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Abstract

In this note we consider a simple example of a finite dimensional system of stochastic
differential equations driven by a one dimensional Wiener process with a drift, that
displays some similarity with the stochastic Navier-Stokes Equations (NSEs), and
investigate its ergodic properties depending on the strength of the drift. If the latter
is sufficiently small and lies below a critical threshold, then the system admits a
unique invariant probability measure which is Gaussian. If, on the other hand, the
strength of the noise drift is larger than the threshold, then in addition to a Gaussian
invariant probability measure, there exist another one. In particular, the generator of
the system is not hypoelliptic.
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1 Introduction

Study of ergodic properties of dynamical (inclusive random) systems is of profound
importance from both applied and theoretical standpoints. Two examples of such
properties are the existence and uniqueness (or possibly non-uniqueness) of invariant
probability measures. These are often linked to the not-yet fully explained aspects of
turbulence such as e.g. the rigorous proof of the form of the Kolmogorov spectrum.

In the case of stochastic hydrodynamics, i.e. for the stochastic Navier–Stokes equa-
tions of the following form

∂tu+ (u · ∇)u = (µ∆u−∇p+ f) + ξ, ∇ · u = 0, (1.1)

where u is the velocity field, p is the pressure scalar (both unknown), f is the external
force acting on the fluid and ξ is a noise, the first results in those directions are due to
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Flandoli [14], who showed the existence of an invariant probability measure for the 2D
Navier–Stokes equations (NSE) driven by an additive Gaussian noise. The question of
the uniqueness of an invariant probability measure for the same system has been later
addressed by Flandoli and Maslowski [16], Ferario [13] and E, Mattingly and Sinai [12].
The first two papers assumed that noise ξ has been sufficiently non-degenerate (which
had to be counterbalanced by a requirement that it is sufficiently spatially regular to
ensure the solvability of the system (1.1)). The direction of research initiated in first two
of these papers has been followed by Da Prato and Debussche in [8] who proved the
unique solvability of (1.1) (in Besov spaces of negative order) and the existence of an
invariant probability measure for the stochastic Stokes equation (on a 2D torus) when ξ
is the space-time noise; see also the paper by Albeverio and Ferrario [1].

The paper [12] by E, Mattingly and Sinai looked at the question of uniqueness of
an invariant probability measure in the case of a degenerate noise, which happens to
be mathematically more challenging than the non-degenerate noise. In this case the
corresponding Markov process is only a Feller rather than strong Feller. This case was
also studied by Mattingly in [27, 29] in the case the external force f is equal to zero and
in [18, 25, 7] for nonzero force f . The culminating work on this topic is due to Hairer and
Mattingly [21] who, using a new concept of an asymptotically strong Feller semigroup,
proved that the Markov process generated by the stochastic NSEs on a 2D torus has
a unique invariant probability measure provided the Gaussian perturbation is of mean
0 and acts on at least two modes that are of different length and whose integer linear
combinations generate the two dimensional integer lattice. Such a system can be called
a hypoelliptic. Later on Friedlander et al. [17] and Andreis et al. [2], proved that the
hypoellipticity still holds for certain stochastic inviscid dyadic models and hence such
models have a unique invariant probability measure even if the centered noise acts only
on a single mode.

It is still an open question whether similar properties hold in the presence of a large
deterministic force, i.e. when the noise in not centered and its mean is large. For instance
the method from [21] still works when the force is small so that the corresponding
deterministic system has a unique stationary solution which is exponentially stable.
Another open question is whether whether similar properties hold when the noise is
more degenerate than the noise considered in the paper [21].

The modest aim of this note is to prove that for a certain finite dimensional system
modelling the true SNSE, introduced by Minea in [30], such a result is not true. To be
precise, in Theorem 2.3 we show that if κ > λ1 min{λ2, λ3}, then the stochastic system
(2.1), i.e. (2.2), has at least two invariant probability measures, and, since any convex
combination of these invariant probability measures is also an invariant probability
measure, the stochastic system (2.1), i.e. (2.2), has infinitely many invariant probability
measures.

One of the measures, denoted by νσ,κ, is Gaussian. This measure is also the unique
invariant probability measure for the corresponding stochastic “Stokes system” (2.14).
Let us finish this paragraph by recalling that the set of stationary solutions for the
corresponding deterministic system (2.13) has quite a complicated structure. Thus the
present note shows that this also could be the case for its stochastic perturbation.

2 Main results

Let us consider the following Stochastic Differential Equations (SDEs) in R3:

du1 =
[
−λ1u1 −

(
u22 + u23

)]
dt+ κdt+ σdW (t),

du2 = [−λ2u2 + u1u2] dt,

du3 = [−λ3u3 + u1u3] dt,

(2.1)
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where σ > 0, κ ∈ R, and W is a standard real-valued Wiener process.

Clearly we can write the SDEs (2.1) in the form

du = [Au+B(u, u) + κf1] dt+ σf1dW (t), (2.2)

where the maps A and B are defined by

A

 u1
u2
u3

 = −

 λ1u1
λ2u2
λ3u3

 , B

 u1
u2
u3

 ,

 v1
v2
v3

 =

 −u2v2 − u3v3u2v1
u3v1

 (2.3)

and (fi)
3
i=1 is the canonical orthonormal basis of R3.

Note that the mapping B : R3 ×R3 → R3 is bilinear and

(B(u, v), w) = b(u, v, w),

where b is a trilinear form on R3 defined by

b(u, v, w) = −(u2v2 + u3v3)w1 + u2v1w2 + u3v1w3.

We have

b(u, v, w) = −b(u,w, v), u, v, w ∈ R3, (2.4)

(B(u, v), v) = 0, u, v ∈ R3. (2.5)

Remark 2.1. The 2D stochastic Navier-Stokes Equations (1.1) with periodic boundary
conditions can be written in the form

du = [Au+B(u, u) + f ] dt+ dW (t), (2.6)

where −A is a self-adjoint, positive and of compact reselvent, linear operator on the
Hilbert space H of all divergence free and mean zero square integrable vector fields
defined on the 2-d torus T2 and B is a bilinear bounded map from D(A) ×D(A) to H
having the following properties

(B(u, v), w) = −(B(u,w), v), u, v, w ∈ D(A), (2.7)

(B(u, v), v) = 0, u, v ∈ D(A), (2.8)

B(e, e) = 0 for any eigenvector e of A, (2.9)

(B(v, v), Av) = 0, v ∈ D(A). (2.10)

It is worth noting that (2.9) and (2.10) hold only in the periodic 2-dimensional case,
whereas (2.7) and (2.8) hold both in dimensions 2 and 3 and also in the case of the
Dirichlet boundary conditions. The proof of property (2.9) can be found in [15].

The finite dimensional model we consider satisfies (2.7), (2.8), but contrary to the
2D Navier–Stokes equations with periodic boundary conditions, condition (2.9) is not
satisfied, see (2.12). Instead we only have

B(f1, f1) = 0 (2.11)

and

B(fj , fj) = −f1 6= 0 for j = 2, 3. (2.12)
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Remark 2.2. Let us emphasize that the condition (2.11) above corresponds to the
assumption (2.9) which, as we have pointed out earlier, is satisfied for the 2D Navier–
Stokes equations with periodic boundary conditions, see [15]. Thus our equation (2.2)
can be seen as a simple finite dimensional model of such a problem. Let us point out here
that a more general, but still finite dimensional, model has been recently investigated by
Hairer and Coti-Zelati in [20]. They proved the ergodicity of the non-unique invariant
probability measures.

One should also mention a less recent paper [3], by Baňas et al, who studied the
uniqueness and non-uniqueness of invariant probability measures for second order
stochastic differential equations on a sphere.

Given v ∈ R3 we denote by u(·; v) the solution of (2.1) starting at time 0 from v. Note
that

u1 ≡ κ/λ1, u2 ≡ 0 ≡ u3,

is a stationary solution to the deterministic problem

du1 =
[
−λ1u1 −

(
u22 + u23

)
+ κ
]

dt,

du2 = [−λ2u2 + u1u2] dt,

du3 = [−λ3u3 + u1u3] dt.

(2.13)

Note that if κ ≤ λ1 min{λ2, λ3}, then there is unique stationary solution to the system,
whereas if κ > λ1 min{λ2, λ3}, then there exists more than one such a solution. The set
of solutions different from the described above can be characterized as follows:



If λ2 = λ3, then u1 = λ2, u22 + u23 = κ− λ1λ2.

If λ2 > λ3, λ2λ3 ≥ κ, λ3λ1 < κ then u1 = λ3, u2 = 0 and u23 = κ− λ1λ3.

If λ3 > λ2, λ3λ2 ≥ κ, λ2λ1 < κ then u1 = λ2, u3 = 0 and u22 = κ− λ1λ2.

If λ1 max{λ2, λ3} < κ, λ2 6= λ3, then:

(i) u1 = λ2, u3 = 0 and u22 = κ− λ1λ2,

or

(ii) u1 = λ3, u2 = 0 and u23 = κ− λ1λ3.

A natural question arises whether the stochastic differential equation (2.1) exhibits a
similar phenomena as its deterministic counterpart (2.13). We have the following result.

Theorem 2.3. In the framework described above the following holds.

(i) For arbitrary parameters, there exists an invariant probability measure to (2.1). In
fact for any initial value v ∈ R3, there exists a sequence tn ↗ +∞ such that the
following sequence of Borel probability measures on R3

L
(

1

tn

∫ tn

0

u(s; v)ds

)
converges weakly to a Borel probability measure on R3. Consequently, by the
Krylov–Bogolyubov theorem, the simplified stochastic NSE (2.1) has at least one
invariant probability measure.

(ii) For arbitrary λ1 > 0 and κ, σ ∈ R, the law νσ,κ of the following random variable

κ

λ1
f1 + σ

∫ +∞

0

e−λ1tdW (t)f1
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in (R3,B(R3)) is Gaussian and invariant both for (2.1) and for the stochastic linear
“Stokes” equation

dz = Azdt+ (κf1dt+ σf1dW ) . (2.14)

(iii) If
κ < λ1 min{λ2, λ3}, (2.15)

then for any σ ≥ 0, the measure νσ,κ is the unique invariant probability measure of
the simplified stochastic NSEs (2.1). Moreover, νσ,κ is stochastically stable, i.e. for
any initial data v ∈ R3, the laws L(u(t; v)) converge weakly as t→ +∞ to νσ,κ.

(iv) If
κ > λ1 min{λ2, λ3}, (2.16)

then there exists an invariant probability measure to the simplified stochastic NSE
(2.1) which is different from the Gaussian measure νσ,κ.

Remark 2.4. We have recently learnt from a talk given by Francesco Morandin about
two papers [17] and [2], in which infinite dimensional models of NSE-s are studied with
the noise acting only on the first mode. Contrary to our case, that model is hypoelliptic
and admits a unique invariant probability measure.

Remark 2.5. The uniqueness of the invariant measure for the stochastic Navier-Stokes
equations (on a 2D torus) when external force f = κe is equal to 0, the noise is one-
dimensional and viscosity is large with respect to the diffusion coefficient, is known,
see e.g. the paper [12, Theorem 1] by E, Mattingly and Sinai. See also later works
[18, 25, 7].

Remark 2.6. The fact that an invariant probability measure for the stochastic Stokes
equations (on a 2D torus) driven by a canonical cylindrical Wiener process on H is
also an invariant probability measure for the corresponding stochastic Navier–Stokes
equations (1.1) is known, see e.g. the paper [8] by Da Prato and Debussche, where this
statement is made rigorous, and also the paper by Albeverio and Ferrario [1].

3 Proof of Theorem 2.3

Without loss of generality we can assume in the proof that all processes considered
here are continuous.

Proof of (i). By the Itô formula and (2.5) we have

E |u(t; v)|2 = E |v|2 + 2E

∫ t

0

[
〈u(s; v), Au(s; v)〉+ 〈u(s; v), κf1〉+

σ2

2

]
ds

≤ E |v|2 − ρ
∫ t

0

E |u(s; v)|2 + ct, t ≥ 0,

where ρ = min{λ1, λ2, λ3} and c = c(ρ, σ, κ) is independent of t. Here | · | stands for the
Euclidean norm in R3. Thus

sup
t>0

E

[
1

t

∫ t

0

|u(s; v)|2 ds

]
< +∞.

Consequently, the laws of the following family of random variables

1

t

∫ t

0

u(s; v)ds, t > 0,

are tight in R3, and hence relatively weakly compact. Therefore, the existence of an
invariant probability measure follows from the Krylov–Bogoliubov theorem.
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Proof of (ii). This part follows follows immediately from the fact that B(f1, f1) = 0.

Proof of (iii). Note that, for t ≥ 0,

ui(t; v) = exp

{∫ t

0

u1(s; v)ds− λit
}
vi, i = 2, 3,

and

u1(t; v) = e−λ1tv1 −
∫ t

0

e−λ1(t−s)X(s; v)ds+ Z(t), (3.1)

where

Z(t) :=

∫ t

0

e−λ1(t−s) (κds+ σdW (s)) (3.2)

and
X(t; v) := u22(t; v) + u23(t; v) ≥ 0.

Thus, by (2.1), for t ≥ 0,
u1(t; v) ≤ e−λ1tv1 + Z(t),

and consequently,

X(t; v) = e2
∫ t
0
u1(s;v)ds

(
e−2λ2tv22 + e−2λ3tv23

)
≤ e2

∫ t
0
Z(s)ds

(
e−2λ2tv22 + e−2λ3tv23

)
exp

{
2|v1|
λ1

}
.

Clearly, for t ≥ 0,
e−2λ2tv22 + e−2λ3tv23 ≤ e−2λt

(
v22 + v23

)
,

where λ = min{λ2, λ3} > 0, and therefore

X(t; v) ≤ e2
∫ t
0
Z(s)ds−2λt (v22 + v23

)
exp

{
2|v1|
λ1

}
.

By the law of large numbers we deduce that

1

t

∫ t

0

Z(s)ds→ κ

λ1
, P-a.s. as t→ +∞.

Thus, as κ < λ1λ we have
lim

t→+∞
X(t; v) = 0, P-a.s.

From the first equation of (2.1) we conclude that for t ≥ 0,

u1(t; v) = e−λ1(t−T )u1(T ; v)−
∫ t

T

e−λ1(t−s)X(s; v)ds+

∫ t

T

e−λ1(t−s)(κds+ σdW (s))

= R(t, T ) + Z(t),

where

R(t, T ; v) := e−λ1(t−T )u1(T ; v)−
∫ t

T

e−λ1(t−s)X(s; v)ds−
∫ T

0

e−λ1(t−s)(κds+ σdW (s)).

Since R(t, T ; v)→ 0, P a.s., as t� T and t, T → +∞ and Z(t) converges in law to

ν̃σ,κ := N
(
κ

λ1
,
σ2

2λ1

)
(3.3)

it follows that u1(t; v) converges in law to ν̃σ,κ, and the desired conclusion follows with

νσ,κ := ν̃σ,κ ⊗ δ0 ⊗ δ0. (3.4)

This concludes the proof of (iii).
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Proof of (iv). Assume that λ2 = min{λ2, λ3}. Let u be the solution to (2.1) with the initial
data u1(0) = u3(0) = 0 and u2(0) = 1. Then, for t ≥ 0,

u1(t) = −
∫ t

0

e−λ1(t−s)X(s)ds+ Z(t),

where the process Z is defined in (3.2) and

X(t) = exp

{
2

∫ t

0

(u1(s)− λ2)ds

}
.

Note that under the prescribed initial condition we have, for t ≥ 0,

X(t) = u22(t). (3.5)

Since X ≥ 0 and λ1 > 0, we have, for t ≥ 0,∫ t

0

u1(s)ds = −
∫ t

0

∫ s

0

e−λ1(s−r)X(r)drds+

∫ t

0

Z(s)ds

= −
∫ t

0

∫ t

r

e−λ1(s−r)dsX(r)dr +

∫ t

0

Z(s)ds

=

∫ t

0

[
− 1

λ1

(
1− e−λ1(t−s)

)
X(s) + Z(s)

]
ds

≥
∫ t

0

[
− 1

λ1
X(s) + Z(s)

]
ds.

Therefore, we infer that

X(t) ≥ exp

{
2

∫ t

0

(
− 1

λ1
X(s) + Z(s)− λ2

)
ds

}
, t ≥ 0.

Next, let us observe that by the law of large numbers for any ρ such that

0 < ρ <
κ

λ1
− λ2,

there exists a random variable ξ such that P(ξ > 0) = 1 and P-a.s

X(t) ≥ ξ exp

{
2

∫ t

0

(
− 1

λ1
X(s) + ρ

)
ds

}
for all t > 0.

Thus, for t ≥ 0,

X(t) exp

{
2

λ1

∫ t

0

X(s)ds

}
≥ ξe2ρt.

Equivalently, for t ≥ 0,
d

dt
exp

{
2

λ1

∫ t

0

X(s)ds

}
≥ 2

λ1
ξe2ρt,

and hence

exp

{
2

λ1

∫ t

0

X(s)ds

}
≥ ξ

ρλ1

(
e2ρt − 1

)
+ 1.

Finally, for t large enough we have

1

t

2

λ1

∫ t

0

X(s)ds ≥ 1

t
log

{
ξ

ρλ1

(
e2ρt − 1

)
+ 1

}
.
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Since

lim
t→+∞

1

t
log

{
ξ

ρλ1

(
e2ρt − 1

)
+ 1

}
= 2ρ

we can see that

lim inf
t→+∞

1

t

2

λ1

∫ t

0

X(s)ds ≥ 2ρ, P-a.s. . (3.6)

This implies that there exists an invariant probability measure different from νσ,κ defined
in (3.4). Indeed, consider the Markov process (u1, u2, u3, X = u22), see (3.5), for initial
value (0, 1, 0, 1). From the first part of the theorem, the sequence of laws

L
(

1

t

∫ t

0

(u1(s), u2(s), u3(s), X(s))ds

)
is tight and hence there is a sequence tn ↗ +∞ and a probability measure ν on
R3 × [0,+∞) such that

L
(

1

tn

∫ tn

0

(u1(s), u2(s), u3(s), X(s))ds

)
converge to ν. The probability measure

ν̃(Γ) = ν(Γ× [0,+∞)), Γ ∈ B(R3)

is invariant for the process (u1(t), u2(t), u3(t)), t ≥ 0. Since, thanks to (3.6), its marginal
with respect to the second variable is not δ0, it is different from νσ,κ.

We finish this paper with the following strengthening of our main result.

Proposition 3.1. Let ν̃σ,κ and νσ,κ, be given by (3.3) and respectively by (3.4). If

2

∫
R

|z|ν̃σ,κ(dz) < min{λ1, λ2, λ3}, (3.7)

then νσ,κ is the unique invariant probability measure for the nonlinear equation (2.1).

Remark 3.2. Condition (3.7) is stronger than the condition (2.15) from Theorem 2.3(iii).
In particular, for a fixed κ ≥ 0, (3.7) is not satisfied for large σ.

Proof of Proposition 3.1. To see that (3.7) is a sufficient condition for the ergodicity we
denote by z the solution of the linear equation

dz = Azdt+ (κf1dt+ σf1dW (t)) , z(0) = 0.

Let v ∈ R3. Then y = u(·; v)− z satisfies

dy = [Ay +B(y + z, y + z)] dt, y(0) = v.

Hence

1

2

d

dt
|y(t)|2 = 〈Ay, y〉+ b(y(t), z(t), y(t)).

Clearly

〈Ay, y〉 ≤ −λ |y(t)|2 ,

where

λ := min{λ1, λ2, λ3}.
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Next, it is easy to see that

|b(y(t), z(t), y(t))| ≤ 2 |z(t)| |y(t)|2 .

Consequently we have the estimate

1

2

d

dt
|y(t)|2 ≤

(
−λ+ 2 |z(t)|

)
|y(t)|2 ,

and hence

|y(t)|2 ≤ |v|2 exp

{
2

∫ t

0

(
−λ+ 2 |z(s)|

)
ds

}
.

Since, by the ergodicity of ν̃σ,κ for z, we have

1

t

∫ t

0

|z(s)| ds→
∫
R

|z|ν̃σ,κ(dz), P-a.s.,

the desired conclusion follows.
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