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Abstract

By using the heat kernel parameter expansion with respect to the frozen SDESs, the
intrinsic derivative is estimated for the law of Mckean-Vlasov SDEs with respect to the
initial distribution. As an application, the total variation distance between the laws of
two solutions is bounded by the Wasserstein distance for initial distributions. These
extend some recent results proved for distribution-free noise by using the coupling
method and Malliavin calculus.
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1 Introduction

Let 2, be the set of all probability measures on R¢ with finite second moment, which
is called the Wasserstein space under the metric

1

3

Wo(p,v) = inf / |z —y|*n(de,dy) | , pveE P,
TEE (V) Rd xR

where % (u, v) is the set of all couplings of i and v. Consider the following distribution
dependent SDE on R%:

dX# = bt(X#7gxél)dt+Ut(X#7gxéL)th, gxll; =unE egZQ, (11)

where W, is an m-dimensional Brownian motion on a complete filtration probability
space (Q,{Z; }1>0,P), L, is the law of X,, and

b:Ry xRix Py - R 0:Ry xRYx Z, 5> REQR™
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Derivative estimates on distributions of McKean-Vlasov SDEs

are measurable. This type equations, known as Mckean-Vlasov or mean field SDEs,
have been intensively investigated and applied, see for instance the monograph [2] and
references therein.

To characterize the regularity of the law fx;‘ with respect to the initial distribution
1, we investigate the derivative estimate of the functions

Py 3 p Pif(p) =Ef(X]"), fe€Bp(R),t>0.

When the noise coefficient o;(x, 1) does not depend on , the Harnack inequality and
derivative formula have been established in [11, 9] for P, f by using the coupling by
change of measures and Malliavin calculus respectively. See also [1, 6, 7, 10] for
extensions to distribution-path dependent SDEs/SPDESs, singular distribution dependent
SDESs, and distribution dependent SDEs with jumps, where in [10] allows the noise to be
also distribution dependent and establishes the gradient estimate on P, f(x) := (P,.f)(dz)
when the initial distribution is a Dirac measure. In this paper, we estimate the derivative
of P, f(u) in p by using the heat kernel parameter expansion with respect to the frozen
SDE

AXH = by(z, pe)dt + 042, pg ) AWy (1.2)

for fixed (z, ) € R? x 2,(R"), where y; := Zxp. Since this SDE has constant coefficients,
the solution has a Gaussian heat kernel which can be easily analyzed.

Before introducing the main result, we first recall the intrinsic derivative and L-
derivative for functions on ;.

Definition 1.1. Let f : ¥, - R andg: R? x &, — R.

(1) f is called intrinsically differentiable, if for any . € &5,

L2(Rd N Rd;ﬂ) 5 d)'_} Déf(u) — IEIE)I f(MO(Id—’_gj)il) _f(p“)

eR

is a well defined bounded linear functional. In this case, the unique map
Py > e DEf(p) € L2(RY — R%; p)

such that D} f (1) = (¢, D" f (1)) 2 () holds for any € &5 and ¢ € L*(R* — R%; 1)
is called the intrinsic derivative of f, and we denote

IDYF() == [ID" f () (M L2y, 1 € Po.
If moreover

hy Jeo(d+ ®)7") = f(p) — DS f(p)
(o0 PED)

we call f L-differentiable, and in this case D" f is also called the L-derivative of f.
(2) We denote [ € 01(92), if f is L-differentiable and its L-derivative has a version
D™ f(u)(x) jointly continuous in (z, 1) € R? x 2.
(3) We denote g € CLL(R? x Py), if g(z,:) € CH(P) for x € RY, g(-,u) € CHRY)
for i € Py, g(z,1),Vg(-,p)(z) are jointly continuous in (z,u) € R x P,, and
D%g(x,-)(1)(y) has a version jointly continuous in (z,y, 1) € R? x R? x 2.

:07 'LLEgZ27

(4) A vector- or matrix-valued function is said in a class defined above, if so are its
component functions.

To estimate the intrinsic derivative of P, (1), we need the following condition. Let |- |
and | - || denote the norm in R? and the operator norm for linear operators repsectively.
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(H) For any t > 0, b;,0; € CY1(RY x &,), and there exists an increasing function
K :[0,00) — [0,00) such that for any t > 0,z,y € R? and p € Z5(R?),

K;'d < (oy0)) (2, 1) < K1d,

b (2, )| + Ve (-, 1) (@)[| + | DE {be(w, )} () |
+IV{oe(, w}H@)|? + 1D {ow (@, ) )1 < Ko,

D" {be(, )} (1) = D*{bi(y, )} ()l + | D™ {o(z, )} ) — D {ou(y, )} ()|
< Kilz —yl.

It is well known that SDE (1.1) is well-posed under the assumption (H), so that P; f
is well defined on &, for any t > 0 and f € %,(R?). In general, for any s > 0 and
Xk, € L?(Q — R4, .Z,,P) with Lxp, = p, let X!, be the unique solution of (1.1) for
t > s:

ngt = bt(Xg,t?ngt)dt + O—t(Xg,t?ngt)th? t> S,gxsﬂ’s =uc 322. (13)

We denote P, = -iﬂxf;t and investigate the regularity of

Pusf () = BI(X5) = [ fA(Pi). | € AR,
R:
By the uniqueness, we have the flow property

* ok *
Ps,t *Pr,tp

s,1

0<s<r<t.

However, due to the distribution dependence, F;; is no-longer a semigroup, i.e. in
general P ; # P, P; , and
P # [ Pif@p(de),
R(
so that the regularity of P, f(u) in p € % can not be deduced from that of P, f(x) :=
P.f(6,) forz € R, see for instance [11] for details.
We now state the main result of the paper as follows.

Theorem 1.2. Assume (H). Then for any t > s and f € %,(R?), P, .f is L-differentiable,
and there exists an increasing function C : [0,00) — (0, 00) such that

Ctll fll o
Vit—s

Consequently, foranyt > s > 0, u, v € Ps,

|DEP;, f ()] < , t>5>0,f € By(RY. (1.4)

1Pt — Pl = sup |Pust () — Ponf)] < CM o). 1)

I flloo<1 Vit—s

Remark 1.3. We may also apply Malliavin calculus to establish a derivative formula for
DLPM f(p) as in [10], where the usual derivative in initial points (rather than in initial
distributions) are studied. However, in this way we need stronger conditions on the
coefficients, i.e. b;(z, ) and o¢(x, u) also have bounded second order derivatives in z.
Let us explain this in more details.

Firstly, under (H), the Malliavin matrix

Msi = {<D(X5,t)l5 D(Xsu,t)j>ﬂ’1}1§i§j
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is invertible with ]E||MS_¢1||2 < oo fort > s > 0, where D is the Malliavin gradient, H is
the Cameron-Martin space in Malliavin calculus, and (X%,); is the i-th component of
Xl

Next, for any ¢ € L*(R? — R% p), let vf, = DEXY,, which exists in L?(P) and
satisfies

Efvf, > < e(t)u(¢l?)

for some constant ¢(t) > 0, see [9, Proposition 3.2].

Then for any f € C’l}(Rd), by the chain rule and the integration by parts formula for
the Malliavin gradient D, we have

d

DiP,of (1) = E(VF(XE,),08,) = Y B0 (XE)(0F,)i]

=1

E[0:f (X5 ) (M 1)i; (M )k (02 )]

<.
=

E [(Df(XZt), D(Xg,t)j>H(M;tl)jk(vf,t)k]

—

<.

Il
J\lM& %M& TTMP“

&
el
|
—

E[f(X5) D {(M ) (vl kDX s

3
where D* is the Malliavin divergence. To make the above calculations meaningful, we
need to verify that (M;l)jk(vit)kD(th)j belongs to the domain of D*, for which the
second order derivatives of coefficients will be involved. For instance, as shown in [9,
Proposition 3.2] that vf)t solves an SDE involving in the first order derivatives of b and o,
making Malliavin derivative to this SDE we see that Dvit solves an SDE containing the
second order derivatives of coefficients.

The remainder of the paper is organized as follows. In Section 2, we formulate
P, . f(p) using classical SDEs with parameter i and the parameter expansion of heat
kernels with respect to the frozen SDE (1.2), and estimate the L-derivative for functions
of P;,pu. With these preparations, we prove Theorem 1.2 in Section 3.

2 Preparations

We first represent P, ; f(u) by using a Markov semigroup P!, with parameter ., then
introduce the heat kernel expansion of Ps‘ft with respect to the frozen SDEs. Since the
frozen SDE has explicit Gaussian heat kernel, this enables us to calculate the intrinsic
derivative of P, f(u) with respect to p.

2.1 A representation of F; ,

For any s > 0,z € R? and y € &, consider the decoupled SDE
dX7) = b(XJY, Pl yp)dt + o (X, P yp)dWy, XOF =t > s. (2.1)

st s, s,t 07 s,

In this SDE, the measure variable P, is fixed, so that it reduces to the classical time
inhomogeneous SDE. Let Ps’ft be the associated Markov semigroup, i.e.

Pl f(z) =Bf(X), t=s,fe B (RY),zeR%

Since X i‘ ¢ solves (2.1) with the random initial value X/, replacing z, and since ﬁxgﬁ = U,
by the standard Markov property of solutions to (2.1), we have

Py f(p) :=Ef(X,) = /]R Pl f(x)p(dz), t>s,f € By(RY),u € Ps. (2.2)
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Since for any g € C}(R?) the function u + u = f]Rd gdy is L-differentiable with
D*p(g) = Vg, we first study the derivative of P2 f ( )in z.

Lemma 2.1. Assume (H). Then for any f € #,(R?) andt > s > 0, we have P!, f
C'(R?) such that (VP! f)(z) is continuous in (z, ;1) € R x P, and

_ CEllfle e,

s , t>s,f € B(RY), pe Py (2.3)

VP flloo <

holds for some constant C > 0.

Proof. Since (H) implies that P, u is Lipschitz continuous in p € &, see for instance
[11], the desired assertions follow from (H) and the Bismut formula

, g/ [ d
VPl f(r) = B| T / ({or(oro?) Y XTE, Pt )|, ve R (24)
for f € %,(R%), where vl}' : (fEXffv’“\E:O solves the linear SDE

dugy' = {Vv:fbt(wRf,tu)}(Xf,}“)dH{ijfat(',Pf,tﬂ)}(Xf,’t“)th, t> s, 008 =v. (2.5)
By (H), vft“ is continuous in (z, 1) € R? x %, and
E[olf? < [u]?e", t> 5,0 eR?

holds for some constant C' > 0, so that (2.4) implies that (VP.,f)(z) is continuous in
(z, 1) € R? x &, and satisfies (2.3).
To prove (2.4), for fixed t > s, take

= [ oroon e P e, e (s,
Then the Malliavin derivative w;* := Dy X7/ along h solves the SDE

it = [{(Tuzbr (e, PL)HXEL) + 0y (XEL P )k |dr
(Vg v PL ) HXE)AW,

= [(Tubo (- PLa) HXEE) + 02 ar
(Vg P XS AW, 1 € [s,t], wid =0,

see for instance [9, Proposition 3.5]. It is easy to see from (2.5) that o, := (r — s)v ok
solves the same equation. By the uniqueness we obtain (t — s)v;* = D, X_ /', so that the
chain rule and the integration by parts formula yield

Vo P{f () = B(VAXTE), v5f) =

(XZH t
Lenuro = B[ L0 [ oo s 2y ams)|.

tf]E<Vf(Xf,’t“), Dp XY

t

Combining (2.2) with Lemma 2.1, we have the following result.

Lemma 2.2. Assume (H). Lett > s and f € %,(R?). If for any x € R?, the function
P:,f(x) is L-differentiable with

sup | DH{P; , f )} ()] < oo, (2.6)
rERA
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then P, . f(u) is L-differentiable in y with
DEPyof(u) = VRS + [ DHEL 1@} (). @.7)
Consequently, there exists a constant C' > 0 such that for any f € %,(R?%) and p € 25,

CKtHf”oo CK L{p-
—————e 't 4 su D Pgl z)Hp)ll, t>s>0. (2.8)
T — s a:ede { ff( )}( )H =

Proof. Obviously, (2.8) is implied by (2.3) and (2.7). So, we only need to prove that
P, . f(p) is L-differentiable and satisfies (2.7).

(1) We first prove that P, . f(u) is intrinsically differentiable and satisfies (2.7). For
any g € C;(R?), the function y — (g) := [p. gdpu is L-differentiable with D% u(g) = Vg.
So, for any pu € &5, the function

|DE Py f (1) <

Py dve PLf(v) = /]Rd Pl fdv (2.9)

is L-differentiable with DL(P:tf)(l/) = VPb’,ftf, v € 5. Combining this with (2.2), (2.3)
and (2.6), and using the dominated convergence theorem, we conclude that the map

LR = RYp) 3 6 DEPL(0) = (VP b2 + [ DEPLS@)} ufae)

is a bounded linear functional, so that by definition, P, f () is intrinsically differentiable
in p € &5, and the formula (2.7) holds true.
(2) By (2.7), for any ¢ € L>(R? — R%; 1), we have

Py f(po (Id+ ¢)71) = Py f(p) — Déps,tf(ﬂ)
= /R AP pla ot g(a)) - PO f @) — (VPO £ (@), 6() b a(de)
+ /R AP fl@) = PLf() = DR (@)} u(da)

+ [ (TP @) = VPL @), o) ().

Combining this with Lemma 2.1, (2.6), and the L-differentiability of Ps‘f J(x) in p, we
may apply the dominated convergence theorem to derive

lim |Peof(po (Id+¢)~") — Perf(p) — DéPs,tf(u)\
6l 12,y L0 |l L2 ()

:O7

that is, P, +f(u) is L-differentiable. O
According to Lemma 2.2, to estimate |DLPs,f(u)||, it remains to investigate the

L-derivative of P!, f(x) in u. To this end, we let p ,(z,y) be the heat kernel of P}/, for
t > s, which exists and is differentiable in x and y under conditions (H). We have

P;u,‘tf(x) = \/]Rd pl:,t('ray)f(y)dya .f S %b(Rd)vt > S, T S Rd- (210)

So, to investigate the L-derivative of P!, f(x), we need to study that of p ,(z,y), for
which we will use the heat kernel parameter expansion.
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2.2 Parameter expansion for p/,

Since heat kernel p{, is less explicit, we make use of its parameter expansion with
respect to the heat kernel of the Gaussian process

t t
X3t =a +/ by(z, P}, p)du +/ ou(z, Pr p)dW,, t>1r>s>0,2 € R?

for fixed z € R and pp € &,. Forany t > > s > 0, let

t
b2, = / bu(z, Pry)du, ms = mh,,
i (2.11)
i [ @) Prdu, dly = al
By (H), we have
|msrt|+‘asrt‘<(tir)Ktv t>T>5>0 (212)

Obviously, the law of X"} is the d-dimensional normal distribution entered at z +m/";,

s r t
with covariance matrix a?,, i.e. the distribution density function is

srtv

eXp[_%<(aI:,’rz,t)71(y —T— ml;ft) Yy—x— mg,’f,t”

(2m) % (det{al’, })?

When r = s, we simply denote p7 = pi’7,, so that

P, y) = L yERYE>T > s (213)

D=

)My —x—m{D)y -z —miy)]

(2m)% (det{al7})
Forany 0 < s <r < tandy,z € R let
Hslu,v",t(yv Z) = <b7«(2, P:,r:u) - br(y, P:,ru)a ngL;:,t('a Z)(y)>

, ye R4t > s, (2.14)

pii(x,y) =

Nl=

1 . . . . ; (2.15)
+ §tr [{(UTUT)(Z7 Ps;r/’t) - (UTUT>(y7 Ps,r:u’)} v2pg,7r,t(" Z)<y)] :
By the parameter expansion, see for instance [8, Lemma 3.1], we have
P, 2) = 7 @, 2) + Z / ar [ B2 ), 2.16)
where H!"; for m € IN are defined by
Hg;‘ t - = Hsur t
1 (2.17)
HET(y,2) / du [ AT D)0 > 2

Combining (2.16) with (2.11), (2.13) and (2.14), to estimate DLPS“tf it suffices to study
the L-derivative of b,.(y, Py, ,,p) and (0.07)(y, Py, ,,it) in p for r > 0 and uz > uy > 0.
So, we present the following lemma.

Lemma 2.3. Assume (H) and lett > s > 0. Then for any F € C'(%,) with bounded
I (PJ,u) is L-differentiable in 1 such that

|IDEF(P; ) ()| < || DFF||ooe e, (2.18)

Consequently, for any r > 0,t > s > 0 and y € R, b.(y, P;,p1) and (o,07)(y, Pi,p) are
L-differentiable in y1, and

ma { | D2 (g, PL) (), D5 (0007) (y, Plr) ()|} < K€, e 9,
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Proof. It suffices to prove the first assertion. We first prove the intrinsic differentiability.
Let u € P and ¢ € L*(R* — R% ). Since Lx = p implies

Lxr tepixe,y =po(Id+ep)t, >0,

we have Lx:, = Pfi(uo (Id 4+ ep)!) for XZ, solving (1.3) with initial value X7, =
X +ep(XE). B [9 Proposition 3.1] for n = ¢(X}) and [9, (4.21)] for time s replacing
0, forany § > 0,
X5+E X5
w8 = DEXS, = lim —2L T >
’ el0 S

exists in L2(Q — C([s, T]; R%); P) for any T > 0, and solves the linear SDEs:

dvf,f = [V”Z{,tsbt(Xg,t,int) +E{<Dth(Za')($Xf,t)(th , St }’ xs }dt
+ [Vys (X0, Zxg )+ BAD 0u(, ) (L JXE 0 Y| Ly |, 219)
vl = d(Xo), t>s.
Fromm (H) we see that vff is continuous in ¢ and
Elvly? < p(|¢|?)e® =95t > 5,9 € L*(RY x RY; p). (2.20)

By the chain rule, see for instance [9, Proposition 3.1], we have

= E((D"F)(Py ) (XE,), 007 (2.21)

d
DEF(P)(n) = o F(&x:,)|

de
Combining this with (H) and (2.20), we obtain

* * ,0
IDSF(P) ()] < [(DF)(Ps o)\ Bl 2
<[ @llz2u [DFFllaoe 5, 6 € L2 R — R po).

Therefore, F (P*t ) is intrinsically differentiable in p such that (2.18) holds.
It remains to verify the L-differentiability. By the chain rule and (2.21), we obtain

F(PL o (4 +6)™) = F(PL) = DEF(PS )00 = | S F(2x: )de = DEF(PL) 1)

/ {E((D"F)(P} o (Id +e9) " )(X5,)v8y) = E((DMF)(Prp) (XL), viy) fde.

U

Combining this with ' € C'(%,) with bounded || D~ F||, the continuity of v’ ', ine, (2.20),
and that X5, — X, when ||¢||12(,) — 0, by the dominated theorem we prove

- |F(P; o (Id+ ¢)~') — F(PFyu) — DEF(Pr,-) (1)
1611 2,0, 40 ol L2

:O’

thus, F'(PS,u) is L-differentiable in p.

3 Proof of Theorem 1.2

According to Lemma 2.2, (2. 10) and (2.16), to estimate | DLP; . f ()|,
handle the derivative of pS ,and HY . " in p. To this end, for fixed T' > 0, we introduce the
Gaussian heat kernel

2
exp[— 8‘5y[|(T]

(8wsKrp)t

hT(Say> = Y€ Rdvs > 07 (31)
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which satisfies the Chapman-Kolmogorov equation
hr(s1,y — 2)hr(s2, 2)dz = hp(sy + s2,9), 51,82 > 0,y € R%. (3.2)
Rd
By (H), there exists a constant K;(T'), which increases in T, such that

ly—=|2

Py, 2) S Ki(T)he(t —ry — z)e SC-DFT |y 2 € RL,O<s<r<t<T ue P,.

Consequently, there exists a constant K> (7'), which increases in T, such that

—2 | ly—+
1,2 , 1+|y Z| + Yy )
Phiaw ) (1 S

< Ko(T)hp(t —ry—2), y,2€ RLO< s<r <t<T,u€ Ps.

(3.3)

Lemma 3.1. Assume (H). There exists a constant K1 > 0 which increases in T > 0,
such that for any 0 < s <r <t < T,y,z € R" and m > 1, pi},(y,z) and H!} are
L-differentiable in ;1 € &5 satisfying

ID™M{ps(y, 2) ()|l < Kphp(t —r,y — 2), (3.4)
[Cm (4 -1
‘ng":f( )| S %hT(t_ny_ZL mZ 17 (3'5)
r'(g)

mKmR(t —r)2 1

ey

IDE{H (v, 2) } ()

IN

hr(t—r,y—2), m>1. (3.6)

Proof. By (H), we have |m}’},| < (t — r)Kr, so that (3.3) yields

ly—z—miL Py —z—mi
3 < _ _ .
— o= )<G@brt-ry-2) G

o®

P ) (1+

[SE

for some constant C1(7T) > 0 increasingin 7, and all 0 < s <r <t < T,u € ¥ and
y, 2z € R%. Combining this with (H), (2.13), (3.7) and applying Lemma 2.3, we prove the
L-differentiability of p.7;(y, 2) in p € &, and the estimate (3.4).

Next, by (H), (2.13), (2.15) and (3.7), we find constants Cy(7T), C3(T") > 0 increasing

inT >0suchthatforany 0 < s<r<t<T,u€ Pyandy,zc R?
ly — 2z —mi;,

t_rsrt) 56)

1 ly— 2z —mt? 2
i 14,2 5T
1y ) < Ol =21 (= +

< C3(T)(t—7) Zhp(t—r,y — 2).

Assume that for some k£ > 1 we have
P A |
L 2)] < o= (T8 (5 5) et =y =)
i=1
Combining this with (2.17), (3.2), and (3.8), we derive
H (g, 2)] < / du [ VL ()0

< C3(T)** hp(t —ry — Z)( Uﬂ%’%)) /:(t_u)g_l(u—ﬂ_;du

= ) T - - (T15(5 L))

i=1
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In conclusion, for any m > 1, we have

[H Ty, 2)| < Cs(T)™ (t—rﬁ-l(nﬁlﬁ(;};))w—r,y—zx

which implies (3.5) for K7 = C5(T)I'(3), since

m—1 . m—1 1—\(1

i1 () _ i)
5(575) = };[1 1—\2(@)2 = F(Qm)- (3.9)

i=1 2

Finally, in view of (H), (2.14), (2.15), Lemma 2.3 and (3.8), we see that HS ,,"; is
L-differentiable in y, and there exist constants Cy(T"), C5(T) > C3(T') increasing in T>0
such that

IDE{H; (g, 2)} ()

%1

1 |y—Z— s’r’t|2 ‘y_z_ms)rt
< o - - .
< CuTP ol )y — 2l (= + O B - ) (3.10)
< C5(T)(t—1) " 2hp(t—r,y — 2).
Assume that for some k£ > 1 we have
L A |
IDMHE ()l < kOt =) 5 (T (5 5) ot =y = 2):
1=1
Combining this with (2.17), (3.2), and (3.10), we derive
IDE{LH T (y, 2) )l
< [Cau [ {I0HE N )
+HEE (2 2)] HDL{H;m(y,Z’)}(u)ll}dZ'
) t k 1
< (k 4+ 1)COs(T) L hp(t — 1,y — ( H 5( )) / (t—u) ¥ (u—r)"Fdu
. LB
= (kDO (=) F =y =) (T]8(503)):
1=1
This together with (3.9) implies (3.6) for Ky = C5(T)I‘(%). O

We are now ready to prove the main result.

Proof of Theorem 1.2. By Lemma 3.1 with (2.16) and (3.2), pf;t(x, z) is L-differentiable
in p for t > s, and there exists a constant 7 > 0 increasing in 7" > 0 such that

1D {p, 4 (@, ) M)l < Krhe(t = 5,2 - 2)
n i (m+ 1)K+t

o)

/ (t—s)% ldr hr(t—r,y — 2)hp(r — s,z —y)dy (3.11)
2 s R4

m=1

< orhp(t— s,z — z). 0§s<t§T,x,z€Rd,u€<@2.

This and (2.2) imply that P!, f(z) is L-differentiable in x such that

IDH{P;  f(2)} ()l < ||f||<>o/Rd 1D {p 4 (z, 2) ()| dz < 07| flls
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holds forall 0 < s < t < T,f € %,(RY) and u € &,. Combining this with Lemma
2.2, we prove that P;, f(u) is L-differentiable in x and (1.4) holds for some increasing
C :]0,00) = (0,00). According to the proof of [9, Corollary 2.2(2)], we can show that
(1.4) implies (1.5). We include below a simple proof for completeness.

Since C} (R?) is dense in L' (P} i + P} ,v), (1.5) is equivalent to

Cil[ flloo
Vit—s

Let f € Cg (]Rd) be fixed. We first prove this inequality for u, v with compact supports.
Let £, be two bounded random variables such that .Z; = p, %, = v and

|Poif (1) — Pasf(v)| < Wo(p,v), t>s,f€CHRY), u,v € Py. (3.12)

E|¢ — n* = Wy (u,v)*.

By Proposition 3.1 in [9] and (1.4), we obtain

1
d
|Ps,tf(/1“) - Ps,tf(l/)‘ = /0 aps,tf(jrﬁ-‘r(l—'r)n)dr

Cill flloo

m WQ(lu‘vlj)'

1
< / |E<DLPS,tf($r£+(1—r)n)(7"5 + (1 - T)77)7§ - 77>|d7” <
0
So, (3.12) holds.
Next, for any pu,v € 5, we choose {j,, vp}n>1 C &2 with compact supports such
that

lim {Wo(u, pin) + Wa(v, 1)} = 0.

n— oo

Then by the last step,

|Ps,tf(ﬂn)_PS,tf(Vn)| S WQ(/Jnvl/n)a 712 1. (313)

If P; ¢ f(7y) is continuous in 7 € &, then by letting n — co we obtain the desired estimate
(3.12). To prove the continuity, for any 71,72 € 9, let 1, & be F#y-measurable random
variables such that %, = v;,7 = 1,2, and

Wa(y1,72)? = Elé — &2

For any ¢ € [0,1], let X;, solve (1.3) with initial value X¢, := €{; + (1 — €)&2. By [9,
Proposition 3.2 and (4.2)],

5 d €
V51—§2Xs,t = &Xs,t

exists in L?(P) with

E|Ve, —e, XZ, > < c(t)El&G — &I = c(t)Wa(y1,72)?

for some constant ¢(¢) > 0. Then

1
Puadn) = Pusf )] = [BS (L) ~ B2 =| [ SLBr(xs
0
1
< [ IOV ). Vet X500 |ds < VeI Waln.22).

Therefore, Ps . f(7) is continuous in v € &7, and the proof is then finished. O
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