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Abstract

In this paper we develop a framework for multivariate functional approximation by a
suitable Gaussian process via an exchangeable pairs coupling that satisfies a suitable
approximate linear regression property, thereby building on work by Barbour (1990)
and Kasprzak (2020). We demonstrate the applicability of our results by applying
them to joint subgraph counts in an Erdős-Renyi random graph model on the one
hand and to vectors of weighted, degenerate U -processes on the other hand. As a
concrete instance of the latter class of examples, we provide a bound for the functional
approximation of a vector of success runs of different lengths by a suitable Gaussian
process which, even in the situation of just a single run, would be outside the scope of
the existing theory.
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1 Introduction

In his seminal paper [64], Charles Stein introduced a method for proving normal
approximations and obtained a bound on the speed of convergence to the standard
normal distribution. Later, Barbour [2] and Götze [36] developed the so-called generator
approach to finding Stein’s equation, which made it possible to study approximations by
many other probability laws. As a result, in [3], the method was adapted to approxima-
tions by the (infinite-dimensional) Wiener measure.

Moreover, the exchangeable-pair approach, first developed by Stein in his monograph
[65] in the context of univariate normal approximations, has been at the heart of many
results proved using Stein’s method. It was extended by [56] and used in the context of

*Mikołaj Kasprzak was supported by the FNR grant FoRGES (R-AGR-3376-10) at Luxembourg University.
†Heinrich-Heine-Universität Düsseldorf, Germany. E-mail: christian.doebler@hhu.de
‡University of Luxembourg, Luxembourg. E-mail: mikolaj.kasprzak@uni.lu

https://imstat.org/journals-and-publications/electronic-journal-of-probability/
https://doi.org/10.1214/21-EJP587
https://ams.org/mathscinet/msc/msc2020.html
mailto:christian.doebler@hhu.de
mailto:mikolaj.kasprzak@uni.lu


Multivariate functional Stein’s method of exchangeable pairs

non-normal approximations in [14,15,26,29,57]. The publication of [16,47,53] brought
a breakthrough in the understanding of the exchangeable-pair approach and made it
available for applications to a wide array of multivariate normal approximation problems.
The very recent paper [25] developed a functional analytic approach that provides a
substantial extension of the method of exchangeable pairs and, in particular, makes it
possible to dispense with the linear regression property in finite-dimensional settings. In
[42] the method was applied to the study of functional limit results and approximations
by univariate Gaussian processes, using the setup of [56,65] and [3].

In this paper we combine the functional approximation of [3] and the multivariate
exchangeable-pair method of [47,53]. We obtain an abstract approximation theorem,
which is applied in the context of weighted degenerate U-statistics, a particularly
interesting example of which are homogeneous sums. The strength of the abstract
approximation result is also presented in a random-graph-theoretic application.

1.1 Motivation

We are motivated by examples of multivariate quantities whose distance from the
normal distribution can be established using Stein’s method of exchangeable pairs, and
whose functional equivalents have not been studied yet. Functional limit results play an
important role in applied fields. Scaling limits of discrete processes can be studied using
stochastic analysis and are often more robust to changes in the local details than the
discrete processes themselves. That is why researchers often choose to describe discrete
phenomena with continuous models. The error they make by doing this is measured by
rates of convergence in functional limit results. The current paper contributes to solving
the problem of bounding those rates.

The two main applications motivating the paper and considered therein are a con-
tinuous Gaussian-process approximation of a rescaled weighted U-statistic and the
study of an Erdős-Renyi random graph process. U-statistics are central objects in the
field of mathematical statistics. Due to their appealing properties, they have found
numerous applications to estimation, statistical testing and other problems. They ap-
pear in decompositions of more general statistics into sums of terms of a simpler form
(see, e.g. [62, Chapter 6] or [60] and [67]) and play an important role in the study
of random fields (see, e.g. [18, Chapter 4]). Moreover, functional limit theorems for
rescaled U-statistics have found applications in the field of changepoint analysis (see
e.g. [22,23,31,32,34,35,38,52]), where it is particularly useful to know the functional
limits of the related test statistics. On the other hand, the Erdős-Renyi random graph
model has found numerous applications in various fields (see [13]), including epidemic
modelling [1] and modelling of evolutionary conflicts [12].

The first application discussed in the paper deals with the approximation of so-called
weighted U -processes, i.e. process analogues of the class of weighted U -statistics. This
class of processes is very wide, containing the so-called homogeneous sum processes
as well as symmetric, degenerate (complete or incomplete) U -processes. We derive
a general result and successfully apply it to the case of homogeneous sum processes
in Subsection 5.5. As a concrete example, in Subsection 5.6, we provide a bound
for a Gaussian approximation of a process that is defined as a vector of success runs
of different lengths. For functional limit theorems involving the class of symmetric,
degenerate U -processes, we refer the reader to the recent paper [27]. Moreover, we
remark that, even in the univariate case of weighted U -statistics, the literature about limit
theory for these random quantities is quite restricted. Indeed, apart from the abundance
of references on limit theorems for homogeneous sums, the majority of articles focus
on the limiting behavior of so-called reduced or incomplete U -statistics, i.e. weighted
U -statistics whose weights only assume the values 0 and 1 (see e.g. [9,11,39]). Limit
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theorems for general weighted U -statistics can be found in references [46,51,56]. We
stress, however, that the last two references focus on non-normal limiting distributions
and that, in the degenerate case, [56] only considers kernels of order 2. Moreover, the
literature about functional central limit theorems (FCLTs) for weighted U -statistics is
even scarcer. Indeed, only for homogeneous sum processes [6,48] have we been able to
find comparable results in the literature. We defer a discussion and comparison with our
findings to Subsection 5.5.

The second example comes originally from [40] and was studied using exchangeable
pairs in a finite-dimensional context in [54]. We look at a (dynamic) Erdős-Renyi random
graph with bntc vertices, where t denotes the time, and study the distance from the
asymptotic distribution of the joint law of the number of edges and the number of two-
stars. Our approach can, however, be also extended to cover the number of triangles.
Those statistics are often used when approximating the clustering coefficient of a network
and applied in conditionally uniform graph tests.

1.2 Contribution of the paper

The main achievements of the paper are the following:

1. An abstract approximation theorem (Theorem 4.1), bounding the distance between
a stochastic process Yn valued in Rd, for a fixed positive integer d, and a Gaussian
mixture process. The estimate is derived under the assumption that that the
process Yn satisfies the linear regression condition

Df(Yn)[Yn] = 2E
{
Df(Yn) [(Yn −Y′n)Λn]

∣∣∣ Yn

}
+Rf , (1.1)

for all f : D
(
[0, 1],Rd

)
→ R in a certain class of test functions, a random process

Y′n such that (Yn,Y
′
n) is an exchangeable pair, some Λn ∈ Rd×d and some random

variable Rf = Rf (Yn). In (1.1) (and in the entire paper) Df denotes the Fréchet
derivative of f . The class of test functions, with respect to which the bound in
Theorem 4.1 is obtained, is so rich that the bound approaching zero fast enough
implies weak convergence of the law of Yn in the Skorokhod and uniform topologies
on the Skorokhod space. The exact conditions under which this happens are stated
in Proposition 2.2.

2. A novel framework for continuous Gaussian process approximations of vectors of
weighted, degenerate U -processes, presented in Section 5. Apart from proving a
general result about those, we show how it may be applied in examples involving
non-degenerate U -processes. In order to study such examples using our theory, one
may decompose the given U -process into the vector of its degenerate Hoeffding
components and prove a multivariate Gaussian limit theorem for this vector. Then,
by applying a linear functional, one obtains a Gaussian limit for the original process.
This strategy, in a quantified fashion, is exemplified by the application to the r-
runs process, discussed in Subsection 5.6. We stress that, even in the case of
just one r-run process, the results about univariate functional approximations
via exchangeable pairs from [42] would not be sufficient to obtain a Gaussian
approximation. Thus, in this example, the multidimensionality of our approach
proves to be absolutely vital. Moreover, both the kernels and the coefficients of the
weighted U -processes we study in our general result may (and will in most cases)
depend on the sample size n, hence yielding Gaussian limits even in degenerate
situations. At the same time, our methods are flexible enough in order to yield
bounds for the classical results on asymptotic Gaussianity, in non-degenerate
situations, when the kernels are fixed.
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3. A novel quantitative functional limit theorem for the edge counts and the number
of two-stars in an Erdős-Renyi random graph G(n, p) on n vertices with fixed edge
probability p. Letting Ii,j , for i, j = 1, · · · , n be the indicator that edge (i, j) is
present in the graph, we consider the following statistics:

Tn(t) =
bntc − 2

2n2

bntc∑
i,j=1

Ii,j , Vn(t) =
1

6n2

∑
1≤i,j,k≤bntc
i,j,k distinct

IijIjk, t ∈ [0, 1],

corresponding to the number of edges and the number of two-stars, respectively.
Theorem 6.2 provides a bound on the distance between the law of the process

t 7→ (Tn(t)− ETn(t),Vn(t)− EVn(t)) t ∈ [0, 1] (1.2)

and the law of a piecewise constant Gaussian process. Theorem 6.4 estimates the
distance between the law of (1.2) and that of a continuous Gaussian process. These
results extend the result of [42] bounding the distance between the distribution of
the edge counts and a univariate Gaussian process. As a corollary to our results,
we immediately obtain weak convergence of the law of (1.2) in the Skorokhod and
uniform topologies on the Skorokhod space to that of the continuous Gaussian
process.

1.3 Stein’s method in its generality

Stein’s method in its generality is a powerful technique used to obtain bounds on
quantities of the form |Eνh− Eµh|, where µ is the target (known) distribution, ν is an
approximating measure and h is a real-valued test function chosen from a suitable class
H. The method is composed out of three main steps. First, one needs to find an operator
A acting on a class of real-valued functions, such that

(∀f ∈ Domain(A) EπAf = 0) ⇐⇒ π = µ.

Second, for a given function h ∈ H, one solves the following Stein equation:

Af = h− Eµh.

Finally, for f = fh solving the Stein equation, the following quantity:

|EνAfh| (1.3)

needs to be bounded. This is achieved using various mathematical tools (Taylor’s
expansions, Malliavin calculus, as described in [49], coupling methods and others),
applied in conjunction with smoothness properties of fh. For an accessible account of
the method we recommend the surveys [45] and [58] as well as the books [4] and [17],
which treat the cases of Poisson and normal approximation, respectively, in detail. A
database of information and publications connected to Stein’s method can also be found
in [66].

1.4 Stein’s method of exchangeable pairs

The exchangeable-pair approach to Stein’s method was first developed in [65].
Therein, the author considered the setup in which, for a random variable W , one
can construct another random variable W ′ such that (W,W ′) is an exchangeable pair
and the following linear regression condition is satisfied

E [W ′ −W |W ] = −λW (1.4)
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for some λ > 0. It follows from this assumption that

0 =E [(f(W ) + f(W ′))(W −W ′)] = E [(f(W ′)− f(W ))(W −W ′)] + 2λE[Wf(W )]

and so

E[Wf(W )] =
1

2λ
E [(f(W )− f(W ′))(W −W ′)] .

Therefore, using Taylor’s theorem, it can be proved that

|E[f ′(W )]− E[Wf(W )]| ≤ ‖f
′‖∞
2λ

√
Var [E [(W −W ′)2|W ]] +

‖f ′′‖∞
2λ

E|W −W ′|3,

which provides a bound on the quantity (1.3) for ν = L(W ) and A being the canonical
Stein operator corresponding to the standard normal law.

A multivariate version of the method was first described in [16] and then in [53]. In
[53], for an exchangeable pair of d-dimensional vectors (W,W ′), the following condition
is used:

E[W ′ −W |W ] = −ΛW +R (1.5)

for some invertible matrix Λ and a remainder term R. The approach of [53] was further
reinterpreted and combined with the approach of [16] in [47]. Extending this multivariate
version of the exchangeable-pair method to multivariate functional approximations, with
the linear regression condition taking form similar to (1.5), is the subject of the current
paper.

1.5 Functional Stein’s method

Approximations by laws of stochastic processes using Stein’s method have been
studied in [3,5,19,20,63] and recently in [7,10,21,41–43]. These references can be
divided into three groups.

The ones belonging to the first group, containing [3, 5, 41–43], all use, adapt and
extend the setup of [3]. Therein, the author studied the rate of convergence in the
celebrated functional central limit theorem, also called Donsker’s theorem. Barbour
considered test functions g acting on the Skorokhod space D ([0, 1],R) of càdlàg real-
valued maps on [0, 1], such that g takes values in the reals, does not grow faster than
a cubic, is twice Fréchet differentiable and its second derivative is Lipschitz. For
each function g belonging to this class he provided a bound on the absolute difference
between the expectation of g with respect to the law of a rescaled random walk and the
expectation of g with respect to the Wiener measure. Crucially, he also proved that this
class of functions g is so rich that his bounds imply weak convergence with respect to the
Skorokhod topology of the considered rescaled random walk to Brownian Motion. This
last property is vital for most applications of the limit theory for stochastic processes and
may even be the main reason for the outstanding popularity of the Skorohod topology.
Indeed, by means of the continuous mapping theorem, limit theorems for many natural,
non-linear functionals such as the supremum over time, immediately follow from a weak
limit theorem in the Skorokhod topology.

On the other hand, the results of the second group of references, containing [7,19–21],
develop Stein’s theory on a Hilbert space using a Besov-type topology. The bounds
obtained therein, however, do not imply weak convergence in the Skorokhod topology.
Therefore, the continuous mapping theorem does not apply in their setting. For instance,
as opposed to the results of the first group of references, one cannot study convergence
of the supremum of a process using the analysis of the second group of papers.

Finally, [63] develops approximations by abstract Wiener measures on a real sep-
arable Banach space and [10] proves bounds on measure-determining distances from
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Gaussian random variables valued in Hilbert spaces. As for the second group, despite
the elegant abstract theory used and developed in these references, the results do not
imply convergence in the Skorokhod topology on D[0, 1].

In the current paper we shall follow the setup of the first group of references.
We consider it more flexible than the one of the second group and more suited for
applications to processes belonging to the widely-used (non-separable) Skorokhod space
than the ones of the third group.

In the context of these three groups of references and the present paper, we also
mention the recent paper [27] which, although not relying on functional approximation
by Stein’s method, provides functional limit theorems for the class of (degenerate and
non-degenerate) symmetric U -processes with a kernel that may depend on the sample
size n. Since it implicitly relies on a multivariate Gaussian limit theorem derived by
Stein’s method from [30], it is also naturally related to Stein’s method.

Moreover, since one main class of applications in the present paper involves weighted
U -processes, it is worthwhile to compare our results and their applicability to those of
[27]. Firstly, as mentioned above, the paper [27] focuses on Gaussian limit theorems
for symmetric U -processes, which constitute a narrower class than the weighted U -
processes considered in the present work. Moreover, thanks to the finite-dimensional
convergence results from [30], the conditions for convergence from [27] are phrased
in term of L2-norms of contraction kernels and, as such, can be considered as fourth
moment conditions. In contrast, as can be seen from the bounds and proofs of Section
5, the bounds and conditions in the present paper involve third moment quantities.
This distinction is also clearly reflected in the respective applicability of the results
proved in the present paper and those from [27]. Indeed, whereas the symmetric
U -processes considered in [27] possess a global dependency structure, the results in
Section 5 are most useful whenever the dependence of the weighted U -process is local
in the sense that the involved array of weighting coefficients (aJ)J is sparse in some
sense. The runs example in Subsection 5.6 provides an instructive showcase for this
observation. Moreover, the methods used in the proofs of the main results necessitate
that the quantities in the bounds involve the absolute values of both the kernels and
the coefficients. Hence, no cancellation effect, typically occuring under fourth moment
conditions, may be relied on in this case. We therefore consider our theorems as rather
complementary to the ones in [27].

1.6 Structure of the paper

Section 2 includes some introductory remarks about notation and the spaces of test
functions with respect to which bounds on distances between probability laws in this
paper will be derived. Section 3 gives a general form of the pre-limiting process to which
all the processes of interest will be compared using Stein’s method. It also presents
the corresponding Stein equation, its solution and the smoothness properties of the
solution. Section 4 contains the main abstract result of this paper providing a bound on
the distance between a process valued in the Skorokhod space D([0, 1],Rd) and the pre-
limiting process described in the previous section. Section 5 discusses the application of
the abstract theorem to weighted, degenerate U-statistics and presents a bound on their
distance from a continuous Gaussian process. It furthermore explains how the bound
simplifies in the context of homogeneous sums and applies it to the example of r-runs
on the line. Section 6 discusses the example concerning an Erdős-Renyi random graph
process and the bound on the distance between the number of its edges and two-stars
and a continuous Gaussian process. Technical details of some of the proofs in this paper
are postponed to Section 7.
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2 Notation and spaces M and M0

The following notation, similar to the one of [3] and [43], is used throughout the
paper. For a fixed positive integer d, let D([0, 1],Rd) be the Skorokhod space of càdlàg
Rd-valued functions on [0, 1]. For i = 1, · · · , d, by ei we denote the ith unit vector of the
canonical basis of Rd. The ith component of any x ∈ Rd will be denoted by x(i), so that
x =

(
x(1), · · · , x(d)

)
. For a function w defined on [0, 1] and taking values in a Euclidean

space, we will also write

‖w‖ = sup
t∈[0,1]

|w(t)|,

where | · | denotes the Euclidean norm. Moreover, the notation EW [ · ] will be used to
represent E[ · |W ].

Furthermore, we define

‖f‖L := sup
w∈D([0,1],Rd)

|f(w)|
1 + ‖w‖3

,

and let L be the Banach space of continuous functions f : D([0, 1],Rd) → R such that
‖f‖L <∞. By Dkf we will always mean the k-th Fréchet derivative of f . The norm ‖ · ‖
of a k-linear form B on L will be taken to be

‖B‖ = sup
{h:‖hi‖≤1 ∀i=1,...k}

|B[h1, ..., hk]|,

where B[h1, . . . , hk] denotes B applied to arguments h1, . . . , hk ∈ L.

As in [3], we define M ⊂ L as a subspace of L consisting of the twice Fréchet
differentiable functions f , such that:

‖D2f(w + h)−D2f(w)‖ ≤ kf‖h‖, (2.1)

for some constant kf , uniformly in w, h ∈ D([0, 1],Rd). We have following lemma (whose
proof we omit), which may be proved in an analogous way to that used to show (2.6) and
(2.7) of [3]:

Lemma 2.1. For every f ∈M , let:

‖f‖M := sup
w∈D([0,1],Rd)

|f(w)|
1 + ‖w‖3

+ sup
w∈D([0,1],Rd)

‖Df(w)‖
1 + ‖w‖2

+ sup
w∈D([0,1],Rd)

‖D2f(w)‖
1 + ‖w‖

+ sup
w,h∈D([0,1],Rd)

‖D2f(w + h)−D2f(w)‖
‖h‖

.

Then, for all f ∈M , we have ‖f‖M <∞.

We, furthermore, let M0 be the class of functionals g ∈M such that:

‖g‖M0 := sup
w∈D([0,1],Rd)

|g(w)|+ sup
w∈D([0,1],Rd)

‖Dg(w)‖+ sup
w∈D([0,1],Rd)

‖D2g(w)‖

+ sup
w,h∈D([0,1],Rd)

‖D2g(w + h)−D2g(w)‖
‖h‖

<∞

and note that M0 ⊂M . Below, we present a d-dimensional version of [5, Proposition 3.1]
providing conditions, under which weak convergence of the approximating measure to
the target one may be deduced from convergence of the corresponding expectations of
functions g ∈M0. Its proof can be found in the appendix of [43].
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Proposition 2.2. Suppose that, for each n ≥ 1, the random element Yn of D([0, 1],Rd)

is piecewise constant with intervals of constancy of length at least rn. Let (Zn)n≥1 be

random elements of Dp converging in distribution in D([0, 1],Rd), with respect to the
Skorokhod topology, to a random element Z ∈ C

(
[0, 1],Rd

)
. If:

|Eg(Yn)− Eg(Zn)| ≤ CTn‖g‖M0 (2.2)

for each g ∈ M0 and if Tn log2(1/rn)
n→∞−−−−→ 0, then the law of Yn converges weakly to

that of Z in D([0, 1],Rd), in both the uniform and the Skorokhod topologies.

3 Setting up Stein’s method for the pre-limiting approximation

We set up Stein’s method in a fashion similar to [3] and [43]. First, we define the
process Dn whose distribution will be treated as the target measure. We then construct
a process (Wn(·, u) : u ≥ 0) for which the target measure is stationary. We subsequently
calculate its infinitesimal generator An and take it as our Stein operator. Next, we solve
the Stein equation Anf = g, using the analysis of [44], and prove several smoothness
properties of the solution fn = φn(g).

3.1 Target measure

Let

Dn(t) =

n∑
i1,··· ,im=1

(
Z̃

(1)
i1,··· ,imJ

(1)
i1,··· ,im(t), · · · , Z̃(d)

i1,··· ,imJ
(d)
i1,··· ,im(t)

)
, t ∈ [0, 1], (3.1)

where Z̃(k)
i1,··· ,im ’s for k = 1, · · · , d are centred Gaussian and:

1. the covariance matrix Σn ∈ R(nmd)×(nmd) of Z̃ is positive definite, for Z̃ ∈ R(nmd)

built out of the Z̃
(k)
i1,··· ,im ’s in such a way that they appear in the lexicographic

order with Z̃
(k)
i1,··· ,im appearing before Z̃

(k+1)
j1,··· ,jm ’s for any k = 1, · · · , d − 1 and

i1, · · · , im, j1, · · · , jm = 1, · · · , n;

2. the collection of functions{
J
(k)
i1,··· ,im ∈ D ([0, 1],R) : i1, · · · , im ∈ {1, · · · , n}, k ∈ {1, · · · , p}

}
is independent of the collection

{
Z̃

(k)
i1,··· ,im : i1, · · · , im ∈ {1, · · · , n}, k ∈ {1, · · · , p}

}
;

a natural example of those would be J (k)
i1,··· ,im = 1

A
(k)
i1,··· ,im

for some measurable set

A
(k)
i1,··· ,im ⊂ [0, 1].

Remark 3.1. It is worth noting that processes Dn of the form (3.1) are often approxima-
tions of interesting continuous Gaussian processes. An example is Dn of (3.1), where
all the Z̃

(k)
i1,··· ,im ’s are standard normal and independent, m = 1 and J

(k)
i = 1[i/n,1] for

all k = 1, · · · , d and i = 1, · · · , n. By Donsker’s theorem, it approximates the standard
Brownian motion. By Proposition 2.2, under several assumptions, if a piecewise constant
process Yn is close enough to process Dn, then the law of Yn converges weakly to that
of the continuous process that Dn approximates.

Now consider an array of i.i.d. Ornstein-Uhlenbeck processes with stationary law
N (0, 1), independent of the J

(k)
i1,··· ,im ’s, given by {(X (k)

i1,··· ,im(u), u ≥ 0) : i1, · · · , im =

1, ..., n, k = 1, ..., d}. Let Ũ (u) = (Σn)
1/2 X (u), where Σn is the covariance matrix of Z̃,

as above, and X (u) ∈ Rnmd is a vector composed out of the X
(k)
i1,··· ,im(u)’s in such a
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way that they are ordered exactly as Z̃(k)
i1,··· ,im ’s are ordered in Z̃. Write U

(k)
i1,··· ,im(u) =(

Ũ (u)
)
I(k,i1,··· ,im)

using the bijection I : {(k, i1, · · · , im) : i1, · · · , im = 1, · · · , n, k =

1, · · · , d} → {1, · · · , dnm}, given by:

I(k, i1, · · · , im) = (k − 1)nm + (i1 − 1)nm−1 + · · ·+ (im−1 − 1)n+ im. (3.2)

We will look at the process

Wn(t, u) =
(
W(1)

n (t, u), · · · ,W(d)
n (t, u)

)
, t ∈ [0, 1], u ≥ 0,

where, for all k = 1, · · · , d:

W(k)
n (t, u) =

n∑
i1,··· ,im=1

U
(k)
i1,··· ,im(u)J

(k)
i1,··· ,im(t), t ∈ [0, 1], u ≥ 0.

It is easy to see that the stationary law of the process (Wn(·, u))u≥0 (which, for any fixed

u, takes value in D([0, 1],Rd)) is exactly the law of Dn.

3.2 Stein equation

The following result follows immediately from [44, Propositions 4.1 and 4.4]:

Proposition 3.2. The infinitesimal generator of the process (Wn(·, u))u≥0 acts on any
f ∈M (for M defined in Section 2) in the following way:

Anf(w) = −Df(w)[w] + ED2f(w) [Dn,Dn] .

Moreover, for any g ∈ M such that Eg(Dn) = 0, the Stein equation Anfn = g is solved
by:

fn = φn(g) = −
∫ ∞
0

Tn,ugdu, (3.3)

where (Tn,uf)(w) = E
[
f(we−u +

√
1− e−2uDn(·)

]
. Furthermore, for g ∈M :

A) ‖Dφn(g)(w)‖ ≤ ‖g‖M
(

1 +
2

3
‖w‖2 +

4

3
E‖Dn‖2

)
,

B) ‖D2φn(g)(w)‖ ≤ ‖g‖M
(

1

2
+
‖w‖

3
+
E‖Dn‖

3

)
,

C)

∥∥D2φn(g)(w + h)−D2φn(g)(w)
∥∥

‖h‖

≤ sup
w,h∈Dp

‖D2(g + c)(w + h)−D2(g + c)(w)‖
3‖h‖

, (3.4)

for any constant function c : D([0, 1],Rd)→ R and for all w, h ∈ D([0, 1],Rd).

Remark 3.3. The fact that the process (Wn(·, u))u≥0 is built using Ornstein-Uhlenbeck
processes and that the corresponding semigroup Tn,u takes the convenient form, coming
from Mehler’s formula, plays an important role in the proof of Proposition 3.2. It is not
clear to us whether this result can easily be extended beyond this context.

4 An abstract approximation theorem

The following result provides an expression for a bound on the distance between a
process Yn and Dn, defined by (3.1). It assumes that we can find some Y′n such that
(Yn,Y

′
n) is an exchangeable pair satisfying an appropriate condition. We explain in

Remark 4.5 how our condition is similar to that of [53, (1.7)].
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Theorem 4.1. Assume that (Yn,Y
′
n) is an exchangeable pair of D

(
[0, 1],Rd

)
-valued

random vectors such that:

Df(Yn)[Yn] = 2EYnDf(Yn) [(Yn −Y′n)Λn] +Rf , (4.1)

where EYn [·] := E [·|Yn], for all f ∈ M , some Λn ∈ Rd×d and some random variable
Rf = Rf (Yn). Let Dn be defined by (3.1). Then, for any g ∈M :

|Eg(Yn)− Eg(Dn)| ≤ ε1 + ε2 + ε3,

where

ε1 =
‖g‖M

6
E
[
‖(Yn −Y′n)Λn‖‖Yn −Y′n‖2

]
,

ε2 =
∣∣ED2f(Yn) [(Yn −Y′n)Λn,Yn −Y′n]− ED2f(Yn) [Dn,Dn]

∣∣ ,
ε3 = |ERf |,

and f = φn(g), as defined by (3.3).

Remark 4.2 (Relevance of terms in the bound). Term ε1 measures how close Yn and Y′n
are and how small (in a certain sense) Λn is. Term ε2 quantifies the difference between
the covariance structures of Yn −Y′n and Dn. This term may be estimated in several
applications (see Theorems 5.1 and 6.2 below), yet this often requires some effort. Term
ε3 measures the error in the exchangeable-pair linear regression condition (4.1).

Remark 4.3. Condition (4.1) is always satisfied, for example with Λn = 0 and Rf =

Df(Yn)[Yn] for all f ∈ M . However, for the bound in Theorem 4.1 to be small, we
require the expectation of Rf to be small in absolute value.

Remark 4.4. The term∣∣ED2f(Yn) [(Yn −Y′n)Λn,Yn −Y′n]− ED2f(Yn) [Dn,Dn]
∣∣

in the bound obtained in Theorem 4.1 is an analogue of the second condition in [47,
Theorem 3]. The main result of that paper provides a bound on approximation by N (0,Σ)

of a d-dimensional vector X. This is achieved by constructing an exchangeable pair
(X,X ′) satisfying:

EX [X ′ −X] = ΛX + E and EX [(X ′ −X)(X ′ −X)T ] = 2ΛΣ + E′

for some invertible matrix Λ and some remainder terms E and E′. In the same spirit,
Theorem 4.1 could be rewritten to assume (4.1) and:

EYnD2f(Yn) [(Yn −Y′n)Λn,Yn −Y′n] = D2f(Yn) [Dn,Dn] +R1
f ,

for all f ∈M . The bound would then take the form:

|Eg(Yn)− Eg(Dn)| ≤‖g‖M
6

E
[
‖(Yn −Y′n)Λn‖‖Yn −Y′n‖2

]
+ |ERf |+ |ER1

f |,

for f = φn(g).

Remark 4.5. The role of Λn in condition (4.1) is equivalent to that played by Λ−1 in
[53] for Λ defined by (1.7) therein. In the functional setting, condition (4.1) is more
appropriate than a straightforward adaptation of the setup of [53]. This is because, for
general processes Yn, the properties of the Fréchet derivative do not allow us to treat
evaluating the derivative in the direction of Yn −Y′n as matrix multiplication. Indeed,
multiplying both sides of the hypothetical condition:

−Df(Yn)[ΛYn] = EYnDf(Yn)[Yn −Y′n]
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by Λ−1 does not yield:

−Df(Yn)[Yn] = EYnDf(Yn)[Λ−1(Yn −Y′n)].

Proof of Theorem 4.1. We will bound |Eg(Yn)− Eg(Dn)| by bounding |EAnf(Yn)|, where
f is the solution to the Stein equation:

Anf = g − Eg(Dn),

for An defined in Proposition 3.2. Note that, by exchangeability of (Yn,Y
′
n) and (4.1):

0 =E (Df(Y′n) +Df(Yn)) [(Yn −Y′n)Λn]

=E (Df(Y′n)−Df(Yn)) [(Yn −Y′n)Λn] + 2E
{
EYnDf(Yn) [(Yn −Y′n)Λn]

}
=E (Df(Y′n)−Df(Yn)) [(Yn −Y′n)Λn] + EDf(Yn)[Yn]− ERf

and so:
EDf(Yn)[Yn] = E (Df(Yn)−Df(Y′n)) [(Yn −Y′n)Λn] + ERf .

Therefore:

|EAnf(Yn)|
=
∣∣EDf(Yn)[Yn]− ED2f(Yn) [Dn,Dn]

∣∣
=
∣∣E (Df(Yn)−Df(Y′n)) [(Yn −Y′n)Λn]− ED2f(Yn) [Dn,Dn] + ERf

∣∣
≤
∣∣E (Df(Yn)−Df(Y′n)) [(Yn −Y′n)Λn]− ED2f(Y′n) [(Yn −Y′n)Λn,Yn −Y′n]

∣∣
+
∣∣ED2f(Yn) [(Yn −Y′n)Λn,Yn −Y′n]− ED2f(Yn) [Dn,Dn]

∣∣+ |ERf |

≤‖g‖M
6

E
[
‖(Yn −Y′n)Λn‖‖Yn −Y′n‖2

]
+ |ERf |

+
∣∣ED2f(Yn) [(Yn −Y′n)Λn,Yn −Y′n]− ED2f(Yn) [Dn,Dn]

∣∣ ,
where the last inequality follows by Taylor’s theorem and Proposition 3.2.

5 Weighted, degenerate U-statistics

In this Section we will apply Theorem 4.1 in order to prove bounds for the approxi-
mation of a vector of weighted, degenerate U -processes by suitable Gaussian processes.

5.1 Introduction

The setup will be the following. We fix positive integers d, p1, . . . , pd and consider
a sequence (Xi)i∈N of i.i.d. random variables with distribution µ on some measurable
space (E, E). Moreover, for 1 ≤ i ≤ d, we let ψ(i) ∈ L2(µpi) be a symmetric kernel such
that E[ψ(i)2(X1, . . . , Xpi)] > 0. We assume that ψ(i) is (completely) degenerate with
respect to µ, i.e. that

E[ψ(i)(X1, . . . , Xpi) | X1, . . . , Xpi−1] = 0, a.s.

We denote by Dp(n) the collection of p-subsets of the set [n] := {1, . . . , n} (if p > n, we
set Dp(n) = ∅).

Furthermore, we fix an integer n ≥ max(p1, . . . , pd) and let {aJ(i) : 1 ≤ i ≤ d, J ∈
Dpi(n)}, be a (given) set of real numbers (weights). We further let {σn(i) : 1 ≤ i ≤ d} be
a set of positive real numbers and, for t ∈ [0, 1], define

Y(i)
n (t) :=

1

σn(i)

∑
J∈Dpi

(bntc)

aJ(i)ψ(i)(Xj , j ∈ J) .
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In some applications it may be natural to take

σn(i)2 = E[ψ(i)2(X1, . . . , Xpi)]
∑

J∈Dpi
(n)

aJ(i)2 , 1 ≤ i ≤ d,

i.e. equal to the variance of the sum in the definition of Y(i)
n (1). This is, however, not

necessary for our results. For fixed t (in particular for t = 1), the quantity Y
(i)
n (t) is

customarily referred to as a degenerate, weighted U-statistic based on X1, . . . , Xbntc

and, thus, we coin the whole random function Y
(i)
n a degenerate, weighted U-process.

Limit theorems (not necessarily central) for such weighted U -statistics have been derived
in [46,51,55,56] and in the (somehow) more special case of incomplete U -statistics in
[9,11,39]. However, we have not been able to find FCLTs for degenerate, weighted
U-process in the literature.

With the above definitions, we let

Yn := (Y(1)
n , . . . ,Y(d)

n ) ,

which is, as one can easily observe, an element of D([0, 1],Rd). We will write X :=

(X1, . . . , Xn) and construct an X ′ := (X ′1, . . . , X
′
n) such that the pair (X,X ′) is exchange-

able. Specifically, we let X0 be another random variable with distribution µ and let I be
uniformly distributed on [n] in such a way that I,X0, (Xj)j∈N are jointly independent.
For 1 ≤ j ≤ n, we let

X ′j :=

{
Xj , if j 6= I

X0 , if j = I .

Then, for t ∈ [0, 1] and 1 ≤ i ≤ d, we define

(Y(i)
n )′(t) :=

1

σn(i)

∑
J∈Dpi

(bntc)

aJ(i)ψ(i)(X ′j , j ∈ J)

and
Y′n := ((Y(1)

n )′, . . . , (Y(d)
n )′) .

The pair (Yn,Y
′
n) is clearly exchangeable and, for f ∈ M , similarly as in the proof of

[28, Lemma 2.3], one can use degeneracy to show that

Df(Yn)[Yn] = 2EYnDf(Yn) [(Yn −Y′n)Λn] ,

where

Λn = diag

(
n

2p1
, . . . ,

n

2pd

)
. (5.1)

Therefore condition (4.1) is satisfied for Λn of (5.1) and Rf = 0. In what follows we will
assume that 1 ≤ p1 ≤ p2 ≤ · · · ≤ pd.

5.2 A pre-limiting process

We will construct a pre-limiting Gaussian process Dn of the form (3.1) which has the

same covariance structure as Yn. We take Dn =
(
D

(1)
n , . . . ,D

(d)
n

)
for

D(i)
n (t) =

1

σn(i)

∑
J∈Dpi

(bntc)

aJ(i)ZJ(i),

where, for i = 1, . . . , d and J ∈ Dpi(n), ZJ(i) are jointly Gaussian random variables that
are independent of X and satisfy

E [ZJ(i)ZK(l)] =

{
E[ψ(i)(X1, . . . , Xpi)ψ(l)(X1, . . . , Xpl)], if pi = pl and K = J

0, otherwise,

for i, l = 1, . . . , d, J ∈ Dpi(n) and K ∈ Dpl(n).

EJP 26 (2021), paper 28.
Page 12/50

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP587
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Multivariate functional Stein’s method of exchangeable pairs

5.3 Distance from the pre-limiting process

Having established the setup and defined the pre-limiting process above, we prove
the following result:

Theorem 5.1. Let Yn be defined as in Section 5.1 and Dn be defined as in Section 5.2.
Then, for any g ∈M ,

∣∣∣E[g(Yn)]− E[g(Dn)]
∣∣∣ ≤ 2

√
d‖g‖M
3p1

d∑
i=1

‖ψ(i)‖3L3(µpi )

σn(i)3

n∑
l=1

 ∑
J∈Dpi

(n):
l∈J

|aJ(i)|


3

+ ‖g‖M
d∑

i,j,k=1

‖ψ(i)‖L3(µpi )‖ψ(j)‖L3(µpj )‖ψ(k)‖L3(µpk )

σn(i)σn(j)σn(k)

∑
J∈Dpi

(n),

K∈Dpj
(n),

L∈Dpk
(n):

J∩K 6=∅,
L∩(J∪K) 6=∅

|aJ(i)aK(j)aL(k)|.

Proof.
Step 1. First note that, for ε1 in Theorem 4.1,

‖(Yn −Y′n)Λn‖ ‖Yn −Y′n‖
2 ≤ n

2p1
‖Yn −Y′n‖

3
, (5.2)

which follows directly from the definition of Λn in (5.1) and our assumption that p1 ≤
· · · ≤ pd. Now, note that

‖Yn −Y′n‖
3

= sup
t∈[0,1]

[(
Y(1)
n (t)−

(
Y(1)
n

)′
(t)

)2

+ · · ·+
(
Y(d)
n (t)−

(
Y(d)
n

)′
(t)

)2
]3/2

≤
√
d sup
t∈[0,1]

[∣∣∣∣Y(1)
n (t)−

(
Y(1)
n

)′
(t)

∣∣∣∣3 + · · ·+
∣∣∣∣Y(d)

n (t)−
(
Y(d)
n

)′
(t)

∣∣∣∣3
]

≤
√
d

[∥∥∥∥Y(1)
n −

(
Y(1)
n

)′∥∥∥∥3 + · · ·+
∥∥∥∥Y(d)

n −
(
Y(d)
n

)′∥∥∥∥3
]
. (5.3)

Furthermore, for max(J) := max{j : j ∈ J} and for all i = 1, . . . , d:

E

∥∥∥∥Y(i)
n −

(
Y(i)
n

)′∥∥∥∥3
=

1

σn(i)3

· E

 sup
t∈[0,1]

∣∣∣∣∣∣∣∣
∑

J∈Dpi
(bntc):

I∈J

aJ(i)
(
ψ(i)(Xj , j ∈ J)− ψ(i)(X0, Xj , j ∈ J \ {I})

)
1
[
max(J)

n ,1]
(t)

∣∣∣∣∣∣∣∣
3

≤ 1

σn(i)3
E

 ∑
J∈Dpi

(n):
I∈J

|aJ(i)|
∣∣ψ(i)(Xj , j ∈ J)− ψ(i)(X0, Xj , j ∈ J \ {I})

∣∣


3

≤ 1

nσn(i)3

n∑
l=1

∑
J,K,L∈Dpi

(n):
l∈J∩K∩L

|aJ(i)aK(i)aL(i)|E

[∣∣ψ(i)(Xj , j ∈ J)− ψ(i)(X0, Xj , j ∈ J \ {l})
∣∣
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·
∣∣ψ(i)(Xj , j ∈ K)− ψ(i)(X0, Xj , j ∈ K \ {l})

∣∣∣∣ψ(i)(Xj , j ∈ L)− ψ(i)(X0, Xj , j ∈ L \ {l})
∣∣]

≤
E
∣∣ψ(i)(X1, . . . , Xpi)− ψ(i)(X2, . . . , Xpi+1)

∣∣3
nσn(i)3

n∑
l=1

∑
J,K,L∈Dpi

(n):
l∈J∩K∩L

|aJ(i)aK(i)aL(i)| (5.4)

≤
8E
∣∣ψ(i)(X1, . . . , Xpi)

∣∣3
nσn(i)3

n∑
l=1

 ∑
J∈Dpi

(n):
l∈J

|aJ(i)|


3

. (5.5)

Combining (5.2) -(5.5) we obtain

ε1 ≤
√
d‖g‖M
12p1

d∑
i=1

E
∣∣ψ(i)(X1, . . . , Xpi)− ψ(i)(X2, . . . , Xpi+1

)
∣∣3

σn(i)3

·
n∑
l=1

∑
J,K,L∈Dpi

(n):
l∈J∩K∩L

|aJ(i)aK(i)aL(i)| (5.6)

≤ 2
√
d‖g‖M
3p1

d∑
i=1

E
∣∣ψ(i)(X1, . . . , Xpi)

∣∣3
σn(i)3

n∑
l=1

 ∑
J∈Dpi

(n):
l∈J

|aJ(i)|


3

. (5.7)

Step 2. We will now bound ε2 of Theorem 4.1. Denoting by ei the ith element of the
canonical basis of Rd, for i = 1, . . . , d, for any f ∈M , we have

D2f(Yn) [(Yn −Y′n) Λn,Yn −Y′n]

=D2f(Yn)

[
d∑
i=1

n

2pi

(
Y(i)
n −

(
Y(i)
n

)′)
ei,

d∑
i=1

(
Y(i)
n −

(
Y(i)
n

)′)
ei

]

=

d∑
i,j=1

n

2pi
D2f(Yn)

[(
Y(i)
n −

(
Y(i)
n

)′)
ei,

(
Y(j)
n −

(
Y(j)
n

)′)
ej

]
. (5.8)

We now let f = φn(g), as defined by (3.3), and fix some i, j ∈ {1, . . . , d}. We have that∣∣∣∣∣ n2piED2f(Yn)

[(
Y(i)
n −

(
Y(i)
n

)′)
ei,

(
Y(j)
n −

(
Y(j)
n

)′)
ej

]

− ED2f(Yn)
[
D(i)
n ei,D

(j)
n ej

] ∣∣∣∣∣
=

1

σn(i)σn(j)

∣∣∣∣∣ n2pi ∑
J∈Dpi

(n),

K∈Dpj
(n)

aJ(i)aK(j)E
[(
ψ(i)(Xu, u ∈ J)− ψ(i)(X ′u, u ∈ J)

)

·
(
ψ(j)(Xu, u ∈ K)− ψ(j)(X ′u, u ∈ K)

)
D2f(Yn)

[
1
[
max(J)

n ,1]
ei,1[max(K)

n ,1]
ej
]]

−
∑

J∈Dpi
(n),

K∈Dpj
(n)

aJ(i)aK(j)1{J=K}E
[
ψ(i)(X1, . . . , Xpi)ψ(j)(X1, . . . , Xpj )

]

· E
[
D2f(Yn)

[
1
[
max(J)

n ,1]
ei,1[max(K)

n ,1]
ej
]]∣∣∣∣∣
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=
1

2piσn(i)σn(j)

∣∣∣∣∣
n∑
l=1

∑
J∈Dpi

(n),

K∈Dpj
(n),

l∈J∩K

aJ(i)aK(j)E
[(
ψ(i)(Xu, u ∈ J)− ψ(i)(X0, Xu, u ∈ J \ {l})

)

·
(
ψ(j)(Xu, u ∈ K)− ψ(j)(X0, Xu, u ∈ K \ {l})

)
D2f(Yn)

[
1
[
max(J)

n ,1]
ei,1[max(K)

n ,1]
ej
]]

− 2

n∑
l=1

∑
J∈Dpi

(n),

K∈Dpj
(n),

l∈J∩K

aJ(i)aK(j)1{J=K}E
[
ψ(i)(X1, . . . , Xpi)ψ(j)(X1, . . . , Xpj )

]

· E
[
D2f(Yn)

[
1
[
max(J)

n ,1]
ei,1[max(K)

n ,1]
ej
]]∣∣∣∣∣

=
1

2piσn(i)σn(j)

∣∣∣∣∣
n∑
l=1

∑
J∈Dpi

(n),

K∈Dpj
(n),

l∈J∩K

aJ(i)aK(j)E

[((
ψ(i)(Xu, u ∈ J)

− ψ(i)(X0, Xu, u ∈ J \ {l})
)
·
(
ψ(j)(Xu, u ∈ K)− ψ(j)(X0, Xu, u ∈ K \ {l})

)
− 21{J=K}E

[
ψ(i)(X1, . . . , Xpi)ψ(j)(X1, . . . , Xpj )

])
D2f(Yn)

[
1
[
max(J)

n ,1]
ei,1[max(K)

n ,1]
ej
]]∣∣∣∣∣.

(5.9)

Now, we define

YJ,K
n :=

((
YJ,K
n

)(1)
, · · · ,

(
YJ,K
n

)(d))
via

(
YJ,K
n

)(i)
(t) :=

1

σn(i)

∑
L∈Dpi

(bntc):
L∩(J∪K)=∅

aJ(i)ψ(i)(Xj , j ∈ L) , 1 ≤ i ≤ d, t ∈ [0, 1] .

Then, using independence, from (5.9) we obtain that∣∣∣∣∣ n2piED2f(Yn)

[(
Y(i)
n −

(
Y(i)
n

)′)
ei,

(
Y(j)
n −

(
Y(j)
n

)′)
ej

]

− ED2f(Yn)
[
D(i)
n ei,D

(j)
n ej

] ∣∣∣∣∣
=

1

2piσn(i)σn(j)

∣∣∣∣∣
n∑
l=1

∑
J∈Dpi

(n),

K∈Dpj
(n),

l∈J∩K

aJ(i)aK(j)E

[((
ψ(i)(Xu, u ∈ J)

− ψ(i)(X0, Xu, u ∈ J \ {l})
)(

ψ(j)(Xu, u ∈ K)− ψ(j)(X0, Xu, u ∈ K \ {l})
)

− 21{J=K}E
[
ψ(i)(X1, . . . , Xpi)ψ(j)(X1, . . . , Xpj )

])

·
(
D2f(Yn)−D2f(YJ,K

n )
)[
1
[
max(J)

n ,1]
ei,1[max(K)

n ,1]
ej
]]∣∣∣∣∣
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(3.4)C
≤ ‖g‖M

6piσn(i)σn(j)

n∑
l=1

∑
J∈Dpi

(n),

K∈Dpj
(n),

l∈J∩K

|aJ(i)aK(j)|E

[∣∣∣∣∣
(
ψ(i)(Xu, u ∈ J)

− ψ(i)(X0, Xu, u ∈ J \ {l})
)(

ψ(j)(Xu, u ∈ K)− ψ(j)(X0, Xu, u ∈ K \ {l})
)

− 21{J=K}E
[
ψ(i)(X1, . . . , Xpi)ψ(j)(X1, . . . , Xpj )

]∣∣∣∣∣ · ‖Yn −YJ,K
n ‖

]
.

(5.10)

Now, we observe that

‖Yn −YJ,K
n ‖ ≤

d∑
k=1

1

σn(k)
‖Y(k)

n − (YJ,K
n )(k)‖

≤
d∑
k=1

1

σn(k)

∑
L∈Dpk

(n):

L∩(J∪K) 6=∅

|aJ(k)||ψ(k)(Xu, u ∈ L)|.

Hence, (5.10) yields∣∣∣∣∣ n2piED2f(Yn)

[(
Y(i)
n −

(
Y(i)
n

)′)
ei,

(
Y(j)
n −

(
Y(j)
n

)′)
ej

]

− ED2f(Yn)
[
D(i)
n ei,D

(j)
n ej

] ∣∣∣∣∣
≤

d∑
k=1

‖g‖M
6piσn(i)σn(j)σn(k)

n∑
l=1

∑
J∈Dpi

(n),

K∈Dpj
(n),

l∈J∩K

∑
L∈Dpk

(n):

L∩(J∪K) 6=∅

|aJ(i)aK(j)aL(k)|E

[∣∣∣∣(ψ(i)(Xu, u ∈ J)

− ψ(i)(X0, Xu, u ∈ J \ {l})
)
·
(
ψ(j)(Xu, u ∈ K)− ψ(j)(X0, Xu, u ∈ K \ {l})

)
− 21{J=K}E

[
ψ(i)(X1, . . . , Xpi)ψ(j)(X1, . . . , Xpj )

]∣∣∣∣ · |ψ(k)(Xu, u ∈ L)|

]

≤
d∑
k=1

‖g‖M
piσn(i)σn(j)σn(k)

·
n∑
l=1

∑
J∈Dpi

(n),

K∈Dpj
(n),

l∈J∩K

∑
L∈Dpk

(n):

L∩(J∪K) 6=∅

|aJ(i)aK(j)aL(k)|‖ψ(i)‖L3(µpi )‖ψ(j)‖L3(µpj )‖ψ(k)‖L3(µpk )

≤
d∑
k=1

‖g‖M‖ψ(i)‖L3(µpi )‖ψ(j)‖L3(µpj )‖ψ(k)‖L3(µpk )

σn(i)σn(j)σn(k)

∑
J∈Dpi

(n),

K∈Dpj
(n),

L∈Dpk
(n):

J∩K 6=∅,
L∩(J∪K)6=∅

|aJ(i)aK(j)aL(k)|. (5.11)

Finally, (5.8) and (5.11) imply that

ε2 ≤
d∑

i,j=1

∣∣∣∣∣ n2piED2f(Yn)

[(
Y(i)
n −

(
Y(i)
n

)′)
ei,

(
Y(j)
n −

(
Y(j)
n

)′)
ej

]
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− ED2f(Yn)
[
D(i)
n ei,D

(j)
n ej

] ∣∣∣∣∣
≤

d∑
i,j,k=1

‖g‖M‖ψ(i)‖L3(µpi )‖ψ(j)‖L3(µpj )‖ψ(k)‖L3(µpk )

σn(i)σn(j)σn(k)

∑
J∈Dpi

(n),

K∈Dpj
(n),

L∈Dpk
(n):

J∩K 6=∅,
L∩(J∪K) 6=∅

|aJ(i)aK(j)aL(k)|.

5.4 Distance from a continuous process

We now prove the following theorem, which bounds the distance between the law of
Yn and that of a continuous Gaussian process. Let us introduce some notation first.

Let Σ
(m)
n ∈ Rd×d be given by

(
Σ(m)
n

)
i,l

=


n

σn(i)σn(l)

∑
J∈Dpi

(m):

m=max(J)

aJ(i)aJ(l)E [ψ(i)(X1, . . . , Xpi)ψ(l)(X1, . . . , Xpl)] , if pi = pl

0, otherwise,

for i, l = 1, . . . , d. For i = 1, . . . , d, let

δ(i)n =
1

(σn(i))
2 sup
m∈[n]

∑
J∈Dpi

(m):

m=max(J)

aJ(i)2E
[
ψ(i)2(X1, . . . , Xpi)

]
,

where [n] := {1, . . . , n}, and

T (i)
n =

1

(σn(i))
2

∑
J∈Dpi

(n)

aJ(i)2E
[
ψ(i)2(X1, . . . , Xpi)

]
.

Furthermore, let

ϕn(s) =

n∑
m=p1

(
Σ(m)
n

)1/2
1(m−1

n ,mn ](s), s ∈ [0, 1]

and suppose that ϕ : [0, 1] → Rd×d is a matrix of L2([0, 1])-functions such that, for all
i, j = 1, . . . , d,

lim
n→∞

∫ 1

0

∣∣∣(ϕn(s)− ϕ(s))i,j

∣∣∣2 ds = 0.

Let ‖ · ‖F denote the Frobenius norm. Suppose that W is a d-dimensional standard
Brownian motion.

Let

Z(t) =

∫ t

0

ϕ(s)dW(s)

and Yn be defined as in Section 5.1.

Theorem 5.2. Under the above setup, for any g ∈M ,

|Eg(Yn)− Eg(Z)| ≤ ‖g‖M (γ1 + γ2 + γ3 + γ4 + γ5),

and, for any g ∈M0,

|Eg(Yn)− Eg(Z)| ≤ ‖g‖M0(γ1 + γ2 + γ3),
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where

γ1 =
2
√
d

3p1

d∑
i=1

‖ψ(i)‖3L3(µpi )

σn(i)3

n∑
l=1

 ∑
J∈Dpi

(n):
l∈J

|aJ(i)|


3

;

γ2 =

d∑
i,j,k=1

‖ψ(i)‖L3(µpi )‖ψ(j)‖L3(µpj )‖ψ(k)‖L3(µpk )

σn(i)σn(j)σn(k)

∑
J∈Dpi

(n),

K∈Dpj
(n),

L∈Dpk
(n):

J∩K 6=∅,
L∩(J∪K)6=∅

|aJ(i)aK(j)aL(k)|;

γ3 = 2

√∫ 1

0

‖ϕn(s)− ϕ(s)‖2F ds+ 12

√√√√ d∑
i=1

δ
(i)
n log

(
2T

(i)
n

δ
(i)
n

)
;

γ4 =
√
d

d∑
i=1

8447

(
δ(i)n log

(
2T

(i)
n

δ
(i)
n

))3/2

+ 44

 d∑
j=1

∫ 1

0

[
(ϕn(s)− ϕ(s))i,j

]2
ds

3/2
 ;

γ5 =
√
d

(∫ 1

0

‖ϕ(s)‖2F ds
) d∑
i=1

[
50

√√√√δ
(i)
n log

(
2T

(i)
n

δ
(i)
n

)

+ 19

√√√√ d∑
j=1

∫ 1

0

[
(ϕn(s)− ϕ(s))i,j

]2
ds

]
.

Proof. Let us write W =
(
W(1), . . . ,W(d)

)
, where W(1), . . . ,W(d) are i.i.d. standard

Brownian motions in R.
Step 1. Consider process Dn defined in Section 5.2. Note that, for i = 1, . . . , d,

D(i)
n (t) =

1

σ
(i)
n

∑
J∈Dpi

(bntc)

aJ(i)ZJ(i)

=
1

σ
(i)
n

bntc∑
m=pi

∑
J∈Dpi

([m]):

m=max(J)

aJ(i)ZJ(i)

=
1

σ
(i)
n

bntc∑
m=pi

Z̃m(i),

where {Z̃m(i) : m ∈ [n], i ∈ [d]} is a jointly Gaussian collection of centred random
variables with the following covariance structure:

E
[
Z̃m1

(i)Z̃m2
(l)
]

=


∑

J∈Dpi
([m1]):

m1=max(J)

a
(i)
J a

(l)
J E [ψ(i)(X1, . . . , Xpi)ψ(l)(X1, . . . , Xpl)] , if pi = pl and m1 = m2

0, otherwise.

Using this observation, note that Dn has the same distribution as Z̃n given by

Z̃n(t) :=
1√
n

n∑
m=p1

∫ bntc
0

(
Σ(m)
n

)1/2
1(m−1,m](s)dW(s), t ∈ [0, 1],
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whose distribution, by a simple change of variables, is equal to that of

Zn(t) :=

n∑
m=p1

∫ bntc/n
0

(
Σ(m)
n

)1/2
1(m−1

n ,mn ](s)dW(s) =

∫ bntc/n
0

ϕn(s)dW(s), t ∈ [0, 1].

Step 2. By Doob’s L2 inequality and Itô’s isometry, we note that

E sup
t∈[0,1]

∣∣∣∣∫ t

0

(ϕn(s)− ϕ(s)) dW(s)

∣∣∣∣2 =E

 sup
t∈[0,1]

d∑
i=1

 d∑
j=1

∫ t

0

(ϕn(s)− ϕ(s))i,j dW
(j)(s)

2


≤4

d∑
i=1

E


 d∑
j=1

∫ 1

0

(ϕn(s)− ϕ(s))i,j dW
(j)(s)

2


=4

d∑
i,j=1

E

[(∫ 1

0

(ϕn(s)− ϕ(s))i,j dW
(j)(s)

)2
]

=4

∫ 1

0

‖ϕn(s)− ϕ(s)‖2F ds. (5.12)

Similarly, by Doob’s L3 inequality, the formula for Gaussian moments and Itô’s isometry,

E sup
t∈[0,1]

∣∣∣∣∫ t

0

(ϕn(s)− ϕ(s)) dW(s)

∣∣∣∣3 (5.13)

=E

 sup
t∈[0,1]

 d∑
i=1

 d∑
j=1

∫ t

0

(ϕn(s)− ϕ(s))i,j dW
(j)(s)

2


3/2


≤27
√
d

8

d∑
i=1

E


∣∣∣∣∣∣
d∑
j=1

∫ 1

0

(ϕn(s)− ϕ(s))i,j dW
(j)(s)

∣∣∣∣∣∣
3


=
27
√
d

2
√

2π

d∑
i=1

E

 d∑
j=1

∫ 1

0

(ϕn(s)− ϕ(s))i,j dW
(j)(s)

2



3/2

=
27
√
d

2
√

2π

d∑
i=1

 d∑
j=1

∫ 1

0

[
(ϕn(s)− ϕ(s))i,j

]2
ds

3/2

. (5.14)

Step 3. We now apply an argument similar to that of [33, Theorem 1]. Note that

Mn(t) =

∫ t∧1

0

ϕn(s)dW(s) + (W(t)−W(1))1[t>1]

is a martingale vanishing at zero. In particular, so are the coordinate processes

M(i)
n (t) =

∫ t∧1

0

d∑
j=1

(ϕn)i,j dW
(j)(s) +

(
W(i)(t)−W(i)(1)

)
1[t>1].

Note that, by the Dambis-Dubins-Schwarz theorem, for each i = 1, . . . , d, there exists a
Wiener process W̃(i), such that

M(i)
n (t) = W̃(i)

(〈
M(i)

n

〉
t

)
, t ≥ 0,
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where
〈
M

(i)
n

〉
t

is the quadratic variation of M(i)
n , i.e.

〈
M(i)

n

〉
t

=

d∑
j=1

∫ t∧1

0

((ϕn)i,j)
2
ds+ (t− 1) ∨ 0.

Note that〈
M(i)

n

〉
1

=

n∑
m=p1

∫ 1

0

(
Σ(m)
n

)
i,i

1(m−1
n ,mn ](s)ds =

1

n

n∑
m=p1

(
Σ(m)
n

)
i,i

= T (i)
n

and

sup
t∈[0,1]

(〈
M(i)

n

〉
t
−
〈
M(i)

n

〉
bntc/n

)
= sup
t∈[0,1]

d∑
j=1

∫ t

bntc/n
((ϕn)i,j(s))

2
ds

= sup
t∈[0,1]

d∑
j=1

∫ t

bntc/n

((
Σ((bntc+1)∧n)
n

)1/2)2

i,j

ds

= sup
t∈[0,1]

(
t− bntc

n

)(
Σ((bntc+1)∧n)
n

)
i,i

≤ 1(
σ
(i)
n

)2 sup
m∈[n]

∑
J∈Dpi

(m):

m=max(J)

aJ(i)2E
[
ψ(i)2(X1, . . . , Xpi)

]

=δ(i)n .

Therefore, using [33, Lemma 3], we have that

E sup
t∈[0,1]

∣∣∣∣∣
(∫ t

bntc/n
ϕn(s)dW(s)

)
i

∣∣∣∣∣
2

≤E sup

{∣∣∣W̃(i)(u)− W̃(i)(v)
∣∣∣2 :

u, v ∈
[
0,
〈
M(i)

n

〉
1

]
, |u− v| ≤ sup

t∈[0,1]

(〈
M(i)

n

〉
t
−
〈
M(i)

n

〉
bntc/n

)}

≤E sup

{∣∣∣W̃(i)(u)− W̃(i)(v)
∣∣∣2 : u, v ∈

[
0, T (i)

n

]
, |u− v| ≤ δ(i)n

}
≤ 5 · 62

2 log 2

(
δ(i)n log

2T
(i)
n

δ
(i)
n

)
and

E sup
t∈[0,1]

∣∣∣∣∣
(∫ t

bntc/n
ϕn(s)dW(s)

)
i

∣∣∣∣∣
3

≤E sup

{∣∣∣W̃(i)(u)− W̃(i)(v)
∣∣∣3 :

u, v ∈
[
0,
〈
M(i)

n

〉
1

]
, |u− v| ≤ sup

t∈[0,1]

(〈
M(i)

n

〉
t
−
〈
M(i)

n

〉
bntc/n

)}

≤E sup

{∣∣∣W̃(i)(u)− W̃(i)(v)
∣∣∣3 : u, v ∈

[
0, T (i)

n

]
, |u− v| ≤ δ(i)n

}
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≤ 5 · 63√
π(log 2)3/2

(
δ(i)n log

(
2T

(i)
n

δ
(i)
n

))3/2

.

Finally, it follows that

E sup
t∈[0,1]

∣∣∣∣∣
∫ t

bntc/n
ϕn(s)dW(s)

∣∣∣∣∣ ≤ 6
√

5√
2 log 2

√√√√ d∑
i=1

δ
(i)
n log

(
2T

(i)
n

δ
(i)
n

)
; (5.15)

E sup
t∈[0,1]

∣∣∣∣∣
∫ t

bntc/n
ϕn(s)dW(s)

∣∣∣∣∣
3

≤
√
d

d∑
i=1

E sup
t∈[0,1]

∣∣∣∣∣
(∫ t

bntc/n
ϕn(s)dW(s)

)
i

∣∣∣∣∣
3

≤ 5 · 63
√
d√

π(log 2)3/2

d∑
i=1

(
δ(i)n log

(
2T

(i)
n

δ
(i)
n

))3/2

. (5.16)

Step 3. Using the calculations above, we note that

E‖Zn − Z‖
(5.12),(5.15)
≤ 2

√∫ 1

0

‖ϕn(s)− ϕ(s)‖2F ds+
6
√

5√
2 log 2

√√√√ d∑
i=1

δ
(i)
n log

(
2T

(i)
n

δ
(i)
n

)
;

E‖Zn − Z‖3
(5.14),(5.16)
≤ 20 · 63

√
d√

π(log 2)3/2

(
δ(i)n log

(
2T

(i)
n

δ
(i)
n

))3/2

+
54
√
d√

2π

d∑
i=1

 d∑
j=1

∫ 1

0

[
(ϕn(s)− ϕ(s))i,j

]2
ds

3/2

.

We furthermore note that, using Doob’s L3 inequality, the formula for Gaussian moments
and Itô’s isometry,

E‖Z‖3 =E

 sup
t∈[0,1]

 d∑
i=1

 d∑
j=1

∫ t

0

(ϕ(s))i,j dW
(j)(s)

2


3/2


≤27
√
d

8

d∑
i=1

E


∣∣∣∣∣∣
d∑
j=1

∫ 1

0

(ϕ(s))i,j dW
(j)(s)

∣∣∣∣∣∣
3


=
27
√
d

2
√

2π

d∑
i=1

E

 d∑
j=1

∫ 1

0

(ϕ(s))i,j dW
(j)(s)

2



3/2

=
27
√
d

2
√

2π

d∑
i=1

 d∑
j=1

∫ 1

0

∣∣∣(ϕ(s))i,j

∣∣∣2 ds
3/2

.

Therefore, using the mean value theorem

|Eg(Dn)− Eg(Z)| ≤E

[
sup
c∈[0,1]

‖Dg(Z + c(Zn − Z)‖‖Z− Zn‖

]

≤‖g‖ME

[
sup
c∈[0,1]

(
1 + ‖Z + c(Zn − Z)‖2

)
‖Z− Zn‖

]
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Hölder
≤ ‖g‖M

{
E‖Z− Zn‖+ 2E‖Z− Zn‖3 + 2

(
E‖Z‖3

)2/3 (
E‖Z− Zn‖3

)1/3}
≤‖g‖M (γ3 + γ4 + γ5)

and

|Eg(Dn)− Eg(Z)| ≤‖g‖M0E ‖Zn − Z‖ ≤ ‖g‖M0γ3.

The result now follows by Theorem 5.1 and the triangle inequality.

Remark 5.3. The approximation results in this Section are merely stated for vectors of
degenerate weighted U -processes. In many applications, however, the given weighted
U -process might involve non-degenerate kernels. If

Un(t) =
∑

J∈Dp(bntc)

aJψ(Xj , j ∈ J)

is such a non-degenerate, weighted U -process, then it can be written in its Hoeffding
decompoition as a sum of degenerate, weighted U -processes as follows:

Un(t) =

∫
Ep

ψdµp
∑

J∈Dp(bntc)

aJ +

p∑
q=1

∑
K∈Dq(bntc)

( ∑
J∈Dp(bntc):

K⊆J

aJ

)
ψq(Xi, i ∈ K)

=:

∫
Ep

ψdµp
∑

J∈Dp(bntc)

aJ +

p∑
q=1

U(q)
n (t) ,

where the kernels ψq, 1 ≤ q ≤ p, are degenerate kernels which are expressible in terms

of ψ. Hence, the results of this Section for the vector (U
(1)
n , . . . ,U

(p)
n ) together with the

application of a linear functional immediately yield bounds on the approximation of Un

by a suitable Gaussian process. For simplicity we do not state the resulting bounds
explicitly but leave their derivation to the interested reader. In the very particular
example of d-runs on the line, however, we will work out this procedure in full detail.

5.5 Homogeneous sum processes

In this subsection we consider an important subclass of weighted, degenerate U -
processess, namely the processes given as so-called homogeneous sums or homoge-
neous sum processes. In this case, the random variables Xi, i ∈ N, are real-valued
such that E|X1|3 <∞, E[X1] = 0 and E[X2

1 ] = 1. Moreover, for each 1 ≤ i ≤ d, the kernel
ψ(i) is given by

ψ(i)(x1, . . . , xpi) =

pi∏
j=1

xj .

In particular, ψ(i) does not depend on n. Hence, for 1 ≤ i ≤ d and t ∈ [0, 1] we have that

Y(i)
n (t) =

1

σn(i)

∑
J∈Dpi

(bntc)

aJ(i)
∏
j∈J

Xj ,

where the σn(i) are positive reals and, in this special case, the random variables ZJ(i)

making up the processes D
(i)
n , defined in Subsection 5.2, are standard normally dis-

tributed. In this situation we have the following results, which are direct consequences
of Theorems 5.1 and 5.2, respectively.
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Corollary 5.4. With the above definitions and notation we have that

∣∣∣Eg(Yn)− Eg(Dn)
∣∣∣ ≤ 2

√
d‖g‖M
3p1

d∑
i=1

(
E|X1|3

)pi
σn(i)3

n∑
l=1

 ∑
J∈Dpi

(n):
l∈J

|aJ(i)|


3

+ ‖g‖M
d∑

i,j,k=1

(
E|X1|3

)(pi+pj+pk)/3
σn(i)σn(j)σn(k)

∑
J∈Dpi

(n),

K∈Dpj
(n),

L∈Dpk
(n):

J∩K 6=∅,
L∩(J∪K)6=∅

|aJ(i)aK(j)aL(k)|.

Corollary 5.5. Let Σ
(m)
n ∈ Rd×d be given by

(
Σ(m)
n

)
i,l

=


n

σn(i)σn(l)

∑
J∈Dpi

(m):

m=max(J)

aJ(i)aJ(l), if pi = pl

0, otherwise,

for i, l = 1, . . . , d.
For i = 1, . . . , d, let

δ(i)n =
1

(σn(i))
2 sup
m∈[n]

∑
J∈Dpi

(m):

m=max(J)

aJ(i)2,

where [n] = {1, . . . , n}, and

T (i)
n =

1

(σn(i))
2

∑
J∈Dpi

(n)

aJ(i)2.

Furthermore, let

ϕn(s) =

n∑
m=p1

(
Σ(m)
n

)1/2
1(m−1

n ,mn ](s), s ∈ [0, 1]

and suppose that ϕ : [0, 1] → Rd×d is matrix of L2([0, 1])-functions such that, for any
i, j = 1, . . . , d,

lim
n→∞

∫ 1

0

∣∣∣(ϕn(s)− ϕ(s))i,j

∣∣∣2 ds = 0,

Let Yn be defined as in Section 5.1 and ‖ · ‖F denote the Frobenius norm. Suppose
that W is a d-dimensional standard Brownian motion and

Z(t) =

∫ t

0

ϕ(s)dW(s).

Then, for any g ∈M ,

|Eg(Yn)− Eg(Z)| ≤ ‖g‖M (γ1 + γ2 + γ3 + γ4 + γ5)

and for any g ∈M0,

|Eg(Yn)− Eg(Z)| ≤ ‖g‖M0(γ1 + γ2 + γ3),
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where

γ1 =
2
√
d

3p1

d∑
i=1

(
E|X1|3

)pi
σn(i)3

n∑
l=1

 ∑
J∈Dpi

(n):
l∈J

|aJ(i)|


3

;

γ2 =

d∑
i,j,k=1

(
E|X1|3

)(pi+pj+pk)/3
σn(i)σn(j)σn(k)

∑
J∈Dpi

(n),

K∈Dpj
(n),

L∈Dpk
(n):

J∩K 6=∅,
L∩(J∪K) 6=∅

|aJ(i)aK(j)aL(k)|;

γ3 = 2

√∫ 1

0

‖ϕn(s)− ϕ(s)‖2F ds+ 12

√√√√ d∑
i=1

δ
(i)
n log

(
2T

(i)
n

δ
(i)
n

)
;

γ4 =
√
d

d∑
i=1

8447

(
δ(i)n log

(
2T

(i)
n

δ
(i)
n

))3/2

+ 44

 d∑
j=1

∫ 1

0

[
(ϕn(s)− ϕ(s))i,j

]2
ds

3/2
 ;

γ5 =
√
d
(∫ 1

0

‖ϕ(s)‖2F ds
) d∑
i=1

50

√√√√δ
(i)
n log

(
2T

(i)
n

δ
(i)
n

)
+ 19

√√√√ d∑
j=1

∫ 1

0

[
(ϕn(s)− ϕ(s))i,j

]2
ds

.
Remark 5.6.

1. In the case p = 2 the array (aJ)J∈D2(n) := (aJ(1))J∈D2(n) may be identified with
the (symmetric) matrix A = (ai,j)1≤i,j≤n, where ai,i = 0 and ai,j = aj,i for all
1 ≤ i, j ≤ n. Many papers [24,37,48,50,59] have established sufficient conditions
for the (univariate) CLT to hold for Yn := Yn(1) in this case (with the choice of
σ2
n =

∑
1≤i 6=j≤n a

2
i,j). Remarkably, in [50] the authors prove a universality principle

for homogeneous sums of any order p ≥ 1. In other words, they find necessary and
sufficient conditions on the coefficient functions for the asymptotic normality of Yn
to hold in the case when the Xj ’s are i.i.d. standard Gaussian. They also show that
these conditions imply asymptotic normality of Yn for any possible choice of the
distribution of the Xj ’s, as long as the Xj ’s are independent and the usual moment
assumptions hold.

Now concentrating on p = 2 and letting

λ∗n := max{|λ| : λ eigenvalue of A} ,

for the matrix A introduced above, a well-known sufficent condition (see, e.g. [48,
Theorem 1.1]) for Yn, n ∈ N, to be asymptotically normal is that limn→∞ λ∗n/σn = 0

(under our standing assumption that E|X1|3 < ∞). The well-known inequalities
(see e.g. [37])

ρn :=

√
max
1≤i≤n

∑
j:j 6=i

a2i,j ≤ λ
∗
n ≤ Γn := max

1≤i≤n

∑
j:j 6=i

|ai,j |

imply that this condition in particular implies the Lindeberg type condition
limn→∞ ρ2n/σ

2
n = 0, which roughly says that the asymptotic influence of every

individual Xi vanishes. On the other hand, it is implied by the stronger (and maybe
easier to verify) condition that limn→∞ Γn/σn = 0. We remark that the sufficient
condition provided by [50] for d = 2 reduces to limn→∞Tr(A4)/σ4

n = 0, which is
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easily seen to be equivalent to limn→∞ λ∗n/σn = 0. Here Tr(B) =
∑n
i=1 bi,i denotes

the trace of a matrix B = (bi,j)1≤i,j≤n.

From the easy to derive inequality

σ−3n

n∑
i=1

(∑
j:j 6=i

|ai,j |
)3
≥
(
σ−2n ρ2n

)3/2
we conclude that, in the univariate case, the condition γ1 → 0 as n→∞, which
follows from our bound in Corollary 5.5, is also stronger than the Lindeberg
condition. The Lindeberg condition is, however, neither necessary (consider e.g.
Yn = (n− 1)−1/2X1

∑n
j=2Xj where the Xj are i.i.d symmetric Rademacher random

variables) nor sufficient for the asymptotic normality of the Yn. Hence, by the
above inequality, also the sufficient condition limn→∞ λ∗n/σn = 0 is not necessary
for asymptotic normality to hold. We now provide upper bounds on the quantities
γ1 and γ2 from our bound in this special case. First note that

σ−3n

n∑
i=1

(∑
j:j 6=i

|ai,j |
)3

= σ−3n

(
n∑
i=1

∑
j,k,l 6=i

|ai,j ||ai,k|ai,l|

)

=

n∑
i=1

∑
j:j 6=i

|ai,j |3 + 3
∑

(i,j,k)∈[n]36=

|ai,j ||ai,k|2 +
∑

(i,j,k,l)∈[n]46=

|ai,j ||ai,k|ai,l|

=: σ−3n
(
S1 + 3S2 + S3),

where [n]p6= denotes the collection of all (i1, . . . , ip) ∈ [n]p such that ik 6= il whenever
k 6= l. We have

S1 ≤
(

max
k 6=l
|ak,l|

) n∑
i=1

∑
j:j 6=i

|ai,j |2 ≤ ρnσ2
n ,

S2 =
∑
i6=k

|ai,k|2
∑

j:j 6=i,k

|ai,j | ≤ Γn
∑

1≤i6=k≤n

|ai,k|2 = Γnσ
2
n,

S3 =
∑
i6=j

|ai,j |
∑

k:k 6=i,j

|ai,k|
∑

l:l 6=i,k,j

|ai,l| ≤ Γ2
n

∑
1≤i 6=j≤n

|ai,j |.

Hence, there is an absolute constant C1 such that

γ1 ≤ C1

(
ρn
σn

+
Γn
σn

+
Γ2
n

σ2
n

∑
i 6=j |ai,j |
σn

)
.

The second term γ2 in our bound in this case is of the same order as

σ−3n
∑

J,K,L∈D2(n):
J∩K 6=∅,

L∩(J∪K) 6=∅

|aJaKaL| � σ−3n

(∑
i 6=j

|ai,j |3 +
∑

(i,j,k)∈[n]36=

|ai,j |2|aj,k|

+
∑

(i,j,k)∈[n]36=

|ai,j ||aj,k||ak,i|+
∑

(i,j,k,l)∈[n]46=

|ai,j ||ai,k||ak,l|

)
,

where, for positive sequences, we write bn � dn if there are 0 < c < C <∞ such
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that cbn < dn < Cbn for all sufficiently large n. Note that we have

S4 :=
∑

(i,j,k)∈[n]36=

|ai,j ||aj,k||ak,i| =
∑
i 6=j

|ai,j |
∑

k:k 6=i,j

|aj,k||ak,i|

≤
∑
i 6=j

|ai,j |
( ∑
k:k 6=i,j

|aj,k|2
)1/2( ∑

k:k 6=i,j

|ak,i|2
)1/2

≤ ρ2n
∑
i 6=j

|ai,j | ,

S5 :=
∑

(i,j,k,l)∈[n]46=

|ai,j ||ai,k||ak,l| =
∑
i 6=j

|ai,j |
∑

k:k 6=i,j

|ai,k|
∑

l:l 6=i,j,k

|ak,l| ≤ Γ2
n

∑
i6=j

|ai,j | .

Thus, there is another absolute constant C2 such that

γ2 ≤ C2

(
ρn
σn

+
Γn
σn

+
Γ2
n

σ2
n

∑
i 6=j |ai,j |
σn

)
.

In particular, we obtain the asymptotic normality of Yn = Yn(1) under the assump-
tion that

Γn = o(σn) and
Γ2
n

σ2
n

= o

(
σn∑

i6=j |ai,j |

)
,

which is a stronger condition than λ∗n = o(σn). However, if additionally the terms
γ3, γ4 and γ5 in Corollary 5.5 converge to zero, we can conclude the much stronger
result that the whole process Yn converges to a continuous Gaussian process on
[0, 1].

2. The literature around FCLTs for homogeneous sum processes is non-void but
nevertheless extremely scarce. Indeed, the only references we have found, whose
results might compare to ours (in the one-dimensional case) are [48] and [6], of
which [48] only considers quadratic forms, i.e. the case p = 2. It turns out that
comparing our results to those in [48] (for p = 2) and to those in [6] is complicated.
Indeed, [48, Theorem 1.6] states the FCLT for the quadratic from Yn under the
(additional) assumption that ‖Ã‖−2‖ÃT Ã‖ → 0 as n→∞, where ‖ · ‖ denotes the
Frobenius norm of a matrix and where Ã = (ãi,j)1≤i,j≤n has entries ãi,j = ai,j1{i>j}.

Thus, the matrix C := ÃT Ã has entries ci,j =
∑n
k=(i∨j)+1 ai,kak,j and, hence, its

Frobenius norm is given by a quite complicated expression.

Moreover, we have found that the argument leading to [6, Theorem 1.1] is flawed.
Indeed, on page 187 therein, in the display below (2.9), one cannot simply drop the
quantity τ4n (not even at the price of an enlarged absolute constant C) because the
claimed inequality must hold for all fixed values of n ∈ N (sufficiently large) and
t1, t2 ∈ [0, 1]. Moreover, the application of [8, Theorem 15.6] on page 188 seems
to be a bit rushed, since the almost sure left-continuity of the limiting Gaussian
process ξk is not verified. Moreover, the claimed limiting process ξk appearing in
[6, Theorem 1.1] is not even completely determined, since equation (1.4) theorof
only specifies the one-dimensional distributions of ξk but not its covariance function.

5.6 Example: runs on the line

Let ξ1, . . . , ξn be i.i.d. random variables, such that P[ξ1 = 1] = p = 1− P[ξ1 = 0], for
p ∈ (0, 1). For any 1 ≤ r < n let σn(r) =

√
npr(1− p) and Vr be the rescaled centred

number of r-runs given by

V(r)
n (t) :=

1

σn(r)

bntc∑
m=1

(ξm · ξm+1 · . . . · ξm+r−1 − pr) , t ∈ [0, 1],

EJP 26 (2021), paper 28.
Page 26/50

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP587
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Multivariate functional Stein’s method of exchangeable pairs

where we adopt the torus convention, i.e. that ξn+1 = ξ1, ξn+2 = ξ2 and so on.

A similar setup was considered in [53], where the authors studied the rate of the
(finite-dimensional) weak convergence of the law of V(r)

n (1) to the normal distribution.
The authors of [53] note that the standard exchangeable-pair construction of [56] does
not lead to a bound going to zero as n→∞. In order to solve this problem, they apply

their embedding method and study the joint convergence of
(
V(1)
n (1), . . . ,V(r)

n (1)
)

to

a multivariate normal law, using a slightly unusual construction of the exchangeable
pair. Our propositions in this subsection provide bounds on the rate of the functional

convergence of
(
V

(r1)
n , . . . ,V

(rd)
n

)
to a Gaussian process for any collection {r1, . . . , rd}.

They implicitly use the standard exchangeable-pair construction of Subsection 5.1. Our
bounds are of the same order as the bound on the rate of the (finite-dimensional)
convergence provided in [53].

We start with the following result on the pre-limiting approximation:

Proposition 5.7. Adopt the notation from above. Let d ≥ 1 and n
2 > r1 ≥ r2 ≥ · · · ≥

rd ≥ 1. Let

Vn =
(
V(r1)
n , . . . ,V(rd)

n

)
.

Let {ZJ : J ∈ Dj(n), j = 1, . . . , r1} be a collection of i.i.d. standard normal random
variables. For i = 1, . . . , d, let furthermore

D(ri)
n (t) =

1

σn(ri)

bntc∑
m=1

ri∑
j=1

∑
0≤i1<···<ij≤ri−1

pr−jZm+i1,...,m+ij , t ∈ [0, 1].

and

Dn =
(
D(r1)
n , . . . ,D(rd)

n

)
.

Then, for any g ∈M0,

|Eg(Vn)− Eg(Dn)| ≤ ‖g‖M0 (γ1 + γ2)n−1/2,

where

γ1 =
2
√
dr1

(∑d
i=1 ri

)3/2
3rd

d∑
i=1

ri∑
j=1

(1 + p3 − 2p4)jp3ri/2−3j

(1− p)3/2

(
ri − 1

j − 1

)3

;

γ2 =2
√
dr1

(
d∑
i=1

ri

)
d∑

u,v,w=1

ru∑
j1=1

rv∑
j2=1

rw∑
j3=1

(
1 + p3 − 2p4

)(j1+j2+j3)/3
p(ru+rv+rw)/2−j1−j2−j3

(1− p)3/2

· rw(ru ∨ rv)2
(
ru − 1

j1 − 1

)(
rv − 1

j2 − 1

)(
rw − 1

j3 − 1

)
.

Proof.
Step 1. For i = 1, 2, . . . , let Xi = ξi − p. It is easy to prove, by induction on r, that

V(r)
n (t) =

1

σn(r)

bntc∑
m=1

r∑
j=1

∑
0≤i1<···<ij≤r−1

pr−jXm+i1 . . . Xm+ij , t ∈ [0, 1] (5.17)

Indeed, for any m = 1, . . . , n,

ξm − p = Xm
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and, assuming that

ξmξm+1 . . . ξm+r−1 − pr =

r∑
j=1

∑
0≤i1<···<ij≤r−1

pr−jXm+i1 . . . Xm+ij , (5.18)

we have

ξmξm+1 . . . ξm+r − pr+1

= (ξmξm+1 . . . ξm+r−1 − pr) (ξm+r − p) + p (ξmξm+1 . . . ξm+r−1 − pr) + pr (ξm+r − p)

(5.18)
=

r∑
j=1

∑
0≤i1<···<ij≤r−1

pr−jXm+i1 . . . Xm+ijXm+r

+

r∑
j=1

∑
0≤i1<···<ij≤r−1

pr+1−jXm+i1 . . . Xm+ij + prXm+r

=

r+1∑
j=2

∑
0≤i1<···<ij=r

pr+1−jXm+i1 . . . Xm+ij

+

r∑
j=1

∑
0≤i1<···<ij≤r−1

pr+1−jXm+i1 . . . Xm+ij + prXm+r

=

r+1∑
j=1

∑
0≤i1<···<ij≤r

pr+1−jXm+i1 . . . Xm+ij ,

as required.
Step 2. Now, for any r = 1, 2, . . . , r1 and j = 1, . . . , r, note that

pr−j

σn(r)

bntc∑
m=1

∑
0≤i1<···<ij≤r−1

Xm+i1 . . . Xm+ij

=
pr−j

σn(r)

bntc∑
m=1

∑
m≤i1<···<ij≤m+r−1

Xi1 . . . Xij

=
pr−j

σn(r)

∑
1≤i1<···<ij≤bntc+r−1

((r − ij + i1) ∨ 0)Xi1 . . . Xij

=
pr−j

σn(r)

∑
J∈Dj((bntc+r−1)∧n)

aJ(r)Xi1 . . . Xij ,

for

aJ(r) :=pr−j max (r −max(J) + min(J), 0)

+ pr−j max (r + min(J ∩ (n/2, n])−max(J ∩ [1, n/2))− n, 0)1{J∩[1,n/2)6=∅6=J∩(n/2,n]}.

Furthermore, let

U(r,j)
n (t) =

1

σn(r)

∑
J∈Dj(bntc)

aJ(r)
∏
i∈J

Xi, t ∈ [0, 1]

and define function f : (D ([0, 1],R))
r1+···+rd → D

(
[0, 1],Rd

)
, given by

f (x1,1, . . . , x1,r1 , x2,2, . . . , x2,r2 , . . . , xd,1, . . . , xd,rd)

=

 r1∑
j=1

x1,j

((
t+

r1 − 1

n

)
∧ 1

)
, . . . ,

rd∑
j=1

xd,j

((
t+

rd − 1

n

)
∧ 1

) , t ∈ [0, 1]

 .
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Hence, note that, by (5.17),

g (Vn) = g ◦ f
(
U(r1,1)
n , . . . ,U(r1,r1)

n , . . . ,U(rd,1)
n , . . . ,U(rd,rd)

n

)
.

It is proved in Lemma 7.1 in Section 7.1 of the Appendix that

‖g ◦ f‖M0 ≤ ‖g‖M0

√
dr1

d∑
i=1

ri. (5.19)

Step 3. Now, note that, for r, ru, rv, rw ∈ {1, 2, . . . , r1},

1)

n∑
l=1

 ∑
J∈Dj(n):

l∈J

|aJ(r)|


3

≤ p3r−3j
n∑
l=1

(
l∑

m=l−r+1

(
r − 1

j − 1

))3

= p3r−3jr3
(
r − 1

j − 1

)3

n

2)
∑

J∈Dj1
(n),

K∈Dj2
(n),

L∈Dj3 (n):

J∩K 6=∅,
L∩(J∪K) 6=∅

|aJ(ru)aK(rv)aL(rw)|

≤p
ru+rv+rw−j1−j2−j3

ru ∧ rv

·
n∑
l=1

l∑
m1=l−ru+1

l∑
m2=l−rv+1

l+ru∨rv−1∑
k=l−ru∨rv+1

k∑
m3=k−rw+1

(
ru − 1

j1 − 1

)(
rv − 1

j2 − 1

)(
rw − 1

j3 − 1

)
≤2pru+rv+rw−j1−j2−j3rw(ru ∨ rv)2

(
ru − 1

j1 − 1

)(
rv − 1

j2 − 1

)(
rw − 1

j3 − 1

)
n (5.20)

and so, using (5.20) and (5.19), for any g ∈M0,

A) ‖g ◦ f‖M0

2
√∑d

i=1 ri

3rd

d∑
i=1

ri∑
j=1

(
E|X1|3

)j
σn(ri)3

n∑
l=1

 ∑
J∈Dj(n):
l∈J

|aJ(ri)|


3

≤‖g‖M0

2
√
dr1

(∑d
i=1 ri

)3/2
3rd

d∑
i=1

ri∑
j=1

(1 + p3 − 2p4)jp3ri/2−3j

(1− p)3/2

(
ri − 1

j − 1

)3

n−1/2;

≤‖g‖M0

2
√
dr1

(∑d
i=1 ri

)3/2
3rd

d∑
i=1

ri∑
j=1

(1 + p3 − 2p4)jp3ri/2−3j

(1− p)3/2

(
ri − 1

j − 1

)3

n−1/2;

B) ‖g ◦ f‖M0

d∑
u,v,w=1

ru∑
j1=1

rv∑
j2=1

rw∑
j3=1

(
E|X1|3

)(j1+j2+j3)/3
σn(ru)σn(rv)σn(rw)

∑
J∈Dj1

(n),

K∈Dj2 (n),

L∈Dj3 (n):

J∩K 6=∅,
L∩(J∪K)6=∅

|aJ(ru)aK(rv)aL(rw)|

≤2
√
dr1

(
d∑
i=1

ri

)
d∑

u,v,w=1

ru∑
j1=1

rv∑
j2=1

rw∑
j3=1

(
1 + p3 − 2p4

)(j1+j2+j3)/3
p(ru+rv+rw)/2−j1−j2−j3

(1− p)3/2

· rw(ru ∨ rv)2
(
ru − 1

j1 − 1

)(
rv − 1

j2 − 1

)(
rw − 1

j3 − 1

)
n−1/2.

The result now follows by Corollary 5.4.
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Next, we deal with the continuous process approximation as given in Corollary 5.5.
For this, we need to either compute or estimate the quantities δ(i)n , T (i)

n and Σ
(m)
n . After

rearranging the entries of the random vector according to their order as homogeneous
sums, we can write Σ

(m)
n as a block diagonal matrix. More precisely, for 1 ≤ q ≤ r1 letting

N(q) := max{1 ≤ j ≤ d : rj ≥ q} , (5.21)

we can write Σ
(m)
n as a block diagonal matrix with blocks Σ

(m)
n (1), . . . ,Σ

(m)
n (r1), where,

for fixed q = 1, . . . , r1, Σ
(m)
n (q) is an N(q)×N(q) matrix, namely the covariance matrix of

the random vector(√
nU(r1,q)

n (m/n)−
√
nU(r1,q)

n ((m−1)/n), . . . ,
√
nU

(rN(q),q)
n (m/n)−

√
nU

(rN(q),q)
n ((m−1)/n)

)T
.

A simple computation shows that, for q > 1 and ri ∧ rl ≤ m ≤ n+ 1− ri ∧ rl,

Σ(m)
n (q)(i, l) =

n

σn(ri)σn(rl)

∑
J∈Dq(n):
max(J)=m

aJ(ri)aJ(rl)

=
p

ri+rl
2 −q

1− p

ri∧rl−1∑
k=q−1

(
k − 1

q − 2

)
(ri − k)(rl − k).

Otherwise, for q > 1 and m ≥ n+ 2− ri ∧ rl,

Σ(m)
n (q)(i, l) =

p
ri+rl

2 −q

1− p

[
ri∧rl−1∑
k=q−1

(
k − 1

q − 2

)
(ri − k)(rl − k)

+

m∑
u=n+2−ri∧rl

ri∧rl−1∑
k=(q−1)∨(n−u−1)

(
k − 1

q − 2

)
(ri − k)(rl − k)

]
.

Moreover, for q > 1 and m ≤ ri ∧ rl − 1,

Σ(m)
n (q)(i, l) =

p
ri+rl

2 −q

1− p

m−1∑
k=q−1

(
k − 1

q − 2

)
(ri − k)(rl − k),

and, for all 1 ≤ m ≤ n

Σ(m)
n (1)(i, l) =

p
ri+rl

2 −1

1− p
rirl.

Hence, we let Σ be a block diagonal matrix with blocks Σ(1) ∈ RN(1)×N(1), . . . ,Σ(r1) ∈
RN(r1)×N(r1), where

Σ(1)(i, l) =
p

ri+rl
2 −1

1− p
rirl (5.22)

and for any q = 2, . . . , r1 and i, l = 1, . . . , N(q),

Σ(q)(i, l) =
p

ri+rl
2 −q

1− p

ri∧rl−1∑
k=q−1

(
k − 1

q − 2

)
(ri − k)(rl − k). (5.23)
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Note that, for ϕ(s) ≡ Σ1/2 and ϕn(s) =
∑n
m=1

(
Σ

(m)
n

)1/2
1[m−1

n ,mn ](s), s ∈ [0, 1],∫ 1

0

‖ϕn(s)− ϕ(s)‖2F ds

≤2(r1 − 1)

n

[
r1−1∑
m=1

∥∥∥∥(Σ(m)
n

)1/2
− Σ1/2

∥∥∥∥2
F

+

n∑
m=n+2−r1

∥∥∥∥(Σ(m)
n

)1/2
− Σ1/2

∥∥∥∥2
F

]

≤4(r1 − 1)

n

d∑
k=1

rk∑
i=1

[
r1−1∑
m=1

(∣∣∣∣(Σ(m)
n

)
i,i

∣∣∣∣+ |Σi,i|
)

+

n∑
m=n+2−r1

(∣∣∣∣(Σ(m)
n

)
i,i

∣∣∣∣+ |Σi,i|
)]

≤24(r1)3

n

r1∑
q=1

N(q)∑
i=1

ri−1∑
k=q−1

((
k − 1

q − 2

)
1[q>1] + 1[q=1]

)
pri−q

1− p
(ri − k)2.

Moreover, with obvious notation,

T (i)
n (q) =

1

(σn(ri))
2

∑
J∈Dq(n)

aJ(ri)
2 =

1

n

n∑
m=1

Σ(m)
n (q)(i, i)

=

{
pri−1

1−p r
2
i , if q = 1,

pri−q

1−p
∑ri−1
k=q−1

(
k−1
q−2
)
(ri − k)2, if q > 1.

Furthermore, for q > 1,

δ(i)n (q)

=
1

(σn(ri))
2 sup
m∈[n]

∑
J∈Dq(m):

m=max(J)

aJ(i)2

=
pri−q

n(1− p)

ri−1∑
k=q−1

(
k − 1

q − 2

)
(ri − k)2 +

pri−q

n(1− p)

n∑
u=n+2−ri

ri−1∑
k=(q−1)∨(n−u−1)

(
k − 1

q − 2

)
(ri − k)2

and

δ(i)n (1) =
pri−1

n(1− p)
r2i .

Therefore, for all q = 1, . . . , r1,

1

n
T (i)
n (q) ≤ δ(i)n (q) ≤ ri

n
T (i)
n (q).

Thus, taking (5.19) into account, we note that

‖g ◦ f‖M0

12

√√√√ r1∑
q=1

N(q)∑
i=1

δ
(i)
n (q) log

(
2T

(i)
n (q)

δ
(i)
n (q)

)
+ 2

√∫ 1

0

‖ϕn(s)− ϕ(s)‖2F ds


≤‖g‖M0

√
dr1

d∑
j=1

rj

12

√
log n√
n

(
r1∑
q=2

N(q)∑
i=1

ri−1∑
k=q−1

(
k − 1

q − 2

)
pri−qri
(1− p)

(ri − k)2 +

d∑
i=1

pri−1

1− p
r3i

)1/2

+
4
√

6(r1)3/2√
n

 r1∑
q=2

N(q)∑
i=1

ri−1∑
k=q−1

(
k − 1

q − 2

)
pri−q

1− p
(ri − k)2 +

d∑
i=1

pri−1

1− p
r2i

1/2


≤‖g‖M04
√
dr21

 d∑
j=1

rj

 r1∑
q=2

N(q)∑
i=1

ri−1∑
k=q−1

(
k − 1

q − 2

)
pri−q

1− p
(ri − k)2 +

d∑
i=1

pri−1

1− p
r2i

1/2
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· 3
√

log n+
√

6√
n

.

Hence, using Corollary 5.5 and Proposition 5.7 (and noting that reordering the arguments
of function f does not change the bound on ‖g ◦ f‖M0 obtained in Lemma 7.1), we obtain
the following result:

Proposition 5.8. Adopt the notation form above. In particular, let N be as in (5.21),
Vn be defined as in Proposition 5.7 and Σ be the block diagonal matrix with blocks
Σ(1) ∈ RN(1)×N(1), . . . ,Σ(r1) ∈ RN(r1)×N(r1) defined by (5.22) and (5.23). Let Z′ =

Σ1/2W, where W is a (
∑d
i=1 ri)-dimensional standard Brownian motion and write Z′ =(

(Z′)
(1)
, (Z′)

(2)
, . . .

)
. Set N(0) = 0. For i = 1, . . . , d and t ∈ [0, 1], define

Z(i)(t) =
(

(Z′)
(i)

+ (Z′)
(N(1)+i)

+ (Z′)
(N(1)+N(2)+i)

+ · · ·+ (Z′)
(N(1)+N(2)+...,N(ri−1)+i)

)
·
((

t+
ri − 1

n

)
∧ 1

)
and let

Z =
(
Z(1), . . . ,Z(d)

)
.

Then, for any g ∈M0, we have

|Eg(Vn)− Eg(Z)| ≤ n−1/2‖g‖M0

(
γ1 + γ2 + γ3

√
log n

)
,

where γ1 and γ2 are as in Proposition 5.7 and

γ3 = 22
√
dr21

 d∑
j=1

rj

 r1∑
q=2

N(q)∑
i=1

ri−1∑
k=q−1

(
k − 1

q − 2

)
pri−q

1− p
(ri − k)2 +

d∑
i=1

pri−1

1− p
r2i

1/2

.

Remark 5.9. Assuming that d, r1, . . . , rd are all fixed and do not depend on n, the bound

in Proposition 5.8 is of order
√

logn
n . Therefore, by Proposition 2.2, weak convergence

of the law of Vn to that of Z, in both the Skorokhod and the uniform topologies on the
Skorokhod space, follows immediately from Proposition 5.8 as a corollary.

Remark 5.10. It is possible to obtain bounds similar to those in Propositions 5.7 and 5.8
for the larger class of test functions M . It would, however, require some more involved
computations, which would make the discussion of this example rather long.

6 Edge and two-star counts in Erdős-Renyi random graphs

In this section we study an Erdős-Renyi random graph with a fixed edge probability
p and bntc edges for t ∈ [0, 1]. We analyse the asymptotic behaviour of the joint law of
its (rescaled) number of edges and its (rescaled) number of two-stars (i.e. subgraphs
which are trees with one internal node and 2 leaves). Hence, we extend the result of [42],
where the univariate process convergence of the rescaled number of edges is studied.
We also extend the analysis of [54], whose authors provide a bound on the distance
between the (three-dimensional) joint law of the (rescaled) number of edges, two-stars
and triangles in a G(n, p) graph and a Gaussian vector. In Theorem 6.2, we establish
a bound on the distance between our process and a pre-limiting Gaussian processes
with paths in D([0, 1],R2). Then, in Theorem 6.4, a bound on the quality of a continuous
Gaussian process approximation is provided.

It is worth noting that the analysis of a three-dimensional process representing
the number of edges, triangles and two-stars in a G(bntc, p) graph does not pose any
additional challenges except that it makes the algebraic computations more involved.
The only reason we do not do it here is that it would make this section rather lengthy.
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6.1 Introduction

Consider an Erdős-Renyi random graph G(bntc, p) on bntc vertices, for t ∈ [0, 1], with a
fixed edge probability p. Let Ii,j = Ij,i’s be i.i.d. Bernoulli (p) random variables indicating
that edge (i, j) is present in this graph. We consider the following process, representing
the re-scaled total number of edges

Tn(t) =
bntc − 2

2n2

∑
1≤i6=j≤bntc

Ii,j =
bntc − 2

n2

∑
1≤i<j≤bntc

Ii,j , (6.1)

and a re-scaled statistic related to the number of two-stars

Vn(t) =
1

6n2

∑
1≤i,j,k≤bntc
i,j,k distinct

IijIjk =
1

n2

∑
1≤i<j<k≤bntc

(Ii,jIj,k + Ii,jIi,k + Ij,kIi,k) . (6.2)

Furthermore, let Yn(t) = (Tn(t)− ETn(t),Vn(t)− EVn(t)) for t ∈ [0, 1].

Remark 6.1. Note that, for all t ∈ [0, 1], ETn(t) = bntc−2
n2

(bntc
2

)
p and EVn(t) = 3

n2

(bntc
3

)
p2

and, by an argument similar to that of [54, Section 5], the covariance matrix of
(Tn(t)− ETn(t),Vn(t)− EVn(t)) is given by

3

(bntc
3

)
n4

p(1− p)
(

(bntc − 2) 2p(bntc − 2)

2p(bntc − 2) 4p2(bntc − 2) + p(1− p)

)
.

The scaling therefore ensures that the covariances are of the same order in n.

6.2 Exchangeable pair setup

In order to construct a suitable exchangeable pair, following [54], we pick (I, J)

according to P[I = i, J = j] = 1

(n
2)

for 1 ≤ i < j ≤ n. If I = i, J = j, we replace Ii,j = Ij,i

by an independent copy I ′i,j = I ′j,i and set:

T′n(t) = Tn(t)− bntc − 2

n2
(
II,J − I ′I,J

)
1[I/n,1]∩[J/n,1](t)

V′n(t) = Vn(t)− 1

n2

∑
k:k 6=I,J

(
II,J − I ′I,J

)
(IJ,k + II,k)1[I/n,1]∩[J/n,1]∩[k/n,1](t).

We, similarly, let Y′n(t) = (T′n(t)− ETn(t),V′n(t)− EVn(t)) and note that, for Yn =

(Yn(t), t ∈ [0, 1]) and Y′n = (Y′n(t), t ∈ [0, 1]), (Yn,Y
′
n) forms an exchangeable pair. Note

that, for any m = 1, 2, any f ∈ M , as defined in Section 2, and e1, e2 denoting the
canonical basis vectors (1, 0) and (0, 1), respectively, we have

EYn {Df(Yn) [(T′n −Tn) em]}

=EYn

{
Df(Yn)

[
bn·c − 2

n2
(
I ′I,J − II,J

)
1[I/n,1]∩[J/n,1]em

]}
=

2

n3(n− 1)

∑
i<j

EYn
{
Df(Yn)

[
(bn·c − 2)

(
I ′i,j − Ii,j

)
1[i/n,1]∩[j/n,1]em

]
|I = i, J = j

}
=− 1(

n
2

)Df(Yn)[Tnem] +
2

n3(n− 1)
p
∑
i<j

Df(Yn)
[
(bn·c − 2)1[i/n,1]∩[j/n,1]em

]
=− 1(

n
2

)Df(Yn)[(Tn(·)− ETn(·)) em].
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Also:

EYnDf(Yn)[(Vn −V′n)em]

=
1

n2
(
n
2

) ∑
i<j

EYn

{ ∑
k:k 6=i,j

Df(Yn)

[ (
Ii,j − I ′i,j

)
(Ij,k + Ii,k)

· 1[i/n,1]∩[j/n,1]∩[k/n,1]em
]∣∣∣∣∣ I = i, J = j

}
=

2(
n
2

)Df(Yn)[Vnem]

− p

n2
(
n
2

) ∑
i<j

∑
k:k 6=i,j

EYnDf(Yn)
[
(Ij,k + Ii,k)1[i/n,1]∩[j/n,1]∩[k/n,1]em

]
=

2(
n
2

)Df(Yn)[Vnem]− p

n2
(
n
2

) ∑
1≤i,j,k≤n
i,j,k distinct

EYnDf(Yn)
[
Ii,j1[i/n,1]∩[j/n,1]∩[k/n,1]em

]

=
2(
n
2

)Df(Yn)[(Vn − EVn(·)) em]

− p

n2
(
n
2

) ∑
1≤i,j,k≤n
i,j,k distinct

EYnDf(Yn)
[
(Ii,j − p)1[i/n,1]∩[j/n,1]∩[k/n,1]em

]

=
2(
n
2

)Df(Yn)[(Vn − EVn(·)) em]

− 2p(
n
2

)Df(Yn)

[
1

bn·c − 2
(Tn − ETn(·)) em

(
n∑
k=1

1[k/n,1] − 2

)]

=
2(
n
2

)Df(Yn)[(Vn − EVn(·)) em]− 2p(
n
2

)Df(Yn) [(Tn − ETn(·))em] .

Therefore, for any m = 1, 2:

A) Df(Yn) [(Tn − ETn) em] =
n(n− 1)

2
EYn {Df(Yn) [(Tn −T′n)em]}

B) Df(Yn) [(Vn − EVn) em] =
n(n− 1)

4
EYn

{
Df(Yn) [(Vn −V′n)em]

+ pDf(Yn) [(Tn − ETn) em]

}
=
n(n− 1)

4
EYn {Df(Yn) [(2p(Tn −T′n) + Vn −V′n) em]}

and so

Df(Yn)[Yn] = 2EYnDf(Yn) [(Yn −Y′n)Λn] ,

where

Λn =
n(n− 1)

8

(
2 2p

0 1

)
. (6.3)

Therefore, condition (4.1) is satisfied with Λn of (6.3) and Rf = 0.
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6.3 A pre-limiting process

Suppose that the collection {Z(1)
i,j : i, j ∈ [n], i < j} ∪ {Z(2)

i,j,k : i, j, k ∈ [n], i < j < k} is
jointly centred Gaussian with the following covariance structure:

EZ
(1)
ij Z

(1)
kl =

{
p(1−p)
n4 , if (i, j) = (k, l),

0, otherwise,

EZ
(2)
i,j,kZ

(1)
l,m =

{
2p2(1−p)

n4 , if {l,m} ⊂ {i, j, k},
0, otherwise,

EZ
(2)
i,j,kZ

(2)
r,s,t =


3p2(1+2p−3p2)

n4 , if (i, j, k) = (r, s, t),
4p3(1−p)

n4 , if |{i, j, k} ∩ {r, s, t}| = 2.

0, otherwise.

Let Dn = (D
(1)
n ,D

(2)
n ) be defined in the following way:

D(1)
n (t) = (bntc − 2)

∑
1≤i<j≤bntc

Z
(1)
i,j , t ∈ [0, 1]

D(2)
n (t) =

∑
1≤i<j<k≤bntc

Z
(2)
i,j,k, t ∈ [0, 1].

Note that the covariance structure of the collection {Z(1)
i,j : i, j ∈ [n], i < j} ∪ {Z(2)

i,j,k :

i, j, k ∈ [n], i < j < k} is the same as the covariance structure of the summands in the
formulas (6.1) and (6.2).

6.4 Distance from the pre-limiting process

We provide an estimate of the distance between Yn and the pre-limiting piecewise
constant Gaussian process.

Theorem 6.2. Let Yn be defined as in Section 6.1 and Dn be defined as in Section 6.3.
Then, for any g ∈M ,

|Eg(Yn)− Eg(Dn)| ≤ 23‖g‖Mn−1.

Remark 6.3. Our bound in Theorem 6.2 is of the same order as the analogous bound
obtained in [54] on the distance between the (finite-dimensional) distributions of Yn(1)

and Dn(1).

The proof is based on Theorem 4.1. In Step 1 we estimate term ε1, which involves
bounding ‖Λn‖2 of (6.3) and the third moment of ‖Yn − Y′n‖. In Step 2 we treat ε2,
using involved computations, which are, to a large extent, postponed to the appendix.
Term ε3 is equal to zero as Rf of Section 6.2 is equal to zero.

Proof of Theorem 6.2. We adopt the notation of sections 6.1, 6.2, 6.3 and apply Theorem
4.1.

Step 1. First note that, for ε1 in Theorem 4.1,

|(Yn −Y′n)Λn| ≤ ‖Λn‖2|Yn −Y′n|,

where | · | denotes the Euclidean norm in R2 and ‖ · ‖2 is the induced operator 2-norm.
Furthermore,

‖Λn‖2 ≤ ‖Λn‖F =
n(n− 1)

8

√
22 + (2p)2 + 02 + 12 ≤ 3n(n− 1)

8
,
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for ‖ · ‖F denoting the Frobenius norm (which, for Θ ∈ Rd1×d2 is defined by ‖Θ‖F =√∑d1
i=1

∑d2
j=1 |Θi,j |). Therefore:

E
[
‖(Yn −Y′n)Λn‖‖Yn −Y′n‖2

]
≤3n(n− 1)

8
E‖Yn −Y′n‖3

≤3n(n− 1)

8
E

 (n− 2)2

n4
(
II,J − I ′I,J

)2
+

1

n4

 ∑
k:k 6=I,J

(II,J − I ′I,J) (IJ,k + II,k)

2

3/2

≤3n(n− 1)

8

[
(n− 2)2

n4
+

(2(n− 2))
2

n4

]3/2
≤ 5

n
,

where the third inequality follows because |II,J − I ′I,J | ≤ 1 and |IJ,k + II,k| ≤ 2 for all k
and

ε1 ≤
5‖g‖M

6n
. (6.4)

Step 2. In order to deal with ε2 in Theorem 4.1, we need to bound∣∣ED2f(Yn) [(Yn −Y′n) Λn,Yn −Y′n]− ED2f(Yn) [Dn,Dn]
∣∣

=

∣∣∣∣n(n− 1)

8
ED2f(Yn) [(2(Tn −T′n), 2p(Tn −T′n) + (Vn −V′n)) , (Tn −T′n,Vn −V′n)]

−ED2f(Yn) [Dn,Dn]
∣∣

≤S1 + S2 + S3 + S4, (6.5)

where:

S1 =

∣∣∣∣∣n(n− 1)

8
ED2f(Yn) [(2(Tn −T′n), 0) , (Tn −T′n, 0)]

− ED2f(Yn)
[(

D(1)
n , 0

)
,
(
D(1)
n , 0

)] ∣∣∣∣∣
S2 =

∣∣∣∣n(n− 1)

8
ED2f(Yn) [(0, 2p(Tn −T′n) + Vn −V′n) , (Tn −T′n, 0)]

−ED2f(Yn)
[(

0,D(2)
n

)
,
(
D(1)
n , 0

)]∣∣∣
S3 =

∣∣∣∣∣n(n− 1)

8
ED2f(Yn) [(2(Tn −T′n), 0) , (0,Vn −V′n)]

− ED2f(Yn)
[(

D(1)
n , 0

)
,
(

0,D(2)
n

)] ∣∣∣∣∣
S4 =

∣∣∣∣n(n− 1)

8
ED2f(Yn) [(0, 2p(Tn −T′n) + Vn −V′n) , (0,Vn −V′n)]

− ED2f(Yn)
[(

0,D(2)
n

)
,
(

0,D(2)
n

)]∣∣∣ .
(6.6)
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In Lemma 7.2, in the appendix, we obtain the following estimates:

S1 ≤
√

5‖g‖M
12n

, S2 ≤
√

178‖g‖M
6n

, S3 ≤
√

178‖g‖M
6n

, S4 ≤
(
√

612 +
√

178)‖g‖M
3n

.

(6.7)

Note that, therefore, by (6.5) and (6.7),

ε2 =
∣∣ED2f(Yn) [(Yn −Y′n)Λn,Yn −Y′n]− ED2f(Yn) [Dn,Dn]

∣∣ ≤ 18‖g‖Mn−1. (6.8)

Using Theorem 4.1 together with (6.8) and (6.4) gives the desired result.

6.5 Distance from the continuous process

We now study the approximation of Yn by a continuous Gaussian process with
covariance equal to the limit of the covariance of Dn. We obtain a bound on the quality
of this approximation. This is achieved by applying Theorem 6.2 and by bounding the
distance between Dn and the continuous process via the Brownian modulus of continuity.

Theorem 6.4. Let Yn be defined as in Subsection 6.1 and let Z = (Z(1),Z(2)) be defined
by: 

Z(1)(t) =

√
p(1−p)√
2+8p2

tB1(t2) +
p
√

2p(1−p)√
1+4p2

tB2(t2),

Z(2)(t) =
p
√

2p(1−p)√
1+4p2

tB1(t2) +
2p2
√

2p(1−p)√
1+4p2

tB2(t2)
,

where B1,B2 are independent standard Brownian Motions. Then, for any g ∈M :

|Eg(Yn)− Eg(Z)| ≤ ‖g‖M
(

16422n−1/2
√

log n+ 138n−1/2
)
.

Remark 6.5.

Theorem 6.4, together with Proposition 2.2, implies that Yn converges to Z in distribution
with respect to the Skorokhod and uniform topologies.

Remark 6.6. Theorem 6.4 can be adapted to situations in which p = pn varies with n.
More precisely, as indicated by the necessary and sufficient conditions for approximate
normality of the marginal distributions given in [61], Theorem 6.4 can be modified to
yield a quantitative functional CLT in the case that n3p2n →∞ and n2(1− pn)→∞.

In Step 1 of the proof of Theorem 6.4, we use i.i.d standard Brownian Motions to
construct a process Zn having the same distribution as Dn. In Step 2 we couple Zn
and Z and use the Brownian modulus of continuity to bound moments of the supremum
distance between them. In Step 3 we combine those bounds with the mean value
theorem to obtain the desired final estimate.

Proof of Theorem 6.4.
Step 1. Let B3 be another standard Brownian Motion, mutually independent with B1
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and B2. Let Zn =
(
Z

(1)
n ,Z

(2)
n

)
be defined by:

A) Z(1)
n (t) =

(bntc − 2)
√
p(1− p)

n2
√

2 + 8p2
B1 (bntc(bntc − 1))

+
(bntc − 2)p

√
2p(1− p)

n2
√

1 + 4p2
B2 (bntc(bntc − 1)) ;

B) Z(2)
n (t) =

(bntc − 2)p
√

2p(1− p)
n2
√

1 + 4p2
B1 (bntc(bntc − 1))

+
(bntc − 2)2p2

√
2p(1− p)

n2
√

1 + 4p2
B2 (bntc(bntc − 1))

+
p(1− p)
n2
√

2
B3 (bntc(bntc − 1)(bntc − 2)) .

Now, note that
(
D

(1)
n ,D

(2)
n

)
D
=
(
Z

(1)
n ,Z

(2)
n

)
. To see this, observe that for all u, t ∈ [0, 1],

A) ED(1)
n (t)D(1)

n (u)

=(bntc − 2)(bnuc − 2)bn(t ∧ u)c(bn(t ∧ u)c − 1)
p(1− p)

2n4

=EZ(1)
n (t)Z(1)

n (u);

B) ED(2)
n (t)D(2)

n (u)

=

(
bn(t ∧ u)c

3

)
3p2(1 + 2p− 3p2)

n4

+

(
bn(t ∧ u)c

2

)
[(bntc − 2)(bnuc − 2)− (bn(t ∧ u)c − 2)]

4p3(1− p)
n4

=bn(t ∧ u)c(bn(t ∧ u)c − 1)
4p3(1− p)(bntc − 2)(bnuc − 2) + (bn(t ∧ u)c − 2)p2(1− p)2

2n4

=EZ(2)(t)Z(2)
n ;

C) ED(1)
n (t)D(2)

n (u)

=(bntc − 2)(bnuc − 2)bn(t ∧ u)c(bn(t ∧ u)c − 1)
p2(1− p)

n4

=EZ(1)
n (t)Z(2)

n (u). (6.9)

Step 2. We now let Z be constructed as in Theorem 6.4, using the same Brownian
Motions B1,B2, as the ones used in the construction of Zn. In Lemma 7.3, proved in the
appendix, we obtain the following bounds:

E ‖Zn − Z‖ ≤ 8√
n

+
39
√

log n√
n

E ‖Zn − Z‖3 ≤ 49

n3/2
+

8167(log n)3/2

n3/2

E‖Z‖2 ≤ 4

3
. (6.10)

Step 3. We note that, by (6.10):

|Eg(Z)− Eg(Dn)|
MVT
≤ E

[
sup
c∈[0,1]

‖Dg(Z + c(Zn − Z))‖ ‖Z− Zn‖

]
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≤‖g‖ME

[
sup
c∈[0,1]

(
1 + ‖Z + c(Zn − Z)‖2

)
‖Z− Zn‖

]
≤‖g‖ME

[
‖Z− Zn‖+ ‖Z‖‖Z− Zn‖+ ‖Z− Zn‖2

]
≤‖g‖M

[
E‖Z− Zn‖+ 2E‖Z− Zn‖3 + 2

(
E‖Z‖3

)2/3 (
E‖Z− Zn‖3

)1/3]
≤‖g‖M

(
115√
n

+
16422

√
log n√
n

)
,

which, together with Theorem 6.2 gives the desired estimate.

Remark 6.7. The representation of Z in terms of two independent Brownian Motions
comes from a careful analysis of the limiting covariance of Dn, which may be derived
using (6.9).

7 Appendix - technical details of the proofs of Proposition 5.7 and
Theorems 6.2 and 6.4

7.1 Technical details of the proof of Proposition 5.7

Lemma 7.1. Let n, d ∈ N and r1 ≥ r2 ≥ · · · ≥ rd ≥ 1. Define function
f : (D ([0, 1],R))

r1+···+rd → D
(
[0, 1],Rd

)
, given by

f (x1,1, . . . , x1,r1 , x2,2, . . . , x2,r2 , . . . , xd,1, . . . , xd,rd)

=

 r1∑
j=1

x1,j

((
t+

r1 − 1

n

)
∧ 1

)
, . . . ,

rd∑
j=1

xd,j

((
t+

rd − 1

n

)
∧ 1

) , t ∈ [0, 1]

 .

Then, for any g ∈M0,

‖g ◦ f‖M0 ≤ ‖g‖M0

√
dr1

d∑
i=1

ri.

Proof. Note that function f is twice Fréchet differentiable with

(A) Df(w) [(x1,1, . . . , x1,r1 , x2,1, . . . , x2,r2 , . . . , xd,1, . . . , xd,rd)]

=

 r1∑
j=1

x1,j

((
t+

r1 − 1

n

)
∧ 1

)
, . . . ,

rd∑
j=1

xd,j

((
t+

rd − 1

n

)
∧ 1

) , t ∈ [0, 1]


(B) D2f(w)[x(1), x(2)] = 0

for all w, x(1), x(2), (x1,1, . . . , x1,r1 , x2,1, . . . , x2,r2 , . . . , xd,1, . . . , xd,rd) ∈ (D ([0, 1],R))
r1+···+rd .

Furthermore, for any w ∈ (D ([0, 1],R))
r1+···+rd ,

a) ‖f(w)‖

≤

√√√√√ sup
t∈[0,1]

 r1∑
j=1

w1,j

((
t+

r1 − 1

n

)
∧ 1

)2

+ · · ·+ sup
t∈[0,1]

 rd∑
j=1

wd,j

((
t+

rd − 1

n

)
∧ 1

)2

≤

√√√√√ d∑
i=1

sup
t∈[0,1]

∣∣∣∣∣∣
ri∑
j=1

wi,j(t)

∣∣∣∣∣∣
2

b) ‖Df(w)‖ ≤

√√√√ d∑
i=1

ri.
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Therefore, for any w, h ∈ (D ([0, 1],R))
r1+···+rd ,

A) |g ◦ f(w)| ≤ ‖g‖M0 ;

B) ‖D(g ◦ f)(w)‖ = ‖Dg(f(w))[Df(w)[·]]‖ ≤ ‖g‖M0‖Df(w)‖ ≤ ‖g‖M0

√√√√ d∑
i=1

ri;

C)
∥∥D2(g ◦ f)(w)

∥∥ =
∥∥D2g(f(w)) [Df(w), Df(w)]

∥∥ ≤ ‖g‖M0 ‖Df(w)‖2 ≤ ‖g‖M0

d∑
i=1

ri;

D)
∥∥D2(g ◦ f)(w + h)−D2(g ◦ f)(w)

∥∥
=
∥∥D2g(f(w + h)) [Df(w + h), Df(w + h)]−D2g(f(w))[Df(w), Df(w)]

∥∥
≤
∥∥D2g(f(w + h)) [Df(w + h), Df(w + h)]−D2g(f(w)) [Df(w + h), Df(w + h)]

∥∥
+
∥∥D2g(f(w)) [Df(w + h), Df(w + h)]−D2g(f(w))[Df(w), Df(w)]

∥∥
≤‖g‖M0‖f(w + h)− f(w)‖‖Df(w + h)‖2

≤‖g‖M0

 d∑
i=1

sup
t∈[0,1]

∣∣∣∣∣∣
ri∑
j=1

hi,j(t)

∣∣∣∣∣∣
2


1/2
d∑
i=1

ri, (7.1)

where D) follows from the fact that Df(w) = Df(w + h). Moreover,

(∑d
i=1 supt∈[0,1]

∣∣∣∑ri
j=1 hi,j(t)

∣∣∣2)1/2

supt∈[0,1]

(∑d
i=1

∑ri
j=1 h

2
i,j(t)

)1/2 ≤
supt∈[0,1]

(
dr1

∑d
i=1

∑ri
j=1 h

2
i,j(t)

)1/2
supt∈[0,1]

(∑d
i=1

∑ri
j=1 h

2
i,j(t)

)1/2 =
√
dr1.

(7.2)

Therefore, using (7.1) and (7.2),

‖g ◦ f‖M0 ≤ ‖g‖M0

√
dr1

d∑
i=1

ri.

7.2 Technical details of the proof of Theorem 6.2

Lemma 7.2. For Si, i = 1, 2, 3, 4 of (6.6), we have the following estimates:

S1 ≤
√

5‖g‖M
12n

, S2 ≤
√

178‖g‖M
6n

, S3 ≤
√

178‖g‖M
6n

, S4 ≤
(
√

612 +
√

178)‖g‖M
3n

.

Proof. For S1, for fixed i, j ∈ {1, · · · , n}, let Yij
n be equal to Yn except for the fact that

Iij is replaced by an independent copy, i.e. for all t ∈ [0, 1] let:

Tij
n (t) = Tn(t)− bntc − 2

n2
(
Iij − I ′ij

)
1[i/n,1]∩[j/n,1](t)

Vij
n (t) = Vn(t)− 1

n2

∑
k:k 6=i,j

(
Iij − I ′ij

)
(Ijk + Iik)1[i/n,1]∩[j/n,1]∩[k/n,1](t)

and let Yij
n (t) =

(
Tij
n (t)− ETn(t),Vij

n (t)− EVn(t)
)
.
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By noting that the mean zero Z(1)
i,k and Z(1)

i′,j are independent for i 6= i′, we obtain:

S1 =

∣∣∣∣∣n(n− 1)

8
ED2f(Yn) [(Tn −T′n)(2, 0), (Tn −T′n)(1, 0)]

− ED2f(Yn)

[ ∑
1≤i<j≤n

Z
(1)
i,j (bn·c − 2)(1, 0)1[i/n,1]∩[j/n,1],

∑
1≤i<j≤n

Z
(1)
i,j (bn·c − 2)(1, 0)1[i/n,1]∩[j/n,1]

]∣∣∣∣∣
=

∣∣∣∣∣∣ 1

2n4

∑
1≤i<j≤n

E

{
(Ii,j − 2pIi,j + p)

·D2f(Yn)
[
(bn·c − 2)(1, 0)1[i/n,1]∩[j/n,1], (bn·c − 2)(1, 0)1[i/n,1]∩[j/n,1]

]}
−

∑
1≤i<j≤n

{
E
(
Z

(1)
i,j

)2
·ED2f(Yn)

[
(bn·c − 2)(1, 0)1[i/n,1]∩[j/n,1], (bn·c − 2)(1, 0)1[i/n,1]∩[j/n,1]

]}∣∣∣∣
=

∣∣∣∣∣∣
∑

1≤i<j≤n

E

{(
1

2n4
(Ii,j − 2pIi,j + p)− E

(
Z

(1)
i,j

)2)

·D2f(Yn)
[
(bn·c − 2)(1, 0)1[i/n,1]∩[j/n,1], (bn·c − 2)(1, 0)1[i/n,1]∩[j/n,1]

]} ∣∣∣∣∣
=

∣∣∣∣∣ ∑
1≤i<j≤n

E

{
1

2n4
(Ii,j − 2pIi,j + p)

(
D2f(Yn)−D2f(Yij

n )
)

[
(bn·c − 2)(1, 0)1[i/n,1]∩[j/n,1], (bn·c − 2)(1, 0)1[i/n,1]∩[j/n,1]

]}∣∣∣∣∣
(3.4)
≤ ‖g‖M

6n2

∑
1≤i<j≤n

E |(Ii,j − 2pIi,j + p)|
∥∥Yn −Yij

n

∥∥ , (7.3)

where (7.3) follows from Proposition 3.2. Now,

∥∥Yn −Yij
n

∥∥ ≤ 1

n2

√√√√√(bn·c − 2)2(Iij − I ′ij)2 +

 ∑
k:k 6=i,j

|Iij − I ′ij |(Ijk + Iik)

2

and so, by (7.3),

S1 ≤
‖g‖M
6n4

∑
1≤i<j≤n

E

{
|Ii,j − 2pIi,j + p|

·

√√√√(n− 2)2(Iij − I ′ij)2 +

( ∑
k 6=i,j

|Iij − I ′ij |(Ijk + Iik)

)2
}

≤‖g‖M
6n3

∑
1≤i<j≤n

E

{
|Ii,j − 2pIi,j + p| ·

√
(Iij − I ′ij)2 +

(
|Iij − I ′ij |(Ijk + Iik)

)2}

≤
√

5‖g‖M
12n

, (7.4)
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where the last inequality holds because |Iij−2pIij +p| ≤ 1, |Iij−I ′ij | ≤ 1 and Ijk+Iik ≤ 2

for all k ∈ {1, · · · , n}.
For S2, let Yijk

n equal to Yn except that Iij , Ijk, Iik are replaced by I ′ij , I
′
jk, I

′
ik, i.e.

for all t ∈ [0, 1] let

Tijk
n (t) =Tn(t)− bntc − 2

n2
[
(Iij − I ′ij)1[i/n,1]∩[j/n,1](t)

+(Ijk − I ′jk)1[j/n,1]∩[k/n,1](t) + (Iik − I ′ik)1[i/n,1]∩[k/n,1](t)
]

Vijk
n (t) =Vn(t)− 1

n2

∑
l:l 6=i,j,k

[ (
Iij − I ′ij

)
(Ijl + Iil)1[i/n,1]∩[j/n,1]∩[l/n,1](t)

+
(
Ijk − I ′jk

)
(Ijl + Ikl)1[k/n,1]∩[j/n,1]∩[l/n,1](t)

+ (Iik − I ′ik) (Ijl + Iil)1[i/n,1]∩[k/n,1]∩[l/n,1](t)

]
− 1

n2
[
(IijIjk − I ′ijI ′jk) + (IijIik − I ′ijI ′ik) + (IikIjk − I ′ikI ′jk)

]
1[i/n,1]∩[j/n,1]∩[k/n,1](t).

(7.5)

Let Yijk
n (t) =

(
Tijk
n (t)− ETn(t),Vijk

n (t)− EVn(t)
)

for all t ∈ [0, 1]. Then

S2 =

∣∣∣∣∣n(n− 1)

8
E
{
D2f(Yn) [(Tn −T′n)(0, 2p) + (Vn −V′n)(0, 1), (Tn −T′n)(1, 0)]

}
− ED2f(Yn)

[ ∑
1≤i<j<k≤n

Z
(2)
i,j,k(0, 1)1[i/n,1]∩[j/n,1]∩[k/n,1],

∑
1≤i<j≤n

Z
(1)
i,j (bn·c − 2)(1, 0)1[i/n,1]∩[j/n,1]

]∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1

4n4

∑
1≤i<j≤n

∑
1≤k≤n
k 6∈{i,j}

E
{[

2p (Iij − 2pIij + p) + (Iij − 2pIij + p) (Ijk + Iik)− 8p2(1− p)
]

·
(
D2f(Yn)−D2f(Yijk

n )
) [

(0, 1)1[i/n,1]∩[j/n,1]∩[k/n,1], (bn·c − 2)(1, 0)1[i/n,1]∩[j/n,1]
]} ∣∣∣∣∣∣∣∣

(3.4)

≤ ‖g‖M
12n3

∑
1≤i<j≤n

∑
1≤k≤n
k 6∈{i,j}

E

{∣∣∣2p (Iij − 2pIij + p)

+ (Iij − 2pIij + p) (Ijk + Iik)
∣∣∣‖Yn −Yijk

n ‖
}

≤‖g‖M
3n3

∑
1≤i<j≤n

∑
1≤k≤n
k 6∈{i,j}

E‖Yn −Yijk
n ‖. (7.6)

Now, by (7.5), we note that:

‖Yn −Yijk
n ‖

≤ 1

n2

(n− 2)2(|Iij − I ′ij |+ |Ijk − I ′jk|+ |Iik − I ′ik|)2
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+

 ∑
l:l 6=i,j,k

(
|Iij − I ′ij |(Ijl + Iil) + |Ijk − I ′jk|(Ijl + Ikl) + |Iik − I ′ik|(Ijl + Iil)

+|Iik − I ′ik|(Ijl + Iil)
)

+ |IijIjk − I ′ijI ′jk|+ |IijIik − I ′ijI ′ik|+ |IijIjk − I ′ijI ′jk|

2


1/2

≤ 1

n2

√
9(n− 2)2 + (8(n− 3) + 3)2

=

√
73n2 − 372n+ 477

n2
, (7.7)

where the second inequality follows from the fact that for all a, b, c ∈ {1, · · · , n}, |Iab −
I ′ab| ≤ 1, (Iab + Ibc) ≤ 2 and |IabIbc − I ′abI ′bc| ≤ 1. Therefore, by (7.6):

S2 ≤
‖g‖Mn(n− 1)(n− 2)

√
73n2 − 372n+ 477

6n5
≤
√

178‖g‖M
6n

. (7.8)

Similarly, for S3,

S3 =

∣∣∣∣∣∣n(n− 1)

8
E
{
D2f(Yn) [(Tn −T′n)(2, 0), (Vn −V′n)(0, 1)]

}
− ED2f(Yn)

[ ∑
1≤i<j<k≤n

Z
(2)
i,j,k(0, 1)1[i/n,1]∩[j/n,1]∩[k/n,1],

∑
1≤i<j≤n

Z
(1)
i,j (bn·c − 2)(1, 0)1[i/n,1]∩[j/n,1]

]∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1

4n4

∑
1≤i<j≤n

∑
1≤k≤n
k 6∈{i,j}

E
{[

2 (Iij − 2pIij + p) (Ijk + Iik)− 8p2(1− p)
]

·
(
D2f(Yn)−D2f(Yijk

n )
) [

(0, 1)1[i/n,1]∩[j/n,1]∩[k/n,1], (bn·c − 2)(1, 0)1[i/n,1]∩[j/n,1]
]} ∣∣∣∣∣∣∣∣

(3.4)

≤ ‖g‖M
12n3

∑
1≤i<j≤n

∑
1≤k≤n
k 6∈{i,j}

E
{
|2 (Iij − 2pIij + p) (Ijk + Iik)| ‖Yn −Yijk

n ‖
}

≤‖g‖M
3n3

∑
1≤i<j≤n

∑
1≤k≤n
k 6∈{i,j}

E‖Yn −Yijk
n ‖

(7.7)
≤
√

178‖g‖M
6n

. (7.9)

Now, for S4, let Yijkl
n be equal to Yn except that Iij , Iik, Iil, Ijk, Ijl, Ikl are replaced

with independent copies I ′ij , I
′
ik, I

′
il, I
′
jk, I

′
jl, I

′
kl, i.e. for all t ∈ [0, 1] let

Tijkl
n (t) =Tn(t)− bntc − 2

n2
[
(Iij − I ′ij)1[i/n,1]∩[j/n,1](t) + (Iik − I ′ik)1[i/n,1]∩[k/n,1](t)

+ (Iil − I ′il)1[i/n,1]∩[l/n,1](t) + (Ijk − I ′jk)1[j/n,1]∩[k/n,1](t)
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+(Ijl − I ′jl)1[j/n,1]∩[l/n,1](t) + (Ikl − I ′kl)1[k/n,1]∩[l/n,1](t)
]

Vijkl
n (t) =Vn(t)− 1

n2

∑
m:m 6=i,j,k,l

[(
Iij − I ′ij

)
(Iim + Ijm)1[i/n,1]∩[j/n,1]∩[m/n,1](t)

+ (Iik − I ′ik) (Iim + Ikm)1[i/n,1]∩[k/n,1]∩[m/n,1](t)

+ (Iil − I ′il) (Iim + Ilm)1[i/n,1]∩[l/n,1]∩[m/n,1](t)

+
(
Ijk − I ′jk

)
(Ijm + Ikm)1[j/n,1]∩[k/n,1]∩[m/n,1](t)

+
(
Ijl − I ′jl

)
(Ijm + Ilm)1[j/n,1]∩[l/n,1]∩[m/n,1](t)

+ (Ikl − I ′ll) (Ikm + Ilm)1[k/n,1]∩[l/n,1]∩[m/n,1](t)
]

− 1

n2
[
(IijIjk − I ′ijI ′jk) + (IijIik − I ′ijI ′ik) + (IikIjk − I ′ijI ′jk)

]
1[i/n,1]∩[j/n,1]∩[k/n,1](t)

− 1

n2
[
(IijIjl − I ′ijI ′jl) + (IijIil − I ′ijI ′il) + (IilIjl − I ′ijI ′jl)

]
1[i/n,1]∩[j/n,1]∩[l/n,1](t)

− 1

n2
[(IikIkl − I ′ikI ′kl) + (IikIil − I ′ikI ′il) + (IilIkl − I ′ikI ′kl)]1[i/n,1]∩[k/n,1]∩[l/n,1](t)

− 1

n2
[
(IjkIjl − I ′jkI ′jl) + (IjlIkl − I ′jlI ′kl) + (IklIjk − I ′klI ′jk)

]
1[j/n,1]∩[k/n,1]∩[l/n,1](t)

(7.10)

and for all t ∈ [0, 1] let Yijkl
n (t) =

(
Tijkl
n (t)− ETn,V

ijkl
n (t)− EVn(t)

)
. Note that:

S4 =

∣∣∣∣∣n(n− 1)

8
E
{
D2f(Yn) [(Tn −T′n)(0, 2p) + (Vn −V′n)(0, 1), (Vn −V′n)(0, 1)]

}
− ED2f(Yn)

[ ∑
1≤i<j<k≤n

Z
(2)
i,j,k(0, 1)1[i/n,1]∩[j/n,1]∩[k/n,1],

∑
1≤i<j<k≤n

Z
(2)
i,j,k(0, 1)1[i/n,1]∩[j/n,1]∩[k/n,1]

]∣∣∣∣∣
≤

∣∣∣∣∣ 1

4n4

∑
1≤i<j≤n

∑
1≤k 6=l≤n
{k,l}∩{i,j}=∅

E

{[
2p (Iij − 2pIij + p) (Ijk + Iik)

+ (Iij − 2pIij + p) (IikIil + IikIjl + IjkIil + IjkIjl)− 16p3(1− p)
]

·
(
D2f(Yn)−D2f(Yijkl

n )
) [

(0, 1)1[i/n,1]∩[j/n,1]∩[l/n,1], (0, 1)1[i/n,1]∩[j/n,1]∩[k/n,1]
]}∣∣∣∣∣

+

∣∣∣∣∣ 1

4n4

∑
1≤i<j≤n

∑
1≤k≤n
k 6∈{i,j}

E

{[
2p (Iij − 2pIij + p) (Ijk + Iik)

+ (Iij − 2pIij + p) (Iik + 2IikIjk + Ijk)− 4p2(1 + 2p− 3p2)
]

·
(
D2f(Yn)−D2f(Yijk

n )
) [

(0, 1)1[i/n,1]∩[j/n,1]∩[k/n,1], (0, 1)1[i/n,1]∩[j/n,1]∩[k/n,1]
] }∣∣∣∣∣

≤‖g‖M
12n4

∑
1≤i<j≤n

∑
1≤k 6=l≤n
{k,l}∩{i,j}=∅

E

{∣∣∣ (Iij − 2pIij + p)

· (2pIjk + 2pIik + IikIil + IikIjk + IjkIil + IjkIjl)
∣∣∣ · ‖Yn −Yijkl

n ‖
}
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+
‖g‖M
12n4

∑
1≤i<j≤n

∑
1≤k≤n
k 6∈{i,j}

E
{
|(Iij − 2pIij + p) (2pIjk + 2pIik + Iik + 2IikIjk + Ijk)|

· ‖Yn −Yijk
n ‖

}
≤2‖g‖M

3n4

∑
1≤i<j≤n

∑
1≤k 6=l≤n
{k,l}∩{i,j}=∅

E‖Yn −Yijkl
n ‖+

2‖g‖M
3n4

∑
1≤i<j≤n

∑
1≤k≤n
k 6∈{i,j}

E‖Yn −Yijk
n ‖.

(7.11)

Now, by (7.10), note that:

‖Yn −Yijkl
n ‖

≤ 1

n2

{
(n− 2)2

(
|Iij − I ′ij |+ |Iik − I ′ik|+ |Iil − I ′i|+ |Ijk − I ′jk|+ |Ijl − I ′jl|+ |Ikl − I ′kl|

)2
+

[ ∑
m:m6=i,j,k,l

[∣∣Iij − I ′ij∣∣ (Iim + Ijm) + |Iik − I ′ik| (Iim + Ikm) + |Iil − I ′il| (Iim + Ilm)

+
∣∣Ijk − I ′jk∣∣ (Ijm + Ikm) +

∣∣Ijl − I ′jl∣∣ (Ijm + Ilm) + |Ikl − I ′ll| (Ikm + Ilm)
]

+ |IijIjk − I ′ijI ′jk|+ |IijIik − I ′ijI ′ik|+ |IikIjk − I ′ijI ′jk|+ |IijIjl − I ′ijI ′jl|
+ |IijIil − I ′ijI ′il|+ |IilIjl − I ′ijI ′jl|+ |IikIkl − I ′ikI ′kl|+ |IikIil − I ′ikI ′il|

+ |IilIkl − I ′ikI ′kl|+ |IjkIjl − I ′jkI ′jl|+ |IjlIkl − I ′jlI ′kl|+ |IklIjk − I ′klI ′jk|

]2}1/2

≤

√
36(n− 2)2 + (12(n− 4) + 12)

2

n2

=

√
180n2 − 1008n+ 1440

n2
.

Therefore, by (7.11) and (7.7),

S4 ≤
‖g‖M ·

√
180n2 − 1008n+ 1440 +

√
73n2 − 372n+ 477

3n2
≤
(√

612 +
√

178
)
‖g‖M

3n
.

(7.12)

The result now follows by (7.6), (7.8), (7.9), (7.12).

7.3 Technical details of the proof of Theorem 6.4

Lemma 7.3. Using the notation of Step 2 of the proof of Theorem 6.4,

E ‖Zn − Z‖ ≤ 8√
n

+
39
√

log n√
n

E ‖Zn − Z‖3 ≤ 49

n3/2
+

8167(log n)3/2

n3/2

E‖Z‖2 ≤ 4

3
.

Proof. Note the following:
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1. By Doob’s L2 and L3 inequalities,

A)E

[
sup
t∈[0,1]

∣∣∣∣B3

(
bntc(bntc − 1)(bntc − 2)

n3

)∣∣∣∣
]
≤ 2

√√√√E[∣∣∣∣B3

(
n(n− 1)(n− 2)

n3

)∣∣∣∣2
]
≤ 2;

B)E

[
sup
t∈[0,1]

∣∣∣∣B3

(
bntc(bntc − 1)(bntc − 2)

n3

)∣∣∣∣3
]
≤ 27

8
E

[∣∣∣∣B3

(
n(n− 1)(n− 2)

n3

)∣∣∣∣3
]
≤ 27

8
.

(7.13)

2. By Doob’s L2 and L3 inequality, for all t ∈ [0, 1],

E

[
sup
t∈[0,1]

|B1(t2)|

]
≤ 2, E

[
sup
t∈[0,1]

|B1(t2)|3
]
≤ 27

8
and

∣∣∣∣bntc − 2

n
− t
∣∣∣∣ ≤ 3

n
.

(7.14)

3. Using [33, Lemma 3] and the fact that∣∣∣∣bntc(bntc − 1)

n2
− t2

∣∣∣∣ ≤ ∣∣∣∣ (nt− bntc)(nt+ bntc)
n2

∣∣∣∣+
1

n2
≤ 3

n
,

we obtain

E

[
sup
t∈[0,1]

∣∣∣∣B1

(
bntc(bntc − 1)

n2

)
−B1(t2)

∣∣∣∣
]
≤

30
√

3 log
(
2n
3

)
n1/2

√
π log(2)

;

E

[
sup
t∈[0,1]

∣∣∣∣B1

(
bntc(bntc − 1)

n2

)
−B1(t2)

∣∣∣∣3
]
≤

1080
(
3 log

(
2n
3

))3/2
n3/2 (π log(2))

3/2
. (7.15)

Now, we can bound E ‖Zn − Z‖ in the following way:

E ‖Zn − Z‖

≤
√
p(1− p)√
2 + 8p2

E

[
sup
t∈[0,1]

∣∣∣∣bntc − 2

n
B1

(
bntc(bntc − 1)

n2

)
− tB1(t2)

∣∣∣∣
]

+
p
√

2p(1− p)√
1 + 4p2

E

[
sup
t∈[0,1]

∣∣∣∣bntc − 2

n
B2

(
bntc(bntc − 1)

n2

)
− tB2(t2)

∣∣∣∣
]

+
p
√

2p(1− p)√
1 + 4p2

E

[
sup
t∈[0,1]

∣∣∣∣bntc − 2

n
B1

(
bntc(bntc − 1)

n2

)
− tB1(t2)

∣∣∣∣
]

+
2p2
√

2p(1− p)√
1 + 4p2

E

[
sup
t∈[0,1]

∣∣∣∣bntc − 2

n
B2

(
bntc(bntc − 1)

n2

)
− tB2(t2)

∣∣∣∣
]

+
p(1− p)
n1/2

E

[
sup
t∈[0,1]

∣∣∣∣B3

(
bntc(bntc − 1)(bntc − 2)

n3

)∣∣∣∣
]

(7.13)

≤
(1 + 4p+ 4p2)

√
p(1− p)√

2 + 8p2
E

[
sup
t∈[0,1]

∣∣∣∣bntc − 2

n
B1

(
bntc(bntc − 1)

n2

)
− tB1(t2)

∣∣∣∣
]

+
2p(1− p)
n1/2

≤
(1 + 4p+ 4p2)

√
p(1− p)√

2 + 8p2

(
E

[
sup
t∈[0,1]

∣∣∣∣(bntc − 2

n
− t
)
B1(t2)

∣∣∣∣
]
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+E

[
sup
t∈[0,1]

∣∣∣∣B1

(
bntc(bntc − 1)

n2

)
−B1(t2)

∣∣∣∣
])

+
2p(1− p)
n1/2

(7.14),(7.15)

≤
(1 + 4p+ 4p2)

√
p(1− p)√

2 + 8p2

(
6

n
+

30
√

3 log n

n1/2
√
π log(2)

)
+

2p(1− p)
n1/2

≤ 8√
n

+
39
√

log n√
n

.

Similarly,

E‖Zn − Z‖3

≤4
√

3

(
p(1− p)
2 + 8p2

)3/2

E

[
sup
t∈[0,1]

∣∣∣∣bntc − 2

n
B1

(
bntc(bntc − 1)

n2

)
− tB1(t2)

∣∣∣∣3
]

+ 4
√

3

(
2p3(1− p)

1 + 4p2

)3/2

E

[
sup
t∈[0,1]

∣∣∣∣bntc − 2

n
B2

(
bntc(bntc − 1)

n2

)
− tB2(t2)

∣∣∣∣3
]

+ 9
√

3

(
2p3(1− p)

1 + 4p2

)3/2

E

[
sup
t∈[0,1]

∣∣∣∣bntc − 2

n
B1

(
bntc(bntc − 1)

n2

)
− tB1(t2)

∣∣∣∣3
]

+ 9
√

3

(
8p5(1− p)

1 + 4p2

)3/2

E

[
sup
t∈[0,1]

∣∣∣∣bntc − 2

n
B2

(
bntc(bntc − 1)

n2

)
− tB2(t2)

∣∣∣∣3
]

+ 9
√

3
p3(1− p)3

n3/2
E

[
sup
t∈[0,1]

∣∣∣∣B3

(
bntc(bntc − 1)(bntc − 2)

n2

)∣∣∣∣3
]

(7.13)

≤
√

6p3/2(1− p)3/2(1 + 26p3 + 126p6)

(1 + 4p2)3/2

· E

[
sup
t∈[0,1]

∣∣∣∣bntc − 2

n
B1

(
bntc(bntc − 1)

n2

)
− tB1(t2)

∣∣∣∣3
]

+
243
√

3

512n3/2

≤4
√

6p3/2(1− p)3/2(1 + 26p3 + 126p6)

(1 + 4p2)3/2

(
E

[
sup
t∈[0,1]

∣∣∣∣(bntc − 2

n
− t
)
B1(t2)

∣∣∣∣3
]

+E

[
sup
t∈[0,1]

∣∣∣∣B1

(
bntc(bntc − 1)

n2

)
−B1(t2)

∣∣∣∣3
])

+
243
√

3

512n3/2

(7.14),(7.15)

≤ 4
√

6p3/2(1− p)3/2(1 + 26p3 + 126p6)

(1 + 4p2)3/2

(
81

8n3
+

1080 (3 log n)
3/2

n3/2 (π log(2))
3/2

)
+

243
√

3

512n3/2

≤ 49

n3/2
+

8167(log n)3/2

n3/2
.

Furthermore,

E‖Z‖3 ≤
√

2E

 sup
t∈[0,1]

(√
p(1− p)√
2 + 8p2

tB1(t2) +
p
√

2p(1− p)√
1 + 4p2

tB2(t2)

)3


+
√

2E

 sup
t∈[0,1]

(
p
√

2p(1− p)√
1 + 4p2

tB1(t2) +
2p2
√

2p(1− p)√
1 + 4p2

tB2(t2)

)3


≤2p3/2(1− p)3/2(1 + 27/2p3 + 211/2p6)

(1 + 4p2)3/2
E

[
sup
t∈[0,1]

|B1(t2)|3
]

≤27p3/2(1− p)3/2(1 + 27/2p3 + 211/2p6)

4(1 + 4p2)3/2
≤ 4

3
.
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This finishes the proof.
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