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Abstract

We analyse a randomly growing graph model in which the average degree is asymp-
totically equal to a constant times the square root of the number of vertices, and the
clustering coefficient is rather small. In every step, we choose two vertices uniformly
at random, check whether they are connected or not, and we either add a new edge or
delete one and add a new vertex of degree two to the graph. This dependence on the
status of the connection chosen vertices makes the total number of vertices random
after n steps. We prove asymptotic normality for this quantity and also for the degree
of a fixed vertex (with normalization n1/6). We also analyse the proportion of vertices
with degree greater than a fixed multiple of the average degree, and the maximal
degree.
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1 Introduction

Random graphs have been intensively studied in the last decades [Durrett (2007),
van der Hofstad (2016)]. In the current work, we study a randomly growing graph model
which has intermediate (moderate) edge density, which includes deletion as a step, and
which more likely has a small clustering coefficient. Before going into the details, based
on these two properties, we briefly summarize the relation of our model to the ones that
are studied in the literature.

For a growing graph sequence, the edge density (i.e. the number of edges di-
vided by the number of pairs of vertices) has a major impact on the behavior of the
model. Most preferential attachment graph models are sparse with fixed average degree
[Barabási and Albert (1999)], while Erdős–Rényi random graphs with constant edge
probabilities, or the stochastic block models are often dense (although they also have
sparse versions); their edge density is positive. From the point of view of applications,
the edge density can also be different, for example, the brain as a network can be very
different from a proteine-proteine interaction network, or the physical network of the
internet can be very different from an online social network from this point of view as
well. This is one of the reasons why it is important to study random graphs of various
densities. From the theoretical point of view, graph limit theory (see e.g. the monograph
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A random graph of moderate density

[Lovász (2012)]) usually used distinct approaches in the bounded degree case and in
the dense case. Furthermore, it took several years while variants of the theory became
available for graph sequences of intermediate density [Backhausz and Szegedy (2018),
Borgs, Chayes, Cohn and Zhao (2018), Frenkel (2018)]. Although we do not study con-
vergence or limit objects in the current paper, this also suggests that the understanding
of random graphs of moderate degree needs different approaches and tools from proba-
bility theory.

Deletion of vertices and edges is also an important feature in many real-world
networks. However, many of the probabilistic arguments applied for random graphs
use some kind of induction with respect to the degrees of vertices and make use of
the fact that the degree of a vertex can never decrease. Hence models including
deletion of edges require other tools, see e.g. the papers [Deijfen and Lindholm (2009),
Flaxman, Frieze and Vera (2007), Thörnblad (2015)]. In our model, when we delete an
edge, we immediately add a new vertex connected to its endpoints, which means that
the degree of a vertex cannot decrease, similarly to the classical cases. This makes the
analysis of the degree of a fixed vertex simpler. Still, due to the average degree tending
to infinity, the methods used, for example, for preferential attachment graphs, would
not work here. In our model, due to the basic step mentioned above, the clustering
coefficient is not expected to be large (although there are other ways how triangles can
appear). This is similar to the behavior of many preferential attachment graph models.

In Section 2, we define our random graph model with intermediate density and prove
the asymptotic normality of the number of vertices. In Section 3, we prove the main
result of the paper, where we determine the asymptotics of the degree of a fixed vertex,
and also prove that the fluctuations around the limit tend to Gaussian distribution. In
Section 4, we make preliminaries for the following two sections, where we find the
almost sure limit of the proportion of vertices with degree larger than a constant times
the average degree, and describe the behavior of the maximum degree. For the proofs
we are using methods from discrete-time martingale theory.

2 The model

Figure 1: A realization of the ran-
dom graph model of moderate den-
sity with n = 200 steps (edges)

This is a discrete time model. Let us start from
an empty graph of size 2. At every step, we choose
a pair of vertices uniformly at random. If they
are not connected, we connect them with an edge.
If they are connected, we delete the edge, add a
new vertex to the graph, and connect it to both
selected vertices. In this way the graph contains
exactly n edges after the nth step. Figure 1 shows
a realization for n = 200.

Let us denote the number of vertices after n
steps by Nn, and let Fn denote the σ-field gener-
ated by the first n steps. We will use the notation
N(µ; σ2) for the Gaussian distribution with mean
µ and variance σ2.

Theorem 2.1. For the number of vertices in the
model after n steps, we have Nn ∼ 31/3n2/3 a.s. as n → ∞ (that is, Nn/(31/3n2/3) → 1

almost surely as n→∞). Moreover, the following convergence in distribution holds:

n−1/3
(
Nn − 31/3n2/3

) d−→ N(0; 31/35−1).

For the proof we shall need the following lemma, interesting on its own right.
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A random graph of moderate density

Let g(n), n = 0, 1, . . . , be an increasing positive sequence, and define G(n) =∑n−1
i=0 g(i). Assume g(n) = O

(
G(n)δ

)
for some δ, 0 < δ < 1 (for example, every polyno-

mial multiplied by a power of logarithms satisfies the condition). Roughly speaking, this
means that g can only grow polynomially.

Lemma 2.2. Let (Fn)n≥0 be a filtration (an increasing sequence of σ-fields), andAn ∈ Fn,
n = 1, 2, . . . . Let Sn =

∑n
i=1 1(Ai), where 1( . ) stands for the indicator of the event in

brackets. Finally, let (ηn)n≥0 be an adapted sequence of nonnegative random variables
such that Hn =

∑n−1
i=0 ηi →∞ with probability 1. Suppose

P(An | Fn−1) =
ηn−1

g(Sn−1)
, n = 1, 2, . . . , .

Then G(Sn) ∼ Hn a.s. as n→∞.

Proof. E
(
G(Sn)

∣∣ Fn−1) = G(Sn−1) + ηn−1, thus
(
Mn = G(Sn)−Hn; Fn

)
n≥1 is a martin-

gale. Consider the predictable increasing process Bn in the Doob decomposition of the
submartingale M2

n. By supposition (namely, using that Hn is Fn−1-measurable and the
monotonicity of g), it follows that

Bn =

n∑
i=1

E
(
(Mi −Mi−1)2 | Fi−1

)
=

n∑
i=1

Var (G(Si)−G(Si−1) | Fi−1)

≤
n∑
i=1

E
(
(G(Si)−G(Si−1))2 | Fi−1

)
=

n∑
i=1

g(Si−1)ηi−1 ≤ g(Sn)Hn

≤ κHnG(Sn)δ

with some positive constant κ. Consequently, by Proposition VII-2-4 of [Neveu (1975)]
we have

Mn = O(Bcn) = O(Hc
nG(Sn)δc),

for every c > 1/2. This implies

G(Sn)

Hn
= 1 +O

((
G(Sn)

Hn

)δc
H(1+δ)c−1
n

)
. (2.1)

By choosing c such that 1/2 < c < 1/(1 + δ) we get that

G(Sn)

Hn
= 1 + o

((
G(Sn)

Hn

)δc)
,

holds with probability 1, and the proof is completed.

Proof of Theorem 2.1. Let An denote the event that we select a connected pair of ver-
tices at the nth step. Then Nn = 2 + Sn, where Sn =

∑n
i=1 1(Ai). Clearly,

P(An | Fn−1) =
n− 1(
Nn−1

2

) ,

and we can apply Lemma 2.2 to Sn with ηn = n, g(n) =
(
n+2
2

)
. Then Hn =

(
n
2

)
, G(n) =(

n+2
3

)
, and we obtain

(
Nn

3

)
∼
(
n
2

)
; that is, Nn ∼ (3n2)1/3.

We apply Corollary 3.1 of [Hall and Heyde (1980)] to find the limit distribution. Con-
sider the martingale difference array (Xn,i, Fn,i), n ≥ 1, 1 ≤ i ≤ n, where

Xn,i = n−5/3
[(
Ni
3

)
−
(
Ni−1

3

)
− (i− 1)

]
, Fn,i = Fi.
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The row sums of conditional variances,

V 2
n,n =

n∑
i=1

E
(
X2
n,i

∣∣ Fn,i−1) = n−10/3
n∑
i=1

[
E

([(
Ni
3

)
−
(
Ni−1

3

)]2 ∣∣∣∣ Fi
)
− (i− 1)2

]

= n−10/3

[
n∑
i=1

(
Ni−1

2

)
(i− 1)− n(n− 1)(2n− 1)

3

]
∼ n−10/3 ·

n∑
i=1

(3i2)2/3

2
(i− 1)

converge to 35/3/20 as n→∞ (we have seen Nn ∼ (3n2)1/3, and the second term goes
to 0). Furthermore, since

max
1≤i≤n

|Xn,i| ≤ n−5/3
(
Nn
2

)
= O

(
n−1/3

)
,

the conditional Lindeberg condition, namely,

n∑
i=1

E
(
X2
n,i1(|Xn,i| ≥ ε)

∣∣ Fi−1)→ 0

in probability as n→∞, for all ε > 0, is obviously satisfied. Hence,

n−5/3
[(
Nn
3

)
−
(
n

2

)]
d−→ N(0; 35/3/20). (2.2)

Recall that Nn ∼ (3n2)1/3, hence(
Nn
3

)1/3
=

Nn
61/3

+O(1),

(
n

2

)1/3
=
n2/3

21/3
+O(1).

Therefore

Nn − 31/3n2/3 ∼
(
Nn
3

)1/3

· 61/3 − 31/3 ·
(
n

2

)1/3

· 21/3

= 61/3 ·
(
Nn

3

)
−
(
n
2

)(
Nn

3

)2/3
+
(
Nn

3

)1/3(n
2

)1/3
+
(
n
2

)2/3 ∼ 61/3
(
Nn

3

)
−
(
n
2

)
3 ·
(
n
2

)2/3 .

Putting this together with equation (2.2), we obtain the limit distribution of Nn.

Consider a fixed pair of vertices. They get connected and disconnected alternately.
The conditional (with respect to the past) probability that the given pair is selected in

the nth step is equal to
(
Nn−1

2

)−1
= O(n−4/3). Hence by the Lévy generalization of the

Borel–Cantelli lemma (see Corollary VII-2-6 in [Neveu (1975)], the number of changes is
almost surely finite. Thus we get as a corollary that fixing an arbitrary (finite) subset of
vertices, the induced subgraph will eventually freeze over: the state of the edges and
non-edges between these vertices does not change after a certain (random) number of
steps.

3 Degree process of a fixed vertex

In this section, we will analyse how fast the degree of a fixed vertex grows. The two
vertices of the initial configuration are clearly interchangeable, therefore their degrees
have the same asymptotic properties. Let one of them be labelled with zero; the other
one remains unlabelled. All the other vertices will be labelled with 1, 2, . . . in the order
they are added to the graph. Let dn(k) denote the degree of vertex k at time n.
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Theorem 3.1. For every k = 0, 1, . . . we have dn(k) ∼ 2 · 32/3n1/3 a.s. as n → ∞.

Moreover, n−1/6
(
dn(k)− 2 · 32/3n1/3

) d−→ N(0; 2 · 32/3).

Proof. Let An denote the event that Nn−1 ≥ k + 1, and at the nth step we choose vertex
k and another vertex that is not a neighbour of k (this is the case where dn−1(k) grows
by 1). Then

dn(k) = 2 · 1(Nn−1 ≥ k + 1) +

n∑
i=1

1(Ai). (3.1)

Clearly,

P(Ai | Fi−1) = 1(Ni−1 ≥ k + 1)
Ni−1 − 1− di−1(k)(

Ni−1
2

) ≤ Ni−1 − 1(
Ni−1

2

) =
2

Ni−1
, (3.2)

hence
n∑
i=1

P(Ai | Fi−1) = O
(
n1/3

)
.

By the Lévy generalization of the Borel–Cantelli lemma it also follows that dn(k) =

O
(
n1/3

)
. Consequently, since the indicator in equation (3.2) is 1 for large enough i (recall

Nn ∼ (3n2)1/3), and di−1(k)/Ni−1 → 0, we get

P(An | Fn−1) ∼ 2 · 3−1/3n−2/3, (3.3)

implying

dn(k) ∼
n∑
i=1

P(Ai | Fi−1) ∼ 2 · 32/3n1/3.

The weak limit can be proved in the same way as in Theorem 2.1. This time let

Xn,i = n−1/6
(
1(Ai)− P(Ai | Fi−1)

)
, Fn,i = Fi, 1 ≤ n, 1 ≤ i ≤ n.

Then

V 2
n,n = n−1/3

n∑
i=1

P(Ai | Fi−1)
(
1− P(Ai | Fi−1)

)
∼ n−1/3

n∑
i=1

P(Ai | Fi−1)
(3.3)∼ n−1/3

n∑
i=1

2 · 3−1/3i−2/3,

which tends to 2 · 32/3 a.s. as n → ∞. Since max1≤i≤n |Xn,i| ≤ n−1/6, the Lindeberg
condition trivially holds again, and the martingale central limit theorem can be applied
to the row sums

∑n
i=1Xn,i. In this way we obtain

n−1/6

(
dn(k)−

n∑
i=1

P(Ai | Fi−1)

)
d−→ N(0; 2 · 32/3).

We still have to show

n∑
i=1

P(Ai | Fi−1) = 2 · 32/3n1/3 + o(n1/6). (3.4)

We already know that

P(An | Fn−1) =
2

Nn
+O(n−1),
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therefore what we need is a more precise asymptotic formula for Nn. This easily follows
from (2.1) with G(n) and Hn borrowed from the proof of Theorem 2.1. In this case
δ = 2/3. Set c = 21/40, say, then by (2.1),(

Nn
3

)
=

(
n

2

)[
1 +O

((
n

2

)−1/8)]
,

which implies that Nn = 31/3n2/3
(
1 + o(n−1/6)

)
. Thus,

P(An | Fn−1) = 2 · 3−1/3n−2/3 + o
(
n−5/6

)
,

and we finally obtain (3.4), as needed.

4 Useful lemmas

Lemma 4.1. Let {∅,Ω} = F0 ⊂ F1 ⊂ · · · ⊂ Fn be an increasing sequence of σ-fields, and
let ξ1, ξ2, . . . , ξn random variables, such that 0 ≤ ξi ≤ 1 and ξi is measurable w.r.t. Fi,
i = 1, . . . , n. Introduce

S =

n∑
i=1

ξi, T =

n∑
i=1

E(ξi|Fi−1).

Then for every positive c and B we have

P(|S −B| ≥ 2c) ≤ 3P(|T −B| > c) + 2 exp

{
− c2

2(B + 4
3c)

}
.

Proof. Let us start from the following inequality (cf. Theorem 2.1 and Remark 2.1 in
[Fan et al. (2012)]).

Let (Xi;Fi)i=0,...,n be a supermartingale, where X0 = 0, and {∅,Ω} = F0 ⊂ · · · ⊂ Fn.
Let 〈X〉n denote the quadratic characteristic of the supermartingale, i.e.,

〈X〉n =

n∑
i=1

E
(
[Xi −Xi−1]2

∣∣ Fi−1).
Suppose that the differences of the supermartingale are are bounded by 1 from above.
Then, for any x ≥ 0 and v ≥ 0,

P
(
Xn ≥ x and 〈X〉n ≤ v2

)
≤ exp

{
− x2

2(v2 + 1
3x)

}
. (4.1)

Now, define

Q =:

n∑
i=1

Var(ξi|Fi−1) ≤
n∑
i=1

E(ξ2i |Fi−1) ≤ T.

Then we have

P(S ≥ B + 2c) ≤ P(S ≥ T + c) + P(T > B + c)

≤ P(S − T ≥ c, Q ≤ B + c) + P(Q > B + c) + P(T > B + c).

Here
(
Xk =

∑k
i=1[ξi − E(ξi|Fi−1)];Fk

)
k=1,...,n

is a zero mean martingale, its differences

are bounded by 1, and Xn = S − T , 〈X〉n = Q. Set x = c and v2 = B + c, then (4.1)
implies that the first term on the right-hand side is estimated by exp

{
−c2/2(B + 4

3c)
}
.

Thus, using Q ≤ T as well, we obtain

P(S ≥ B + 2c) ≤ exp

{
− c2

2(B + 4
3c)

}
+ 2P(T > B + c). (4.2)
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On the other hand,

P(S ≤ B − 2c) ≤ P(S ≤ T − c) + P(T < B − c)
≤ P(T − S ≥ c, Q ≤ B + c) + P(Q > B + c) + P(T < B − c).

Here we can estimate the first term by exp
{
−c2/2(B + 4

3c)
}

again, considering the
martingale (−Xk;Fk). Consequently,

P(S ≤ B − 2c) ≤ exp

{
− c2

2(B + 4
3c)

}
+ P(|T −B| > c).

The proof can be completed by combining this with (4.2).

By substituting c = εB/2 we obtain the following variant.

Corollary 4.2. For every positive ε and B,

P(|S −B| ≥ εB) ≤ 3P
(
|T −B| ≥ 1

2εB
)

+ 2 exp

{
− ε2B

8(1 + 2
3ε)

}
.

Lemma 4.3. There exist positive constants κ1, κ2, κ3, κ4 such that κ2 < 2/3 and

P
(
|Nn − 31/3n2/3| ≥ κ1nκ2

)
≤ exp(−κ3nκ4)

holds for every n ≥ 1.

Proof. Actually, we prove the desired inequality with κ2 = 10/19 and κ4 = 1/19. We will
use the following result of [McDiarmid (1998)] (see Theorem 3.14).

Let X0 ≡ 0, X1, . . . , Xn be a martingale with respect to the filtration {∅,Ω} = F0 ⊂
F1 ⊂ · · · ⊂ Fn. Let (αi)i=1,...,n and (βi)i=1,...,n be predictable sequences of random
variables such that αi ≤ Xi −Xi−1 ≤ βi, i = 1, . . . , n. Denote

R2
n =

n∑
i=1

(βi − αi)2. (4.3)

Then, for every positive x and v,

P(Xn ≥ x and R2
n ≤ v2) ≤ exp(−2x2/v2), (4.4)

and consequently,

P(|Xn| ≥ x) ≤ 2 exp(−2x2/v2) + P(R2
n > v2). (4.5)

The proof of the lemma will be performed in four similar steps. Throughout, c1, c2, . . .
will denote suitable positive constants.

Clearly, it is sufficient to prove the claim when n is large enough, say n > n0, because
if κ1 satisfies n0 + 1 < κ1n

10/19
0 , then the desired inequality trivially holds for n ≤ n0.

Consider the martingale(
Xk =

(
Nk
3

)
−
(
k

2

)
, Fk

)
, 1 ≤ k ≤ n.

Clearly, X1 ≡ 0, and

− (k − 1) ≤ Xk −Xk−1 ≤
(
Nk
3

)
−
(
Nk−1

3

)
− (k − 1)

≤
(
Nk−1 + 1

3

)
−
(
Nk−1

3

)
− (k − 1) =

(
Nk−1

2

)
− (k − 1),
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hence

R2
n =

n∑
k=1

(
Nk−1

2

)2

≤ nN4
n−1.

Firstly, Nn−1 ≤ n, thus R2
n ≤ n5. Recall from the proof of Theorem 2.1 that Mn =

G(Sn) − Hn =
(
Nn

3

)
−
(
n
2

)
. Since P(Nn ≥ n16/19) ≤ P(Mn ≥ c1n

48/19), by setting
x = c1n

48/19, v2 = n5 and applying (4.4) we get

P(Nn ≥ n16/19) ≤ exp(−c2n1/19),

which, together with inequality (4.3), implies that

P
(
R2
n > n83/19

)
≤ exp(−c2n1/19).

Next, P(Nn ≥ n14/19) ≤ P(Mn ≥ c3n42/19), so let x = c3n
42/19, v2 = n83/19; then (4.4)

leads to
P(Nn ≥ n14/19) ≤ exp(−c4n1/19) + exp(−c2n1/19).

Therefore, using inequality (4.3) again,

P(R2
n > n75/19) ≤ exp(−c5n1/19).

Now, let x = n2 and v2 = n75/19 in (4.4). Then we have

P(Nn ≥ 3n2/3) ≤ P
((

Nn
3

)
≥ 3

2
n2
)
≤ P(Mn ≥ n2)

≤ exp(−2n1/19) + exp(−c5n1/19) ≤ exp(−c6n1/19), (4.6)

and from this it follows that

P(R2
n ≥ c7n11/3) ≤ exp(−c6n1/19). (4.7)

Finally, we have ∣∣∣∣ Nn61/3
− n2/3

21/3

∣∣∣∣ ≤ ∣∣∣∣N3
n

6
− n2

2

∣∣∣∣ (n22
)−2/3

.

Here

0 ≤ N3
n

6
−
(
Nn
3

)
≤ N2

n

2
,

n2

2
−
(
n

2

)
=
n

2
,

therefore ∣∣∣∣ Nn61/3
− n2/3

21/3

∣∣∣∣ ≤ (|Mn|+
N2
n + n

2

)
2n−4/3.

Thus, by (4.6),

P

(∣∣∣∣ Nn61/3
− n2/3

21/3

∣∣∣∣ ≥ 2n−4/3|Mn|+ 10

)
≤ P(Nn ≥ 3n2/3) ≤ exp(−c6n1/19),

and hence

P
(
|Nn − 31/3n2/3| ≥ n10/19

)
≤ P

(
61/3(2n−4/3|Mn|+ 10) ≥ n10/19

)
+ exp(−c6n1/19)

≤ P(|Mn| ≥ c8n10/19+4/3) + exp(−c6n1/19).

By (4.5), the first probability on the right-hand side can be estimated with x =

c8n
10/19+4/3 and, in virtue of (4.7), v2 = c7n

11/3. It follows that

P(|Mn| ≥ c8n10/19+4/3) ≤ 2 exp(−c9n1/19) + exp(−c6n1/19).

Altogether we get

P
(
|Nn − 31/3n2/3| ≥ n10/19

)
≤ exp(−c10n1/19)

if n is large enough, as needed.

ECP 27 (2022), paper 2.
Page 8/12

https://www.imstat.org/ecp

https://doi.org/10.1214/21-ECP444
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


A random graph of moderate density

5 Asymptotic degree distribution

In many recursive random graph models, including several types of scale free graphs,
the proportion of vertices of a fixed degree converges almost surely to a deterministic
limit, which makes up a discrete probability distribution, often a power law. In those
models the number of edges grows linearly with the number of vertices, thus the graphs
are sparse. By contrast, our graph appears of moderate density, as the number of edges
is n = Θ(N

3/2
n ). Not a surprise that an asymptotic degree distribution does not exist in

the sense above. Instead of counting vertices with a fixed degree we compare actual
degrees to the current average degree, which grows to infinity with n.

Let d̄n denote the average degree after n steps. That is, d̄n is equal to the sum of
degrees divided by the number of vertices, where the numerator of this fraction is just
the double of the number of edges. Thus d̄n = 2n/Nn ∼ 2 · 3−1/3n1/3. Notice that the
degree of every fixed vertex is asymptotically the triple of d̄n. This is so because the
newer a vertex is, the smaller its degree is and the younger vertices pull down the
average.

Theorem 5.1. Let 0 < t < 3. Then the asymptotic proportion of vertices with degree
greater than t times the average degree is a.s. convergent, namely,

lim
n→∞

N−1n
∣∣{k ≤ Nn : dn(k) > td̄n}

∣∣ = (1− t/3)2.

This result is similar to Theorem 2.1 of [Backhausz and Móri (2012)]. There the
asymptotic degree distribution was considered in a fixed level of the uniform recursive
tree. The uniform recursive tree is defined recursively by starting from a single node
called the root, and adding a new vertex at every step, which is to be connected to an
existing vertex selected uniformly at random [Pittel (1994)]. Let Ln(m) denote the set of
vertices that are of distance m from the root after n steps; this is called level m. It can
be proved that |Ln(m)| ∼ (log n)m/m! almost surely as n→∞. Then the average degree
in level m is

d̄n,m =
|Ln(m+ 1)|
|Ln(m)|

+ 1 ∼ log n

m+ 1
a.s.,

and for every t, 0 < t < m+ 1, we have

lim
n→∞

|Ln(m)|−1
∣∣{k ∈ Ln(m) : dn(k) > td̄n,m}

∣∣ =
(
1− t/(m+ 1)

)m
with probability 1. The method of the proof can be adapted to our present problem, but
the fact that here the dynamics of the degree process dn(k) depends on the current value
of the degree makes the analysis much harder.

Proof of Theorem 5.1. Throughout the proof we will say that a random event occurs
with extra high probability (shortened to WEHP) if the probability of the complementary
event has stretched exponential decay as n→∞: it can be majorized by c1 exp(−c2nc3)

with suitable positive constants c1, c2, c3. For instance, our Lemma 4.3 can be rephrased
as |Nn − 31/3n2/3| < κ1n

κ2 WEHP.
Let t ∈ (0, 3) be fixed, and let ε be a sufficiently small positive number (it will tend to 0

in the end). Let n be sufficiently large (it will tend to∞), and εn2/3 < k < (1−2ε)31/3n2/3.
Then by Lemma 4.3 we have k ≤ Nn WEHP. Introduce

B =

∫ n

3−1/2k3/2

2

31/3t2/3
dt = 2 · 32/3n1/3 − 2(3k)1/2. (5.1)

This quantity cannot be too small by the choice of k, namely, since (3k)1/2 < (1 −
ε)32/3n1/3, we have B > 2ε · 32/3n1/3.
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Let us estimate dn(k) more precisely than in the asymptotic formula in Theorem 3.1.
Let us start from (3.1). We are going to apply Corollary 4.2 to the sum S =

∑n
i=1 1(Ai)

with B introduced in (5.1). To this end, we have to estimate the deviation of T =∑n
i=1P(Ai|Fi−1) from B.
On the one hand, by (3.2) and Lemma 4.3 it follows that

T ≤
∑
i<n

2

Ni
1(Ni ≥ k) ≤

(
1 +

ε

3

)∑
i<n

2

31/3i2/3
1
(

31/3i2/3 ≥
(

1− ε

3

)
k
)

(5.2)

<
(

1 +
ε

2

)
B WEHP.

Note that here we are applying termwise estimations to a sum with an increasing
number of terms. For the sake of the reader’s convenience let us go into details. As
Ni ≤ i + 1, the index of the first nonzero term in the sum is of order n2/3 at most
(in fact, it is of order n1/2, but we will not need that). Hence the probability that(
1− ε

3

)
31/3i2/3 < Ni <

(
1− ε

3

)
31/3i2/3 is not satisfied is bounded by exp(−κ3iκ4). For the

whole sum, from the union bound we get the upper bound O
(
n exp(−κ3(εn2/3)κ4

)
for the

probability that inequality (5.2) is not satisfied, and this still decreases at a stretched
exponential rate.

Therefore we also have

dn(k) ≤ 2 + S ≤ 2 + (1 + ε)B <
ε

3
(Nn − 1) WEHP

by (4.2) and Lemma 4.3.
On the other hand, T can be estimated from below as follows.

Ni−1 − 1− di−1(k)(
Ni−1

2

) >
(

1− ε

3

) 2

Ni
WEHP,

therefore

T >
(

1− ε

3

) ∑
i<n,Ni≥k

2

Ni
≥
(

1− ε

2

)
B WEHP.

Now, Corollary 4.2 implies that (1− ε)B < S < (1 + ε)B WEHP, thus

(1− ε)2
[
32/3n1/3 − (3k)1/2

]
< dn(k) < (1 + ε)2

[
32/3n1/3 − (3k)1/2

]
.

Moreover, since

td̄n < (1 + ε)2t · 3−1/3n1/3 < (t+ 2ε)2 · 3−1/3n1/3,

and similarly,
td̄n > (t− 2ε)2 · 3−1/3n1/3

WEHP by Lemma 4.3, we finally get

dn(k)− td̄n < (1 + ε)2 · 32/3n1/3 − (t− 2ε)2 · 3−1/3n1/3 − (1 + ε)2(3k)1/2

<

(
1− t

3
+ 2ε

)
2 · 32/3n1/3 − (1 + ε)2(3k)1/2

< (1 + ε)2 · 31/2
[(

1− t

3
+ 2ε

)
N1/2
n − k1/2

]
WEHP,

and similarly,

dn(k)− td̄n > (1− ε)2 · 31/2
[(

1− t

3
− 2ε

)
N1/2
n − k1/2

]
.
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Consequently, if dn(k) > td̄n, then k <
(
1 − t/3 + 2ε

)2
Nn WEHP, and εNn < k <(

1− t/3− 2ε
)2
Nn implies dn(k) > td̄n WEHP. Thus,(
1− t

3
− 2ε

)2
− ε <

∣∣{k ≤ Nn : dn(k) > td̄n}
∣∣

Nn
<

(
1− t

3
+ 2ε

)2
WHEP. This inequality is valid for every sufficiently large n by the Borel–Cantelli lemma,
implying the same lower and upper bounds for the lim inf and lim sup of the middle
expression almost surely. Now we can complete the proof by letting ε decrease to 0.

6 Maximal degree

Let µn = max{dn(k) : 0 ≤ k ≤ Nn} be the maximal degree in the graph after n steps.
(In fact, this is not the maximal degree yet, as the degree of the unlabelled initial vertex is
missing, but we shall see that asymptotically it makes no difference.) In many increasing
sparse graph models the maximal degree increases at the same rate as the degree of
each individual vertex, see e.g. [Móri (2005)]. It is no different now; though, unlike in
the case of scale-free models, younger vertices do not have smaller degrees in the limit.

Theorem 6.1. Let µn = max{dn(k) : 0 ≤ k ≤ Nn} be the maximal degree in the random
graph of moderate density after n steps. Then we have

lim
n→∞

n−1/3µn = 2 · 32/3 a.s.

Proof. It is sufficient to show that µn ≤ (1 + ε)2 · 32/3 WEHP, for all positive ε. Then the
Borel–Cantelli lemma gives lim supn→∞ n−1/3µn ≤ (1 + ε)2 · 32/3 a.s. On the other hand,

lim inf
n→∞

n−1/3µn ≥ lim inf
n→∞

n−1/3dn(0) = 2 · 32/3

almost surely.
Similarly to the proof of Theorem 5.1 we consider a vertex k and estimate the

probability P(S ≥ (1 + ε)2 · 32/3n1/3) where S = dn(k)− 2 is a sum of indicators, see (3.1).
Since this time we only need an upper bound for S, we do not have to keep k apart from
0 and Nn. Again,

T ≤ 2
n−1∑
i=0

N−1i < εn1/3 + 2
∑

εn1/3≤i<n

N−1i ≤ εn1/3 +
(

1 +
ε

4

)∫ n

0

2

31/3t2/3
dt

= εn1/3 +
(

1 +
ε

4

)
2 · 32/3n1/3 <

(
1 +

ε

2

)
2 · 32/3n1/3

WEHP, not depending on k. By (4.2), we therefore have

S < (1 + ε)2 · 32/3n1/3 WEHP.

Consequently, µn ≤ (1 + ε)2 · 32/3n1/3 WEHP, as needed.

The difference from the sparse scale-free models can be caught by the fact that
n−1/6(µn − 2 · 32/3n1/3) tends to infinity (at least in probability) instead of having a
non-degenerate limit distribution. Indeed, similarly to the proof of Theorem 3.1, by using
the multivariate version of the martingale central limit theorem, one can show that the
individual degree processes become independent in the limit, thus for an arbitrary fixed
positive integer k we have

n−1/6(µn − 2 · 32/3n1/3) ≥ n−1/6 max
0≤i<k

(
dn(i)− 2 · 32/3n1/3

)
,

where the right-hand side converges in distribution to the maximum of k independent
N(0; 2 · 32/3) random variables.
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