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Abstract

In [10], Jonasson and Steif conjectured that no non-degenerate sequence of transitive
Boolean functions (fn)n>1 with limn→∞ I(fn) = ∞ could be tame (with respect to
some (pn)n>1). In a companion paper [5], the author showed that this conjecture in its
full generality is false, by providing a counter-example for the case when, at the same
time, limn→∞ npn = ∞ and limn→∞ nαpn = 0 for some α ∈ (0, 1). In this paper we
show that with slightly different assumptions, the conclusion of the conjecture holds
when the sequence (pn)n>1 is bounded away from zero and one.
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1 Introduction

The aim of this paper is to show that with slightly different assumptions, a conjecture
made by Jonasson and Steif in [10] is true. The results included in this paper complements
the earlier paper [5] by the author, which shows that the conjecture, in its full generality,
is false.

Before presenting the conjecture and the main result of this paper, we will need
some notation and definitions, which we now introduce. For each n > 1, fix some
pn ∈ (0, 1) and let X(n) = (X

(n)
t )t>0 be the continuous time pn-biased random walk on

the n-dimensional hypercube {0, 1}n defined as follows. For each i ∈ [n] := {1, 2, . . . , n},
let (X

(n)
t (i))t>0 be the continuous time Markov chain on {0, 1} which at random times,

distributed according to a rate one Poisson process, is assigned a new value, chosen
according to (1− pn)δ0 + pnδ, independently of everything else. For each t > 0, we let

X
(n)
t :=

(
X

(n)
t (1), . . . , X

(n)
t (n)

)
. The unique stationary distribution of (X

(n)
t )t>0, denoted

by πn, is the measure ((1 − pn)δ0 + pnδ1)⊗n on {0, 1}n. Throughout this paper, we will

always assume that X(n)
0 is chosen with respect to this measure. When t > 0 is small, the

difference between X(n)
0 and X(n)

t is often thought of as noise which describes a small
proportion of the bits having been miscounted or corrupted.

A function f : {0, 1}n 7→ {0, 1} will be referred to as a Boolean function. Some classical
examples of Boolean functions are the Dictator function, defined by Dictn(x) := x(1),
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When are sequences of Boolean functions tame?

the Majority function, defined by Majn(x) := 1
(∑n

i=1 x(i) > n/2
)

and the Parity function,
defined by Parityn(x) := 1

(∑n
i=1 x(i) is even

)
(see, e.g., [9, 14]). In this paper we will

in general be interested in sequences (fn)n∈N of Boolean functions, with fn : {0, 1}n →
{0, 1}. Since it is sometimes not natural to require that a sequence of Boolean functions
is defined for each n ∈ N, we only require that a sequence of Boolean functions is defined
for n in an infinite increasing sub-sequence N of N. Such sub-sequences of N will be
denoted by N = {n1, n2, . . .}, where 1 6 n1 < n2 < . . .. To simplify notation, whenever
we consider the limit of a sequence (ynm

)m>1 and the dependency on N is clear, we will
abuse notation and write limn→∞ yn instead of limm→∞ ynm

.
One of the main objectives of [10] was to, given a sequence of Boolean functions

(fn)n∈N , introduce notation which describes possible behaviours of
(
fn(X

(n)
t )

)
t>0

for
large n. Two of these definitions, which will be relevant for the current paper, are given
in the following definition.

Definition 1.1. Let (fn)n∈N , fn : {0, 1}n → {0, 1}, be a sequence of Boolean functions.

For n ∈ N , let Cfn denote the (random) number of times in (0, 1) at which (fn(X
(n)
t ))t>0

has changed its value, i.e., let

Cfn := lim
N→∞

N−1∑
i=0

1
(
fn(X

(n)
i/N ) 6= fn(X

(n)
(i+1)/N )

)
.

Then (fn)n∈N is said to be

(i) tame if (Cfn)n>1 is tight, that is for every ε > 0 there is k > 1 and n0 > 1 such that

P (Cfn > k) < ε ∀n ∈ N : n > n0

(ii) volatile if Cfn ⇒∞ in distribution.

In [10], the authors showed that a sequence of Dictator functions is tame and that a
sequence of Parity functions is volatile, while a sequence of Majority functions is neither
tame nor volatile. More generally, the authors proved that any noise sensitive sequence
of Boolean functions is volatile, while any sequence of Boolean functions which is tame
is noise stable. As noted in [5] and [8], there are many sequences of functions which are
both noise stable and volatile, and hence the opposite does not hold.

We now describe a few additional properties which a Boolean function can have.
First, a Boolean function f : {0, 1}n → {0, 1} is said to be transitive if for all i, j ∈ [n] :=

{1, 2, . . . , n} there is a permutation σ of [n] which is such that (i) σ(i) = j, and (ii) for
all x ∈ {0, 1}n, if we define σ(x) :=

(
x(σ(k))

)
k∈[n]

, then f(x) = f
(
σ(x)

)
. We say that

f : {0, 1}n → {0, 1} is increasing if for all x, x′ ∈ {0, 1}n such that x(i) 6 x′(i) for all
i ∈ [n], we have f(x) 6 f(x′). A sequence of Boolean functions (fn)n∈N is said to be
non-degenerate if

0 < lim inf
n→∞

P
(
fn(X

(n)
0 ) = 1

)
6 lim sup

n→∞
P
(
fn(X

(n)
0 ) = 1

)
< 1.

Given x ∈ {0, 1}n and i ∈ [n], let Rix denote the random element in {0, 1}n obtained
by resampling the ith bit of x according to (1 − pn)δ0 + pnδ1. If f : {0, 1}n → {0, 1}, we
define the influence of the ith bit on f , by

Ii(f) := P
(
f(X

(n)
0 ) 6= f(RiX

(n)
0 )

)
.

Note that this definition differs from the definition of influences in, e.g., [11], [12],
and [14] by a factor 2pn(1 − pn), but agrees with the analogue definitions given in,
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e.g., [6] and [10]. If Ii(f) is the same for all i ∈ [n] := {1, 2, . . . , n}, then we say that f is
regular. The sum of the influences, I(f) :=

∑
i∈[n] Ii(fn), is called the total influence of

f .

In [10], the authors show that a sufficient, but not necessary, condition for a non-
degenerate sequence (fn)n∈N of Boolean functions to be tame is that supnE[Cfn ] <∞ (or
equivalently, that supn I(fn) <∞). It is natural to ask if this condition is also necessary
for some natural subset of the set of all sequences of Boolean functions. This motivated
the following conjecture.

Conjecture 1.2 (Conjecture 1.21 in [10]). If (fn)n∈N is a non-degenerate sequence of
transitive Boolean functions and limn→∞E[Cfn ] =∞, then (fn)n∈N is not tame.

Remark 1.3. By the second remark after Conjecture 1.21 in [10], there is a tame
sequence of Boolean functions which satisfies all assumptions except non-degeneracy in
Conjecture 1.2, and hence this assumption is necessary.

In [6], a family of counter-examples to Conjecture 1.2 was given. In detail, these
examples provide counter-examples to Conjecture 1.2 exactly when the sequence (pn)n>1

is such that limn→∞ npn =∞ and limn→∞ nprn = 0 for some r > 2. The assumption that
limn→∞ npn = ∞ guarantees that, as n → ∞, the expected number of jumps made
by (X(n))n∈N in (0, 1) tends to infinity. In particular, if lim supn→∞ npn < ∞, then all
sequences of Boolean functions will be tame. Consequently, the family of examples
given in [6] show that Conjecture 1.2 is false whenever the sequence (pn)n>1 tends to
zero sufficiently fast, but still slowly enough for there to be interesting behaviour. In
contrast to this result, the main objective of this paper is to show that when (pn)n>1

is bounded away from zero and one, any non-degenerate sequence of increasing and
regular Boolean functions is non-tame, and hence for (pn)n>1 in this range, a version of
Conjecture 1.2 holds.

Theorem 1.4. If (pn)n>1 satisfies 0 < lim infn→∞ pn 6 lim supn→∞ pn < 1, and (fn)n∈N
is a non-degenerate sequence of regular and increasing Boolean functions, then (fn)n∈N
is not tame.

Remark 1.5. If we compare the assumptions on (fn)n∈N in Theorem 1.4 with the
assumptions on (fn)n∈N in Conjecture 1.2, the property of being increasing is added,
however, the requirement of transitivity is replaced with the assumption that fn regular
for each n ∈ N .

Remark 1.6. Very interestingly, the family of counter-examples to Conjecture 1.2
given in [6] show that the conclusion of Theorem 1.4 does not hold if the assump-
tion that 0 < lim infn→∞ pn 6 lim supn→∞ < 1 is replaced by the assumptions that
lim infn→∞ npn = ∞ and lim supn→∞ nαpn < ∞ for some α ∈ (0, 1). This behaviour
mirrors similar discrepancies between the two regimes for (pn)n>1 which are present
also for other results about Boolean functions (see, e.g., [12]). One reason to expect a
difference in behaviour between these regimes is that the latter is exactly the regime for
which there are non-degenerate sequences of transitive Boolean functions with finite
sized witnesses.

Remark 1.7. Using, e.g., Theorem 1 in [2], one shows that any non-degenerate sequence
(fn)n∈N of regular Boolean functions satisfies limn→∞ I(fn) = ∞, where I(fn) is the
so-called total influence of fn. By Proposition 1.19 in [10], we have E[Cf ] = I(f), and
hence the assumptions of Theorem 1.4 guarantee that limn→∞E[Cfn ] =∞. We mention
that by definition, if (fn)n∈N is not tame, then this must hold.

Remark 1.8. The proof of Theorem 1.4 does not really require that fn is regular for
each n ∈ N , but rather that some positive proportion of the influences are of the same
order and correspond to a positive proportion to the total influence.
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The rest of this paper will be organised as follows. In Section 2, we introduce the
Fourier-Walsh expansions of Boolean functions, which will be a crucial tool in the proof
of Theorem 1.4. In Section 3, we present an expression for E

[
C2
f

]
in terms of the

Fourier-Walsh coefficients of f . Finally, in Section 4, we give a proof of Theorem 1.4.

2 Background and notations

In this section, we will give a brief introduction to the Fourier-Walsh expansion of
Boolean functions, and state and prove some results which will be useful to us. For
a more thorough introduction to the of Fourier analysis to understand properties of
Boolean functions, we refer the reader to [14].

For the rest of this section, fix some n > 1 and assume that pn ∈ (0, 1) is given. To
simplify notation, we let [n] denote the set {1, 2, . . . , n}.

For functions f, g : {0, 1}n → {0, 1} and X(n)
0 ∼ πn, we let

〈f, g〉 := E
[
f(X

(n)
0 )g(X

(n)
0 )

]
.

Then 〈·, ·〉 is an inner product on the set of real-valued functions with domain {0, 1}n. For
S ⊆ [n] and x ∈ {0, 1}n, define

χS(x) :=
∏
i∈S

x(i)− pn√
pn(1− pn)

.

Then {χS}S⊆[n] is an orthonormal basis for the space of functions f : {0, 1}n → R, using
the inner product 〈·, ·〉 (see, e.g., Chapter 8.4 in [14]). In other words, for any S, T ⊆ [n]

we have

〈χS , χT 〉 = 1(S = T ). (2.1)

Here 1 is the indicator function, so that, e.g., 1(S = T ) is equal to 1 if S = T and equal to
0 else. Since {χS}S⊆[n] is finite, any function f : {0, 1}n → R has a unique decomposition

f(x) =
∑
S⊆[n]

f̂(S)χS(x), x ∈ {0, 1}n,

where f̂(S) is given by 〈f, χS〉. Moreover, noting that for all x ∈ {0, 1}n and all S, T ⊂ [n]

we have

χS(x)χT (x) = χS∆T (x)
∏

i∈S∩T

(
1 +

1− 2pn√
pn(1− pn)

· χ{i}(x)
)

(2.2)

it follows that for any S, T,R ⊆ [n],

E
[
χS
(
X

(n)
0

)
χT
(
X

(n)
0

)
χR
(
X

(n)
0

)]
= 1

(
S∆T∆R = S ∩ T ∩R

)
·
( 1− 2pn√

pn(1− pn)

)|S∩T∩R|
.

(2.3)

To simplify the rest of the paper, we will abuse notation slightly and sometimes treat
πn and the functions in {χS}S⊆[n] as functions with domain {0, 1}n, and sometimes as
real-valued vectors in R{0,1}

n

in the natural way. We let 1 := (1, 1, . . . , 1) ∈ R{0,1}n , and
note that 1 = χ∅. Analogously, we let 0 := (0, 0, . . . , 0) ∈ R{0,1}n .

For i ∈ [n], x ∈ {0, 1}n and y ∈ {0, 1}, let xi7→y ∈ {0, 1}n be defined by

xi 7→y(j) :=

{
y if j = i

x(j) if j 6= i,
j ∈ [n].
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Using this notation, for each i ∈ [n] we define the differential operator Di acting on
functions f : {0, 1}n → {0, 1}, by

Dif(x) := f(xi 7→1)− f(xi7→0), x ∈ {0, 1}n.

In the next lemma, we use the Fourier-Walsh expansion to describe how these differential
operators act on Boolean functions.

Lemma 2.1. For any function f : {0, 1}n → {0, 1}, i ∈ [n] and x ∈ {0, 1}n, we have

Dif(x) =
1√

pn(1− pn)

∑
T⊆[n] : i 6∈T

f̂
(
T ∪ {i}

)
χT (x).

For a proof of Lemma 2.1, see, e.g., Section 8.4 in [14].
Before closing this section, we mention that it is easy to verify that (see, e.g., [14,

Proposition 8.16]),
Var fn =

∑
S⊆[n] : S 6=∅

f̂n(S)2,

and similarly (see, e.g., [14, Proposition 8.23]), that

I(fn) =
∑

S⊆[n] : S 6=∅

|S|f̂n(S)2.

3 An expression for E[C2
f ] using the Fourier coefficients

The main goal of this section is to give a proof of the following proposition, which
will be crucial in the proof of Theorem 1.4.

Proposition 3.1. Let f : {0, 1}n → {0, 1} be increasing. Then

E[C2
f ]

= E[Cf ] + E[Cf ]2

+
∑

S⊆[n] :
S 6=∅

e−|S| − (1− |S|)
|S|2

[
(1− 2pn)|S|f̂(S) + 2

√
pn(1− pn)

∑
i∈[n] : i 6∈S

f̂
(
S ∪ {i}

)]2
.

In order to give a proof of this result, we will first introduce some additional notation.
After this, we state and prove a number of lemmas from which the claim of Proposition 3.1
will follow.

For the rest of this section, assume that n > 1 and pn ∈ (0, 1) is given. For i ∈ [n] and
x ∈ {0, 1}n, define

(x⊕ ei)(j) :=

{
1− x if j = i

x(j) if j 6= i,
j ∈ [n].

We now define two matrices which will be useful throughout the rest of this section. Let
Qn be the transition matrix of the discrete time Markov chain indexed by the resampling
times of (X

(n)
t )t>0, i.e., for x, y ∈ {0, 1}n let

Qn(x, y) :=


1
n ·
∑n
i=1

(
(1− pn)1(x(i) = 0) + pn1(x(i) = 1)

)
if x = y,

1
n ·
(
pn1(x(i) = 0) + (1− pn)1(x(i) = 1)

)
if y = x⊕ ei for some i∈ [n],

0 else.

Since for any x ∈ {0, 1}n and i ∈ [n] we have 1(x(i) = 1) = x(i) and 1(x(i) = 0) = 1−x(i),
the matrix Qn can equivalently be defined by

Qn(x, y) :=


1
n ·
∑n
i=1

(
(1− pn)(1− x(i)) + pnx(i)

)
if x = y,

1
n ·
(
pn(1− x(i)) + (1− pn)x(i)

)
if y = x⊕ ei for some i ∈ [n],

0 else.
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One can easily show that the functions {χS}S⊆[n] are eigenvectors of Pn, and that if we
let In denote the |{0, 1}n|-dimensional identity matrix, we have

(Qn − In)χS = −|S|
n
χS . (3.1)

Next, for each function f : {0, 1}n → {0, 1}, we define the matrices Q∂f and Qf by

Q∂f (x, y) := Qn(x, y) · 1
(
f(x) 6= f(y)

)
, x, y ∈ {0, 1}n

and
Qf := Qn −Q∂f .

When pn = 1/2, the function Q∂f1 : {0, 1}n → R is exactly equal to the so-called sensitiv-
ity of the function f , sometimes denoted by hf (see, e.g., [4] and [14]). When pn 6= 1/2,
the function Q∂f1 : {0, 1}n → R can be thought of as a weighted analog of this function.

Given f : {0, 1}n and i ∈ [n], recall that we have defined Ii(f) to be the probability

that f(X
(n)
0 ) changes when we re-randomize the ith bit of X(n)

0 . In other words, we have

Ii(f) = E
[(
1
(
X

(n)
0 (i) = 0

)
· pn + 1

(
X

(n)
0 (i) = 1

)
· (1− pn)

)(
Dif(X

(n)
0 )

)2]
.

Summing over all i ∈ [n], we obtain

I(f) =
∑
i∈[n]

E
[(
1
(
X

(n)
0 (i) = 0

)
· pn + 1

(
X

(n)
0 (i) = 1

)
· (1− pn)

)(
Dif(X

(n)
0 )

)2]
= πTnQ∂f1.

(3.2)

We will later be interested in how the matrices Q∂f and Qf acts on the functions in
{χS}S⊆[n]. The first step in this direction is the following result.

Lemma 3.2. Let f : {0, 1}n → {0, 1} and S ⊆ [n]. Then

πTnQ∂fχS =
〈
Q∂f1, χS

〉
. (3.3)

Proof. Let Dπn
be the diagonal matrix with diagDπn

= πn. Then, since X(n) is re-

versible, the matrix D1/2
πn QnD

−1/2
πn is symmetric, and hence it immediately follows that

D
1/2
πn Q∂fD

−1/2
πn is also symmetric. Using this observation, we obtain

〈Q∂f1, χS〉 = (Q∂f1)TDπn
χS = 1TQT∂fDπn

χS = 1TD1/2
πn

(D1/2
πn
Q∂fD

−1/2
πn

)TD1/2
πn
χS

= 1TD1/2
πn

(D1/2
πn
Q∂fD

−1/2
πn

)D1/2
πn
χS = 1TDπn

Q∂fχS = πTnQ∂fχS

as desired.

In the next lemma, we give an expression for πTnQ∂fχS in terms of the Fourier
coefficients of f .

Lemma 3.3. For any increasing function f : {0, 1}n → {0, 1} and S ⊆ [n], we have

πTnQ∂fχS =
1

n

[
(1− 2pn)|S|f̂(S) + 2

√
pn(1− pn)

∑
i∈[n] : i 6∈S

f̂
(
S ∪ {i}

)]
. (3.4)

Remark 3.4. The proof of Lemma 3.3 is the only part of the proof of our main result
that directly requires that each function in the sequence (fn)n>1 is increasing. For
comparison, one can show that the analogue of (3.4) without this assumption is given by

πTnQ∂fχS =

√
pn(1− pn)

n

∑
T,T ′⊆[n] :

T∆T ′⊆S⊆T∪T ′

|T ∩ T ′|f̂
(
T
)
f̂
(
T ′
)( 1− 2pn√

pn(1− pn)

)|S∩T∩T ′|
.
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When p 6= 1/2, similar expressions appear naturally since for any f, g : {0, 1}n → {0, 1}
and any S ⊆ [n], we have

〈fg, χS〉 =
∑

T,T ′⊆[n] :
T∆T ′⊆S⊆T∪T ′

f̂(T )ĝ(T ′)
( 1− 2pn√

pn(1− pn)

)|S∩T∩T ′|
.

The main reason we do not consider this general case is that it does not work as well
with the inequalities we will apply later.

Proof of Lemma 3.3. Let f : {0, 1}n → {0, 1} be increasing and let S ⊆ [n]. By Lemma 3.2,
we have

πTQ∂fχS = 〈Q∂f1, χS〉.

Fix some x ∈ {0, 1}n. Since f is increasing we have

nQ∂f1(x) =
∑
i∈[n]

(
pn
(
1− x(i)

)
+ (1− pn)x(i)

)
Dif(x). (3.5)

Note that for any i ∈ [n], we have

(
1− x(i)

)
· pn + x(i) · (1− pn) = pn(1− pn)

(
2 +

1− 2pn√
pn(1− pn)

· x(i)− pn√
pn(1− pn)

)
= pn(1− pn)

(
2 +

1− 2pn√
pn(1− pn)

· χ{i}(x)
)

and that by Lemma 2.1, we have

Dif(x) =
1√

pn(1− pn)

∑
T⊆[n] : i 6∈T

f̂
(
T ∪ {i}

)
χT (x).

Combining these observations with (3.5), we obtain

nQ∂f1(x) · χS(x)

=
∑
i∈[n]

(
2
√
pn(1− pn) + (1− 2pn) · χ{i}(x)

)[ ∑
T⊆[n] : i6∈T

f̂
(
T ∪ {i}

)
χT (x)

]
χS(x)

=
∑
i∈[n]

(
2
√
pn(1− pn)

∑
T⊆[n] :
i 6∈T

f̂
(
T ∪ {i}

)
χT (x) + (1− 2pn) ·

∑
T⊆[n] :
i∈T

f̂
(
T
)
χT (x)

)
χS(x).

Using (2.1), we thus get

n
∑

x∈{0,1}n
πn(x)Q∂f1(x)χS(x)

=
∑
i∈[n]

(
2
√
pn(1− pn)f̂

(
S ∪ {i}

)
1(i 6∈ S) + (1− 2pn)f̂

(
S
)
1(i ∈ S)

)

= 2
√
pn(1− pn)

∑
i∈[n] : i 6∈S

f̂
(
S ∪ {i}

)
+ (1− 2pn)|S|f̂

(
S
)
.

This concludes the proof.

In the next lemma we, given a Boolean function f : {0, 1}n → {0, 1}, express the
moment generating function of Cf as a sum whose terms depend on the matrices Qn
and Q∂f .
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Lemma 3.5. Let f : {0, 1}n → {0, 1}. Then the moment generating function of Cf is
given by

E[esCf ] =

∞∑
k=0

nk

k!
πn

T
(

(Qn − In) + (es − 1)Q∂f

)k
1, s ∈ R.

Proof. Let f : {0, 1}n → {0, 1} and let Tn be the (random) number of times in (0, 1) when
bits are resampled. By definition, Tn has a Poisson distribution with rate n. This implies
in particular that

E[esCf ] = E
[
E
[
esCf | Tn

]]
=

∞∑
k=0

e−nnk

k!
E
[
esCf | Tn = k

]
. (3.6)

We now express E
[
esCf | Tn = k

]
in terms of the matrices Qf and Q∂f . To this end,

note first that each update of X(n) corresponds to an entry of Qn. Moreover, we have
Qn = Qf + Q∂f , and for each x, y ∈ {0, 1}n, we have either Qn(x, y) = Qf (x, y) and
Q∂f (x, y) = 0, or Qn(x, y) = Q∂f (x, y) and Qf (x, y) = 0. Finally, note that if X(n) jumps
from x to y and Qf (x, y) 6= 0, then we will get a contribution of 1 to esCf , while if
Q∂f (x, y) 6= 0 then we get a contribution of es to esCf . Using these observations, we find
that

E
[
esCf | Tn = k

]
= πTn (Qf + esQ∂f )k1 = πTn

(
(Qf +Q∂f ) + (es − 1)Q∂f

)k
1

= πTn
(
Qn + (es − 1)Q∂f

)k
1.

(3.7)

Combining (3.6) and (3.7), we obtain

E[esCf ] = πn
T
∞∑
k=0

e−nnk

k!

(
Qn + (es − 1)Q∂f

)k
1 =

∞∑
k=0

nk

k!
πTn
(
(Qn − In) + (es − 1)Q∂f

)k
1.

This concludes the proof.

In the next lemma, we use the moment generating function of Cf given in Lemma 3.5
to give expressions for the first and second moment of Cf .

Lemma 3.6. Let f : {0, 1}n → {0, 1}. Then

E[Cf ] = n · πTnQ∂f1 (3.8)

and

E
[
C2
f

]
= E[Cf ] + 2

∞∑
k=2

nk

k!
πn

TQ∂f (Qn − In)k−2Q∂f1. (3.9)

Proof. By Lemma 3.5, for any s ∈ R, we have

E
[
esCf

]
=

∞∑
k=0

nk

k!
πTn
(
(Qn − In) + (es − 1)Q∂f

)k
1.

Differentiating with respect to s and using that πTn (Qn − In) = (Qn − In)1 = 0, we get

E[Cf ] =

[
d

ds
esCf

]
s=0

=

[
d

ds

∞∑
k=0

nk

k!
πTn
(
(Qn − In) + (es − 1)Q∂f

)k
1

]
s=0

= n · πTnQ∂f1

and

E
[
C2
f

]
=

[
d2

ds2
esCf

]
s=0

=

[
d2

ds2

∞∑
k=0

nk

k!
πTn
(
(Qn − In) + (es − 1)Q∂f

)k
1

]
s=0

= n · πTnQ∂f1 + 2

∞∑
k=2

nk

k!
πTnQ∂f (Qn − In)k−2Q∂f1

which is the desired conclusion.
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In the next lemma, we expand the terms in (3.9) to get a simpler expression for the
second moment of Cf .

Lemma 3.7. If f : {0, 1}n → {0, 1}, then

E[C2
f ] = E[Cf ] + E[Cf ]2 + 2

∑
S⊆[n] : S 6=∅

e−|S| − (1− |S|)
|S|2

(
n · πTnQ∂fχS

)2
.

Proof. Let f : {0, 1}n → {0, 1}. Since

Q∂f1(x) =
∑
S⊆[n]

〈Q∂f1, χS〉χS

it follows from Lemma 3.2 that

Q∂f1(x) =
∑
S⊆[n]

(
πTnQ∂fχS

)
χS .

At the same time, for any S ⊆ [n], by (3.1), we have

πTnQ∂f (Qn − In)k−2χS = πTnQ∂f
(
(Qn − In)k−2χS

)
=
(−|S|

n

)k−2

πTnQ∂fχS .

Combining these observations, we obtain

πTnQ∂f (Qn − In)k−2Q∂f1 = πTnQ∂f (Qn − In)k−2
∑
S⊆[n]

(
πTnP∂fχS

)
χS

=
∑
S⊆[n]

(
πTnP∂f1

)
πTnQ∂f (Qn − In)k−2χS =

∑
S⊆[n]

(
πTnP∂fχS

)2(−|S|
n

)k−2

=
1

n2

∑
S⊆[n]

(−|S|
n

)k−2(
n · πTQ∂fχS

)2
.

Using Lemma 3.6, it immediately follows that

E[C2
f ] = E[Cf ] + 2

∞∑
k=2

nk

k!
· 1

n2

∑
S⊆[n]

(−|S|
n

)k−2(
n · πTQ∂fχS

)2
= E[Cf ] +

(
n · πTQ∂fχ∅

)2
+ 2

∑
S⊆[n] : S 6=∅

(
n · πTQ∂fχS

)2 · 1

|S|2
∞∑
k=2

nk

k!

(−|S|
n

)k
= E[Cf ] +

(
n · πTQ∂fχ∅

)2
+ 2

∑
S⊆[n] : S 6=∅

(
n · πTnQ∂fχS

)2 · e−|S| − (1− |S|)
|S|2

.

Recalling that by Lemma 3.6 we have

E[Cf ] = n · πTQ∂f1 = n · πTQ∂fχ∅,

the desired conclusion follow.

We now combine the lemmas in this section to give a proof of Proposition 3.1.

Proof of Proposition 3.1. By Lemma 3.3, for any S ⊆ [n] we have

πTnQ∂fχS =
1

n

[
(1− 2pn)|S|f̂(S) + 2

√
pn(1− pn)

∑
i 6∈S

f̂
(
S ∪ {i}

)]
.
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Combining this with Lemma 3.7, we obtain

E[C2
f ] = E[Cf ] + E[Cf ]2 + 2

∑
S⊆[n] :
S 6=∅

e−|S| − (1− |S|)
|S|2

(
nπTnQ∂fχS

)2
= E[Cf ] + E[Cf ]2

+
∑
S⊆[n] :
S 6=∅

e−|S| − (1− |S|)
|S|2

[
(1− 2pn)|S|f̂(S) + 2

√
pn(1− pn)

∑
i∈[n] : i 6∈S

f̂
(
S ∪ {i}

)
,
]2

which is the desired conclusion.

4 Proof of the main result

In this section, we give a proof of Theorem 1.4. The proof of this result will be divided
into two lemmas, which we now state and prove.

Lemma 4.1. Let (fn)n∈N be a sequence of increasing Boolean functions such that
limn→∞E[Cfn ] =∞, and assume that there is a constant C > 0 such that for all n ∈ N
we have

pn(1− pn)nVar(fn) 6 CI(fn)2. (4.1)

Then (fn)n∈N is not tame.

Remark 4.2. By, e.g., Lemma 6.1 in [7], any increasing Boolean function fn : {0, 1}n →
{0, 1} satisfies I(f) 6

√
npn. Consequently, by Lemma 4.1, any sequence of increasing

Boolean functions which is close to maximizing the total influence must be non-tame.
If (fn)n∈N is a sequence of regular and increasing Boolean functions with pn = 1/2

and
∑
Ii(fn)2 > c > 0 for all n ∈ N , then, as observed in the proof of Theorem 1.7

in [1], Theorem 1.1 in [16] immediately implies that the functions fn have uniformly
positive correlations with the Majority function. See also Proposition 12.45 and Theo-
rem 12.51 in [9].

Proof of Lemma 4.1. By the Paley-Zygmund inequality, for any θ ∈ (0, 1) we have

P
(
Cfn > θE[Cfn ]

)
> (1− θ)E[Cfn ]2

E[C2
fn

]
.

Since limn→∞E[Cfn ] =∞, it immediately follows that if there is a constant C ′ > 0 such
that

E[C2
fn ] 6 C ′E[Cfn ]2 (4.2)

for all sufficiently large n ∈ N , then (fn)n∈N is not tame. Consequently, if we can show
that (4.2) holds, then the desired conclusion will follow. To this end, fix some n ∈ N , and
note that by Proposition 3.1, since fn is increasing, we have

E[C2
fn ] = E[Cfn ] + E[Cfn ]2 + 2

∑
S⊆[n] : S 6=∅

e−S − (1− |S|)
|S|2

·
[
(1− 2pn)|S|f̂n(S) + 2

√
pn(1− pn)

∑
i 6∈S

f̂n
(
S ∪ {i}

)]2
.

Since e−|S| 6 1 for all S ⊆ [n], this implies that

E[C2
fn ] 6 E[Cfn ] + E[Cfn ]2

+ 2
∑

S⊆[n] : S 6=∅

1

|S|

[
(1− 2pn)|S|f̂n(S) + 2

√
pn(1− pn)

∑
i 6∈S

f̂n
(
S ∪ {i}

)]2
.
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If we apply the inequality (a+ b)2 6 2(a2 + b2), we see that

E[C2
fn ] 6 E[Cfn ] + E[Cfn ]2 + 4(1− 2pn)2

∑
S⊆[n] : S 6=∅

|S|f̂n(S)2

+ 16pn(1− pn)
∑

S⊆[n] : S 6=∅

1

|S|

( ∑
i∈[n] : i6∈S

f̂n
(
S ∪ {i}

))2

.
(4.3)

By the Cauchy-Schwarz inequality, we have∑
S⊆[n] : S 6=∅

1

|S|

( ∑
i∈[n] : i6∈S

f̂n
(
S ∪ {i}

))2

6
∑

S⊆[n] : S 6=∅

n− |S|
|S|

∑
i∈[n] : i 6∈S

f̂n
(
S ∪ {i}

)2
=

∑
T⊆[n] : |T |>2

f̂(T )2 · |T |(n− (|T | − 1))

|T | − 1
6

∑
T⊆[n] : |T |>2

f̂(T )2 · 2n.
(4.4)

Now note that ∑
S⊆[n] : S 6=∅

|S|f̂n(S)2 = I(fn) = E[Cn]

and ∑
S⊆[n] : |S|>2

f̂n(S)2 6
∑

S⊆[n] : S 6=∅

f̂n(S)2 = Var(fn).

Combining (4.3) and (4.4), we thus obtain

E[C2
fn ] 6 E[Cfn ] + E[Cfn ]2 + 4(1− 2pn)2E[Cfn ] + 32pn(1− pn)nVar(fn).

Using (4.1) and recalling that E[Cfn ] = I(fn), we thus obtain

E[C2
fn ] 6 E[Cfn ] + E[Cfn ]2 + 4(1− 2pn)2E[Cfn ] + 32CE[Cfn ]2.

Since limn→∞E[Cn] = ∞, we have E[Cn] 6 E[Cn]2 for all sufficiently large n ∈ N , and
hence for such n, (4.2) holds with, e.g., C ′ = 7 + 32C. This concludes the proof.

It is well-known that, when pn = 1/2, the so-called Tribes function (see, e.g., Section
4.2 in [14]) is increasing and transitive and satisfies I(fn) = C log n. Moreover, a
sequence of Tribes functions is noise sensitive, and hence non-tame by Proposition 1.17
in [10]. In particular, this shows that the inequality in Lemma 4.1 does not hold for all
non-tame sequences of increasing and transitive Boolean functions. The main idea in the
proof of Theorem 1.4 will instead be to show that (4.1) holds for all sequences of regular
Boolean functions which are not noise sensitive. This is the main motivation for the next
lemma.

Lemma 4.3. Let (fn)n∈N be a non-degenerate sequence of regular and increasing
Boolean functions. Assume further that pn 6 1/2 and lim infn→∞ npn =∞. Then either
(fn)n∈N is not tame, or

lim
n→∞

p−1
n

n∑
i=1

Ii(fn)2 = 0.

Proof of Lemma 4.3. Assume that lim supn→∞ p−1
n

∑
i∈[n] Ii(fn)2 > 0. We need to show

that in this case, (fn)n>1 is not tame. To this end, note that when

lim sup
n→∞

p−1
n

∑
i∈[n]

Ii(fn)2 > 0,
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there is a constant D > 0 and an infinite increasing subsequence N ′ = (n1, n2, . . .) of N
such that

∑
i∈[n] Ii(fn)2 > Dpn for all n ∈ N ′. Since fn is regular for all n ∈ N , and N ′ is

a subsequence of N , it follows that, for all n ∈ N ′, we have

I(fn)2 =
(
nI1(fn)

)2
= n · nI1(fn)2 = n ·

∑
i∈[n]

Ii(fn)2 > n ·Dpn = D · pnn.

Since Var(fn)(1− pn) < 1 for all n ∈ N , it follows that

pn(1− pn)nVar(fn) 6 D−1I(fn)2.

On the other hand, since, by assumption, limn→∞ npn = ∞, pn 6 1/2, and (fn)n∈N is
non-degenerate, it follows from the previous equation to together with the observation
that E[Cf ] = I(fn) that limn→∞E[Cf ] = ∞. Consequently, we can apply Lemma 4.1
to deduce that (fn)n∈N ′ is not tame. Since N ′ is a subsequence of N , it follows that
(fn)n∈N is not tame. This concludes the proof.

Proof of Theorem 1.4. Let (fn)n∈N be a non-degenerate sequence of regular and in-
creasing Boolean functions, and assume that 0 < lim infn→∞ pn 6 lim supn→∞ < 1. Note
that if (fn)n∈N is noise sensitive then, by Proposition 1.17 in [10], (fn)n∈N is volatile
and hence not tame. Consequently, we can assume that (fn)n∈N is not noise sensi-
tive. Since 0 < lim infn→∞ pn 6 lim supn→∞ pn < 1, it follows from Theorem 7 in [11]
that lim supn→∞

∑
i∈[n] Ii(fn)2 > 0. The desired conclusion thus follows from applying

Lemma 4.3.

Remark 4.4. The proof of Theorem 1.4 does not work when limn→∞ pn = 0, even though
Theorem 7 in [11], as well as the similar Theorem 1.3 in [3], holds also in this case.
The reason for this is that when limn→∞ pn = 0, the lower bound on p−1

n

∑
i∈[n] Ii(fn)2

provided by these theorems are too weak to be used in conjunction with Lemma 4.3.
Theorem I.5 in [12] gives an alternative to Theorem 7 in [11] for sequences of increasing
Boolean functions when (pn)n>1 is given by pn = n−(k−1)/k for some even number k > 0.
However, this theorem has additional assumptions which, e.g., the counter-example
given in [6] does not satisfy. More important for us however, it does not cover the range
of (pn)n>1 where we have neither counter-examples nor a positive result.

References

[1] Benjamini, I., Kalai, G., Schramm, O.: Noise sensitivity of Boolean functions and applications
to percolation. Publ. Math. Inst. Hautes Études Sci. 90, (1999), 5–43. MR1813223

[2] Bourgain, J., Kahn, J., Kalai, G., Katznelson, Y. Linial, N.: The influence of variables in product
spaces. Israel J. of Math. 77 (1), (1992), 55–64. MR1194785

[3] Bouyrie, R.: On quantitative noise stability and influences for discrete and continuous Models.
Combin. Probab. Comput. 27 (3), (2028), 334–357. MR3788164

[4] Eldan, R., Gross, R.: Concentration on the Boolean hypercube via pathwise stochastic
analysis. STOC 2020: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory
of Computing, (2020), 208–221. MR4141754

[5] Forsström, M. P.: Denseness of volatile and nonvolatile sequences of functions. Stochastic
Process. Appl. 128 (11), (2018), 3880–3896. MR3860013

[6] Forsström, M. P.: A tame sequence of transitive Boolean functions. Electron. Commun. in
Probab. 25 (83), (2020), 1–8. MR4195177

[7] Friedgut, E., Kalai, G.: Every monotone graph property has a sharp threshold. Proc. Amer.
Math. Soc. 124 (10), (1996). MR1371123

[8] Galicza, Pal.: Pivotality versus noise stability for monotone transitive functions. Electron.
Commun. Probab. 25, (2020). MR4069737

ECP 26 (2021), paper 64.
Page 12/13

https://www.imstat.org/ecp

https://mathscinet.ams.org/mathscinet-getitem?mr=1813223
https://mathscinet.ams.org/mathscinet-getitem?mr=1194785
https://mathscinet.ams.org/mathscinet-getitem?mr=3788164
https://mathscinet.ams.org/mathscinet-getitem?mr=4141754
https://mathscinet.ams.org/mathscinet-getitem?mr=3860013
https://mathscinet.ams.org/mathscinet-getitem?mr=4195177
https://mathscinet.ams.org/mathscinet-getitem?mr=1371123
https://mathscinet.ams.org/mathscinet-getitem?mr=4069737
https://doi.org/10.1214/21-ECP438
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


When are sequences of Boolean functions tame?

[9] Garban, C., Steif, J. E.: Noise sensitivity of Boolean functions and percolation. Cambridge
Univ. Press, (2014). MR3468568

[10] Jonasson, J., Steif, J. E.: Volatility of Boolean functions, Stochastic Process. Appl., 126 (10),
(2006), 2956–2975. MR3542622

[11] Keller, N., Kindler, G.: Quantitative Relation Between Noise Sensitivity and Influences.
Combinatorica 33, (2013), 45–71. MR3070086

[12] Lifshitz, N., Minzer, D.: Noise Sensitivity on the p-Biased Hypercube. 2019 IEEE 60th Annual
Symposium on Foundations of Computer Science (FOCS), (2019). MR4228222

[13] Mossel, E., O’Donnell, R., Oleszkiewicz, K.: Noise stability of functions with low influences:
Invariance and optimality. Ann. of Math. 171 (1), (2010), 295–341. MR2630040

[14] O’Donnell, R.: Analysis of Boolean functions. Cambridge Univ. Press, (2014). MR3443800

[15] O’Donnell, R., Saks, M., Schramm, O., Servedio, R. A.: Every decision tree has an influen-
tial variable. 46th Annual IEEE Symposium on Foundations of Computer Science, (2005).
arXiv:cs/0508071

[16] Talagrand, M.: How much are increasing sets positively correlated? Combinatorica 16 (2),
(1996), 243–258. MR1401897

Acknowledgments. The author would like to thank Gil Kalai and Jeffrey E. Steif for
comments on the contents of this paper. Also, the author is grateful to an anonymous
referee for the many useful comments, including suggesting several improvements of the
proofs in this paper, especially to the proof of Lemma 3.2, and also for pointing out the
relationship to the Majority function, now mentioned in Remark 4.2. Finally, the author
is grateful to an anonymous referee on the companion paper [6], for making several
interesting comments of relevance for this paper.

ECP 26 (2021), paper 64.
Page 13/13

https://www.imstat.org/ecp

https://mathscinet.ams.org/mathscinet-getitem?mr=3468568
https://mathscinet.ams.org/mathscinet-getitem?mr=3542622
https://mathscinet.ams.org/mathscinet-getitem?mr=3070086
https://mathscinet.ams.org/mathscinet-getitem?mr=4228222
https://mathscinet.ams.org/mathscinet-getitem?mr=2630040
https://mathscinet.ams.org/mathscinet-getitem?mr=3443800
https://arXiv.org/abs/cs/0508071
https://mathscinet.ams.org/mathscinet-getitem?mr=1401897
https://doi.org/10.1214/21-ECP438
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Electronic Journal of Probability
Electronic Communications in Probability

Advantages of publishing in EJP-ECP

• Very high standards

• Free for authors, free for readers

• Quick publication (no backlog)

• Secure publication (LOCKSS1)

• Easy interface (EJMS2)

Economical model of EJP-ECP

• Non profit, sponsored by IMS3, BS4 , ProjectEuclid5

• Purely electronic

Help keep the journal free and vigorous

• Donate to the IMS open access fund6 (click here to donate!)

• Submit your best articles to EJP-ECP

• Choose EJP-ECP over for-profit journals

1LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
2EJMS: Electronic Journal Management System http://www.vtex.lt/en/ejms.html
3IMS: Institute of Mathematical Statistics http://www.imstat.org/
4BS: Bernoulli Society http://www.bernoulli-society.org/
5Project Euclid: https://projecteuclid.org/
6IMS Open Access Fund: http://www.imstat.org/publications/open.htm

http://en.wikipedia.org/wiki/LOCKSS
http://www.vtex.lt/en/ejms.html
http://en.wikipedia.org/wiki/Institute_of_Mathematical_Statistics
http://en.wikipedia.org/wiki/Bernoulli_Society
https://projecteuclid.org/
https://secure.imstat.org/secure/orders/donations.asp
http://www.lockss.org/
http://www.vtex.lt/en/ejms.html
http://www.imstat.org/
http://www.bernoulli-society.org/
https://projecteuclid.org/
http://www.imstat.org/publications/open.htm

	Introduction
	Background and notations
	An expression for  E[Cf2]  using the Fourier coefficients
	Proof of the main result
	References

