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Abstract

By using the heat kernel parameter expansion with respect to the frozen SDEs, the
intrinsic derivative is estimated for the law of Mckean-Vlasov SDEs with respect to the
initial distribution. As an application, the total variation distance between the laws of
two solutions is bounded by the Wasserstein distance for initial distributions. These
extend some recent results proved for distribution-free noise by using the coupling
method and Malliavin calculus.
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1 Introduction

Let P2 be the set of all probability measures on Rd with finite second moment, which
is called the Wasserstein space under the metric

W2(µ, ν) := inf
π∈C (µ,ν)

(∫
Rd×Rd

|x− y|2π(dx,dy)

) 1
2

, µ, ν ∈P2,

where C (µ, ν) is the set of all couplings of µ and ν. Consider the following distribution
dependent SDE on Rd:

dXµ
t = bt(X

µ
t ,LXµt

)dt+ σt(X
µ
t ,LXµt

)dWt, LXµ0
= µ ∈P2, (1.1)

where Wt is an m-dimensional Brownian motion on a complete filtration probability
space (Ω, {Ft}t≥0,P), LXt is the law of Xt, and

b : R+ ×Rd ×P2 → Rd, σ : R+ ×Rd ×P2 → Rd ⊗Rm
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Derivative estimates on distributions of McKean-Vlasov SDEs

are measurable. This type equations, known as Mckean-Vlasov or mean field SDEs,
have been intensively investigated and applied, see for instance the monograph [2] and
references therein.

To characterize the regularity of the law LXµt
with respect to the initial distribution

µ, we investigate the derivative estimate of the functions

P2 3 µ 7→ Ptf(µ) := Ef(Xµ
t ), f ∈ Bb(R

d), t > 0.

When the noise coefficient σt(x, µ) does not depend on µ, the Harnack inequality and
derivative formula have been established in [11, 9] for Ptf by using the coupling by
change of measures and Malliavin calculus respectively. See also [1, 6, 7, 10] for
extensions to distribution-path dependent SDEs/SPDEs, singular distribution dependent
SDEs, and distribution dependent SDEs with jumps, where in [10] allows the noise to be
also distribution dependent and establishes the gradient estimate on Ptf(x) := (Ptf)(δx)

when the initial distribution is a Dirac measure. In this paper, we estimate the derivative
of Ptf(µ) in µ by using the heat kernel parameter expansion with respect to the frozen
SDE

dXz,µ
t = bt(z, µt)dt+ σt(z, µt)dWt (1.2)

for fixed (z, µ) ∈ Rd×P2(Rd), where µt := LXµt
. Since this SDE has constant coefficients,

the solution has a Gaussian heat kernel which can be easily analyzed.
Before introducing the main result, we first recall the intrinsic derivative and L-

derivative for functions on P2.

Definition 1.1. Let f : P2 → R and g : Rd ×P2 → R.

(1) f is called intrinsically differentiable, if for any µ ∈P2,

L2(Rd → Rd;µ) 3 φ 7→ DL
φf(µ) := lim

ε↓0

f(µ ◦ (Id + εφ)−1)− f(µ)

ε
∈ R

is a well defined bounded linear functional. In this case, the unique map

P2 3 µ 7→ DLf(µ) ∈ L2(Rd → Rd;µ)

such that DL
φf(µ) = 〈φ,DLf(µ)〉L2(µ) holds for any µ ∈P2 and φ ∈ L2(Rd → Rd;µ)

is called the intrinsic derivative of f , and we denote

‖DLf(µ)‖ := ‖DLf(µ)(·)‖L2(µ), µ ∈P2.

If moreover

lim
µ(|φ|2)→0

f(µ ◦ (Id + φ)−1)− f(µ)−DL
φf(µ)√

µ(|φ|2)
= 0, µ ∈P2,

we call f L-differentiable, and in this case DLf is also called the L-derivative of f .

(2) We denote f ∈ C1(P2), if f is L-differentiable and its L-derivative has a version
DLf(µ)(x) jointly continuous in (x, µ) ∈ Rd ×P2.

(3) We denote g ∈ C1,1(Rd ×P2), if g(x, ·) ∈ C1(P2) for x ∈ Rd, g(·, µ) ∈ C1(Rd)

for µ ∈ P2, g(x, µ),∇g(·, µ)(x) are jointly continuous in (x, µ) ∈ Rd ×P2, and
DLg(x, ·)(µ)(y) has a version jointly continuous in (x, y, µ) ∈ Rd ×Rd ×P2.

(4) A vector- or matrix-valued function is said in a class defined above, if so are its
component functions.

To estimate the intrinsic derivative of Ptf(µ), we need the following condition. Let | · |
and ‖ · ‖ denote the norm in Rd and the operator norm for linear operators repsectively.
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Derivative estimates on distributions of McKean-Vlasov SDEs

(H) For any t ≥ 0, bt, σt ∈ C1,1(Rd ×P2), and there exists an increasing function
K : [0,∞)→ [0,∞) such that for any t ≥ 0, x, y ∈ Rd and µ ∈P2(Rd),

K−1t Id ≤ (σtσ
∗
t )(x, µ) ≤ KtId,

|bt(x, µ)|+ ‖∇bt(·, µ)(x)‖+ ‖DL{bt(x, ·)}(µ)‖
+ ‖∇{σt(·, µ)}(x)‖2 + ‖DL{σt(x, ·)}(µ)‖2 ≤ Kt,

‖DL{bt(x, ·)}(µ)−DL{bt(y, ·)}(µ)‖+ ‖DL{σt(x, ·)}(µ)−DL{σt(y, ·)}(µ)‖
≤ Kt|x− y|.

It is well known that SDE (1.1) is well-posed under the assumption (H), so that Ptf
is well defined on P2 for any t ≥ 0 and f ∈ Bb(R

d). In general, for any s ≥ 0 and
Xµ
s,s ∈ L2(Ω → Rd,Fs,P) with LXµs,s = µ, let Xµ

s,t be the unique solution of (1.1) for
t ≥ s:

dXµ
s,t = bt(X

µ
s,t,LXµs,t

)dt+ σt(X
µ
s,t,LXµs,t

)dWt, t ≥ s,LXµs,s = µ ∈P2. (1.3)

We denote P ∗s,tµ = LXµs,t
and investigate the regularity of

Ps,tf(µ) := Ef(Xµ
s,t) =

∫
Rd
fd(P ∗s,tµ), f ∈ Bb(R

d).

By the uniqueness, we have the flow property

P ∗s,t = P ∗r,tP
∗
s,r, 0 ≤ s ≤ r ≤ t.

However, due to the distribution dependence, Ps,t is no-longer a semigroup, i.e. in
general Ps,t 6= Pr,tPs,r and

Ptf(µ) 6=
∫
Rd
Ptf(x)µ(dx),

so that the regularity of Ptf(µ) in µ ∈ P2 can not be deduced from that of Ptf(x) :=

Ptf(δx) for x ∈ Rd, see for instance [11] for details.
We now state the main result of the paper as follows.

Theorem 1.2. Assume (H). Then for any t > s and f ∈ Bb(R
d), Ps,tf is L-differentiable,

and there exists an increasing function C : [0,∞)→ (0,∞) such that

‖DLPs,tf(µ)‖ ≤ Ct‖f‖∞√
t− s

, t > s ≥ 0, f ∈ Bb(R
d). (1.4)

Consequently, for any t > s ≥ 0, µ, ν ∈P2,

‖P ∗s,tµ− P ∗s,tν‖var := sup
‖f‖∞≤1

|Ps,tf(µ)− Ps,tf(ν)| ≤ Ct‖f‖∞√
t− s

W2(µ, ν). (1.5)

Remark 1.3. We may also apply Malliavin calculus to establish a derivative formula for
DLPs,tf(µ) as in [10], where the usual derivative in initial points (rather than in initial
distributions) are studied. However, in this way we need stronger conditions on the
coefficients, i.e. bt(x, µ) and σt(x, µ) also have bounded second order derivatives in x.
Let us explain this in more details.

Firstly, under (H), the Malliavin matrix

Ms,t :=
{
〈D(Xµ

s,t)i, D(Xµ
s,t)j〉H

}
1≤i≤j
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is invertible with E‖M−1s,t ‖2 < ∞ for t > s ≥ 0, where D is the Malliavin gradient, H is
the Cameron-Martin space in Malliavin calculus, and (Xµ

s,t)i is the i-th component of
Xµ
s,t.

Next, for any φ ∈ L2(Rd → Rd;µ), let vφs,t = DL
φX

µ
s,t, which exists in L2(P) and

satisfies
E|vφs,t|2 ≤ c(t)µ(|φ|2)

for some constant c(t) > 0, see [9, Proposition 3.2].
Then for any f ∈ C1

b (Rd), by the chain rule and the integration by parts formula for
the Malliavin gradient D, we have

DL
φPs,tf(µ) = E〈∇f(Xµ

s,t), v
φ
s,t〉 =

d∑
i=1

E[∂if(Xµ
s,t)(v

φ
s,t)i]

=

d∑
i,j,k=1

E
[
∂if(Xµ

s,t)(Ms,t)ij(M
−1
s,t )jk(vφs,t)k

]
=

d∑
i,j,k=1

E
[
〈Df(Xµ

s,t), D(Xµ
s,t)j〉H(M−1s,t )jk(vφs,t)k

]
=

d∑
i,j,k=1

E
[
f(Xµ

s,t)D
∗{(M−1s,t )jk(vφs,t)kD(Xµ

s,t)j
}]
,

where D∗ is the Malliavin divergence. To make the above calculations meaningful, we
need to verify that (M−1s,t )jk(vφs,t)kD(Xµ

s,t)j belongs to the domain of D∗, for which the
second order derivatives of coefficients will be involved. For instance, as shown in [9,
Proposition 3.2] that vφs,t solves an SDE involving in the first order derivatives of b and σ,

making Malliavin derivative to this SDE we see that Dvφs,t solves an SDE containing the
second order derivatives of coefficients.

The remainder of the paper is organized as follows. In Section 2, we formulate
Ps,tf(µ) using classical SDEs with parameter µ and the parameter expansion of heat
kernels with respect to the frozen SDE (1.2), and estimate the L-derivative for functions
of P ∗s,tµ. With these preparations, we prove Theorem 1.2 in Section 3.

2 Preparations

We first represent Ps,tf(µ) by using a Markov semigroup Pµs,t with parameter µ, then
introduce the heat kernel expansion of Pµs,t with respect to the frozen SDEs. Since the
frozen SDE has explicit Gaussian heat kernel, this enables us to calculate the intrinsic
derivative of Ptf(µ) with respect to µ.

2.1 A representation of Ps,t

For any s ≥ 0, x ∈ Rd and µ ∈P2, consider the decoupled SDE

dXx,µ
s,t = bt(X

x,µ
s,t , P

∗
s,tµ)dt+ σt(X

x,µ
s,t , P

∗
s,tµ)dWt, Xx,µ

s,s = x, t ≥ s. (2.1)

In this SDE, the measure variable P ∗s,tµ is fixed, so that it reduces to the classical time
inhomogeneous SDE. Let Pµs,t be the associated Markov semigroup, i.e.

Pµs,tf(x) = Ef(Xx,µ
s,t ), t ≥ s, f ∈ Bb(R

d), x ∈ Rd.

SinceXµ
s,t solves (2.1) with the random initial valueXµ

s,s replacing x, and since LXµs,s = µ,

by the standard Markov property of solutions to (2.1), we have

Ps,tf(µ) := Ef(Xµ
s,t) =

∫
Rd
Pµs,tf(x)µ(dx), t ≥ s, f ∈ Bb(R

d), µ ∈P2. (2.2)
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Since for any g ∈ C1
b (Rd) the function µ 7→ µ(g) :=

∫
Rd
gdµ is L-differentiable with

DLµ(g) = ∇g, we first study the derivative of Pµs,tf(x) in x.

Lemma 2.1. Assume (H). Then for any f ∈ Bb(R
d) and t > s ≥ 0, we have Pµs,tf ∈

C1(Rd) such that (∇Pµs,tf)(x) is continuous in (x, µ) ∈ Rd ×P2, and

‖∇Pµs,tf‖∞ ≤
CKt‖f‖∞√

t− s
eCKt , t > s, f ∈ Bb(R

d), µ ∈P2 (2.3)

holds for some constant C > 0.

Proof. Since (H) implies that P ∗s,tµ is Lipschitz continuous in µ ∈P2, see for instance
[11], the desired assertions follow from (H) and the Bismut formula

∇vPµs,tf(x) = E

[
f(Xx,µ

s,t )

t− s

∫ t

s

〈
{σr(σrσ∗r )−1}(Xx,µ

s,r , P
∗
s,rµ)vx,µs,r ,dWr

〉]
, v ∈ Rd (2.4)

for f ∈ Bb(R
d), where vx,µs,t := d

dεX
x+εv,µ
s,t |ε=0 solves the linear SDE

dvx,µs,t = {∇vx,µs,t bt(·, P
∗
s,tµ)}(Xx,µ

s,t )dt+{∇vx,µs,t σt(·, P
∗
s,tµ)}(Xx,µ

s,t )dWt, t ≥ s, vx,µs,s = v. (2.5)

By (H), vx,µs,t is continuous in (x, µ) ∈ Rd ×P2 and

E|vx,µs,t |2 ≤ |v|2eCKt , t ≥ s, v ∈ Rd

holds for some constant C > 0, so that (2.4) implies that (∇Pµs,tf)(x) is continuous in
(x, µ) ∈ Rd ×P2 and satisfies (2.3).

To prove (2.4), for fixed t > s, take

hu =

∫ u

s

{σ∗r (σrσ
∗
r )−1}(Xx,µ

s,r , P
∗
s,rµ)vx,µs,r dr, u ∈ [s, t].

Then the Malliavin derivative wx,µr := DhX
x,µ
s,r along h solves the SDE

dwx,µs,r =
[
{∇wx,µs,r br(·, P

∗
s,rµ)}(Xx,µ

s,r ) + σr(X
x,µ
s,r , P

∗
s,rµ)h′r

]
dr

+ {∇wx,µs,r σr(·, P
∗
s,rµ)}(Xx,µ

s,r )dWr

=
[
{∇wx,µs,r br(·, P

∗
s,rµ)}(Xx,µ

s,r ) + vx,µs,r

]
dr

+ {∇wx,µs,r σr(·, P
∗
s,rµ)}(Xx,µ

s,r )dWr, r ∈ [s, t], wx,µs,s = 0,

see for instance [9, Proposition 3.5]. It is easy to see from (2.5) that v̄r := (r − s)vx,µs,r
solves the same equation. By the uniqueness we obtain (t− s)vx,µs,t = DhX

x,µ
s,t , so that the

chain rule and the integration by parts formula yield

∇vPµs,tf(x) = E〈∇f(Xx,µ
s,t ), vx,µs,t 〉 =

1

t− s
E〈∇f(Xx,µ

s,t ), DhX
x,µ
s,t 〉

=
1

t− s
EDh{f(Xx,µ

s,t )} = E

[
f(Xx,µ

s,t )

t− s

∫ t

s

〈
{σ∗r (σrσ

∗
r )−1}(Xx,µ

s,r , P
∗
s,rµ)vx,µs,r ,dWr

〉]
.

Combining (2.2) with Lemma 2.1, we have the following result.

Lemma 2.2. Assume (H). Let t > s and f ∈ Bb(R
d). If for any x ∈ Rd, the function

µ 7→ Pµs,tf(x) is L-differentiable with

sup
x∈Rd

∥∥DL{P ·s,tf(x)}(µ)
∥∥ <∞, (2.6)
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then Ps,tf(µ) is L-differentiable in µ with

DLPs,tf(µ) = ∇Pµs,tf +

∫
Rd
DL{P ·s,tf(x)}(µ)µ(dx). (2.7)

Consequently, there exists a constant C > 0 such that for any f ∈ Bb(R
d) and µ ∈P2,∥∥DLPs,tf(µ)

∥∥ ≤ CKt‖f‖∞√
t− s

eCKt + sup
x∈Rd

∥∥DL{P ·s,tf(x)}(µ)
∥∥, t > s ≥ 0. (2.8)

Proof. Obviously, (2.8) is implied by (2.3) and (2.7). So, we only need to prove that
Ps,tf(µ) is L-differentiable and satisfies (2.7).

(1) We first prove that Ps,tf(µ) is intrinsically differentiable and satisfies (2.7). For
any g ∈ C1

b (Rd), the function µ 7→ µ(g) :=
∫
Rd
gdµ is L-differentiable with DLµ(g) = ∇g.

So, for any µ ∈P2, the function

P2 3 ν 7→ Pµs,tf(ν) :=

∫
Rd
Pµs,tfdν (2.9)

is L-differentiable with DL(Pµs,tf)(ν) = ∇Pµs,tf, ν ∈P2. Combining this with (2.2), (2.3)
and (2.6), and using the dominated convergence theorem, we conclude that the map

L2(Rd → Rd;µ) 3 φ 7→ DL
φPs,tf(µ) = 〈∇Pµs,tf, φ〉L2(µ) +

∫
Rd
DL
φ{P ·s,tf(x)}(µ)µ(dx)

is a bounded linear functional, so that by definition, Ps,tf(µ) is intrinsically differentiable
in µ ∈P2, and the formula (2.7) holds true.

(2) By (2.7), for any φ ∈ L2(Rd → Rd;µ), we have

Ps,tf(µ ◦ (Id + φ)−1)− Ps,tf(µ)−DL
φPs,tf(µ)

=

∫
Rd

{
P
µ◦(Id+φ)−1

s,t f(x+ φ(x))− Pµ◦(Id+φ)
−1

s,t f(x)− 〈∇Pµ◦(Id+φ)
−1

s,t f(x), φ(x)〉
}
µ(dx)

+

∫
Rd

{
P
µ◦(Id+φ)−1

s,t f(x)− Pµs,tf(x)−DL
φ [P ·s,tf(x)](µ)

}
µ(dx)

+

∫
Rd
〈∇Pµ◦(Id+φ)

−1

s,t f(x)−∇Pµs,tf(x), φ(x)〉µ(dx).

Combining this with Lemma 2.1, (2.6), and the L-differentiability of Pµs,tf(x) in µ, we
may apply the dominated convergence theorem to derive

lim
‖φ‖L2(µ)↓0

|Ps,tf(µ ◦ (Id + φ)−1)− Ps,tf(µ)−DL
φPs,tf(µ)|

‖φ‖L2(µ)
= 0,

that is, Ps,tf(µ) is L-differentiable.

According to Lemma 2.2, to estimate ‖DLPs,tf(µ)‖, it remains to investigate the
L-derivative of Pµs,tf(x) in µ. To this end, we let pµs,t(x, y) be the heat kernel of Pµs,t for
t > s, which exists and is differentiable in x and y under conditions (H). We have

Pµs,tf(x) =

∫
Rd
pµs,t(x, y)f(y)dy, f ∈ Bb(R

d), t > s, x ∈ Rd. (2.10)

So, to investigate the L-derivative of Pµs,tf(x), we need to study that of pµs,t(x, y), for
which we will use the heat kernel parameter expansion.
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2.2 Parameter expansion for pµs,t

Since heat kernel pµs,t is less explicit, we make use of its parameter expansion with
respect to the heat kernel of the Gaussian process

Xx,µ,z
s,r,t = x+

∫ t

r

bu(z, P ∗s,uµ)du+

∫ t

r

σu(z, P ∗s,uµ)dWu, t ≥ r ≥ s ≥ 0, x ∈ Rd

for fixed z ∈ Rd and µ ∈P2. For any t ≥ r ≥ s ≥ 0, let

mµ,z
s,r,t :=

∫ t

r

bu(z, P ∗s,uµ)du, mµ,z
s,t := mµ,z

s,s,t,

aµ,zs,r,t :=

∫ t

r

(σuσ
∗
u)(z, P ∗s,uµ)du, aµ,zs,t := aµ,zs,s,t.

(2.11)

By (H), we have

|mµ,z
s,r,t|+ |a

µ,z
s,r,t| ≤ (t− r)Kt, t ≥ r ≥ s ≥ 0. (2.12)

Obviously, the law of Xx,µ,z
s,r,t is the d-dimensional normal distribution entered at x+mµ,z

s,r,t

with covariance matrix aµ,zs,r,t, i.e. the distribution density function is

pµ,zs,r,t(x, y) =
exp[− 1

2 〈(a
µ,z
s,r,t)

−1(y − x−mµ,z
s,r,t), y − x−m

µ,z
s,r,t〉]

(2π)
d
2 (det{aµ,zs,r,t})

1
2

, y ∈ Rd, t > r ≥ s. (2.13)

When r = s, we simply denote pµ,zs,t = pµ,zs,s,t, so that

pµ,zs,t (x, y) =
exp[− 1

2 〈(a
µ,z
s,t )−1(y − x−mµ,z

s,t ), y − x−mµ,z
s,t 〉]

(2π)
d
2 (det{aµ,zs,t })

1
2

, y ∈ Rd, t > s. (2.14)

For any 0 ≤ s ≤ r < t and y, z ∈ Rd, let

Hµ
s,r,t(y, z) :=

〈
br(z, P

∗
s,rµ)− br(y, P ∗s,rµ),∇pµ,zs,r,t(·, z)(y)

〉
+

1

2
tr
[{

(σrσ
∗
r )(z, P ∗s,rµ)− (σrσ

∗
r )(y, P ∗s,rµ)

}
∇2pµ,zs,r,t(·, z)(y)

]
.

(2.15)

By the parameter expansion, see for instance [8, Lemma 3.1], we have

pµs,t(x, z) = pµ,zs,t (x, z) +

∞∑
m=1

∫ t

s

dr

∫
Rd
Hµ,m
s,r,t(y, z)p

µ,z
s,r (x, y)dy, (2.16)

where Hµ,m
s,r,t for m ∈ N are defined by

Hµ,1
s,r,t := Hµ

s,r,t,

Hµ,m
s,r,t(y, z) :=

∫ t

r

du

∫
Rd
Hµ,m−1
s,u,t (z′, z)Hµ

s,r,u(y, z′)dz′, m ≥ 2.
(2.17)

Combining (2.16) with (2.11), (2.13) and (2.14), to estimate DLPµs,tf , it suffices to study
the L-derivative of br(y, P ∗u1,u2

µ) and (σrσ
∗
r )(y, P ∗u1,u2

µ) in µ for r ≥ 0 and u2 ≥ u1 ≥ 0.
So, we present the following lemma.

Lemma 2.3. Assume (H) and let t > s ≥ 0. Then for any F ∈ C1(P2) with bounded
‖DLF‖, F (P ∗s,tµ) is L-differentiable in µ such that

‖DLF (P ∗s,t·)(µ)‖ ≤ ‖DLF‖∞e4Kt(t−s). (2.18)

Consequently, for any r ≥ 0, t ≥ s ≥ 0 and y ∈ Rd, br(y, P ∗s,tµ) and (σrσ
∗
r )(y, P ∗s,tµ) are

L-differentiable in µ, and

max
{
‖DLbr(y, P

∗
s,t·)(µ)‖, ‖DL(σrσ

∗
r )(y, P ∗s,t·)(µ)‖

}
≤ Kre

4Kt(t−s), µ ∈P2.
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Proof. It suffices to prove the first assertion. We first prove the intrinsic differentiability.
Let µ ∈P2 and φ ∈ L2(Rd → Rd;µ). Since LXµs,s = µ implies

LXµs,s+εφ(X
µ
s,s) = µ ◦ (Id + εφ)−1, ε ≥ 0,

we have LXεs,t
= P ∗s,t(µ ◦ (Id + εφ)−1) for Xε

s,t solving (1.3) with initial value Xε
s,s =

Xµ
s,s + εφ(Xµ

s,s). By [9, Proposition 3.1] for η = φ(Xµ
0 ) and [9, (4.21)] for time s replacing

0, for any δ ≥ 0,

vφ,δs,t := DL
φX

δ
s,t = lim

ε↓0

Xδ+ε
s,t −Xδ

s,t

ε
, t ≥ s

exists in L2(Ω→ C([s, T ];Rd);P) for any T > 0, and solves the linear SDEs:

dvφ,δs,t =
[
∇vφ,δs,t bt(X

δ
s,t,LXδs,t

) + E
{
〈DLbt(z, ·)(LXδs,t

)(Xδ
s,t), v

φ,δ
s,t 〉
}∣∣
z=Xδs,t

]
dt

+
[
∇vφ,δs,t σt(X

δ
s,t,LXδs,t

) + E
{
DLσt(z, ·)(LXδs,t

)(Xδ
s,t)v

φ,δ
s,t

}∣∣
z=Xδs,t

]
dWt,

vφ,δs,s = φ(X0), t ≥ s.

(2.19)

Fromm (H) we see that vφ,εs,t is continuous in ε and

E|vφ,δs,t |2 ≤ µ(|φ|2)e8(t−s)Kt , t ≥ s, φ ∈ L2(Rd ×Rd;µ). (2.20)

By the chain rule, see for instance [9, Proposition 3.1], we have

DL
φF (P ∗s,t·)(µ) =

d

dε
F (LXεs,t

)
∣∣∣
ε=0

= E〈(DLF )(P ∗s,tµ)(Xµ
s,t), v

φ,0
s,t 〉. (2.21)

Combining this with (H) and (2.20), we obtain

|DL
φF (P ∗s,t·)(µ)| ≤ ‖(DLF )(P ∗s,tµ)‖

√
E|vφ,0s,t |2

≤ ‖φ‖L2(µ)‖DLF‖∞e4(t−s)Kt , φ ∈ L2(Rd → Rd;µ).

Therefore, F (P ∗s,tµ) is intrinsically differentiable in µ such that (2.18) holds.
It remains to verify the L-differentiability. By the chain rule and (2.21), we obtain

F (P ∗s,tµ ◦ (Id + φ)−1)− F (P ∗s,tµ)−DL
φF (P ∗s,t·)(µ) =

∫ 1

0

d

dε
F (LXεs,t

)dε−DL
φF (P ∗s,t·)(µ)

=

∫ 1

0

{
E〈(DLF )(P ∗s,tµ ◦ (Id + εφ)−1)(Xε

s,t), v
φ,ε
s,t 〉 − E〈(DLF )(P ∗s,tµ)(Xµ

s,t), v
φ,0
s,t 〉

}
dε.

Combining this with F ∈ C1(P2) with bounded ‖DLF‖, the continuity of vφ,εs,t in ε, (2.20),
and that Xε

s,t → Xµ
s,t when ‖φ‖L2(µ) → 0, by the dominated theorem we prove

lim
‖φ‖L2(µ)↓0

|F (P ∗s,tµ ◦ (Id + φ)−1)− F (P ∗s,tµ)−DL
φF (P ∗s,t·)(µ)|

‖φ‖L2(µ)
= 0,

thus, F (P ∗s,tµ) is L-differentiable in µ.

3 Proof of Theorem 1.2

According to Lemma 2.2, (2.10) and (2.16), to estimate ‖DLPs,tf(µ)‖, it suffices to
handle the derivative of pµs,t and Hµ,m

s,r,t in µ. To this end, for fixed T > 0, we introduce the
Gaussian heat kernel

hT (s, y) =
exp[− |y|2

8sKT
]

(8πsKT )
d
2

, y ∈ Rd, s > 0, (3.1)
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which satisfies the Chapman-Kolmogorov equation∫
Rd
hT (s1, y − z)hT (s2, z)dz = hT (s1 + s2, y), s1, s2 > 0, y ∈ Rd. (3.2)

By (H), there exists a constant K1(T ), which increases in T , such that

pµ,zs,r,t(y, z) ≤ K1(T )hT (t− r, y − z)e−
|y−z|2

8(t−r)KT , y, z ∈ Rd, 0 ≤ s ≤ r < t ≤ T, µ ∈P2.

Consequently, there exists a constant K2(T ), which increases in T , such that

pµ,zs,r,t(y, z)
(

1 +
|y − z|2

t− r
+
|y − z|

(t− r) 1
2

)
≤ K2(T )hT (t− r, y − z), y, z ∈ Rd, 0 ≤ s ≤ r < t ≤ T, µ ∈P2.

(3.3)

Lemma 3.1. Assume (H). There exists a constant K̄T > 0 which increases in T > 0,
such that for any 0 ≤ s ≤ r < t ≤ T, y, z ∈ Rd and m ≥ 1, pµ,zs,r,t(y, z) and Hµ,m

s,r,t are
L-differentiable in µ ∈P2 satisfying

‖DL{p·,zs,r,t(y, z)}(µ)‖ ≤ K̄ThT (t− r, y − z), (3.4)

|Hµ,m
s,r,t(y, z)| ≤

K̄m
T (t− r)m2 −1

Γ(m2 )
hT (t− r, y − z), m ≥ 1, (3.5)

‖DL{H ·,ms,r,t(y, z)}(µ)‖ ≤ mK̄m
T (t− r)m2 −1

Γ(m2 )
hT (t− r, y − z), m ≥ 1. (3.6)

Proof. By (H), we have |mµ,z
s,r,t| ≤ (t− r)KT , so that (3.3) yields

pµ,zs,r,t(y, z)
(

1 +
|y − z −mµ,z

s,r,t|2

t− r
+
|y − z −mµ,z

s,r,t|
(t− r) 1

2

)
≤ C1(T )hT (t− r, y − z) (3.7)

for some constant C1(T ) > 0 increasing in T , and all 0 ≤ s ≤ r < t ≤ T, µ ∈ P2 and
y, z ∈ Rd. Combining this with (H), (2.13), (3.7) and applying Lemma 2.3, we prove the
L-differentiability of pµ,zs,r,t(y, z) in µ ∈P2 and the estimate (3.4).

Next, by (H), (2.13), (2.15) and (3.7), we find constants C2(T ), C3(T ) > 0 increasing
in T > 0 such that for any 0 ≤ s ≤ r < t ≤ T, µ ∈P2 and y, z ∈ Rd,

|Hµ
s,r.t(y, z)| ≤ C2(T )pµ,zs,r,t(y, z)|y − z|

( 1

t− r
+
|y − z −mµ,z

s,r,t|2

(t− r)2
+
|y − z −mµ,z

s,r,t|
t− r

)
≤ C3(T )(t− r)− 1

2hT (t− r, y − z).
(3.8)

Assume that for some k ≥ 1 we have

|Hµ,k
s,r,t(y, z)| ≤ C3(T )k(t− r) k2−1

( k−1∏
i=1

β
( i

2
,

1

2

))
hT (t− r, y − z).

Combining this with (2.17), (3.2), and (3.8), we derive

|Hµ,k+1
s,r,t (y, z)| ≤

∫ t

r

du

∫
Rd
|Hµ,k

s,u,t(z
′, z)Hµ

s,r,u(y, z′)|dz′

≤ C3(T )k+1hT (t− r, y − z)
( k−1∏
i=1

β
( i

2
,

1

2

))∫ t

r

(t− u)
k
2−1(u− r)− 1

2 du

= C3(T )k+1(t− r)
k+1
2 −1hT (t− r, y − z)

( k∏
i=1

β
( i

2
,

1

2

))
.
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In conclusion, for any m ≥ 1, we have

|Hµ,m
s,r,t(y, z)| ≤ C3(T )m(t− r)m2 −1

(m−1∏
i=1

β
( i

2
,

1

2

))
hT (t− r, y − z),

which implies (3.5) for K̄T = C3(T )Γ( 1
2 ), since

m−1∏
i=1

β
( i

2
,

1

2

)
=

m−1∏
i=1

Γ( i2 )Γ( 1
2 )

Γ( i+1
2 )

=
Γ( 1

2 )m

Γ(m2 )
. (3.9)

Finally, in view of (H), (2.14), (2.15), Lemma 2.3 and (3.8), we see that Hµ,m
s,r,t is

L-differentiable in µ, and there exist constants C4(T ), C5(T ) ≥ C3(T ) increasing in T > 0

such that

‖DL{H ·s,r,t(y, z)}(µ)‖

≤ C4(T )pµ,zs,r,t(y, z)|y − z|
( 1

t− r
+
|y − z −mµ,z

s,r,t|2

(t− r)2
+
|y − z −mµ,z

s,r,t|
t− r

)
≤ C5(T )(t− r)− 1

2hT (t− r, y − z).

(3.10)

Assume that for some k ≥ 1 we have

‖DL{H ·,ks,r,t(y, z)}(µ)‖ ≤ kC5(T )k(t− r) k2−1
( k−1∏
i=1

β
( i

2
,

1

2

))
hT (t− r, y − z).

Combining this with (2.17), (3.2), and (3.10), we derive

‖DL{H ·,k+1
s,r,t (y, z)}(µ)‖

≤
∫ t

r

du

∫
Rd

{
‖DL{H ·,ks,u,t(z′, z)}(µ)‖ · |Hµ

s,r,u(y, z′)|

+ |Hµ,k
s,u,t(z

′, z)| · ‖DL{H ·s,r,u(y, z′)}(µ)‖
}

dz′

≤ (k + 1)C5(T )k+1hT (t− r, y − z)
( k−1∏
i=1

β
( i

2
,

1

2

))∫ t

r

(t− u)
k
2−1(u− r)− 1

2 du

= (k + 1)C5(T )k+1(t− r)
k+1
2 −1hT (t− r, y − z)

( k∏
i=1

β
( i

2
,

1

2

))
.

This together with (3.9) implies (3.6) for K̄T = C5(T )Γ( 1
2 ).

We are now ready to prove the main result.

Proof of Theorem 1.2. By Lemma 3.1 with (2.16) and (3.2), pµs,t(x, z) is L-differentiable
in µ for t > s, and there exists a constant δT > 0 increasing in T > 0 such that

‖DL{p·s,t(x, z)}(µ)‖ ≤ K̄ThT (t− s, x− z)

+

∞∑
m=1

(m+ 1)K̄m+1
T

Γ(m2 )

∫ t

s

(t− s)m2 −1dr

∫
Rd
hT (t− r, y − z)hT (r − s, x− y)dy

≤ δThT (t− s, x− z). 0 ≤ s < t ≤ T, x, z ∈ Rd, µ ∈P2.

(3.11)

This and (2.2) imply that Pµs,tf(x) is L-differentiable in µ such that

‖DL{P ·s,tf(x)}(µ)‖ ≤ ‖f‖∞
∫
Rd
‖DL{p·s,t(x, z)}(µ)‖dz ≤ δT ‖f‖∞
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holds for all 0 ≤ s < t ≤ T, f ∈ Bb(R
d) and µ ∈ P2. Combining this with Lemma

2.2, we prove that Ps,tf(µ) is L-differentiable in µ and (1.4) holds for some increasing
C : [0,∞) → (0,∞). According to the proof of [9, Corollary 2.2(2)], we can show that
(1.4) implies (1.5). We include below a simple proof for completeness.

Since C1
b (Rd) is dense in L1(P ∗s,tµ+ P ∗s,tν), (1.5) is equivalent to

|Ps,tf(µ)− Ps,tf(ν)| ≤ Ct‖f‖∞√
t− s

W2(µ, ν), t > s, f ∈ C1
b (Rd), µ, ν ∈P2. (3.12)

Let f ∈ C1
b (Rd) be fixed. We first prove this inequality for µ, ν with compact supports.

Let ξ, η be two bounded random variables such that Lξ = µ,Lη = ν and

E|ξ − η|2 = W2(µ, ν)2.

By Proposition 3.1 in [9] and (1.4), we obtain

|Ps,tf(µ)− Ps,tf(ν)| =
∣∣∣∣ ∫ 1

0

d

dr
Ps,tf(Lrξ+(1−r)η)dr

∣∣∣∣
≤
∫ 1

0

∣∣E〈DLPs,tf(Lrξ+(1−r)η)(rξ + (1− r)η), ξ − η〉
∣∣dr ≤ Ct‖f‖∞√

t− s
W2(µ, ν).

So, (3.12) holds.
Next, for any µ, ν ∈ P2, we choose {µn, νn}n≥1 ⊂ P2 with compact supports such

that

lim
n→∞

{
W2(µ, µn) +W2(ν, νn)

}
= 0.

Then by the last step,

|Ps,tf(µn)− Ps,tf(νn)| ≤ Ct‖f‖∞√
t− s

W2(µn, νn), n ≥ 1. (3.13)

If Ps,tf(γ) is continuous in γ ∈P2, then by letting n→∞ we obtain the desired estimate
(3.12). To prove the continuity, for any γ1, γ2 ∈P2, let ξ1, ξ2 be F0-measurable random
variables such that Lξi = γi, i = 1, 2, and

W2(γ1, γ2)2 = E|ξ1 − ξ2|2.

For any ε ∈ [0, 1], let Xε
s,t solve (1.3) with initial value Xε

s,s := εξ1 + (1 − ε)ξ2. By [9,
Proposition 3.2 and (4.2)],

∇ξ1−ξ2Xε
s,t :=

d

dε
Xε
s,t

exists in L2(P) with

E|∇ξ1−ξ2Xε
s,t|2 ≤ c(t)E|ξ1 − ξ2|2 = c(t)W2(γ1, γ2)2

for some constant c(t) > 0. Then

|Ps,tf(γ1)− Ps,tf(γ2)| = |Ef(X1
s,t)− Ef(X0

s,t)| =
∣∣∣∣ ∫ 1

0

d

dε
Ef(Xε

s,t)dε

∣∣∣∣
≤
∫ 1

0

∣∣E〈∇f(Xε
s,t),∇ξ1−ξ2Xε

s,t〉
∣∣ds ≤√c(t)‖∇f‖∞W2(γ1, γ2).

Therefore, Ps,tf(γ) is continuous in γ ∈P2 and the proof is then finished.
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