results from [16] in terms of the time variable adopted
in the present work (which is the one commonly used in the the stochastic processes
framework); therefore, for example, the initial condition of [16] becomes the terminal
condition and t derivatives are multiplied by −.

Let L denote the parabolic operator associated with X:

Lu .
= 〈σ(x, t), σ(x, t)Hu〉+ 〈b(x, t),∇xu〉+

∂u

∂t
,

where Hu is the Hessian matrix of second derivatives of u. if we define

a = σσ′

the first term can also be written as 〈a,Hu〉. To be able to use the results in [16] we
adopt all of the assumptions it makes on a and b, these are listed on [16, page 8]: a
is uniformly elliptic; a and b are Hölder continuous. The formal definition of Green’s
function is as follows ([16, page 82]):

Definition 4.1. A function G(x, t, y, s) defined and continuous for (x, t, y, s) ∈ D̄×(D∪B),
t < s is called a Green’s function of Lu = 0 in D if for any 0 ≤ s ≤ T and for any
continuous function f on Ds having a compact support the function

u(x, t) =

∫
Ds

G(x, t, y, s)f(y)dy

is a solution of Lu = 0 in D ∩ {0 ≤ t < s} and it satisfies the terminal and boundary
conditions

lim
t→s

u(x, t) = f(x), x ∈ Ds

u(x, t) = 0, (x, t) ∈ S ∩ {0 ≤ t < s}.

The main result claiming the existence of Green’s functions associated with X is [16,
Theorem 16, page 82]. This result is based on the following assumptions on the domain

D (listed as conditions E and E on [16, pages 64,65]):

Assumption 4.2. For every point (x, t) ∈ S there exists an (n + 1)-dimensional neigh-
borhood V such that V ∩ S can be represented in the form

xi = h(x1, ..., xi−1, xi+1, ..., xn, t)

for some i ∈ {1, 2, 3, ..., n}, h, Dxh, D2
xh and Dth exist and are Hölder continuous (expo-

nent α); DxDth, D2
t h exist and are continuous.

The Green’s function G allows one to compute not just the distribution of the exit
time of X from a fixed domain but from a domain varying in time such as D; in fact it
allows one to compute expectations of the form E(x,t)[g(Xs)1{τ>s}], s > t.
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Proposition 4.3. Suppose G is the Green’s function of the operator L. Then

E(x,t)[g(Xs)1{τ>s}] =

∫
Ds

g(y)G(x, t, y, s)dy, (4.1)

for any bounded continuous function g.

Proof. If g has compact support in Ds, we know by the definition of G that

u(x, t) =

∫
Ds

g(y)G(x, t, y, s)dy,

is a smooth solution of Lu = 0 that is continuous in D|[0,s] with u = 0 on S and u = g

on Ds. Itô’s formula applied to u(Xt, t) gives (4.1). Thus it only remains to treat the
case when g doesn’t have compact support in Ds. Let gn be a sequence of continuous
functions with compact support in Ds converging up to g. Then

E[g(Xs)1{τ>s}] = lim
n→∞

E[gn(Xs)1{τ>s}] + E[g(Xs)1{τ>s}1∂Ds(Xs)].

The assumptions made on a and b imply that Xs has a density in Rn and in particular the
second expectation above is 0. Therefore:

E[g(Xs)1{τ>s}] = lim
n→∞

E[gn(Xs)1{τ>s}]

= lim
n→∞

∫
Ds

gn(y)G(x, t, y, s)dy =

∫
Ds

g(y)G(x, t, y, s)dy,

where the last equality follows from the bounded convergence theorem.

Setting g = 1 in (4.1) we get the following formula for P(x,t)(τ > s):

P(x,t)(τ > s) =

∫
BT

G(x, t, y, s)dy;

The density of the exit time τ is then

− ∂

∂s

∫
Ds

G(x, t, y, s)dy, (4.2)

whenever this derivative exists. When the domain Dt is constant, i.e., when Dt = D0 for
all t, the above derivative is simply

− ∂

∂s

∫
D0

G(x, t, y, s)dy,= −
∫
Ds

Gs(x, t, y, s)dy = −
∫
D0

Gs(x, t, y, s)dy, (4.3)

whenever Gs exists and is continuous (by differentiation under the integral sign, see, e.g.
[2]). Its computation in the presence of a time dependent domain Dt is known as the
Leibniz formula or the “Reynolds Transport Theorem” [15, 10]. All of the statements of
this formula we have come across in the literature assume that the domain Dt is given
as the image of a smooth flow x(·, t) : D0 7→ Dt. Assume for now Dt can be represented
as the image of D0 under a smooth flow x and let v denote the vector field defined
by the flow (see the paragraph following Lemma 4.4 below for comments on the flow
representation of Dt). Leibniz formula given in [15, 10] implies:

− ∂

∂s

∫
Ds

G(x, t, y, s)dy,=

∫
Ds

Gs(x, t, y, s)dy +

∫
∂Ds

G(x, t, y, s)〈v,N〉dS, (4.4)

where N is the unit vector field on ∂Ds. A comparison of this with (4.3) shows that the
second term in (4.4) is the additional term arising from the fact that Dt varies in time.
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But by its construction the Green’s function G is 0 on ∂D ([16, Corollary 1, page 83]),
therefore this additional term is in fact 0! Then in the computation of the density of τ ,
allowing the domain to vary in time doesn’t have a direct impact on the density formula,
(i.e, the formula (4.3) works both for time dependent domains as well as those that are
independent of time).

Second observation about (4.4): for the derivative (4.2) to exist we need the partial
derivative of G with respect to s. We know by [16, Theorem 16, page 82] that G is
differentiable in its t and x variables. But this result does not directly address the
smoothness of G in the s variable. One way to get smoothness of G in the s variable is to
work with the Green’s function G∗ of the adjoint operator L∗ defined as follows:

L∗u .
= 〈a,Hu〉+ 〈b∗,∇xu〉+ c∗u− ∂u

∂t
= 0,

where

b∗i = −bi + 2

n∑
j=1

∂ai,j
∂xj

, c∗ = −
n∑
i=1

∂bi
∂xi

+

n∑
i,j=1

∂2ai,j
∂xi∂xj

. (4.5)

For G∗ to exist and be smooth in its x and t variables it suffices that b∗ and c∗ be uniformly
Hölder continuous (the uniform ellipticity of a is already assumed).

Lemma 4.4. Let b∗i and c∗ of (4.5) be uniformly Hölder continuous. Then G is differen-
tiable in s with a continuous derivative Gs.

Proof. The assumptions on b∗i and c∗ imply that the adjoint operator L∗ satisfies the
conditions of [16, Theorem 16, page 82] which says that L∗ has associated with it a
Green’s function G∗ that is differentiable in t with a continuous derivative G∗t . By [16,
Theorem 17, page 84] G and G∗ are dual, i.e.,

G(x, t, y, s) = G∗(y, s, x, t);

this and the Gs = G∗t imply the statement of the lemma.

Even though in the end it has no influence on the final expression of the density, we
need the existence of a continuously differentiable flow x that generates the domain D
to 1) invoke Leibniz rule and 2) to show that the resulting density is continuous. Many
papers working on PDE with time dependent domains use this assumption [7, 6, 10].
Friedman’s classical book [16] on parabolic PDE, on which most of the arguments above
are based, does not contain this assumption directly. However, the assumptions already
made on D do indeed imply that Dt can be represented as the forward image of D0

under a smooth flow x. To find such a flow one can proceed as follows: first use the local
graph representation of ∂D given in Assumption 4.2 to define a flow on ∂D as follows:

x(x, t) = (h(x2, x3, ..., xd, t), x2, x3, ..., xd, t),

where this definition is made in a neighborhood of (x0, t0) ∈ ∂D where the graph of h
represents a portion of ∂D. That h is C1 implies that x defined as above is a smooth flow
on ∂D. One can now extend this flow to all of Rd using classical results on the possibility
of such an extension (see e.g., [6, page 584] or [25, page 201, Extension lemma for
vector fields on submanifolds]). That Dt is the forward image of D0 now follows from the
fact that x, by its definition, leaves ∂D invariant and the existence uniqueness theorem
for ODE.

We can now make a precise statement about the density of τ :
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Proposition 4.5. Suppose a is uniformly elliptic and a, b, b∗ and c∗ are uniformly Hölder
continuous. and let D satisfy the assumptions 4.2. Then the Green’s function G is
continuously differentiable in s and the exit time τ has continuous density

fτ (x, t, s) = −
∫
Ds

Gs(x, t, y, s)dy, s ∈ (t, T ].

Proof. The existence and continuity of Gs follows from Lemma 4.4; the density formula
follows from Leibniz’s rule and G = 0 on ∂Dt, as discussed above. The continuity of the
density follows from the continuity of Gs and the fact that Dt is the smooth image of D0

under the flow x.

5 Conclusion

The present work finds solutions to BSDE (1.5) with a superlinear driver with singular
terminal values of the form 1A, A ∈ FT . In studying this question it generalizes the class
of events A, the assumptions on the driver f as well as the filtration FT as compared
to the previous work [39], which focused on a deterministic f , the filtration generated
by a Brownian motion and A of the form {τ0 ≤ T} and {τ0 > T} where τ0 is the first
exit time of the Brownian motion from a fixed interval. With the results of Section 3 we
see that under general conditions on the driver and the filtration, the BSDE (1.5) with
terminal condition 1A · ∞ can be solved for any A ∈ FT that can be written as the limit
of a decreasing sequence of adapted events. The arguments in Section2 imply that for
events the form {τ ≤ T}, where τ is a stopping time to obtain continuous solutions to
the BSDE we only need that τ has a bounded density. In Section 4 we show that exit
times of multidimensional Markovian diffusions from time dependent smooth domains
satisfy this condition. The identification of all events A in FT for which the BSDE (1.5)
with terminal condition∞ · 1A has a continuous solution remains an open problem. As
already noted we rely on the density of τ in dealing with the event A = {τ ≤ T}; this
reliance brings with it the assumption q > 2 when dealing with the terminal condition
1A · ∞. To remove this assumption is an open problem for future research.

Another natural direction for future research is the derivation of density formulas
for exit times for more general multidimensional processes, including those with jumps.
Once such formulas are available the arguments in Section 2 would imply the existence
of solution to BSDE (1.5) with terminal conditions defined by these exit times.

All results obtained in this paper can be generalized to the case where the compen-
sator of π is random and equivalent to the measure µ⊗ dt with a bounded density for
example (see the introduction of [4] for example). Nevertheless since we refer to [24, 22]
for the existence and uniqueness of the solution of BSDE, we keep this setting for π.

A Proof of the upper bound (1.15)

Let us recall the arguments of the proof of [23, Proposition 2]. For any k ≥ 0 we
consider the BSDE (1.13)

dY
(k)
t = −fk(t, Y

(k)
t , Z

(k)
t , ψ

(k)
t )dt+ Z

(k)
t dWt +

∫
E
ψ
(k)
t (e)π̃(de, dt) + dM

(k)
t

with bounded terminal condition Y (k)
T = ξ ∧ k and where fk is given by (1.14):

fk(t, y, z, ψ) = (f(t, y, z, ψ)− f0t ) + f0t ∧ k.

The solution Y (k) is non-negative in our setting. We also consider the driver

h(t, y, z, ψ) = bkt − p
1

T − t
y + [f(t, 0, z, ψ)− f0t ].
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with bkt = ((p−1)ηt)p
(T−t)p + (f0t ∧ k). Let ε > 0 and denote by (Yε,k, Zε,k, φε,k, Nε,k) the solution

process of the BSDE on [0, T − ε] with driver h and terminal condition Yε,kT−ε = Y
(k)
T−ε ≥ 0.

Recall that from (A3) and (A4)

f(t, 0, z, ψ)− f0t ≤ β
z,ψ
t z +

∫
E
ψ(e)κ0,0,ψ,0t (e)µ(de),

where

βz,ψt =
f(t, 0, z, ψ)− f(t, 0, 0, ψ)

z1z 6=0
.

From (A4), βz,ψ is a bounded process by Lf . Hence by a comparison argument with the
solution for linear BSDE (see [38, Lemma 4.1]) we have

Yε,kt ≤ E

[
Γt,T−εY

(k)
T−ε +

∫ T−ε

t

Γt,sb
k
sds

∣∣∣∣Ft
]

where for t ≤ s ≤ T − ε

Γt,s = exp

(
−
∫ s

t

p

T − u
du+

∫ s

t

βZ
ε,k,φε,k

u dWu −
1

2

∫ s

t

(βZ
ε,k,φε,k

u )2du

)
V ε,kt,s

=

(
T − s
T − t

)p
exp

(∫ s

t

βZ
ε,k,φε,k

u dWu −
1

2

∫ s

t

(βZ
ε,k,φε,k

u )2du

)
V ε,kt,s

and

V ε,kt,s = 1 +

∫ s

t

∫
Z
V ε,kt,u−κ

0,φε,k,0
u (z)π̃(dz, du). (A.1)

Hence

Yε,kt ≤ 1

(T − t)p
E

[
ερV ε,kt,T−εY

(k)
T−ε +

∫ T−ε

t

V ε,kt,s (T − s)pbksds
∣∣∣∣Ft
]
.

Since bk ≥ 0 it holds that Yε,kt ≥ 0 a.s. for every t ∈ [0, T ]. Hence from Condition (B1)

fk(t,Yε,kt , Zε,kt , φε,kt ) ≤ − 1

ηt
(Yε,kt )q + fk(t, 0, Zε,kt , φε,kt ).

It follows that

fk(t,Yε,kt , Zε,kt , φε,kt ) ≤ h(t,Yε,kt , Zε,kt , φε,kt )− 1

ηt
(Yε,kt )q − ((p− 1)ηt)

p

(T − t)p
+

p

T − t
Yε,kt

≤ h(t,Yε,kt , Zε,kt , φε,kt ),

where we used the Young inequality: cp + (p− 1)yq − pcy ≥ 0 which holds for all c, y ≥ 0.

The comparison theorem implies Y (k)
t ≤ Yε,kt for all t ∈ [0, T − ε] and ε > 0.

Recall once again from Condition (B3), then V ε,Lt,. belongs to H$(0, T − ε) for some

$ ≥ 2. From the upper bound Y
(k)
t ≤ k(T + 1) and from the integrability property of

V ε,kt,. , with dominated convergence, by letting ε ↓ 0 we obtain a.s.

E

[
εpV ε,kt,T−εY

(k)
T−ε

∣∣∣∣Ft] −→ 0.

From Assumption (B3), by the proof of Proposition A.1 in [38], there exists a constant
Kϑ,Kf ,`′ such that a.s.

E

[∫ T−ε

t

(V ε,kt,s )
`′
`′−1 ds

∣∣∣∣Ft
]
≤ (Kϑ,Lf ,`′)

(`′−1)/`′ .
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From Conditions (B2) and (B4), it follows that the process ((T − t)pbkt , 0 ≤ t ≤ T )

belongs to H`
′
(0, T ) for any 1 < `′ ≤ `. Therefore by Hölder’s inequality we obtain

E

[∫ T−ε

t

V ε,kt,s (T − s)pbksds
∣∣∣∣Ft
]
≤ Kϑ,Lf ,`′E

[∫ T

t

((T − s)pbks)`
′
ds

∣∣∣∣Ft
]1/`′

.

Hence we can pass to the limit as ε ↓ 0

Y
(k)
t ≤

Kϑ,Lf ,`′

(T − t)p
E

[ ∫ T

t

((T − s)pbks)`
′
ds

∣∣∣∣Ft
]1/`′

.

Assumptions (B2) and (B4) imply by monotone convergence for k →∞

Y
(k)
t ≤

Kϑ,Lf ,`′

(T − t)p
E

[ ∫ T

t

(
((p− 1)ηs)

p + (T − s)p(f0s )
)`′
ds

∣∣∣∣Ft
]1/`′

< +∞

Using again Hölder’s inequality for the conditional expectation, we obtain the upper
bound in (1.15).

References

[1] S. Ankirchner, M. Jeanblanc, and T. Kruse, BSDEs with Singular Terminal Condition and
a Control Problem with Constraints, SIAM J. Control Optim. 52 (2014), no. 2, 893–913.
MR-3180837

[2] T. M. Apostol, Mathematical analysis, second edition, Addison-Wesley Reading, 1964. MR-
0344384

[3] P. Bank and M. Voß, Linear quadratic stochastic control problems with stochastic terminal
constraint, SIAM J. Control Optim. 56 (2018), no. 2, 672–699. MR-3769694

[4] D. Becherer, Bounded solutions to backward SDE’s with jumps for utility optimization and
indifference hedging, Ann. Appl. Probab. 16 (2006), no. 4, 2027–2054. MR-2288712

[5] C. Blanchet-Scalliet, A. Cousin, and D. Dorobantu, Hitting time for correlated three-
dimensional Brownian motion, working paper or preprint, July 2013.

[6] C. Burdzy, Z.-Q. Chen, and J. Sylvester, The heat equation in time dependent domains with
insulated boundaries, Journal of mathematical analysis and applications 294 (2004), no. 2,
581–595. MR-2061344

[7] P. Cannarsa, G. Da Prato, and J.-P. Zolesio, The damped wave equation in a moving domain,
Journal of Differential Equations 85 (1990), no. 1, 1–16. MR-1052325

[8] R. Cont, Functional Itô calculus and functional Kolmogorov equations, Stochastic integration
by parts and functional Itô calculus, Adv. Courses Math. CRM Barcelona, Birkhäuser/Springer,
2016, pp. 115–207. MR-3497715

[9] R. Cont and D.-A. Fournié, A functional extension of the Ito formula, C. R. Math. Acad. Sci.
Paris 348 (2010), no. 1-2, 57–61. MR-2586744

[10] F. Cortéz and A. Rodríguez-Bernal, Pdes in moving time dependent domains, Without Bounds:
A Scientific Canvas of Nonlinearity and Complex Dynamics, Springer, 2013, pp. 559–577.

[11] F. Delarue, J. Inglis, S. Rubenthaler, and E. Tanré, First hitting times for general non-
homogeneous 1d diffusion processes: density estimates in small time, working paper or
preprint, October 2013.

[12] Ł. Delong, Backward stochastic differential equations with jumps and their actuarial and
financial applications, European Actuarial Academy (EAA) Series, Springer, London, 2013,
BSDEs with jumps. MR-3089193

[13] J. L. Doob, Classical potential theory and its probabilistic counterpart, vol. 262, Springer,
2012. MR-0731258

EJP 26 (2021), paper 64.
Page 25/27

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=3180837
https://mathscinet.ams.org/mathscinet-getitem?mr=0344384
https://mathscinet.ams.org/mathscinet-getitem?mr=0344384
https://mathscinet.ams.org/mathscinet-getitem?mr=3769694
https://mathscinet.ams.org/mathscinet-getitem?mr=2288712
https://mathscinet.ams.org/mathscinet-getitem?mr=2061344
https://mathscinet.ams.org/mathscinet-getitem?mr=1052325
https://mathscinet.ams.org/mathscinet-getitem?mr=3497715
https://mathscinet.ams.org/mathscinet-getitem?mr=2586744
https://mathscinet.ams.org/mathscinet-getitem?mr=3089193
https://mathscinet.ams.org/mathscinet-getitem?mr=0731258
https://doi.org/10.1214/21-EJP619
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


BSDEs with non-Markovian singular terminal conditions

[14] B. Dupire, Functional itô calculus, Bloomberg Portfolio Research Paper No. 2009-04-
FRONTIERS. (2009).

[15] H. Flanders, Differentiation under the integral sign, The American Mathematical Monthly 80
(1973), no. 6, 615–627. MR-0340514

[16] A. Friedman, Partial differential equations of parabolic type, Dover Publications, 2008.
MR-0181836

[17] P. Graewe, U. Horst, and E. Séré, Smooth solutions to portfolio liquidation problems under
price-sensitive market impact, Stochastic Process. Appl. 128 (2018), no. 3, 979–1006. MR-
3758345

[18] O. Guéant, The financial mathematics of market liquidity, Chapman & Hall/CRC Financial
Mathematics Series, CRC Press, Boca Raton, FL, 2016, From optimal execution to market
making. MR-3586017

[19] S. Iyengar, Hitting lines with two-dimensional brownian motion, SIAM Journal on Applied
Mathematics 45 (1985), no. 6, 983–989. MR-0813460

[20] J. Jacod and A. V. Skorohod, Jumping filtrations and martingales with finite variation, Sémi-
naire de Probabilités, XXVIII, Lecture Notes in Math., vol. 1583, Springer, Berlin, 1994,
pp. 21–35. MR-1329098
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