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Abstract

We study the stochastic system of interacting neurons introduced in [5] and in [10] in
a diffusive scaling. The system consists of N neurons, each spiking randomly with rate
depending on its membrane potential. At its spiking time, the potential of the spiking
neuron is reset to 0 and all other neurons receive an additional amount of potential
which is a centred random variable of order 1/

√
N. In between successive spikes,

each neuron’s potential follows a deterministic flow. We prove the convergence of the
system, as N → ∞, to a limit nonlinear jumping stochastic differential equation driven
by Poisson random measure and an additional Brownian motion W which is created by
the central limit theorem. This Brownian motion is underlying each particle’s motion
and induces a common noise factor for all neurons in the limit system. Conditionally
on W, the different neurons are independent in the limit system. This is the conditional
propagation of chaos property. We prove the well-posedness of the limit equation by
adapting the ideas of [12] to our frame. To prove the convergence in distribution of
the finite system to the limit system, we introduce a new martingale problem that
is well suited for our framework. The uniqueness of the limit is deduced from the
exchangeability of the underlying system.
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Conditional propagation of chaos

1 Introduction

This paper is devoted to the study of the Markov process XN
t = (XN,1

t , . . . , XN,N
t )

taking values in RN and having generator AN which is defined for any smooth test
function ϕ : RN → R by

ANϕ(x) = −α
N∑
i=1

∂xiϕ(x)xi +

N∑
i=1

f(xi)

∫
R

ν(du)

ϕ(x− xiei +
∑
j 6=i

u√
N
ej)− ϕ(x)

 ,

where x = (x1, . . . , xN ) and where ej denotes the j−th unit vector in RN . In the above
formula, α > 0 is a fixed parameter and ν is a centred probability measure on R having a
second moment.

Informally, the process (XN,j)1≤j≤N solves

XN,i
t = XN,i

0 − α
∫ t

0

XN,i
s ds−

∫ t

0

XN,i
s− dZ

N,i
s +

1√
N

∑
j 6=i

∫ t

0

U j(s)dZN,js , (1.1)

where the U j(s) are i.i.d. centred random variables distributed according to ν, and
where for each 1 ≤ j ≤ N, ZN,j is a simple counting process on R+ having stochastic

intensity s 7→ f
(
XN,j
s−

)
.

The particle system (1.1) is a version of the model of interacting neurons considered
in [5], inspired by [11], and then further studied in [10] and [4]. The system consists of
N interacting neurons. In (1.1), ZN,jt represents the number of spikes emitted by the
neuron j in the interval [0, t] and XN,j

t the membrane potential of the neuron j at time t.
Spiking occurs randomly following a point process of rate f(x) for any neuron of which
the membrane potential equals x. Each time a neuron emits a spike, the potentials of all
other neurons receive an additional amount of potential. In [5], [10] and [4] this amount
is of order N−1, leading to classical mean field limits as N → ∞. On the contrary to
this, in the present article we study a diffusive scaling where all neurons j receive the
same random quantity U/

√
N at spike times t of neuron i, i 6= j. The random variable U

is centred modeling the fact that the synaptic weights are balanced. Moreover, right
after its spike, the potential of the spiking neuron i is reset to 0, interpreted as resting
potential. Finally, in between successive spikes, each neuron has a loss of potential of
rate α.

Before introducing the exact limit equation for the system (1.1), let us explain
informally how the limit particle system associated to

(
XN,i

)
1≤i≤N should a priori

look like. Suppose for the moment that we already know that there exists a process
(X̄1, X̄2, X̄3, . . .) ∈ D(R+,R)N

∗
such that for all K > 0, L(XN,1,, . . . , XN,K) converges

weakly to L(X̄1, . . . , X̄K) in D(R+,R)K , as N → ∞, holds. In equation (1.1) the only
term that depends on N is the martingale term which is approximately given by

MN
t =

1√
N

N∑
j=1

∫ t

0

U j(s)dZN,js .

Then in the infinite neuron model, each process X̄i should solve the equation (1.1),
where the term MN

t is replaced by Mt := lim
N→∞

MN
t . Because of the scaling in N−1/2, the

limit martingale Mt will be a stochastic integral with respect to some Brownian motion,
and its variance the limit of

E
[
(MN

t )2
]

= σ2

∫ t

0

E

 1

N

N∑
j=1

f(XN,j
s )

 ds,
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Conditional propagation of chaos

where σ2 is the variance of any of the U j(s). Therefore, the limit martingale must be of
the form

Mt = σ

∫ t

0

√√√√ lim
N→∞

1

N

N∑
j=1

f
(
XN,j
s

)
dWs = σ

∫ t

0

√
lim
N→∞

µNs (f)dWs,

where µNs is the empirical measure of the system
(
XN,j
s

)
1≤j≤N andW is a one-dimensional

standard Brownian motion.
Since the law of the N−particle system (XN,1, . . . , XN,N ) is symmetric, the law

of the limit system X̄ = (X̄1, X̄2, X̄3, . . .) must be exchangeable, that is, for all finite
permutations σ, we have that L(X̄σ(1), X̄σ(2), . . .) = L(X̄). In particular, the theorem of
Hewitt-Savage, see [13], implies that the random limit

µs := lim
N→∞

1

N

N∑
i=1

δX̄is (1.2)

exists. Supposing that µNs converges, it necessarily converges towards µs. Therefore, X̄
should solve the limit system

X̄i
t = X̄i

0 − α
∫ t

0

X̄i
sds−

∫ t

0

X̄i
s−dZ̄

i
s + σ

∫ t

0

√
µs(f)dWs, i ∈ N, (1.3)

where each Z̄i has intensity t 7→ f(X̄i
t−), and where µs is given by (1.2). The above

arguments are made rigorous in Sections 3.1 and 3.2 below.
Let us briefly discuss the form of the limit equation (1.3). As we have already observed

in a different framework in our previous paper [9], the scaling in N−1/2 in (1.1) creates
a Brownian motion W in the limit system (1.3). We will show that the presence of
this Brownian motion entails a conditional propagation of chaos property, that is the
conditional independence of the particles given W . In particular, the limit measure µs
will be random. This differs from the classical framework, where the scaling is in N−1

(see e.g. [6], [8] in the framework of Hawkes processes, and [5], [10] and [4] in the
framework of systems of interacting neurons), leading to a deterministic limit measure
µs and the true propagation of chaos property implying that the particles of the limit
system are independent.

This is not the first time that conditional propagation of chaos is studied in the
literature; it has already been considered e.g. in [2], [3] and [7]. But in these papers the
common noise, represented by a common (maybe infinite dimensional) Brownian motion,
is already present at the level of the finite particle system, the mean field interactions act
on the drift of each particle, and the scaling is the classical one in N−1. On the contrary
to this, in our model, this common Brownian motion is only present in the limit, and it is
created by the central limit theorem as a consequence of the joint action of the small
jumps of the finite size particle system. Moreover, in our model, the interactions survive
as a variance term in the limit system due to the diffusive scaling in N−1/2.

Now let us discuss the form of the random measure µs appearing in (1.2). The
theorem of Hewitt-Savage, [13], implies that the law of

(
X̄i
s

)
i≥1

is a mixture directed
by the law of µs. As it has been remarked by [2] and [3], this conditioning reflects the
dependencies between the particles.

We will show that the variables X̄i are conditionally independent given the Brownian
motion W. As a consequence, µs is necessarily given by the conditional law of the solution
given the Brownian motion, that is, P−almost surely,

µs(·) = P (X̄i
s ∈ ·|(Wt)0≤t≤s) = P (X̄i

s ∈ ·|W ), (1.4)
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Conditional propagation of chaos

where the above definition does not depend on i ∈ N by exchangeability. Equation (1.3)
together with (1.4) gives a precise definition of the limit system.

The nonlinear SDE (1.3) is not clearly well-posed, and our first main result, Theorem
2.6, gives appropriate conditions on the system that guarantee pathwise uniqueness and
the existence of a unique strong solution to (1.3).

We then prove, in Sections 3.1 and 3.2, our main Theorem 2.13 stating the conver-
gence in distribution of the sequence of empirical measures µN = N−1

∑N
i=1 δ(XN,it )t≥0

,

in P(D(R+,R)), to the random limit µ = P ((X̄i
t)t≥0 ∈ ·|W ).

To do so, we first prove that under suitable conditions on the parameters of the
system, the sequence µN is tight. We then follow a classical road and identify every
possible limit as solution of a martingale problem. Since the random limit measure µ
will only be the directing measure of the limit system (that is, the conditional law of
each coordinate, but not its law), this martingale problem is not a classical one. It is
in particular designed to reflect the correlations between the particles and to describe
all possible limits of couples of neurons. To identify µ as conditional law knowing W,

that is, to prove that the only common randomness is the one present in the driving
Brownian motion W, we introduce an auxiliary particle system which is a mean field
particle version of the limit system, constructed with the same underlying Brownian
motion, and we provide an explicit control on the distance between the two systems.

Organisation of the paper. In Section 2, we state the assumptions, and formulate
the main results on the well-posedness of the limit system, Theorems 2.6 and 2.11.
Section 3 is devoted to the proof of the convergence of µN :=

∑N
j=1 δXN,j (Theorem 2.13).

In particular, we introduce our new martingale problem in Section 3.2 and prove the
uniqueness of the limit law in Theorem 3.4. Finally, some of our proofs are gathered in
Section 4.

2 Notation, model and main results

2.1 Notation

We use the following notation throughout the paper. If E is a metric space, we note
P(E) the space of probability measures on E endowed with the topology of the weak
convergence.

For any n, p ∈ N∗, we note Cnb (Rp) (resp. Cnb (Rp,R+)) the set of real-valued functions
g (resp. non-negative functions g) defined on Rp which are n times continuously differen-
tiable such that g(k) is bounded for each 0 ≤ k ≤ n, and Cnc (Rp) the set of real-valued
functions g ∈ Cnb (Rp) that have a compact support.

In addition, in what follows D(R+,R) denotes the space of càdlàg functions from
R+ to R, endowed with the Skorokhod metric, and C and K denote arbitrary positive
constants whose values can change from line to line in an equation. We write Cθ and Kθ

if the constants depend on some parameter θ.

2.2 The finite system

We consider, for each N ≥ 1, a family of i.i.d. Poisson measures (πi(ds, dz, du))i=1,...,N

on R+×R+×R having intensity measure dsdzν(du) where ν is a probability measure on
R, as well as an i.i.d. family (XN,i

0 )i=1,...,N of R-valued random variables independent of
the Poisson measures. The object of this paper is to study the convergence of the Markov
process XN

t = (XN,1
t , . . . , XN,N

t ) taking values in RN and solving, for i = 1, . . . , N ,
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Conditional propagation of chaos

for t ≥ 0,
XN,i
t = XN,i

0 − α
∫ t

0

XN,i
s ds−

∫
[0,t]×R+×R

XN,i
s− 1{z≤f(XN,is− )}π

i(ds, dz, du)

+
1√
N

∑
j 6=i

∫
[0,t]×R+×R

u1{z≤f(XN,js− )}π
j(ds, dz, du),

XN,i
0 ∼ ν0.

(2.1)

The coefficients of this system are the exponential loss factor α > 0, the jump rate
function f : R 7→ R+ and the probability measures ν and ν0.

In order to guarantee existence and uniqueness of a strong solution of (2.1), we
introduce the following hypothesis.

Assumption 2.1. The function f is Lipschitz continuous.

In addition, we also need the following condition to obtain a priori bounds on some
moments of the process

(
XN,i

)
1≤i≤N .

Assumption 2.2. Assume that
∫
R
xdν(x) = 0,

∫
R
x2dν(x) < +∞, and

∫
R
x2dν0(x) < +∞.

Under Assumptions 2.1 and 2.2, existence and uniqueness of a strong solution of (2.1)
follow from Theorem IV.9.1 of [14], exactly in the same way as in Proposition 6.6 of [9].

We now define precisely the limit system and discuss its properties before proving
the convergence of the finite to the limit system.

2.3 The limit system

The limit system
(
X̄i
)
i≥1

is an exchangeable system given by
X̄i
t = X̄i

0 − α
∫ t

0

X̄i
sds−

∫
[0,t]×R+

X̄i
s−1{z≤f(X̄is−)}π

i(ds, dz)

+σ

∫ t

0

√
E
[
f
(
X̄i
s

)∣∣W]dWs,

X̄i
0 ∼ ν0.

(2.2)

In the above equation, (Wt)t≥0 is a standard one-dimensional Brownian motion, πi

(i ≥ 1) are independent Poisson random measures on R2
+ having intensity dt · dz that are

independent of W , andW = σ{Wt, t ≥ 0}. Moreover, the initial positions X̄i
0, i ≥ 1, are

i.i.d., independent of W and of the Poisson random measures, distributed according to
ν0 which is the same probability measure as in (2.1).

The limit equation (2.2) is not clearly well-posed and requires additional conditions.
Let us briefly comment on the type of difficulties that one encounters when dealing
with (2.2). Roughly speaking, the jump terms demand to work in an L1−framework,
while the diffusive terms demand to work in an L2−framework. [12] proposes a unified
approach to deal both with jump and with diffusion terms in a non-linear framework, and
we shall rely on his ideas in the sequel. The presence of the random volatility term which
involves conditional expectation causes however additional technical difficulties. Finally,
another difficulty comes from the fact that the jumps induce non-Lipschitz terms of the
form X̄i

sf(X̄i
s). For this reason a classical Wasserstein-1−coupling is not appropriate

for the jump terms. Therefore we propose a different distance which is inspired by the
one already used in [10]. To do so, we need to work under the following additional
assumption.

Assumption 2.3. 1. We suppose that inf f > 0.

2. There exists a function a ∈ C2
b (R,R+), strictly increasing, such that, for some

constant C, for all x, y ∈ R,

|a′′(x)− a′′(y)|+ |a′(x)− a′(y)|+ |xa′(x)− ya′(y)|+ |f(x)− f(y)| ≤ C|a(x)− a(y)|.
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Note that Assumption 2.3 implies Assumption 2.1 as well as the boundedness of the
rate function f.

Remark 2.4. Notice that f lowerbounded implies that the application P(R) 3 ν 7→
g(ν) :=

√
ν(f) is Lipschitz when considering the Wasserstein-1−distance on P(R).

Let us give some examples of functions f that satisfy Assumption 2.3.

Example 2.5. Any positive bounded and lowerbounded function f ∈ C1
b (R,R+) with

|f ′(x)| ≤ C

(1 + |x|)1+ε
(2.3)

for all x ∈ R, where C and ε are some positive constants, satisfies Assumption 2.3 with

a =

∫ x

−∞

dy

(1 + ψ(y))1+ε
,

where ψ is any smooth non-negative function satisfying ψ(y) = |y| for |y| ≥ 1. If (2.3)
holds with ε = 1, then we may choose simply a(x) = arctan(x) + π/2.

Finally, fix some −∞ < a < b <∞. Then any function f ∈ C1
b (R,R+) which is constant

below a and above b satisfies Assumption (2.3).

Let us note that this kind of function is interesting from a neuroscience point of view,
if it is in addition non decreasing. Indeed, when the potential of a neuron is below a

(resp. above b), its spiking rate is minimal (resp. maximal), such that the neuron can be
considered as inactive (resp. active).

Under these additional assumptions we obtain the well-posedness of each coordinate
of the limit system (2.2), that is, of the (Ft)t− adapted process (X̄t)t having càdlàg
trajectories which is solution of the SDE dX̄t = −αX̄tdt− X̄t−

∫
R+

1{z≤f(X̄t−)}π(dt, dz) + σ
√
µt(f)dWt,

X̄0 ∼ ν0, µt(f) = E
[
f
(
X̄t

)∣∣W] = E
[
f
(
X̄t

)∣∣Wt

]
.

(2.4)

Here, Ft = σ{π([0, s] × A), s ≤ t, A ∈ B(R+ × R)} ∨ Wt, Wt = σ{Ws, s ≤ t} and W =

σ{Ws, s ≥ 0}.
Theorem 2.6. Grant Assumption 2.3.
1. Pathwise uniqueness holds for the nonlinear SDE (2.4).
2. If additionally,

∫
R
x2dν0(x) < +∞, then there exists a unique strong solution (X̄t)t≥0

of the nonlinear SDE (2.4), which is (Ft)t− adapted with càdlàg trajectories, satisfying
for every t > 0,

E

[
sup

0≤s≤t
X̄2
s

]
< +∞. (2.5)

Remark 2.7. Notice that the stochastic integral
∫ t

0

√
µs(f)dWs is well-defined since

s 7→
√
µs(f) is an (Wt)t−progressively measurable process.

We now given the proof of Item 1. of the above theorem. The proof of Item 2. which
follows a classical Picard iteration is postponed to Section 4.

Proof of Item 1. of Theorem 2.6. Consider two strong solutions (X̂t)t≥0 and (X̌t)t≥0,

(Ft)t−adapted, defined on the same probability space and driven by the same Pois-
son random measure π and the same Brownian motion W, and with X̂0 = X̌0. We
consider Zt := a(X̂t)− a(X̌t). Denote µ̂s(f) = E[f(X̂s)|Ws] and µ̌s(f) = E[f(X̌s)|Ws].
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Using Itô’s formula, we can write

Zt = −α
∫ t

0

(
X̂sa

′(X̂s)− X̌sa
′(X̌s)

)
ds+

1

2

∫ t

0

(a′′(X̂s)µ̂s(f)− a′′(X̌s)µ̌s(f))σ2ds

+

∫ t

0

(a′(X̂s)
√
µ̂s(f)− a′(X̌s)

√
µ̌s(f))σdWs

−
∫

[0,t]×R+×R
[a(X̂s−)− a(X̌s−)]1{z≤f(X̂s−)∧f(X̌s−)}π(ds, dz, du)

+

∫
[0,t]×R+×R

[a(0)− a(X̂s−)]1{f(X̌s−)<z≤f(X̂s−)}π(ds, dz, du)

+

∫
[0,t]×R+×R

[a(X̌s−)− a(0)]1{f(X̂s−)<z≤f(X̌s−)}π(ds, dz, du) =: At +Mt + ∆t,

where At denotes the bounded variation part of the evolution, Mt the martingale part
and ∆t the sum of the three jump terms. Notice that

Mt =

∫ t

0

(a′(X̂s)
√
µ̂s(f)− a′(X̌s)

√
µ̌s(f))σdWs

is a square integrable martingale since f and a′ are bounded by Assumption 2.3.
We wish to obtain a control on |Z∗t | := sups≤t |Zs|. We first take care of the jumps of

|Zt|. Notice first that, since f and a are bounded,

∆(x, y) := (f(x) ∧ f(y))|a(x)− a(y)|+ |f(x)− f(y)|
∣∣∣|a(0)− a(y)|+ |a(0)− a(x)|

∣∣∣
≤ C|a(x)− a(y)|,

implying that

E sup
s≤t
|∆s| ≤ CE

∫ t

0

|a(X̂s)− a(X̌s)|ds ≤ CtE|Z∗t |.

Moreover, for a constant C depending on σ2, ‖f‖∞, ‖a‖∞, ‖a′‖∞, ‖a′′‖∞ and α,

E sup
s≤t
|As| ≤ C

∫ t

0

E|a′(X̂s)X̂s − a′(X̌s)X̌s|ds

+ C

[∫ t

0

|a′′(X̂s)− a′′(X̌s)|ds+

∫ t

0

|µ̂s(f)− µ̌s(f)|ds
]
.

We know that

|a′(X̂s)X̂s − a′(X̌s)X̌s|+ |a′′(X̂s)− a′′(X̌s)| ≤ C|a(X̂s)− a(X̌s)| = C|Zs|.

Therefore,

E sup
s≤t
|As| ≤ CE

[∫ t

0

|Zs|ds+

∫ t

0

|µ̂s(f)− µ̌s(f)|ds
]
.

Moreover,

|µ̂s(f)− µ̌s(f)| =
∣∣∣E(f(X̂s)− f(X̌s)|W

) ∣∣∣ ≤ E(|f(X̂s)− f(X̌s)||W
)
≤ E(|Zs||W),

and thus,

E

∫ t

0

|µ̂s(f)− µ̌s(f)|ds ≤ E
∫ t

0

|Zs|ds ≤ tE|Z∗t |.
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Conditional propagation of chaos

Putting all these upper bounds together we conclude that for a constant C not depending
on t,

E sup
s≤t
|As| ≤ CtE|Z∗t |.

Finally, we treat the martingale part using the Burkholder-Davis-Gundy inequality, and
we obtain

E sup
s≤t
|Ms| ≤ CE

[(∫ t

0

(a′(X̂s)
√
µ̂s(f)− a′(X̌s)

√
µ̌s(f))2ds

)1/2
]
.

But

(a′(X̂s)
√
µ̂s(f)− a′(X̌s)

√
µ̌s(f))2 ≤ C

[
((a′(X̂s)− a′(X̌s))

2 + (
√
µ̂s(f)−

√
µ̌s(f))2

]
≤ C|Z∗t |2 + C(

√
µ̂s(f)−

√
µ̌s(f))2, (2.6)

where we have used that |a′(x)− a′(y)| ≤ C|a(x)− a(y)| and that f and a′ are bounded.
Finally, since inf f > 0, such that

√
· is Lipschitz on [inf f,∞[,

|
√
µ̂s(f)−

√
µ̌s(f)|2 ≤ C|µ̂s(f)− µ̌s(f)|2 ≤ C (E(|Z∗s ||Ws))

2
.

We use that |Z∗s | ≤ |Z∗t |, implying that E(|Z∗s ||W) ≤ E(|Z∗t ||W). Therefore we obtain the
upper bound

|
√
µ̂s(f)−

√
µ̌s(f)|2 ≤ C (E(|Z∗t ||W))

2

for all s ≤ t, which implies the control of

E sup
s≤t
|Ms| ≤ C

√
tE|Z∗t |.

The above upper bounds imply that, for a constant C not depending on t nor on the
initial condition,

E|Z∗t | ≤ C(t+
√
t)E|Z∗t |,

and therefore, for t1 sufficiently small, E|Z∗t1 | = 0. We can repeat this argument on

intervals [t1, 2t1], with initial condition X̂t1 , and iterate it up to any finite T because
t1 does only depend on the coefficients of the system but not on the initial condition.
Recalling the definition of |Z∗t | and the fact that the function a is increasing (and hence
bijective), this implies the assertion.

Remark 2.8. Theorem 2.6 states the well-posedness of the SDE (2.4). Under the same
hypotheses, with almost the same reasoning, one can prove the well-posedness of the
system (2.2).

In the sequel, we shall also use an important property of the limit system (2.2),
which is the conditional independence of the processes X̄i (i ≥ 1) given the Brownian
motion W .

Proposition 2.9. If Assumptions 2.3 holds and
∫
R
x2dν0(x) <∞, then

(i) for all N ∈ N∗ there exists a strong solution
(
X̄i
)

1≤i≤N of (2.2), and pathwise
uniqueness holds,

(ii) X̄1, . . . , X̄N are i.i.d. conditionally toW,

(iii) for all t ≥ 0, a.s., 1
N

∑N
i=1 δX̄i|[0,t]

converges weakly to limN→∞
1
N

∑N
i=1 δX̄i|[0,t]

=

P (X̄i
|[0,t] ∈ ·|Wt) = P (X̄i

|[0,t] ∈ ·|W).

EJP 26 (2021), paper 20.
Page 8/25

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP580
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Conditional propagation of chaos

The proof of Proposition 2.9 is postponed to Section 4. Let us finally mention that
the random limit measure µ satisfies a nonlinear stochastic PDE in weak form. More
precisely,

Remark 2.10. Grant Assumption 2.3. Then the measure (µt)t≥0 = (P (X̄t) ∈ ·|W))t≥0

satisfies the following nonlinear stochastic PDE in weak form: for any ϕ ∈ C2
b (R), for any

t ≥ 0,∫
R

ϕ(x)µt(dx) =

∫
R

ϕ(x)ν0(dx) +

∫ t

0

(∫
R

ϕ′(x)µs(dx)

) √
µs(f)σdWs

+

∫ t

0

∫
R

(
[ϕ(0)− ϕ(x)]f(x)− αϕ′(x)x+

1

2
σ2ϕ′′(x)µs(f)

)
µs(dx)ds.

2.4 Another exchangeable system

We have already stated the existence of a unique strong solution (X̄i)i≥1 of the
system (2.2). In the sequel we also need to show the well-posedness of the following
exchangeable system of SDEs:

Ȳ it = Ȳ i0 − α
∫ t

0

Ȳ is ds−
∫

[0,t]×R+

Ȳ is−1{z≤f(Ȳ is−)}π
i(ds, dz)

+σ

∫ t

0

√
µt(f)dWs,

(Ȳ i0 )i≥1 are i.i.d., distributed ∼ ν0,

(2.7)

where µ is the directing measure of the exchangeable system (Ȳ i)i≥1
1 and µt its

projection onto the t−th time coordinate. According to our previous reasoning, any
solution of (2.2) is also solution of (2.7). But the converse is not obvious, because it is not
a priori clear whether the Brownian motion is the only common noise of the system (2.7).
We claim it in the next result.

Theorem 2.11. Grant Assumption 2.3 and suppose that
∫
R
x2dν0(x) < ∞. Then there

exists a unique strong solution (Ȳ i)i≥1 of (2.7). This solution is given by the unique
strong solution of (2.2).

The proof of Theorem 2.11 is given in Section 4.

2.5 Convergence to the limit system

In order to prove the convergence of the finite particle system to the limit system, we
need to assume that the measure ν has a finite third moment.

Assumption 2.12. ∫
R

|u|3dν(u) <∞.

We are now able to state our main result.

Theorem 2.13. Grant Assumptions 2.2, 2.3 and 2.12. Then the empirical measure
µN = 1

N

∑N
i=1 δXN,i of the N−particle system (XN,i)1≤i≤N converges in distribution in

P(D(R+,R)) to µ := L(X̄1|W), where (X̄i)i≥1 is solution of (2.2).

Corollary 2.14. Under the assumptions of Theorem 2.13, (XN,j)1≤j≤N converges in
distribution to (X̄j)j≥1 in D(R+,R)N

∗
, where D(R+,R)N

∗
is endowed with the product

topology.

Proof. Together with the statement of Theorem 2.13, the proof is an immediate conse-
quence of Proposition 7.20 of [1].

1that is, the (Ȳ i)i≥1 are i.i.d. of law µ, conditionally on µ
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Remark 2.15. In the statement of Corollary 2.14, we implicitly define XN,i := 0 if i > N.

The following figure presents two simulations of the process XN,1 with N = 10 and
N = 1000. Recalling that XN,1 is interpreted as the membrane potential of a given
neuron in a network of N neurons, we can see on the simulations the spiking times of
this neuron, which are the times where the potential jumps to zero.

Figure 1: Simulation of trajectories of (XN,1
t )0≤t≤10 with XN,i

0 = 0 (1 ≤ i ≤ N ), α = 1,
ν = N (0, 1), f(x) = 2.2 + 1.4 arctan(10x − 2), N = 10 (left picture) and N = 1000 (right
picture).

3 Proof of Theorem 2.13

This section is dedicated to prove that the sequence (µN )N of the empirical measures
µN :=

∑N
j=1 δ(XN,jt )t≥0

converges in distribution to µ = L(X̄1|W), where (X̄j)j≥1 is
solution of (2.2).

In a first time, we prove that the sequence (µN )N is tight on P(D(R+,R)). The
main step to prove the convergence of (µN )N is then to show that each converging
subsequence converges to the same limit in distribution. For this purpose, we introduce
a new martingale problem, and we show that every possible limit of µN is a solution
of this martingale problem. The result then follows from the fact that this martingale
problem possesses a unique solution which is proved using the exchangeability of the
associated system of processes.

3.1 Tightness of (µN )N

Proposition 3.1. Grant Assumptions 2.1 and 2.2, and assume that f is bounded. For
each N ≥ 1, consider the unique solution (XN

t )t≥0 to (2.1) starting from some i.i.d.
ν0-distributed initial conditions XN,i

0 .

(i) The sequence of processes (XN,1
t )t≥0 is tight in D(R+,R).

(ii) The sequence of measures µN = N−1
∑N
i=1 δ(XN,it )t≥0

is tight in P(D(R+,R)).

Proof. First, it is well-known that point (ii) follows from point (i) and the exchangeability
of the system, see [16, Proposition 2.2-(ii)]. We thus only prove (i). To show that the family
((XN,1

t )t≥0)N≥1 is tight in D(R+,R), we use the criterion of Aldous, see Theorem VI.4.5
of [15]. It is sufficient to prove that
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(a) for all T > 0, all ε > 0, limδ↓0 lim supN→∞ sup(S,S′)∈Aδ,T P (|XN,1
S′ −X

N,1
S | > ε) = 0,

where Aδ,T is the set of all pairs of stopping times (S, S′) such that 0 ≤ S ≤ S′ ≤
S + δ ≤ T a.s.,

(b) for all T > 0, limK↑∞ supN P (supt∈[0,T ] |X
N,1
t | ≥ K) = 0.

To check (a), consider (S, S′) ∈ Aδ,T and write

XN,1
S′ −X

N,1
S = −

∫ S′

S

∫
R

∫ ∞
0

XN,1
s− 1{z≤f(XN,1s− )}π

1(ds, du, dz)− α
∫ S′

S

XN,1
s ds

+
1√
N

N∑
j=2

∫ S′

S

∫
R

∫ ∞
0

u1{z≤f(XN,js− )}π
j(ds, du, dz),

implying that

|XN,1
S′ −X

N,1
S | ≤ |

∫ S′

S

∫
R

∫ ∞
0

XN,1
s− 1{z≤f(XN,1s− )}π

1(ds, du, dz)|

+ δα sup
0≤s≤T

∣∣XN,1
s

∣∣+ | 1√
N

N∑
j=2

∫ S′

S

∫
R

∫ ∞
0

u1{z≤f(XN,js− )}π
j(ds, du, dz)|

=: |IS,S′ |+ δα sup
0≤s≤T

∣∣XN,1
s

∣∣+ |JS,S′ |.

Note that |IS,S′ | > 0 implies that ĨS,S′ :=
∫ S′
S

∫
R

∫∞
0
1{z≤f(XN,1s− )}π

i(ds, du, dz) ≥ 1, and

thus

P (|IS,S′ | > 0) ≤ P (ĨS,S′ ≥ 1) ≤ E[ĨS,S′ ] ≤ E
[ ∫ S+δ

S

f(XN,1
s )ds

]
≤ ||f ||∞δ,

since f is bounded. We proceed similarly to check that

P (|JS,S′ | ≥ ε) ≤
1

ε2
E[(JS,S′)

2] ≤ σ2

Nε2

N∑
j=2

E
[ ∫ S+δ

S

f(XN,j
s )ds

]
≤ σ2

ε2
‖f‖∞δ.

The term sup0≤s≤T |XN,1
s | can be handled using Lemma 4.1.(ii).

Finally (b) is a straightforward consequence of Lemma 4.1.(ii) and Markov’s inequality.

3.2 Martingale problem

We now introduce a new martingale problem, whose solutions are the limits of any
converging subsequence of µN = 1

N

∑N
j=1 δXN,j . In this martingale problem, we are

interested in couples of trajectories to be able to put hands on the correlations between
the particles. In particular, this will allow us to show that, in the limit system (2.2),
the processes X̄i (i ≥ 1) share the same Brownian motion, but are driven by Poisson
measures πi (i ≥ 1) which are independent. The reason why we only need to study the
correlation between two particles is the exchangeability of the infinite system.

Let Q be a probability measure on P(D(R+,R)). Define a probability measure P on
P(D(R+,R))×D(R+,R)2 by

P (A×B) :=

∫
P(D(R+,R))

1A(m)m⊗m(B)Q(dm). (3.1)

We write any atomic event ω ∈ Ω := P(D(R+,R)) × D(R+,R)2 as ω = (µ, Y ), with
Y = (Y 1, Y 2). Thus, the law of the canonical variable µ is Q, and, conditionally on µ, the
law of (Y 1, Y 2) is µ⊗ µ.
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Writing µt :=
∫
D(R+,R)

µ(dγ)δγt for the projection onto the t−th time coordinate, we
introduce the filtration

Gt = σ(Ys, s ≤ t) ∨ σ(µs(f), s ≤ t).

Definition 3.2. We say that Q ∈ P(P(D(R+,R))) is a solution to the martingale problem
(M) if the following holds.

(i) Q−almost surely, µ0 = ν0.

(ii) For all g ∈ C2
b (R2), Mg

t := g(Yt)− g(Y0)−
∫ t

0
Lg(µs, Ys)ds is a (P, (Gt)t)−martingale,

where

Lg(µ, x) =− αx1∂x1g(x)− αx2∂x2g(x) +
σ2

2
µ(f)

2∑
i,j=1

∂2
xixjg(x)

+ f(x1)(g(0, x2)− g(x)) + f(x2)(g(x1, 0)− g(x)).

Let (X̄i)i≥1 be the solution of the limit system (2.2) and µ = L(X̄1|W). Then Proposi-
tion 2.9.(ii) and Lemma (2.12).(a) of [1] imply that µ is the directing measure of (X̄i)i≥1.

Thus the law of (µ, X̄1, X̄2) is P given in (3.1). And, by Itô’s formula, (X̄1, X̄2) satisfies
the martingale property of Definition 3.2. In other words, L(µ) is a solution of (M).

Let us now characterize any possible solution of (M), which is the first step to prove
uniqueness of the solution of (M).

Lemma 3.3. Let Q ∈ P(P(D(R+,R))). Assume that Q is a solution of (M) and that f
is bounded. Let (µ, Y ) be the canonical variable defined above, and write Y = (Y 1, Y 2).
Then there exists a standard (Gt)t−Brownian motion W and on an extension (Ω̃, (G̃t)t, P̃ )

of (Ω, (Gt)t, P ) there exist (G̃t)t− Poisson random measures π1, π2 on R+ × R+ having
Lebesgue intensity such that W,π1 and π2 are independent and

dY 1
t =− αY 1

t dt+ σ
√
µt(f)dWt − Y 1

t−

∫
R+

1{z≤f(Y 1
t−)}π

1(dt, dz),

dY 2
t =− αY 2

t dt+ σ
√
µt(f)dWt − Y 2

t−

∫
R+

1{z≤f(Y 2
t−)}π

2(dt, dz).

Proof. Item (ii) of (M) together with Theorem II.2.42 of [15] imply that Y is a semi-
martingale with characteristics (B,C, ν) given by

Bit = −α
∫ t

0

Y is ds−
∫ t

0

Y is f(Y is )ds, 1 ≤ i ≤ 2,

Ci,jt =

∫ t

0

µs(f)ds, 1 ≤ i, j ≤ 2,

ν(dt, dy) = dt(f(Y 1
t−)δ(−Y 1

t−,0)(dy) + f(Y 2
t−)δ(0,−Y 2

t−)(dy)).

Then we can use the canonical representation of Y (see Theorem II.2.34 of [15])
with the truncation function h(y) = y for every y: Yt − Y0 − Bt = M c

t + Md
t , where M c

is a continuous local martingale and Md a purely discontinuous local martingale. By
definition of the characteristics, 〈M c,i,M c,j〉t = Ci,jt . In particular, 〈M c,i〉t =

∫ t
0
µs(f)ds

(i = 1, 2). Consequently, applying Theorem II.7.1’ of [14] to the 2-dimensional martingale
(M c,1,M c,2), we know that there exists a Brownian motion W such that

M c,i
t =

∫ t

0

√
µs(f)dWs, i = 1, 2.

We now prove the existence of the independent Poisson measures π1, π2. We know
that Md = h ∗ (µY − ν), where µY =

∑
s 1{∆Ys 6=0}δ(s,Ys) is the jump measure of Y and ν
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is its compensator. We rely on Theorem II.7.4 of [14]. Using the notation therein, we
introduce Z = R+, m the Lebesgue measure on Z and

θ(t, z) := (−Y 1
t−, 0)1{z≤f(Y 1

t−)} + (0,−Y 2
t−)1{||f ||∞<z≤||f ||∞+f(Y 2

t−)}.

According to Theorem II.7.4 of [14], there exists a Poisson measure π on R+×R+ having
intensity dt · dz such that, for all E ∈ B(R2),

µY ([0, t]× E) =

∫ t

0

∫ ∞
0

1{θ(s,z)∈E}π(ds, dz). (3.2)

In what follows we show how to construct two independent Poisson random measures
π1 and π2 from π with the desired representation property, using two disjoint parts of π.
For π1 we use π|R+×[0,||f ||∞], and for π2 we use π|R+×[||f ||∞,2||f ||∞] such that the Poisson
measures π1 and π2 will be independent.

To construct π1 and π2, we also consider two independent Poisson measures π̃1, π̃2

(independent of everything else) on [||f ||∞,∞[ having Lebesgue intensity. We then
define π1 in the following way: For any A ∈ B(R+ × [0, ||f ||∞]), π1(A) = π(A), and
for A ∈ B(R+×]||f ||∞,∞[), π1(A) = π̃1(A). We define π2 in a similar way: For A ∈
B(R+× [0, ||f ||∞]), π2(A) = π({(t, ||f ||∞+z) : (t, z) ∈ A}), and for A ∈ B(R+×]||f ||∞,∞[),

π2(A) = π̃2(A). By definition of Poisson random measures, π1 and π2 are independent
Poisson measures on R2

+ having Lebesgue intensity, and together with (3.2), we have
the desired representation

Md,i
t = −

∫
[0,t]×R+

Y is−1{z≤f(Y is−)}π
i(ds, dz) +

∫ t

0

Y is f(Y is )ds, 1 ≤ i ≤ 2.

In the next step we prove that there exists at most one (and thus exactly one) solution
for the martingale problem (M) using Lemma 3.3 and Theorem 2.11.

Theorem 3.4. Grant Assumptions 2.2, 2.3 and 2.12. Then there is a unique solution Q of
the martingale problem (M). This solution can be written asQ = L(µ), with µ = L(X̄|W),

where X̄ is the unique strong solution of (2.4).

The main idea of the proof is to apply Lemma 3.3 to recover the system of SDEs (2.7)
and then to rely on Theorem 2.11.

Proof. Let Q ∈ P(P(D(R+,R))) be a solution of (M) and write Q = L(µ). The proof
consists in showing that µ is the distribution of the directing measure of the system (2.7),
which is unique by Theorem 2.11.

To begin with, we can assume that µ is the directing measure of some exchangeable
system (Ȳ i)i≥1. Indeed, it is sufficient to work on the canonical space

Ω′ = P(D(R+,R))×D(R+,R)N
∗

endowed with the probability measure P ′ defined as follows. For all A ∈ B(P(D(R+,R)))

and Bk ∈ B(D(R+,R)) (k ≥ 1) where at most a finite number of sets Bk (k ≥ 1) are
different from D(R+,R),

P ′(A×B1 × ...×Bk × ...) =

∫
P(D(R+,R))

1A(m)m⊗N
∗
(B1 × ...×Bk × ...)Q(dm).

Then, noting (µ, Ȳ 1, Ȳ 2, ..., Ȳ k, ...) the canonical random variables on Ω′, we know
that µ is the directing measure of the exchangeable system (Ȳ i)i≥1. In particular, for all
i 6= j,

L(µ, (Ȳ i, Ȳ j)) = P,
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where P is given by (3.1), with Q = L(µ).

Thanks to Lemma 3.3 we know that there exist Brownian motions W (i,j) (i, j ≥ 1)
and Poisson random measures π(i,j),1, π(i,j),2 (i, j ≥ 1) such that for all pairs (i, j), i 6= j,

π(i,j),1 is independent of π(i,j),2 and such that

dȲ it =− αȲ it dt+ σ
√
µt(f)dW

(i,j)
t − Ȳ it−

∫
R+

1{z≤f(Ȳ it−)}π
(i,j),1(dt, dz),

dȲ jt =− αȲ jt dt+ σ
√
µt(f)dW

(i,j)
t − Ȳ jt−

∫
R+

1{z≤f(Ȳ jt−)}π
(i,j),2(dt, dz).

The exchangeability of the system (Ȳ i)i≥1 implies that for all distinct i, j ≥ 1, j > 1,

L(X̄1, X̄2) = L(X̄1, X̄j) = L(X̄i, X̄j). Thus W := W (1,2) = W (1,j) = W (i,j) for all i 6= j.

Besides, as for all distinct i, j, k ≥ 1, L(X̄i, X̄j) = L(X̄i, X̄k) = L(X̄j , X̄i), we also
know that πi := π(i,j),1 = π(i,k),1 = π(j,i),2. As a consequence, the Poisson measures πi

(i ≥ 1) are pairwise independent, and so they are also mutually independent, since the
independence between Poisson measures is characterized by the fact that their supports
(i.e. the sets {t ≥ 0 : πi({t} ×R+) 6= 0}) are disjoint (see Theorem II.6.3 of [14]).

We summarize the above step. We have just shown that there exist a Brownian
motion W and independent Poisson random measures πi (i ≥ 1) with Lebesgue intensity,
independent of W, such that, for all i ≥ 1,

dȲ it = −αȲ it dt+ σ
√
µt(f)dWt − Ȳ it−

∫
R+

1{z≤f(Ȳ it−)}π
i(dt, dz).

As a consequence, (Ȳ i)i≥1 is solution to (2.7), and Theorem 2.11 allows to conclude.

The last missing point to prove our main result, Theorem 2.13, is the following

Theorem 3.5. Assume that Assumptions 2.1, 2.2 and 2.12 hold, and that f is bounded.
Then the distribution of any limit µ of the sequence µN := 1

N

∑N
j=1 δXN,j is solution of

item (ii) of (M).

Proof. Step 1. We first check that for any t ≥ 0, a.s., µ({γ : ∆γ(t) 6= 0}) = 0, where
∆γ(t) := γ(t) − γ(t−). We assume by contradiction that there exists t > 0 such that
µ({γ : ∆γ(t) 6= 0}) > 0 with positive probability. Hence there are a, b > 0 such that the
event E := {µ({γ : |∆γ(t)| > a}) > b} has a positive probability. For every ε > 0, we
have E ⊂ {µ(Bεa) > b}, where Bεa := {γ : sups∈(t−ε,t+ε) |∆γ(s)| > a}, which is an open
subset of D(R+,R). Thus Pεa,b := {µ ∈ P(D(R+,R)) : µ(Bεa) > b} is an open subset of
P(D(R+,R)). The Portmanteau theorem implies then that for any ε > 0,

lim inf
N→∞

P (µN ∈ Pεa,b) ≥ P (µ ∈ Pεa,b) ≥ P (E) > 0. (3.3)

Firstly, we can write

JN,ε,i := sup
t−ε<s<t+ε

∣∣∆XN,i
s

∣∣ = Gε,iN ∨ S
ε
N ,

whereGε,iN := maxs∈Dε,iN
|XN,i

s− | is the maximal height of the big jumps ofXN,i,withDε,i
N :=

{t−ε ≤ s ≤ t+ε : πi({s}×[0, f(XN,i
s− )]×R+) 6= 0}. Moreover, SεN := max{|U j(s)|/

√
N : s ∈⋃

1≤j≤N D
ε,j
N } is the maximal height of the small jumps of XN,i, where U j(s) is defined

for s ∈ Dε,j
N , almost surely, as the only real number that satisfies πj({s} × [0, f(XN,j

s− )]×
{U j(s)}) = 1.

We have that {
µN (Bεa) > b

}
=

 1

N

N∑
j=1

1{JN,ε,j>a} > b

 .
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Conditional propagation of chaos

Consequently, by exchangeability and Markov’s inequality,

P
(
µN (Bεa) > b

)
≤ 1

b
E
[
1{JN,ε,1>a}

]
=

1

b
P
(
JN,ε,1 > a

)
≤ 1

b

(
P
(
Gε,1N > a

)
+ P (SεN > a)

)
.

(3.4)
The number of big jumps of XN,1 in ]t− ε, t+ ε[ is smaller than a random variable ξ

having Poisson distribution with parameter 2ε||f ||∞. Hence

P
(
GεN,1 > a

)
≤ P (ξ ≥ 1) = 1− e2ε||f ||∞ ≤ 2ε||f ||∞. (3.5)

The small jumps that occur in ]t− ε, t+ ε[ are included in {U1/
√
N, ..., UK/

√
N} where

K is a N−valued random variable having Poisson distribution with parameter 2εN ||f ||∞,
which is independent of the variables Ui (i ≥ 1) that are i.i.d. with distribution ν. Hence,

P (SεN > a) ≤ P
(

max
1≤i≤K

|Ui|√
N

> a

)
≤ E

[
P

(
max

1≤i≤K

|Ui|√
N

> a

∣∣∣∣K)] = E [ψ(K)] ,

where ψ(k) = P
(

max1≤i≤k |Ui| > a
√
N
)
≤ kP

(
|U1| > a

√
N
)
≤ ka−2N−1E

[
U2

1

]
. Hence

P (SεN > a) ≤
E
[
U2

1

]
Na2

E [K] ≤ 2||f ||∞E
[
U2

1

] 1

a
ε. (3.6)

Inserting the bounds (3.5) and (3.6) in (3.4), we have

P
(
µN (Bεa) > b

)
≤ Cε,

where C does not depend on N nor ε. This last inequality is in contradiction with (3.3)
since P (E) does not depend on ε.
Step 2. In the following, we note ∂2ϕ :=

∑2
i,j=1 ∂

2
xixjϕ. For any 0 ≤ s1 < . . . < sk < s < t,

any ψ1, . . . , ψk ∈ Cb(R), ϕ1, . . . , ϕk ∈ Cb(R2) and any ϕ ∈ C3
c (R2), we introduce

F (µ) := ψ1(µs1(f)) . . . ψk(µsk(f))

∫
D(R+,R)2

µ⊗ µ(dγ)ϕ1(γs1) . . . ϕk(γsk)[
ϕ(γt)− ϕ(γs) + α

∫ t

s

γ1
r∂x1ϕ(γr)dr + α

∫ t

s

γ2
r∂x2ϕ(γr)dr −

σ2

2

∫ t

s

µr(f)∂2ϕ(γr)dr

−
∫ t

s

f(γ1
r )(ϕ(0, γ2

r )− ϕ(γr))dr −
∫ t

s

f(γ2
r )(ϕ(γ1

r , 0)− ϕ(γr))dr

]
.

Let us note that F is bounded, because we have chosen a compactly supported test
function ϕ. To show that L(µ) is solution of item (ii) of the martingale problem (M), by a
classical density argument, it is sufficient to prove that E [F (µ)] = 0. We have

F (µN ) = ψ1(µNs1(f)) . . . ψk(µNsk(f))
1

N2

N∑
i=1

N∑
j=1

ϕ1(XN,i
s1 , XN,j

s1 ) . . . ϕk(XN,i
sk

, XN,j
sk

)·

[
ϕ(XN,i

t , XN,j
t )− ϕ(XN,i

s , XN,j
s ) + α

∫ t

s

XN,i
r ∂x1ϕ(XN,i

r , XN,j
r )dr

+ α

∫ t

s

XN,j
r ∂x2ϕ(XN,i

r , XN,j
r )dr − σ2

2

∫ t

s

µNr (f)∂2ϕ(XN,i
r , XN,j

r )dr

−
∫ t

s

f(XN,i
r )(ϕ(0, XN,j

r )− ϕ(XN,i
r , XN,j

r ))dr

−
∫ t

s

f(XN,j
r )(ϕ(XN,i

r , 0)− ϕ(XN,i
r , XN,j

r ))dr

]
.
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But recalling (2.1) and using Itô’s formula, for any i 6= j, we have

ϕ(XN,i
t , XN,j

t )

= ϕ(XN,i
s , XN,j

s )− α
∫ t

s

XN,i
r ∂x1ϕ(XN,i

r , XN,j
r )dr − α

∫ t

s

XN,j
r ∂x2ϕ(XN,i

r , XN,j
r )dr

+

∫
]s,t]×R+×R

1{z≤f(XN,ir− )}

[
ϕ

(
0, XN,j

r− +
u√
N

)
− ϕ(XN,i

r− , X
N,j
r− )

]
πi(dr, dz, du)

+

∫
]s,t]×R+×R

1{z≤f(XN,jr− )}

[
ϕ

(
XN,i
r− +

u√
N
, 0

)
− ϕ(XN,i

r− , X
N,j
r− )

]
πj(dr, dz, du)

+

N∑
k=1

k 6∈{i,j}

∫
]s,t]×R+×R

1{z≤f(XN,kr− )}

[
ϕ

(
XN,i
r− +

u√
N
,XN,j

r− +
u√
N

)

−ϕ(XN,i
r− , X

N,j
r− )

]
πk(dr, dz, du).

We use the notation π̃j(dr, dz, du) = πj(dr, dz, du)− drdzν(du) and set

MN,i,j,1
s,t :=

∫
]s,t]×R+×R

1{z≤f(XN,ir− )}

[
ϕ

(
0, XN,j

r− +
u√
N

)
− ϕ(XN,i

r− , X
N,j
r− )

]
π̃i(dr, dz, du),

MN,i,j,2
s,t :=

∫
]s,t]×R+×R

1{z≤f(XN,jr− )}

[
ϕ

(
XN,i
r− +

u√
N
, 0

)
− ϕ(XN,i

r− , X
N,j
r− )

]
π̃j(dr, dz, du),

WN,i,j
s,t :=

N∑
k=1

j 6∈{i,j}

∫
]s,t]×R+×R

1{z≤f(XN,kr− )}

[
ϕ

(
XN,i
r− +

u√
N
,XN,j

r− +
u√
N

)

−ϕ(XN,i
r− , X

N,j
r− )

]
π̃k(dr, dz, du),

∆N,i,j,1
s,t :=

∫ t

s

∫
R

f(XN,i
r )

[
ϕ

(
0, XN,j

r +
u√
N

)
− ϕ(0, XN,j

r )

]
dν(u)dr,

∆N,i,j,2
s,t :=

∫ t

s

∫
R

f(XN,j
r )

[
ϕ

(
XN,i
r +

u√
N
, 0

)
− ϕ(XN,i

r , 0)

]
dν(u)dr,

ΓN,i,js,t :=

N∑
k=1

k 6∈{i,j}

∫ t

s

∫
R

f(XN,k
r )

[
ϕ

(
XN,i
r +

u√
N
,XN,j

r +
u√
N

)
− ϕ(XN,i

r , XN,j
r )

− u√
N
∂x1ϕ(XN,i

r , XN,j
r )− u√

N
∂x2ϕ(XN,i

r , XN,j
r )

]
dν(u)dr

−
∫ t

s

∫
R

u2

2
∂2ϕ(XN,i

r , XN,j
r )

1

N

N∑
k=1

k 6∈{i,j}

f(XN,k
r )dν(u)dr,

RN,i,js,t :=
σ2

2

∫ t

s

∂2ϕ(XN,i
r , XN,j

r )

 1

N

N∑
k=1

k 6∈{i,j}

f(XN,k
r )− 1

N

N∑
k=1

f(XN,k
r )

 dr,

where the two terms of the second line in the expression of ΓN,is,t can be artificially
introduced since

∫
R
udν(u) = 0.
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Finally, for i = j, we have

ϕ(XN,i
t , XN,i

t ) = ϕ(XN,i
s , XN,i

s )

− α
∫ t

s

XN,i
r ∂x1ϕ(XN,i

r , XN,i
r )dr − α

∫ t

s

XN,i
r ∂x2ϕ(XN,i

r , XN,i
r )dr

+

∫
]s,t]×R+×R

1{z≤f(XN,ir− )}
[
ϕ (0, 0)− ϕ(XN,i

r− , X
N,i
r− )

]
πi(dr, dz, du)

+

N∑
k=1
k 6=i

∫
]s,t]×R+×R

1{z≤f(XN,kr− )}

[
ϕ

(
XN,i
r− +

u√
N
,XN,i

r− +
u√
N

)
− ϕ(XN,i

r− , X
N,i
r− )

]

πk(dr, dz, du).

The associated martingales and error terms are given by

MN,i
s,t :=

∫
]s,t]×R+×R

1{z≤f(XN,ir− )}
[
ϕ (0, 0)− ϕ(XN,i

r− , X
N,i
r− )

]
π̃i(dr, dz, du),

WN,i
s,t :=

N∑
k=1
k 6=i

∫
]s,t]×R+×R

1{z≤f(XN,kr− )}

[
ϕ

(
XN,i
r− +

u√
N
,XN,i

r− +
u√
N

)

−ϕ(XN,i
r− , X

N,i
r− )

]
π̃k(dr, dz, du),

∆N,i
s,t :=

∫ t

s

∫
R

f(XN,i
r )

[
ϕ (0, 0)− ϕ(0, XN,i

r )− ϕ(XN,i
r , 0) + ϕ(XN,i

r , XN,i
r )

]
dν(u)dr,

ΓN,is,t :=

N∑
k=1
k 6=i

∫ t

s

∫
R

f(XN,k
r )

[
ϕ

(
XN,i
r +

u√
N
,XN,i

r +
u√
N

)
− ϕ(XN,i

r , XN,i
r )

− u√
N
∂x1ϕ(XN,i

r , XN,i
r )− u√

N
∂x2ϕ(XN,i

r , XN,i
r )

]
dν(u)dr

−
∫ t

s

∫
R

u2

2
∂2ϕ(XN,i

r , XN,i
r )

1

N

N∑
k=1
k 6=i

f(XN,k
r )dν(u)dr,

RN,is,t :=
σ2

2

∫ t

s

∂2ϕ(XN,i
r , XN,i

r )

 1

N

N∑
k=1
k 6=i

f(XN,k
r )− 1

N

N∑
k=1

f(XN,k
r )

 dr,

Then, since
∫
R
udν(u) = 0, we obtain

F (µN ) = ψ1(µNs1(f)) . . . ψk(µNsk(f))
1

N2

N∑
i,j=1,i6=j

ϕ1(XN,i
s1 , XN,j

s1 ) . . . ϕk(XN,i
sk

, XN,j
sk

)

[
MN,i,j,1
s,t +MN,i,j,2

s,t +WN,i,j
s,t + ∆N,i,j,1

s,t + ∆N,i,j,2
s,t + ΓN,i,js,t +RN,i,js,t

]
+ ψ1(µNs1(f)) . . . ψk(µNsk(f))

1

N2

N∑
i=1

ϕ1(XN,i
s1 , XN,i

s1 ) . . . ϕk(XN,i
sk

, XN,i
sk

)[
MN,i
s,t +WN,i

s,t + ∆N,i
s,t + ΓN,is,t +RN,is,t

]
.

Using exchangeability and the boundedness of the ϕj , ψj (1 ≤ j ≤ k) and the fact that
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MN,i,j,1, . . . , WN,i are martingales, this implies

|E
[
F (µN )

]
| ≤ CE

[
|∆N,i,j,1

s,t |+ |∆N,i,j,2
s,t |+ |ΓN,i,js,t |+ |R

N,i,j
s,t |+

|∆N,i
s,t |+ |Γ

N,i
s,t |+ |R

N,i
s,t |

N

]
.

Since f is bounded and ϕ ∈ C3
b (R2), Taylor-Lagrange’s inequality implies then that

|E
[
F (µN )

]
| ≤ C√

N
.

Finally, using that F is bounded and almost surely continuous at µ (see Step 1 ), we have

E [F (µ)] = lim
N→∞

E
[
F (µN )

]
= 0,

concluding our proof.

Let us end this section with the

Proof of Theorem 2.13. According to Proposition 3.1, the sequence (µN )N is tight. Be-
sides, thanks to Theorem 3.5, any limit Q of a converging subsequence of (L(µN ))N is
solution to the martingale problem.

By Theorem 3.4, there is a unique such distribution Q which can be written as
Q = L(µ), with µ = L(X̄1|W), where (X̄j)j≥1 is solution of (2.2). This implies the
result.

4 Proofs

4.1 A priori estimates

In this subsection, we prove useful a priori upper bounds on some moments of the
solutions of the SDEs (2.1) and (2.4).

Lemma 4.1. Suppose that Assumption 2.2 holds and that f is bounded. Then

(i) for all t > 0, sup
N∈N∗

sup
0≤s≤t

E
[(
XN,1
s

)2]
< +∞,

(ii) for all t > 0, sup
N∈N∗

E

[
sup

0≤s≤t

∣∣XN,1
s

∣∣] < +∞.

Proof. Step 1: Let us prove (i).

(
XN,1
t

)2

=
(
XN,1

0

)2

− 2α

∫ t

0

(
XN,1
s

)2
ds−

∫
[0,t]×R+×R

(
XN,1
s

)2
1{z≤f(XN,1s− )}dπ

j(s, z, u)

+

N∑
j=2

∫
[0,t]×R+×R

[(
XN,1
s− +

u√
N

)2

−
(
XN,1
s−

)2
]
1{z≤f(XN,js− )}dπ

j(s, z, u)

≤
(
XN,1

0

)2

+

N∑
j=2

∫
[0,t]×R+×R

[(
XN,1
s− +

u√
N

)2

−
(
XN,1
s−

)2
]
1{z≤f(XN,js− )}dπ

j(s, z, u).

As f is bounded, and since
∫
R
udν(u) = 0 and

∫
R
u2dν(u) = σ2,

E

[(
XN,1
t

)2
]
≤ E

[(
XN,1

0

)2
]

+
σ2

N

N∑
j=2

∫ t

0

E
[
f
(
XN,j
s

)]
ds ≤ E

[(
XN,1

0

)2
]

+ σ2||f ||∞t.
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Step 2: Now we prove (ii).∣∣∣XN,1
t

∣∣∣ ≤ ∣∣∣XN,1
0

∣∣∣+ α

∫ t

0

∣∣XN,1
s

∣∣ ds
+

∫
[0,t]×R+×R

∣∣∣XN,1
s−

∣∣∣1{z≤f(XN,1s− )}dπ
1(s, z, u) +

1√
N
|MN

t |,

where MN
t is the martingale MN

t =
∑N
j=2

∫
[0,t]×R+×R u1{z≤f(XN,js− )}dπ

j(s, z, u). Then

sup
0≤s≤t

∣∣XN,1
s

∣∣ ≤ ∣∣∣XN,1
0

∣∣∣+ α

∫ t

0

|XN,1
s |ds+

∫
[0,t]×R+×R

∣∣∣XN,1
s−

∣∣∣1{z≤f(XN,1s− )}dπ
1(s, z, u)

+
1√
N

sup
0≤s≤t

|MN
s |.

To conclude the proof, it is now sufficient to notice that

1√
N
E

[
sup

0≤s≤t
|MN

s |
]
≤ E

[
1

N
[MN ]t

]1/2

is uniformly bounded in N , since f is bounded, and to use the point (i) of the lemma.

Lemma 4.2. Suppose that f is bounded and that
∫
R
x2dν0(x) < ∞. Then any solution

(X̄1
t )t≥0 of (2.4) a priori satisfies E

[
sups≤t

(
X̄1
s

)2]
<∞ for all t ≥ 0.

Proof. We first prove the weaker result

sup
s≤t

E
[(
X̄1
s

)2]
<∞. (4.1)

By Itô’s formula,

(X̄1
t )2 = (X̄1

0 )2 − 2α

∫ t

0

(X̄1
s )2ds+ 2σ

∫ t

0

X̄1
s

√
µs(f)dWs

+ σ2

∫ t

0

µs(f)ds−
∫

[0,t]×R+

(X̄1
s−)21{z≤f(X̄1

s−)}dπ(s, z)

≤ (X̄1
0 )2 + 2σ

∫ t

0

X̄1
s

√
µs(f)dWs + σ2

∫ t

0

µs(f)ds. (4.2)

Introducing, for any M > 0, τM := inf{t > 0 : |X̄1
t | > M} and uM (t) := E

[
(X̄1

t∧τM )2
]
,

we have, for all t ≥ 0,

uM (t) ≤ E
[
(X̄1

0 )2
]

+ σ2||f ||∞t.
Then Grönwall’s lemma implies that for all T > 0,

sup
M>0

sup
0≤t≤T

uM (t) <∞. (4.3)

This implies that the stopping times τM tend to infinity as M goes to infinity. (4.1) is a
then a consequence of (4.3) and Fatou’s lemma. Then, using Burkholder-Davis-Gundy
inequality to control the martingale part in (4.2), we have, for all t ≥ 0,

E

[
sup

0≤s≤t
(X̄1

s )2

]
≤E

[
(X̄1

0 )2
]

+ σ2||f ||∞t+ 2σ||f ||∞E

[(∫ t

0

(X̄1
s )2ds

)1/2
]

≤E
[
(X̄1

0 )2
]

+ σ2||f ||∞t+ 2σ||f ||∞
(

1 +

∫ t

0

E
[
(X̄1

s )2
]
ds

)
ds.

Then the result follows from point (4.1).
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4.2 Well-posedness of the limit equation (2.4)

Proof of Item 2. of Theorem 2.6. The proof is done using a classical Picard-iteration. For
that sake we introduce the sequence of processes X̄ [0]

t ≡ X̄0, and construct the process

X̄ [n+1] from X̄ [n] and µns = P (X̄
[n]
s ∈ ·|W) in the following way:

• let 0 < τ1 < τ2 < ... be the jump times of

t ≥ 0 7→
∫

[0,t]×R+

1{
z≤f(X̄

[n]
s−)

}π(ds, dz),

• set X̄ [n+1]
τi = 0 (i ≥ 1) and define, X̄ [n+1] between the jump times: for all i ≥ 1, for

all t ∈]τi, τi+1[,

X̄
[n+1]
t = σ

∫ t

0

e−α(t−s)
√
µns (f)dWs.

One can note, using the integration by parts formula, that X̄ [n+1] satisfies the following
SDE:

X̄
[n+1]
t :=X̄0 − α

∫ t

0

X̄ [n+1]
s ds

−
∫

[0,t]×R+×R
X̄

[n+1]
s− 1{z≤f(X̄

[n]
s−)}π(ds, dz, du) + σ

∫ t

0

√
µns (f)dWs.

Using the same proof as the one of Lemma 4.2, we can show that for all t ≥ 0,

sup
n∈N

sup
0≤s≤t

E

[(
X̄ [n]
s

)2
]
< +∞. (4.4)

Now, we prove the convergence of X̄ [n]
t . The same strategy as the one of the proof of

Item 1. of Theorem 2.6 allows to show that

δnt := E sup
s≤t
|a(X̄ [n]

s )− a(X̄ [n−1]
s )| satisfies δnt ≤ C(t+

√
t)δn−1

t ,

for all n ≥ 1, for a constant C only depending on the parameters of the model, but not
on n, neither on t. Choose t1 such that

C(t1 +
√
t1) ≤ 1

2
.

Since sups≤t1 |a(X̄
[0]
s )| = a(X̄0) ≤ ‖a‖∞, we deduce from this that

δnt1 ≤ 2−n‖a‖∞.

This implies the almost sure convergence of a
(
X̄

[n]
t

)
n

to some random variable Zt for

all t ∈ [0, t1]. As a is an increasing function, the almost sure convergence of X̄ [n]
t to some

(possibly infinite) random variable X̄t follows from this. The almost sure finiteness of X̄t

is then guaranteed by Fatou’s lemma and (4.4).
Now let us prove that X̄ is solution of the limit equation (2.4) which follows by

standard arguments (note that the jump term does not cause troubles because it is of
finite activity). The most important point is to notice that

µnt (f) = E(f(X̄
[n]
t )|W)→ E(f(X̄t)|W)

almost surely, which follows from the almost sure convergence of f(X̄
[n]
t )→ f(X̄t), using

dominated convergence.
Once the convergence is proven on the time interval [0, t1], we can proceed iteratively

over successive intervals [kt1, (k + 1)t1] to conclude that X̄ is solution of (2.4) on R+.

Finally, (2.5) follows from Lemma 4.2.
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4.3 Proof of Proposition 2.9

We now give the

Proof of Proposition 2.9. (i) Given a Brownian motion W and i.i.d. Poisson measures πi,
the same proof as the one of Theorem 2.6 implies the existence and the uniqueness of
the system given in (2.2) for 1 ≤ i ≤ N.

(ii) The construction of the proof of Item 2. of Theorem 2.6, together with the proof
of Theorem 1.1 of Chapter IV.1 and of Theorem 9.1 in Chapter IV.9 of [14], imply the
existence of a measurable function Φ that does not depend on k = 1, . . . , N , and that
satisfies, for each 1 ≤ k ≤ N,

X̄k = Φ(X̄k
0 , π

k,W )

and for all t ≥ 0,

X̄k
|[0,t] = Φt(X̄

k
0 , π

k
|[0,t]×R+×R, (Ws)s≤t); (4.5)

in other words, our process is non-anticipative and does only depend on the underlying
noise up to time t.

Then we can write, for all continuous bounded functions g, h,

E
[
g(X̄i)h(X̄j)

∣∣W] = E
[
g(Φ(X̄i

0, π
i,W ))h(Φ(X̄j

0 , π
j ,W ))

∣∣∣W] = ψ(W ),

where

ψ(w) :=E
[
g(Φ(X̄i

0, π
i, w))h(Φ(X̄j

0 , π
j , w))

]
=E

[
g(Φ(X̄i

0, π
i, w))

]
E
[
h(Φ(X̄j

0 , π
j , w))

]
=: ψi(w)ψj(w).

With the same reasoning, we show that E
[
g(X̄i)

∣∣W] = ψi(W ) and E
[
h(X̄j)

∣∣W] =

ψj(W ). The same arguments prove the mutual independence of X̄1, . . . X̄N conditionally
to W.

(iii) Using the representation X̄k
|[0,t] = Φt(X̄

k
0 , π

k,W ), we can write for any continuous
and bounded function g : D([0, t],R)→ R,∫

R

gd(N−1
N∑
i=1

δX̄i||0,t]
) =

1

N

N∑
i=1

g(X̄i
|[0,t]) =

1

N

N∑
i=1

g ◦ Φt(X̄
i
0, π

i,W ).

Using the law of large numbers on the account of the sequence of i.i.d. PRM’s and
working conditionally on W, we obtain that

lim
N→∞

∫
R

gd(N−1
N∑
i=1

δX̄i|[0,t]
) =E

[
g ◦ Φt(X̄

1
0 , π

1,W )|W
]

=E
[
g(X̄1

|[0,t])|W
]

= E
[
g(X̄1

|[0,t])|(Ws)s≤t

]
,

where we have used (4.5).

4.4 Proof of Theorem 2.11

We are finally able to give the

Proof of Theorem 2.11. Step 1: Let us begin by proving that any solution (X̄i)i≥1 of (2.2)
is solution of (2.7).

By Proposition 2.9.(ii), conditionally to W, the variables X̄i
t are i.i.d. This implies

that the directing measure of (X̄i
t)i≥1 is L(X̄i

t |W) (see Lemma (2.12) of [1]).
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Step 2. It is now sufficient to prove that (X̄i)i≥1 is the only solution of (2.7) defined
w.r.t. the same Brownian motion, Poisson random measures and initial conditions. For
that sake, let us consider (Ȳ i)i≥1 any solution of (2.7), and prove that (X̄i)i≥1 = (Ȳ i)i≥1

almost surely. In the rest of the proof, µt denotes only the directing measure of the
system (Ȳ it )i≥1. So we want to prove that µt(f) := E

[
f(Ȳ 1

t )
∣∣µ] = E

[
f(Ȳ 1

t )
∣∣W] a.s..

To begin with, Lemma (2.15) of [1] implies that µt(f) is the almost sure limit of
N−1

∑N
j=1 f(Ȳ jt ). We now prove that this sequence converges to E

[
f(Ȳ 1

t )
∣∣W] . For this

purpose, we introduce an auxiliary system (X̃N,i)1≤i≤N , driven by the same Brownian
motion W and the same Poisson random measures πi, with Ȳ i0 = X̃N,i

0 (i ≥ 1), replacing
the term µt(f) by the empirical measure:

dX̃N,i
t = −αX̃N,i

t dt+

√√√√ 1

N

N∑
j=1

f(X̃N,j
t )dWt − X̃N,i

t−

∫
R+

1{z≤f(X̃N,it− )}π
i(dt, dz), X̃N,i

0 = Ȳ i0 .

Notice that (X̄i)i≥1, (Ȳ
i)i≥1 and (X̃N,i)1≤i≤N are all defined on the same probability

space, driven by the same Brownian motion W and the same Poisson random mea-
sures πi.

It is now sufficient to prove that both for (Ȳ i)i≥1 and for (X̄i)i≥1,

E
[∣∣∣a(Ȳ it )− a(X̃N,i

t )
∣∣∣]+ E

[∣∣∣a(X̄i
t)− a(X̃N,i

t )
∣∣∣] ≤ CtN−1/2. (4.6)

Indeed, suppose we have already proven the above control (4.6). Then

E

∣∣∣∣∣∣ 1

N

N∑
j=1

f(Ȳ jt )− E
[
f(X̄1

t )
∣∣W]

∣∣∣∣∣∣
 ≤ 1

N

N∑
j=1

E
[
|f(Ȳ jt )− f(X̃N,j

t )|
]

+
1

N

N∑
j=1

E
[
|f(X̃N,j

t )− f(X̄j
t )|
]

+ E

∣∣∣∣∣∣ 1

N

N∑
j=1

f(X̄j
t )− E

[
f(X̄1

t )
∣∣W]

∣∣∣∣∣∣
 .

Then, (4.6) and Assumption 2.3 imply that the first and the second term of the sum above
are smaller than CtN−1/2 for some Ct > 0. In addition, by item (ii) of Proposition 2.9, the
variables (X̄j)1≤j≤N are i.i.d., conditionally on W. Consequently, and since f is bounded,
the third term is smaller than CtN−1/2.

The above implies that, asN →∞, 1
N

∑N
j=1 f(Ȳ jt ) converges in L1(P ) toE

[
f(X̄1

t )
∣∣W] .

On the other hand, we know this sequence converges almost surely to µt(f). Thus,

E
[
f(Ȳ 1

t )
∣∣µ] = µt(f) = E

[
f(X̄1

t )
∣∣W] = E

[
f(X̄i

t)
∣∣W] a.s..

As a consequence, (Ȳ i)i≥1 is solution of the infinite system

dȲ it = −αȲ it dt+ σ
√
E
[
f(X̄i

t)
∣∣W]dWt − Ȳ it−

∫
R+

1{z≤f(Ȳ it−)}π
i(dt, dz),

while (X̄i)i≥1 in (2.2) is solution of

dX̄i
t = −αX̄i

tdt+ σ
√
E
[
f(X̄i

t)
∣∣W]dWt − X̄i

t−

∫
R+

1{z≤f(X̄it−)}π
i(dt, dz),

with X̄i
0 = Ȳ i0 , for all i ≥ 1.

Step 3. In the previous step, we have proved that E
[
f(Ȳ it )

∣∣µ] = E
[
f(X̄i

t)
∣∣W] . So,

we still have not proved that Ȳ i satisfies the SDE (2.2), which would have allowed to
conclude that Ȳ = X̄ almost surely (by Theorem 2.6.(i)). We prove it in this step.
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For that sake, consider τM = inf{t > 0 : |X̄i
t | ∧ |Ȳ it | > M} for M > 0. We prove that

E
[
|X̄i

t∧τM − Ȳ
i
t∧τM |

]
= 0 for all M > 0. Recalling Lemma 4.2 and the fact that we can

prove a similar control for Ȳ i this implies, by Fatou’s lemma, that E
[
|X̄i

t − Ȳ it |
]

= 0.

Let uM (t) := E
[
|X̄i

t∧τM − Ȳ
i
t∧τM |

]
. To see that uM (t) = 0, it is sufficient to apply

Grönwall’s lemma to the following inequality

uM (t) ≤ α
∫ t

0

uM (s)ds+ E

[∫
[0,t∧τM ]×R+

∣∣∣X̄i
s−1{z≤f(X̄is−)} − Ȳ

i
s−1{z≤f(Ȳ is−)}

∣∣∣πi(ds, dz)]
implying that

uM (t) ≤ α
∫ t

0

uM (s)ds+ E

[∫
[0,t∧τM ]×R+

1{z∈[0,f(X̄is−)∧f(Ȳ is−)]}
∣∣X̄i

s− − Ȳ is−
∣∣πi(ds, dz)]

+ E

[∫
[0,t∧τM ]×R+

1{z∈]f(X̄is−)∧f(Ȳ is−),f(X̄is−)∨f(Ȳ is−)]}|X̄
i
s−| ∨ |Ȳ is−|πi(ds, dz)

]
,

whence

uM (t) ≤ C(1 +M)

∫ t

0

uM (s)ds

and thus uM (t) = 0.

Hence (Ȳ i)i≥1 is solution of the infinite system (2.2) and µ = L(Ȳ 1|W), its directing
measure, is uniquely determined.

Step 4. Finally, let us show (4.6). We only prove it for Ȳ i, the proof for X̄i is similar.
By exchangeability, it is sufficient to work with Ȳ 1. We decompose the evolution of a(Ȳ 1

t )

in the following way.

a(Ȳ 1
t ) = a(Ȳ 1

0 )− α
∫ t

0

a′(Ȳ 1
s )Ȳ 1

s ds+

∫
[0,t]×R+

(
a(0)− a(Ȳ 1

s−)
)
1{z≤f(Ȳ 1

s−)}π
1(ds, dz) (4.7)

+
σ2

2

∫ t

0

a′′(Ȳ 1
s )

1

N

N∑
j=1

f(Ȳ js )ds−BNt + σ

∫ t

0

a′(Ȳ 1
s )

√√√√ 1

N

N∑
j=1

f(Ȳ js )dWs −MN
t ,

where

BNt =
σ2

2

∫ t

0

a′′(Ȳ 1
s )

 1

N

N∑
j=1

f(Ȳ js )− E
[
f(Ȳ 1

s )
∣∣µ]
 ds

and

MN
t = σ

∫ t

0

a′(Ȳ 1
s )

√√√√ 1

N

N∑
j=1

f(Ȳ js )−
√
E
[
f(Ȳ 1

s )|µ
] dWs.

Clearly,

< MN >t≤ σ2

(
sup
x∈R
|a′(x)2|

)∫ t

0

√√√√ 1

N

N∑
j=1

f(Ȳ js )−
√
E
[
f(Ȳ 1

s )|µ
]2

ds.

Recall that the variables Ȳ js (1 ≤ j ≤ N ) are i.i.d. conditionally to µ. Hence we may take
conditional expectation E(·|µ) and use the fact that f is lower bounded such that

√
· is

Lipschitz on [inf f,∞[ implying√√√√ 1

N

N∑
j=1

f(Ȳ js )−
√
E
[
f(Ȳ 1

s )|µ
]2

≤ C

 1

N

N∑
j=1

f(Ȳ js )− E
[
f(Ȳ 1

s )|µ
]2

,
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to deduce that
E
[
< MN >t

]
≤ CtN−1 and E

[
BNt
]
≤ CtN−1.

Then, applying Itô’s formula on a(X̃N,1), we obtain the same equation as (4.7), but
without the terms BNt and MN

t . Introducing

u(t) := sup
0≤s≤t

E
[∣∣∣a(Ȳ 1

s )− a(X̃N,1
s )

∣∣∣] ,
we can prove with the same reasoning as in the proof of Theorem 2.6 that

u(t) ≤ C(1 + t)u(t) +
Ct√
N
,

where C and Ct are independent of N . Finally, using the arguments of the proof of
Theorem 2.6, this implies (4.6).
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