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Abstract

We introduce a process where a connected rooted multigraph evolves by splitting
events on its vertices, occurring randomly in continuous time. When a vertex splits,
its incoming edges are randomly assigned between its offspring and a Poisson random
number of edges are added between them. The process is parametrised by a positive
real λ which governs the limiting average degree. We show that for each value of
λ there is a unique random connected rooted multigraph M(λ) invariant under this
evolution. As a consequence, starting from any finite graph G the process will almost
surely converge in distribution to M(λ), which does not depend on G. We show that
this limit has finite expected size. The same process naturally extends to one in
which connectedness is not necessarily preserved, and we give a sharp threshold for
connectedness of this version.

This is an asynchronous version, which is more realistic from the real-world network
point of view, of a process we studied in [8, 9].
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1 Introduction

We consider a random network model with reproduction which evolves in continuous
time. Each vertex independently, at rate 1, splits into two. When a vertex splits, each of
its existing edges is randomly rerouted to one of the two vertices produced, and these
two vertices are connected by a random number of edges with distribution Po(λ/2),
where λ > 0 is a fixed parameter. If the resulting graph is disconnected, only the
component of the root is retained (the precise definition is given in the next section).
We show that there is a unique random multigraph M(λ) which is time-invariant under
this evolution and has finite average degree (Theorem 1.4), and analyse some of its
properties. As a consequence, if we run our process starting from any finite graph G, it
will almost surely converge in distribution to M(λ).

This model arose naturally in our recent work [9]: there, we considered the variant
of the above evolution where all vertices split simultaneously in regular time intervals.
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A time-invariant random graph with splitting events

We observed that there is a unique finite-degree random multigraph G(λ) which is
time-invariant under this evolution too. We will refer to G(λ) as the synchronous version
of M(λ). Moreover, we showed that G(λ) is identically distributed with the cluster of the
origin in an instance of long-range percolation on the infinitely-generated group

⊕
i∈NZ2.

Perhaps surprisingly, given its alternative definition as a cluster of a percolation model
on a group, and given that most percolation models on finitely generated groups undergo
a phase transition [6], G(λ) is almost surely finite for any value of the intensity λ,
and its expected size is finite. In this paper we show the analogous result for M(λ)

(Theorem 1.5).

Our splits can be thought of as reproduction of vertices, in the sense that a vertex
produces a child and then passes on some of its connections to its child. In this sense,
our first definition of G(λ) is reminiscent of the models for random reproducing graphs
studied by Jordan [12], building on earlier deterministic models for social networks
[15, 5], with the key distinction being that in Jordan’s model all connections of the parent
are retained, whether or not they are inherited by the child.

However, simultaneous, discrete-time reproduction by the whole population is not
a realistic model for real-life networks. It is therefore natural to consider a variant
in which reproduction events are independent and may occur at any time, which is
part of the motivation of the current paper. Mechanisms for growing networks based
on repeated vertex duplications have previously been proposed as plausible for the
development of the web graph [13] and for evolution of biochemical networks [3, 17].
Mathematical analysis of such a model was carried out non-rigorously by Pastor-Satorras,
Smith and Sole [14], suggesting a limiting degree distribution which is power-law with
an exponential cutoff, although subsequent rigorous work by Bebek, Berenbrink, Cooper,
Friedetzky, Nadeau, and Sahinalp [2] showed that this is not the case. Another related
model, motivated by duplication of genetic material, has been studied by Thörnblad [16]
and by Backhausz and Móri [1]; however, the graph structure of this model is particularly
simple, being a collection of disjoint cliques. A similar model for a fixed population size,
which has richer behaviour owing to the random loss of individual edges, was introduced
by Bienvenu, Débarre, and Lambert [4].

Although the continuous-time model M(λ) studied here is more natural in certain
respects, its analysis is significantly more challenging than that of the synchronous
version G(λ) for the following reason. A basic tool in the analysis of both models is the
underlying genealogical tree T , containing all vertices in our evolution, and joining each
vertex to its children by an edge. Starting with T , we can alternatively define our random
graphs by joining pairs of leaves of T with random independent edges with appropriately
chosen probabilities. In the synchronous case, this T is very simple: it is a binary tree of
depth n when we run the process for n steps starting from a single vertex, and it is the
so-called canopy tree when we start with G(λ). When we start with M(λ) however, T is
a random tree with a non-trivial distribution: it can be thought of as the local limit of the
ball B(t) of radius t in first passage percolation on the full binary tree after re-rooting
B(t) at a leaf (see Section 2 for more details). Thus our main results Theorem 1.4 and
Theorem 1.5 below were much harder to prove than their analogues in [9].

1.1 Model and results

It will be convenient for some proofs and statements of results to define both the main
process defined above and a “full” version of the process in which other components
are not discarded. In fact it is simpler to define the latter first. A multigraph is a graph
in which two vertices may be joined by several parallel edges. The multigraphs of this
paper do not have loops, i.e. edges that start and end at the same vertex.
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Definition 1.1. For a rooted connected multigraph, (G, o), the full process (Gt, ot)t≥0
with parameter λ > 0 is defined as follows. Set (G0, o0) = (G, o). Give each vertex v a
splitting time τv, where splitting times are i.i.d. Exp(1) variables. When t = τv, replace v
with two new vertices v1, v2, and give each a splitting time of t + Exp(1). Add Po(λ/2)

edges between v1 and v2. Moreover, replace each edge of the form uv with one of the
edges uv1, uv2 chosen uniformly at random. If v was the root, update the root to be v1 or
v2, each with probability 1/2. All these random choices are made independently from
each other. Set (Gt, ot) to be the resultant graph.

We will frequently consider a single-vertex starting graph; we write G
◦
t in this case.

Remark 1.2. The number of vertices of G
◦
t over time, which is independent of all edge-

related events, is a Yule process with rate r = 1, that is, a pure birth process where the
birth rate is r times the population. Its value at time t has a geometric distribution with
mean ert; see [7, Section XVII.3].

Definition 1.3. The cluster process (Gt, ot) with parameter λ is the rooted connected
multigraph formed by the component of the root in Gt.

It is natural to think of the cluster process as a reproduction process where individuals
die when they leave the component of the root. In this sense it resembles a general
branching process, or Crump–Mode–Jagers process, (see e.g. [11, Chapter 6]); however,
these processes assume independence of the lifespans of different individuals, whereas
in our model death events are highly interdependent.

We prove three main results about these processes, listed below.

Theorem 1.4. For each λ > 0 there is a unique random rooted connected multigraph
with finite expected root degree, (M(λ), o), which is invariant under the cluster process
in the sense that (M(λ)t, ot) has the same distribution for any t ≥ 0.

It is not immediately obvious that M(λ) is almost surely finite. However, we prove a
much stronger result.

Theorem 1.5. E(|M(λ)|) <∞ for every λ > 0.

When considering the full process, a natural question is when it becomes discon-
nected, or equivalently when the full and cluster processes first differ.

Theorem 1.6. The time t = λ is a sharp threshold for both connectedness of G
◦
t and the

existence of isolated vertices, that is, for any ε > 0, with high probability as λ→∞ the
graph G

◦
(1−ε)λ is connected but G

◦
(1+ε)λ is disconnected with isolated vertices.

1.2 Questions

In [9] we conjectured that E(|G(λ)|) ∼ λcλ in agreement with computer simulation
data. Simulations on E(|M(λ)|) showed a similar behaviour to E(|G(λ)|), and the same
conjecture can be made. We know that E(|G(λ)|) is an analytic function of λ because
of results in percolation theory [10]. For E(|M(λ)|) we do not even have a proof of
continuity. Apart from obtaining more detailed results about the behaviour of M(λ), it
would also be interesting to modify our splitting rule in order to obtain other random
graph models with temporal invariance.

2 Convergence to a limit

In this section we prove Theorem 1.4; throughout the section we assume the parame-
ter λ > 0 is fixed. Let (G, o) be a random rooted graph such that E(d(o)) is finite. Let
(G◦, o) be the single-vertex loopless graph with the same root o. Run the cluster process
(Gt, ot) given in Definition 1.3, and let Ht be the subgraph of Gt induced by descendants
of o. Note that ot ∈ Ht and (Ht, ot) evolves according to the law of the cluster process
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(G◦t , ot), so has the same distribution.

Lemma 2.1. With probability 1, for sufficiently large t we have (Gt, ot) = (Ht, ot).

Proof. We refer to edges of Gt which were added after time 0 as new edges, and those
which correspond (after replacements when vertices split) to edges of G as old edges.
Let e ∈ E(G) be an edge from the root, and let the corresponding edge at time t meet
o′t, where o′t is a descendant of the root. We say that e has been killed by time t if, for
some s ≤ t, we have o′s 6= os and no new edges meet o′s. If e has been killed by time t,
then at time s all paths from os to o′s must use at least one old edge, and this property is
preserved by splitting events, so the same is true for t. Thus, if a path from the root in
Gt uses any old edge, the first old edge in that path must not have been killed by time t,
meaning that the old edges which have not been killed by time t form a cut separating
Ht from the rest of Gt. It therefore suffices to show that with probability 1 eventually
every old edge has been killed.

For a specified edge e, consider the first time that the root splits and o′t 6= ot; call
this t1. Let t2, t3, . . . be the subsequent times that o′t splits, and let Xk be the number of
new edges meeting o′tk . Then Xk+1 ∼ Bin(Xk, 1/2) + Po(λ/2). This gives an irreducible
Markov chain on N with a stationary distribution Po(λ). As a result, the chain is positive
recurrent and in particular hits 0 in finite time, killing e, with probability 1. Since there
were finitely many old edges, all of them are killed in finite time with probability 1.

Before proceeding to the proof of Theorem 1.4, we first recall the Poisson edge model
of [9]. This is a long-range percolation model on the leaves of the canopy tree. We may
label the complete binary trees of height 0, 1, . . . in such a way that each tree is a subtree
of the next, with each leaf also being a leaf of the next tree. The (binary) canopy tree
is then the union of this sequence of trees, and has an infinite sequence of leaves. The
Poisson edge model is a random multigraph whose vertices are the leaves of the canopy
tree, and whose edges are given by independently placing Po(21−d(x,y)λ) edges between
each pair of leaves x, y, where d(x, y) is the graph distance on the canopy tree. In [9] it
is shown that the unique random rooted connected multigraph having finite expected
root degree which is invariant under the synchronous version of the cluster process
is given by the cluster of the root in the Poisson edge model. For the cluster process
of Definition 1.3, the picture will be more complicated. Note that we may define the
T -Poisson edge model for any binary tree T in the same way: it is the random multigraph
on the leaves of T , with Po(21−dT (x,y)λ) edges independently between each pair of leaves
x, y. We shall need a simple observation about the T -Poisson edge model.

Let T be any binary tree, and fix an edge uv. We say that an edge of the T -Poisson
edge model crosses uv if its endpoints are in different components of T − uv.
Lemma 2.2. The probability that the T -Poisson edge model has no edges which cross
uv is at least e−λ.

Proof. Write Lu, Lv for the leaves of the components containing u and v respectively.
The number of such edges is Po(zλ) where

z =
∑
x∈Lu

∑
y∈Lv

21−dT (x,y)

=

(∑
x∈Lu

2−dT (x,u)
)(∑

y∈Lv

2−dT (v,y)
)
.

We must therefore check that z ≤ 1. Consider a random walk on the component of
T − uv containing u started at u and constrained to increase the distance from u at every
step, stopping if it reaches a leaf. Then for x ∈ Lu the probability this walk stops at x
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is 2−dT (x,u), since there are two possible moves at each step. Thus
∑
x∈Lu 2

−dT (x,u) ≤ 1,
and the same argument applies to Lv, giving the result.

Remark 2.3. In fact provided that T has countably many ends we have equality in
Lemma 2.2, since both walks terminate almost surely.

Proof of Theorem 1.4. We will construct a random multigraph (M(λ), o) with the prop-
erty that (M(λ)t, ot) has the same distribution for any t ≥ 0. To show uniqueness, we will
show that (G◦t , ot) converges in distribution to (M(λ), o), and apply Lemma 2.1.

Our construction of (M(λ), o) will use the T -Poisson edge model, working with a
random tree T . (This tree can be thought of as the local limit of the Yule tree at time
t, or equivalently the ball of radius t in first passage percolation on the full binary tree
with Exp(1) edge costs, after re-rooting at the leaf reached by a simple forward random
walk from the root.)

To begin with, we construct some finite random trees T (t) that will form the building
blocks in the construction of T . Given a parameter t > 0, we define a random rooted
binary tree T (t) as follows. Start from a single-vertex rooted tree, with an exponential
clock of rate 1 on the root. Whenever a clock on a vertex v rings, add two children
of v, each with their own independent exponential clocks of rate 1 (do not replace the
clock on v; each vertex rings at most once). Continue until time t. Note that T (t) is
almost surely finite. Next we construct an infinite random tree T . Start from an infinite
path P = v0v1 · · · , and label its edges with an infinite sequence s1, s2, . . . of i.i.d. Exp(1)
random variables. For each i > 0, sample a copy Ti of T (

∑
j≤i sj), denote its root by wi,

and join Ti to P with the edge viwi. Here each Ti is sampled independently.
Having constructed T , consider the T -Poisson edge model. We let M(λ) be the

component of v0 in this random multigraph, and let v0 be the root of M(λ). For n ∈ N,
let Ln be the leaves of the component of T − vnvn+1 containing vn.

Claim 2.4. With probability 1, V (M(λ)) ⊆ Ln for n sufficiently large.

Proof of Claim. Starting from k = 0, iteratively reveal the number of edges of the T -
Poisson edge model between pairs of vertices until an edge crossing vkvk+1 is found. If
this happens, update k to be the smallest value such that no edge yet revealed crosses
vkvk+1 and continue revealing. By Lemma 2.2, for each different value of k considered
there is a probability of at least e−λ that no suitable edge is ever found, no matter what
was previously revealed. Thus almost surely one of the edges vkvk+1 is not crossed,
meaning that V (M(λ)) ⊆ Lk. ♦

Thus M(λ) almost surely contains vertices from finitely many of the subtrees Ti. In
particular, since each Ti is almost surely finite, so is M(λ).

Claim 2.5. (M(λ)t, ot) has the same distribution as (M(λ), o) = (M(λ)0, o0).

Proof of Claim. Recall that the construction of M(λ) was based on the randomly edge-
labelled path P . Let us denote by G(P, λ) the random graph constructed from any path
P with edges bearing positive real labels by following the above procedure. To compare
M(λ) with M(λ)t, we will express the latter as G(Pt, λ) for an appropriate randomly
labelled path Pt: consider a Poisson point process R = (−t1,−t2, . . . ,−tk), k ≥ 0 on the
interval [−t, 0] (where we assume that ti ≥ ti+1) governed by Lebesgue measure and
with duration 1. We obtain Pt from P as follows. We change the label s1 of the first edge
of P into s1 + tk if k ≥ 1, or into s1 + t if k = 0. Moreover, we append k edges at the start
of P , and label them as follows. The first edge is labelled t− t1, and for i = 2, . . . , k, the
ith edge is labelled ti−1 − ti. It is straightforward to check that G(Pt, λ) is identically
distributed with (M(λ)t, ot) by identifying the times at which the root is split with the
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reversal tk, . . . , t2, t1 of R, using the fact that ti−1 − ti has distribution Exp(1), and so do
tk and t− t1.

t−t1

t1−t2

···

T (t−tk)

tk+s1

s2

t

time
Pt

0

Figure 1: Construction of M(λ)t via Pt (proof of Claim 2.5).

To finish the proof that (M(λ)t, ot) = G(Pt, λ) has the same distribution as (M(λ), o) =

G(P, λ), it suffices to prove that Pt has the same distribution as P . To prove this, note
that we can sample the labels s1, s2, . . . of P as a Poisson point process on the real axis
[0,∞) governed by Lebesgue measure and with duration 1. Similarly, we can sample
the labels of Pt as the gaps of a Poisson point process on [−t,∞). But these two Poisson
point processes are identically distributed once we shift by t, as required. ♦

Next, we show that G◦t converges in distribution to M(λ). To begin with, we can
obtain G◦t by a construction similar to that of M(λ), by keeping track of the genealogical
tree Tt of the vertices of G◦t : the vertex set of T comprises all vertices that appeared
throughout the process G◦s, 0 ≤ s ≤ t, and if a vertex v was replaced with v1, v2 at some
time s ≤ t, we join v with an edge to each of v1, v2. Note that the vertex set of G◦t is
contained in the set of leaves of Tt. To sample the edges of G◦t , we put Po(21−dTt (x,y)λ)
parallel edges independently between any two leaves x, y of Tt, and identify G◦t with the
component of o in the resulting multigraph.

The times t1, . . . , tk when the root of G◦t splits are, by definition, given by a Poisson
point process on [0, t] governed by Lebesgue measure on that interval. Consequently,
the “reversed” sequence of times t− tk, . . . , t− t1 has the same distribution as t1, . . . , tk.
Using this fact, we may equivalently construct G◦t using t− tk, . . . , t− t1 as the splitting
times of the root, while leaving the rest of the construction unchanged. This realisation
of G◦t coincides, by definition, with the following construction. Start with a random path
Pt with k edges e1, . . . , ek, where as above k is the number of splittings of o in the time
interval [0, t], labelling ei with the time gap si = tk+1−i − tk−i if i = 2, . . . , k or si = t− tk
if i = 1. Attach to the endvertex vi of ei an independent copy of T (

∑
j≤i sj) as above, and

finally define a random graph on the leaves of the resulting tree by taking the component
of the root in its Poisson edge model.

Appropriately coupled, M(λ) and G◦t therefore give the same result so long as M(λ)

does not reach the end of the finite path Pt in the above construction. Write En for the
event that M(λ) does not extend past vn. Given ε > 0, choose n such that P(En) < ε/2

(which is possible by Claim 2.4) and t such that P(Po(t) < n) < ε/2.

For any set of isomorphism classes of rooted connected graphs S, we have

P(G◦t ∈ S) ≤ P(M(λ) ∈ S ∧ En ∧ (s1 + · · ·+ sn < t)) + P(E{
n) + P(s1 + · · ·+ sn ≥ t)

< P(M(λ) ∈ S) + ε,
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and

P(G◦t ∈ S) ≥ P(M(λ) ∈ S ∧ En ∧ (s1 + · · ·+ sn < t))

≥ P(M(λ) ∈ S)− P(E{
n)− P(s1 + · · ·+ sn ≥ t)

> P(M(λ) ∈ S)− ε.

Thus G◦t converges in distribution to M(λ) as t → ∞. The uniqueness of M(λ) now
follows from Lemma 2.1, since if G is a random graph with Gt identically distributed for
every t, that lemma implies that the distribution of G is the limit of the distribution of
G◦t .

The random multigraph M(λ) described above differs from the corresponding multi-
graph G(λ) for the synchronous case studied in [9], that is, the component of the root
in the original Poisson edge model on the canopy tree. To see this, it is sufficient to
consider the probability, conditional on d(o) = 2, of a double edge from the root. For
M(λ) this is

∑
x6=o 4

1−d(o,x), where the sum is taken over all other leaves of the random
tree T . Note that the probability that w1 is a leaf is P(τ(w1) < s1), where τ(w1) is the
length of w1’s clock. Since τ(w1) and s1 are i.i.d., we have P(w1 a leaf) = 1/2; clearly wi
is less likely to be a leaf than w1 if i > 1, so each wi is a leaf with probability at most 1/2.
For each i ≥ 1, the probability of a double edge to a descendent of wi is 4−i if wi is a leaf,
and at most 4−i−1 otherwise (being maximised when both its offspring are leaves). So
the probability of a double edge is at most

∑
i≥1(4

−i + 4−i−1)/2 = 1/4. For the canopy

tree version G(λ), the probability of a double edge is
∑
h≥1 2

h−141−2h = 2/7, and so M(λ)

has a strictly smaller double-edge probability.

3 Finite expected size

In this section, we consider the expected size E(|M(λ)|). While the expected size of
G(λ) is finite for every λ > 0 [9], it is not immediately clear whether the same is true of
M(λ). Since M(λ) arises from the T -Poisson edge model on a random tree T , and we
know that the expected cluster size is finite for the Poisson edge model on the canopy
tree, and that the cluster size of the Poisson edge model on any binary tree is almost
surely finite (Claim 2.4), one might hope to prove a universal bound (depending on λ)
on the expected cluster size for any binary tree, whence the desired result would follow
by averaging. However, no such bound exists; indeed, there are binary trees on which
the expected cluster size of the Poisson edge model is infinite for sufficiently large λ.
One example may be obtained by replacing each edge of the canopy tree by a two-edge
path with a pendant leaf attached to the new vertex. If v was a leaf of the canopy tree
at distance 2k from o, then the new tree contains a sequence of 2k + 2 leaves, starting
at o and ending at v, such that each consecutive pair is at distance 4. Each of these
pairs is adjacent in the Poisson edge model on this tree with probability 1− e−λ/8, and so
every such v is in the component of o with probability at least (1− e−λ/8)2k+1. Provided
λ ≥ 8 log(2 +

√
2), it follows that the expected size of this component is infinite.

Of course, the initial sections of such a tree are not typical Yule trees, and so this
example does not rule out the possibility of exploiting the large-scale structure of the
tree T constructed in the previous section. However, we will find it easier to use a more
local approach: rather than showing that an initial section of T is typically well-behaved
everywhere, we work directly with Definition 1.3 and explore the component of the root
in Gt. This means that we only need T , which corresponds to the splitting events, to
behave well in such parts as we encounter during this exploration. In the remainder of
the section, we prove Theorem 1.5.
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3.1 Outline of proof

Fix λ > 0. Note that since G◦t converges in distribution to M(λ) and both G◦t and
M(λ) are almost surely finite we have E(|G◦t |)→ E(|M(λ)|) as t→∞. Our basic strategy
is to prove a bound f(t) on E(|G◦t |) which changes only slowly with t, and has a finite
limit. Recall that G◦t is the component of the root in G

◦
t . First we bound the size of G◦t at

time t+ ε.

Lemma 3.1. Fix times t ≥ 0 and ε > 0, and let Xε = |G
◦
ε| be the total number of vertices

in the full process at time ε. Then we have

E(|G◦t+ε|) < (1− ε)E(|G◦t |) + εE(|G◦t+ε| | Xε = 2) + 4ε2et+ε.

Proof. Conditioning on the value of Xε, we have

E(|G◦t+ε|) = P(Xε = 1)E(|G◦t+ε| | Xε = 1) + P(Xε = 2)E(|G◦t+ε| | Xε = 2)

+ P(Xε > 2)E(|G◦t+ε| | Xε > 2).

Note that, conditioned on Xε = 1, G◦t+ε is just the result of letting the single vertex at
time ε evolve for an additional time t, and P(Xε = 1) = e−ε < 1− ε+ ε2, so

P(Xε = 1)E(|G◦t+ε| | Xε = 1) < (1− ε+ ε2)E(|G◦t |)
< (1− ε)E(|G◦t |) + ε2et+ε.

Also, P(Xε = 2) < ε, which gives the required second term.
To deal with the third term, recall from Remark 1.2 that Xε ∼ Geo(e−ε) and so

P(Xε > 2) = (1− e−ε)2 < ε2. Now suppose that Xε > 2. This means that there is some
random time η2 < ε at which the second splitting event occurs. Nothing that happens
after η2 can affect the event Xε > 2, and so we may condition on η2. At time η2 there
are three vertices, which may or may not be connected by edges. Certainly |G◦t+ε| is
dominated by |G◦t+ε|, which, conditioned on η2, has expectation 3et+ε−η2 < 3et+ε. Thus
the final term is less than 3ε2et+ε, as required.

Conditioned on Xε = 2, G
◦
t+ε is distributed as two independent copies of the full

process run for time t with some edges between them, rooted at the root of the first
copy. We will show that the probability of some of these edges touching the component
of the root in the first copy is exponentially small. If this does happen, we argue that
the expected number of edges between the two copies is not much larger than its
unconditional expectation (i.e. λ/2), and that consequently we connect together (on
average) not too many components. The main issue with this is that conditioning on this
unlikely event might change the expected size of a component significantly, so we must
control this. If we can do this, we will have shown that

E(|G◦t+ε| | Xε = 2) ≤ (1 + h(t))E(|G◦t |), (3.1)

where h(t) is some function that decays exponentially in t. It will follow, from (3.1) and
Lemma 3.1, that for any fixed t ≥ 0 we have,

lim sup
ε→0+

E(|G◦t+ε|)− E(|G◦t |)
ε

≤ h(t)E(|G◦t |),

and so if f : [0,∞) → [0,∞) is a function satisfying f(0) = 1 and f ′(t) = h(t)f(t), then
f(t) ≥ E(|G◦t |) for each t. Now for this f we have d

dt log f(t) = h(t) and so

lim
t→∞

f(t) = exp

∫ ∞
0

h(s)ds <∞.
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Write G◦◦t for the result of running the cluster process for time t starting from two
vertices with N ∼ Po(λ/2) number of edges between. We consider the descendants of
the two original vertices in the corresponding full process G

◦◦
t as two independent copies

of G
◦
t , with the “left” copy being descendants of the original root, and say that the N

edges between the two copies are old, and others are new. Note that the component of
the root in the subgraph induced by the left copy is distributed as G◦t . We follow what
happens to the left-endpoints of all old edges, and to the root. Recall that an old edge is
killed by a splitting event if after that event its left-endpoint is not the root, and meets
no new edges. Consider the following four events, for a fixed time t and 0 < α < 1; note
that some of these events may depend on what happens after time t.

A: the left-endpoint of some old edge splits less than αt times by time t.

B: after the left-endpoint of some old edge splits αt/3 times, it is either the root or the
left-endpoint of more than one old edge.

C: B does not occur, but some new edge meets the left-endpoint of some old edge for
the entire period between the (αt/3)th and (2αt/3)th splits of the latter.

D: B and C do not occur, but some old edge is not killed between its (2αt/3)th and αtth
splits.

Writing IA, etc., for the indicator functions of these events, we have

E(|G◦◦t |) ≤ E(|G◦◦t |(IA + IB + IC + ID + I(A∪B∪C∪D){))

≤
∑

E∈{A,B,C,D}

E(|G◦◦t | | E)P(E) + E(|G◦◦t | | (A ∪B ∪ C ∪D){). (3.2)

3.2 Dealing with event A

Note that the left-endpoint of a given edge splits Po(t) times in time t, and

P(Po(t) ≤ bαtc) ≤ (bαtc+ 1)
e−ttbαtc

bαtc!
= O(

√
t)(eα−1α−α)t.

Since limα→0+ α
α = 1, we may choose α > 0 such that

P(A) ≤ λ

2
P(Po(t) ≤ bαtc) = O

(
e(e
−λ/2−1)t). (3.3)

We next define a variant of the full process: the singleton-free process St starts
from a single vertex with Po(λ/2) tokens. It proceeds as the full process with tokens
distributed randomly between the offspring when a vertex splits, but with the exception
that any vertex which is isolated and has no tokens is immediately discarded.

First we will show that E(|St|) is bounded by the expected size of a Yule process of
rate r = r(λ) < 1. The intuition here is that each splitting event has at least a constant
probability of producing an isolated vertex, and we can just ignore these events, resulting
in a thinning of the rate by a constant factor. However, we need to be slightly careful to
check that the lower bound on the probability of creating an isolated vertex still holds
even conditioned on the splitting vertex not having been isolated at any point in its
history. We will need the following lemma, which will be used again for the other events.

Lemma 3.2. If X ∼ Po(m) and Y ∼ Bin(X, p) for some p ∈ (0, 1], then X | (Y ≥ k) is
stochastically dominated by k + Po(m).

Proof. We handle the case p = 1; the case p < 1 follows by noting that Y ∼ Po(pm) and
X − Y are independent. We may sample X | (X ≥ k) by repeatedly sampling X, keeping

ECP 26 (2021), paper 66.
Page 9/15

https://www.imstat.org/ecp

https://doi.org/10.1214/21-ECP436
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


A time-invariant random graph with splitting events

the first value which is at least k. Since we can take the rth sample of X as the number
of points occurring in the interval [r − 1, r] in a Poisson process of intensity m, this is
the same as letting the Poisson process run until the first time we have seen k points
since the last integer, then continuing until the next integer. This is clearly dominated by
letting the process run to the first time we have seen k points since the last integer, then
continuing for time 1, which gives the required distribution.

If we only have the weaker condition that X ≤st Po(m) we cannot get any bound on
E(X | Y ≥ 1), but the following bounds are sufficient for our purpose.

Corollary 3.3. Suppose X ≤st Po(m) is nonnegative, and Y ∼ Bin(X, p) for some
p ∈ (0, 1]. Then P(Y ≥ 1) ≤ pm and P(Y ≥ 1)E(X | (Y ≥ 1)) ≤ pm(m+ 1).

Proof. We can couple X with a variable X ′ ∼ Po(m), and couple Y with Y ′ ∼ Bin(X ′, p)

in the natural way, so that (Y ≥ 1) ⊆ (Y ′ ≥ 1). Then, since 0 ≤ X ≤ X ′ we have

P(Y ≥ 1)E(X | Y ≥ 1) ≤ P(Y ≥ 1)E(X ′ | Y ≥ 1)

≤ P(Y ′ ≥ 1)E(X ′ | Y ′ ≥ 1).

Lemma 3.2 gives E(X ′ | Y ′ ≥ 1) ≤ m+ 1, and P(Y ≥ 1) ≤ P(Y ′ ≥ 1) ≤ E(Y ′) = mp.

We may sample St by using a Yule process Yt of rate 1 for the splitting events, then
determining the movement of new edges and removing any vertices which were isolated
at any point in their history. Similarly, we can simulate a Yule process Y (r)

t of rate
r < 1 from the same copy of Yt by, independently for each splitting event, removing
all descendants of one offspring with probability 1− r. Conditional on Yt, each vertex

which has undergone k splitting events has probability
(
r+1
2

)k
of surviving in Y

(r)
t . In

St, conditional on a vertex having survived j splits without being isolated, we argue
by induction on j that the number of edge-ends meeting it is dominated by Po(1 + λ).
This is true for j = 0. Assuming the statement holds for j, a vertex which has split j + 1

times may inherit the first edge-end from its parent, and receives at most Po(λ) other
edge-ends; conditioning on not being isolated does not change the number of additional
edge-ends if it did inherit the first edge, and increases it to at most 1 + Po(λ) if not. So
the result holds for all j. Consequently, given that a vertex has survived j splits without
being isolated, its offspring after the next split have at most Ber(1/2) + Po(λ) edge-ends,

so are each isolated with probability at least e−λ

2 ; it follows that each vertex in Yt which

underwent k splitting events has probability
(
2−e−λ

2

)k
of surviving in St. For r = 1− e−λ,

each vertex has a higher probability of surviving in Y (r)
t than St, and so we have

E(|St|) ≤ E(|Y (r)
t |) = e(1−e

−λ)t.

Lemma 3.2 implies that N | A ≤st 1 + Po(λ/2). To see this, note that we may
first condition on the tree of splitting events. For each possible tree T , each old edge
independently has some probability pT of following a path in the tree which splits fewer
than αt times; we may ignore trees for which pT = 0. Thus N | T,A ≤st 1 + Po(λ/2), and
the result follows by averaging over T .

Now we consider the singleton-free process conditional on A. Suppose a vertex
meeting an old edge or root splits, and one of the new vertices created, v, does not meet
a new edge or the root. Conditioning on A does not affect the future evolution of v, and
it evolves as the non-root half of a singleton-free process (or is discarded if it has no new
edges). Thus the expected number of descendants of v is at most E(|St|)/2 = e(1−e

−λ)t.
For each old edge, the expected number of times it splits is t before conditioning on A,
and cannot increase after conditioning; the same applies to the root. Thus the expected
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number of times such a vertex is created is at most (2 + λ)t. Since every vertex at time t
is either a descendant of such a vertex, meets an old edge, or is the root, we have

E(|G◦◦t | | A) ≤ E(|St| | A) ≤ 2 + λ+ (2 + λ)te(1−e
−λ)t,

and so (recalling (3.3)) we have

P(A)E(|G◦◦t | | A) = O(te−te
−λ/2). (3.4)

3.3 Dealing with event B

Since there are X ∼ Po(λ/2) left-endpoints of old edges and one root, and each pair
has probability 2−αt/3 of coinciding after αt/3 splits, a union bound gives

P(B) ≤ E
((

X + 1

2

))
2−αt/3 =

(
λ2

8
+
λ

2

)
2−αt/3. (3.5)

Consider the full tree of possible locations for left-endpoints after αt/3 splits. Order
these locations v1, . . . , v2αt/3 ; without loss of generality we may assume the root is at v1
after αt/3 splits. Writing Xi for the number of old edges at location vi after αt/3 splits,
the Xi are i.i.d. Po(2−αt/3λ/2) random variables. We will control the expected number
of old edges conditioned on B. B occurs if and only if either X1 ≥ 1 or Xi ≥ 2 for some
i > 1. For each i ≥ 2, let Bi be the event that Xi ≥ 2, and Xj ≤ 1 for each j > i. Let

B1 be the event that X1 ≥ 1 but Xj ≤ 1 for each j > 1. Now the events (Bi)
2αt/3

i=1 form

a partition of B, and N =
∑2αt/3

j=1 Xj . Lemma 3.2 gives E(Xi | Bi) ≤ E(Xi) + 2, and
E(Xj | Bi) ≤ E(Xj) if j 6= i, so E(N | Bi) ≤ E(N) + 2 for each i. Thus

E(N | B) =

2αt/3∑
i=1

P(Bi | B)E(N | Bi) ≤ λ/2 + 2.

The old edges therefore combine, on average and conditional on B, at most λ/2 + 3

components from the two copies. Since B does not depend on splitting times or new
edges, each component has expected size E(|G◦t |). Thus, recalling (3.5), we have

P(B)E(|G◦◦t | | B) = O(2−αt/3)E(|G◦t |). (3.6)

3.4 Dealing with event C

Randomly designate one end of each new edge to be the “head”, and the other the
“tail”, so that the number of edges xy with head x and the number with head y are
independent. We set Ch (Ct) to be the event that the head (the tail) of some new edge
coincides with the left end of some old edge for the period in question. Since C = Ch∪Ct

and by symmetry of Ch, Ct, we have P(C)E(|G◦◦t | | C) ≤ 2P(Ch)E(|G◦◦t | | Ch).
We first condition on B{; since P(B | N = n) is increasing in n, (N | B{) ≤st Po(λ/2).

Given B{, each of the N | B{ old edges coincides with the head of a new edge for the
period between its (αt/3)th and (2αt/3)th splits independently and with equal probability
p. Since the number of heads coinciding with a given old edge at the start of the period
is distributed Po(κ) for some fixed κ ≤ λ/2, a union bound gives p ≤ 2−αt/3λ/2. Thus

P(C) ≤ 2P(Ch | B{) ≤ 2−αt/3λ2/2. (3.7)

Also, Corollary 3.3 gives P(Ch | B{)E(N | Ch) ≤ 2−αt/3(λ/2)2(1 + λ/2).
Next we bound P(Ch)E(|G◦◦t | | Ch). Lemma 3.2 implies that the number of heads

which coincide with a given old edge, after conditioning on Ch, is dominated by 1+Po(pκ),
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and the number of other new edges is independent of Ch. Thus we may couple the new
edges conditioned on Ch as a subgraph of the unconditioned new edges together with
at most N | Ch additional new edges. The expected size of the component of a given
vertex in the subgraph of unconditional new edges is E(|G◦t |), and since the old edges
and additional new edges merge at most 2E(N | Ch) + 1 components on average,

P(C)E(|G◦◦t | | C) ≤ 2P(Ch)(2E(N | Ch) + 1)E(|G◦t |)

= E(|G◦t |)O(2−αt/3). (3.8)

3.5 Dealing with event D

Now suppose that B and C do not occur. Again, we have N | B{ ∩ C{ ≤st Po(λ/2).
Since C does not occur, all new edges that meet left ends of old edges after 2αt/3

splits were created after the (αt/3)th split, and since B does not occur, each of these
meets only one old edge. Thus every old edge is not killed between its (2αt/3)th
and αtth splits independently with some probability p. Corollary 3.3 therefore gives
P(D)E(N | D) ≤ p(λ/2)(λ/2 + 1).

We next bound p. Note that being killed is monotone on adding new edges. Suppose
that after a given split an old edge e meets X0 ≤st 1 + Po(λ) new edges. Adding
extra new edges, if necessary, we may assume e meets 1 + Po(λ) new edges. After
the next split, conditioned on e meeting at least one new edge, we claim that it meets
X1 ≤st 1 + Po(λ) new edges. If the first of the 1 + Po(λ) new edges still meets e, there
are Po(λ/2) + Po(λ/2) ∼ Po(λ/2) other new edges meeting e, whereas if not we have
Po(λ) edges meeting e, conditioned to be positive, and by Lemma 3.2 this is dominated
by 1 + Po(λ). Thus conditioning on not having been killed at the previous step leaves
at most 1 + Po(λ) new edges meeting e, giving a probability of at least 1

2e
−λ/2 of being

killed at the next step; write cλ = 1− 1
2e
−λ/2. It follows that p ≤ cαt/3λ and so

P(D) ≤ E(N | B{ ∩ C{)p ≤ cαt/3λ λ/2. (3.9)

For each old edge e, we associate each new edge e′ which meets e at any point
between its (2αt/3)th and αtth splits with the interval for which it meets e, i.e. the set of
indices in {αt/3, . . . , αt} of splits after which e and e′ meet. Denote the number of new
edges meeting e for an interval I by Xe,I ; note that Xe,I ∼ Po(κI) for some κI depending
only on I, and all these are independent. We now condition on the number of old edges
and which pairs e, I have Xe,I ≥ 1; this is sufficient information to determine whether D
occurs. Lemma 3.2 gives Xe,I | D ≤st 1 + Po(κI) for each e, I. We can thus couple the
new edges conditioned on D as a subgraph of the unconditioned new edges together
with at most (N | D)(2αt/3)2 additional new edges. As in Section 3.4, it follows that

P(D)E(|G◦◦t | | D) = E(|G◦t |)O(t2c
αt/3
λ ). (3.10)

3.6 Final bounds

If none of A,B,C,D occur then all old edges have been killed. Since this means any
path from the root uses only new edges (see the proof of Lemma 2.1), the component of
the root is entirely within the left half, and thus we have

E(|G◦◦t | | (A ∪B ∪ C ∪D){) = E(|G◦t | | (A ∪B ∪ C ∪D){)

≤ E(|G◦t |)/P((A ∪B ∪ C ∪D){).

Combining (3.3), (3.4), (3.5), (3.6), (3.7), (3.8), (3.9) and (3.10) using (3.2), we have

E(|G◦◦t |) = (1 + o(ζt))E(|G◦t |),

for some ζ < 1, as required for (3.1), which thus completes the proof of finiteness.
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4 A sharp threshold for connectedness

In this section we prove Theorem 1.6, giving a sharp threshold for connectedness of
G
◦
t . We show that, as for the binomial random graph, it coincides with the threshold for

isolated vertices to appear. Our methods in this section will follow those of [9] closely.
For both directions we will need the following simple concentration bound.

Lemma 4.1. Let f(t) : (0,∞) → (0,∞) be any function with f(t) → ∞ as t → ∞. Then
with high probability we have et−f(t) < |G◦t | < et+f(t).

Proof. Set n1 = det−f(t)e and n2 = bet+f(t)c. Since |G◦t | ∼ Geo(e−t), we have

P(n1 < |G
◦
t | < n2) = (1− e−t)n1 − (1− e−t)n2−1 −→

t→∞
1.

We first show that isolated vertices appear soon after time λ.

Proposition 4.2. Let f(t) : (0,∞) → (0,∞) be any function with f(λ) → ∞ as λ → ∞.
If t > λ+ f(λ) then as λ→∞ with high probability G

◦
t has an isolated vertex.

Proof. For technical reasons we prove the same statement for the modified process
obtained by adding Po(λ/2) extra edges at the first splitting event. This ensures that
each vertex has the same probability e−λ of being isolated. Conditioned on the tree T (t)
defined in the proof of Theorem 1.4, [9, Lemma 7.1] applies and gives P(X | T (t)) ≤ 2/(2+

|G◦t |e−λ), where X is the event that no vertex is isolated. Note that λ+ f(λ)/2 < t− g(t),
where g(t) is another function satisfying g(t)→∞. By Lemma 4.1, with high probability
|G◦t | > et−g(t); conditional on this we have P(X) ≤ 2/(2 + ef(λ)/2) = o(1).

To complete the proof of Theorem 1.6, we must show that with high probability G
◦
t (λ)

is connected shortly before t = λ. For this we need another result from [9], but first we
define some terms used. Fix a finite binary tree T representing descendants of a marked
apex vertex, and k ∈ N. We say that two vertices are siblings if they have the same
parent, and two pairs of siblings are k-cousins if they have a common ancestor which is
at most distance k on T from all of them. Let G be a graph whose vertices are leaves
of T . We say two siblings x, y are strongly linked by G if G contains an edge between a
descendant of x and a descendant of y, and weakly linked by G if there is some vertex z
of T which is a sibling of one of the k lowest ancestors of x, y, such that G contains edges
between a descendant of x and one of z, and between a descendant of y and one of z. [9,
Lemma 7.2] says that the following set of conditions is sufficient for G to be connected:

(i) every pair of siblings in T is either strongly linked or weakly linked by G;

(ii) of every two pairs which are k-cousins, at least one is strongly linked by G;

(iii) any pair of siblings within the top k layers of T are strongly linked by G.

Proposition 4.3. For any α > 1, if t ≤ λ− α log λ then as λ→∞ with high probability
G
◦
t is connected.

Proof. Regarding G
◦
t as a random graph on the leaves L(t) of T (t), we will show the

conditions above hold with high probability, for some suitable k. Choose α′ > 0 such that
α− α′ > 1; then, by Lemma 4.1, with high probability |L(t)| < et+α

′ log t < et+α
′ log λ, so

|T (t)| < 2et+α
′ log λ. (4.1)

Suppose (4.1) holds, and set k = log2 λ. The probability that a particular pair of
siblings fails to be strongly linked is e−λ/2, and since each pair of siblings has at most
k2k = λ log2 λ pairs of k-cousins, the total number of ways to choose two pairs of siblings
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which are k-cousins is at most et+α
′ log λλ log2 λ = et+(1+α′) log λ log2 λ = o(eλ). For each

such choice, the probability that neither pair is strongly linked by G
◦
t (λ) is e−λ and so

with high probability (ii) holds. There are at most λ pairs of siblings in the top k layers
of T (t), and so (iii) also holds with high probability. Finally, for a fixed pair of siblings
below this point the probability that they are not strongly or weakly linked by G

◦
t is

e−λ/2
(
1− (1− e−λ/4)2

)
· · ·
(
1− (1− e−λ/2

k−1

)2
)
< 2k−1e−λ(1−2

−k).

Thus the probability that some pair fails to be strongly or weakly linked is at most

2ke−λ(1−2
−k)et+α

′ log λ = λe(t+α
′ log λ)−(t+α log λ)(1−1/λ)

= O(λ1+α
′−α) = o(1).
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