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Abstract

We prove limit theorems for the weighted quadratic variation of trifractional Brownian
motion and n-th order fractional Brownian motion. Furthermore, a sufficient condition
for the LP -convergence of the weighted quadratic variation for Gaussian processes
is obtained as a byproduct. As an application, we give a statistical estimator for the
self-similarity index of trifractional Brownian motion. These theorems extend results
of Baxter, Gladyshev, and Norvaiša.
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1 Introduction

The study of limit theorems for the weighted quadratic variation of Gaussian processes
was initiated by Baxter [1]. Later, Gladyshev [2] established a similar result under more
general assumptions, which applied to a wide class of Gaussian processes, for example,
the fractional Brownian motion. This general result is often referred to as Gladyshev’s
theorem, which also provides a method for estimating the self-similarity index for the
fractional Brownian motion.

Consequently, Gladyshev’s theorem has been extended in various directions by
many authors, see Klein and Giné [5], Marcus and Rosen [9], and Kôno [6]. A recent
preeminent complement to Gladyshev’s theorem was proposed by Norvaiša [10], who
replaced hypotheses in [2] with weaker ones. The most recent study on this topic was due
to Viitasaari [13] who gave a necessary and sufficient condition for the limit theorem for
the quadratic variation, which greatly simplified the existing methodology. These results
apply to a large number of Gaussian processes. For instance, both [10] and [13] directly
yield the limit theorem for the weighted quadratic variation of the bifractional Brownian
motion. However, existing techniques do not apply to the trifractional Brownian motion
(tri-fBm) and the n-th order fractional Brownian motion (n-fBm); see the discussion in
Section 2.

In a recent paper, Lei and Nualart [7] showed that a bifractional Brownian motion
could be decomposed into the sum of a fractional Brownian motion and a Gaussian
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process with absolutely continuous trajectories. This process was subsequently rediscov-
ered and studied by Ma [8], who also referred to it as the trifractional Brownian motion.
According to Ma [8], a trifractional Brownian motion ZH,K := {ZH,K(t), t ∈ [0,∞)} with
parameters H ∈ (0, 1) and K ∈ (0, 1) is a centered Gaussian process with covariance
function CH,K ,

CH,K(s, t) = t2HK + s2HK − (t2H + s2H)K ,

for t, s ∈ [0,∞). A trifractional Brownian motion is an HK-self-similar process with
non-stationary increments.

The well-known fractional Brownian motion is governed by the Hurst parameter H
between 0 and 1. However, many observations reveal that the Hurst parameter could
be larger than one in real life. Motivated by this fact, Perrin et al. [11] introduced the
n-th order fractional Brownian motion as an extension to the fractional Brownian motion.
An n-th order fractional Brownian motion BH,n := {BH,n(t), t ∈ [0,∞)} is a centered
Gaussian process with the following covariance function,

GH,n(s, t) = (−1)n
CnH
2

(
|t− s|2H −

n−1∑
j=0

(−1)j
(

2H

j

)(( t
s

)j
s2H +

(s
t

)j
t2H
))

,

where n ∈ N, H ∈ (n− 1, n), and CnH =
(
Γ(2H + 1)| sin(πH)|

)−1
. The class of n-th order

fractional Brownian motions allows a wider range of the Hurst parameter H. In other
words, the class of n-th order fractional Brownian motions extends the Hurst parameter
beyond the constraint H ∈ (0, 1) and includes the case of fractional Brownian motion
for n = 1. Besides, an n-th order fractional Brownian motion is still H-self-similar and
n-stationary.

For a real-valued process X and α ∈ R, we study the limit of

2αn
2n∑
k=1

(
X
( k

2n

)
−X

(k − 1

2n

))2

(1.1)

as n ↑ ∞, provided it exists in some sense. In particular, our study concerns the con-
vergence results of (1.1) for the trifractional Brownian motion and n-th order fractional
Brownian motion for various α. Our results also lead to a statistical estimator for the
self-similarity index for the trifractional Brownian motion.

2 Statement of main results

For a real-valued stochastic process X = {X(t), t ∈ [0,∞)}, if there exists γ ∈ R such
that

lim
n↑∞

2αn
2n∑
k=1

(
X
( k

2n

)
−X

(k − 1

2n

))2

=

{
0 for α < γ,

∞ for α > γ,
(2.1)

almost surely, we then say γ is the critical exponent of the weighted quadratic variation
of the process X. This notion of the critical exponent measures the roughness of the
process X; the rougher a process is, the smaller its critical exponent will be. At the
critical case α = γ, the left-hand side of (2.1) may be infinite, finite or nonexistent. We
refer to [3, 4] for a discussion of what can happen for deterministic fractal functions.

For Gaussian processes, their critical exponents can be computed by Gladyshev’s
theorem and its succeeding extensions. For instance, in the very recent complement [10],
Norvaiša considers Gaussian processes X with structure functions ψX of the following
form,

ψX(s, t) := E
(
(X(t)−X(s))2

)
= d|t− s|2−λ + b(s, t) for t, s ∈ [0,∞),
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where d > 0, λ ∈ (0, 2), and b(·, ·) is a symmetric function such that for all ε > 0

lim
h↓0

sup{|b(t− h, t)| : t ∈ (ε, 1]}
h2−λ

= 0.

Under these conditions, Norvaiša shows that the Gaussian process X admits the critical
exponent γ = 1−λ, and the weighted quadratic variation converges to d almost surely at
the critical case α = γ. For instance, the results in [10] directly apply to the bifractional
Brownian motion, which has a critical exponent 2HK − 1.

However, as stated in previous paragraphs, these existing methods fail to calculate
the critical exponent for the trifractional Brownian motion and the n-th order fractional
Brownian motion. For instance, the trifractional Brownian motion ZH,K has the following
structure function,

ψZH,K (s, t) = 2(s2H + t2H)K − 2Ks2HK − 2Kt2HK ,

for t, s ∈ [0,∞). It is clear that d = 0 in this case. Moreover, for the n-th fractional
Brownian motion BH,n, one has

ψBH,n(s, t) = (−1)nCnH

(
n−1∑
j=0

(−1)j
(

2H

j

)(
tjs2H−j + sjt2H−j − t2H − s2H

)
− |t− s|2H

)
,

(2.2)
for t, s ∈ [0,∞). The constant d = (−1)n+1CnH could possibly take negative values.

The rest of this paper is organized as follows. We establish (2.1) and compute the
critical exponent for the trifractional Brownian motion and the n-th order fractional
Brownian motion in Theorem 2.1 and Theorem 2.2, respectively. Proposition 2.3 studies
the LP -convergence of the weighted quadratic variation, which is needed in the proofs of
subsequent theorems. We then prove the limiting theorems at the critical cases for each
process in Theorem 2.4 and Theorem 2.5. Finally, Corollary 2.6 constructs a consistent
estimator for the self-similarity index of the trifractional Brownian motion. Proofs are
given in Section 3.

Now we state our main results, let us start with the trifractional Brownian motion.

Theorem 2.1. For H ∈ (0, 1), K ∈ (0, 1) and T ∈ (0,∞), the trifractional Brownian
motion ZH,K has the following limiting behavior,

a) If HK < 1
2 ,

lim
n↑∞

2αn
2n∑
k=1

(
ZH,K

(kT
2n

)
− ZH,K

( (k − 1)T

2n

))2

=

{
0 for α < 2HK, (2.3)

∞ for α > 2HK, (2.4)

almost surely. In particular, the critical exponent γ = 2HK.

b) If HK ≥ 1
2 ,

lim
n↑∞

2αn
2n∑
k=1

(
ZH,K

(kT
2n

)
− ZH,K

( (k − 1)T

2n

))2

=

{
0 for α < 1, (2.5)

∞ for α > 1, (2.6)

almost surely. In particular, the critical exponent γ = 1.

Now we state the result for the n-th order fractional Brownian motion.

Theorem 2.2. For m ≥ 2, H ∈ (m − 1,m) and T ∈ (0,∞), the m-th order fractional
Brownian motion BH.m has the following limiting behavior,

lim
n↑∞

2αn
2n∑
k=1

(
BH.m

(kT
2n

)
−BH.m

( (k − 1)T

2n

))2

= 0 for α < 1, (2.7)
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almost surely. Moreover, if m ≥ 3, we have

lim
n↑∞

2αn
2n∑
k=1

(
BH.m

(kT
2n

)
−BH.m

( (k − 1)T

2n

))2

=∞ for α > 1, (2.8)

almost surely. In particular, the critical exponent γ = 1 for m ≥ 3.

The following proposition is needed to study limit theorems at the critical cases, i.e.,
α = 1 in part (b) of Theorem 2.1 and α = 1 in Theorem 2.2. In Proposition 2.3, we
provide a sufficient condition for the LP -convergence of (1.1) for α = 1 as n ↑ ∞.

Proposition 2.3. Let X be a centered Gaussian process. If

sup
n∈N

2n
2n∑
k=1

E

[(
X
( k

2n

)
−X

(k − 1

2n

))2
]
<∞, (2.9)

the sum

2n
2n∑
k=1

(
X
( k

2n

)
−X

(k − 1

2n

))2

converges to some non-constant random variable in Lp as n ↑ ∞ for all p ∈ (1,∞).

For the convenience of exposition in subsequent proofs, we introduce the following
notation: For a centered Gaussian process X, we denote

φ
(m,n)
j,k := E

[(
X
( j

2m

)
−X

(j − 1

2m

))(
X
( k

2n

)
−X

(k − 1

2n

))]
, (2.10)

for m,n ∈ N, 1 ≤ j ≤ 2m and 1 ≤ k ≤ 2n. In particular, when the arguments m = n,
we denote φ(n)j,k := φ

(n,n)
j,k in short. In Section 3, we assign the Gaussian process X to be

either the trifractional Brownian motion or the n-th order fractional Brownian motion.

Proof of Proposition 2.3. According to [13, Theorem 2.1], it suffices to show that the
double limit

lim
n,m↑∞

2n+m
2n∑
k=1

2m∑
j=1

(φ
(m,n)
j,k )2

exists. For simplicity, let am,n := 2n+m
∑2n

k=1

∑2m

j=1(φ
(m,n)
j,k )2. The Cauchy-Schwarz in-

equality leads to

(φ
(m,n)
j,k )2 ≤ E

[(
X
( k

2n

)
−X

(k − 1

2n

))2]
E

[(
X
( j

2m

)
−X

(j − 1

2m

))2]
= φ

(m)
j,j φ

(n)
k,k.

Therefore,

am,n ≤ 2n+m
2n∑
k=1

2m∑
j=1

φ
(n)
k,kφ

(m)
j,j =

(
2n

2n∑
k=1

φ
(n)
k,k

)(
2m

2m∑
j=1

φ
(m)
j,j

)
.

By the condition (2.9), the double sequence (am,n)m,n∈N is uniformly bounded. Thus,
there exists M > 0 such that supm,n am,n ≤M . Next, for any m,n ∈ N, we have

(φ
(m,n)
j,k )2 =

(
φ
(m,n+1)
j,2k + φ

(m,n+1)
j,2k−1

)2
≤ 2
(

(φ
(m,n+1)
j,2k )2 + (φ

(m,n+1)
j,2k−1 )2

)
.

Therefore, one has

am,n = 2n+m
2n∑
k=1

2m∑
j=1

(φ
(m,n)
j,k )2 ≤ 2n+m+1

2n∑
k=1

2m∑
j=1

(
(φ

(m,n+1)
j,2k )2 + (φ

(m,n+1)
j,2k−1 )2

)
= am,n+1.
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By an analogous argument, one also gets am,n ≤ am+1,n. Therefore, for each fixed
m ∈ N, there exists a positive non-decreasing sequence (bm)m∈N such that limn↑∞ am,n =

limn↑∞ an,m = bm. As bm ≤M for all m ∈ N, there also exists a positive constant b such
that 0 < a0,0 ≤ b ≤M and bm ↑ b as m ↑ ∞.

Next, we will show the double limit limm,n↑∞ am,n exists and is equal to b. For
any ε > 0, there exists m1(ε) such that for all m ≥ m1(ε), we have 0 ≤ b − bm ≤ ε/2.
Moreover, let us select n1(ε) such that for all n ≥ n1(ε), 0 ≤ am1(ε),n−bm1(ε) ≤ ε/2. Taking
N(ε) := max[n1(ε),m1(ε)], one has for m,n ≥ N(ε),

b− am,n ≤ b− am1(ε),N(ε) ≤ (b− bm1(ε)) + (bm1(ε) − am1(ε),N(ε)) ≤ ε.

The first inequality holds as the double sequence am,n is increasing in each argument.
Therefore, the double limit limm,n↑∞ am,n exists and limm,n↑∞ am,n = b > 0. Thus, by

virtue of [13, Theorem 2.1], the weighted sum 2n
∑2n

k=1

(
X
(
k
2n

)
−X

(
k−1
2n

))2
converges to

some non-constant random variable in Lp for all p ∈ (1,∞). This completes the proof.

Now, we state the convergence results at the critical cases for the trifractional
Brownian motion and the n-th order fractional Brownian motion.

Theorem 2.4. For H ∈ (0, 1), K ∈ (0, 1) and T ∈ (0,∞), the trifractional Brownian
motion ZH,K has the following limiting behavior,

a) If HK < 1/2,

22HKn
2n∑
k=1

(
ZH,K

(kT
2n

)
− ZH,K

( (k − 1)T

2n

))2

does not converge in probability as n ↑ ∞.

b) If HK > 1/2,

2n
2n∑
k=1

(
ZH,K

(kT
2n

)
− ZH,K

( (k − 1)T

2n

))2

converges to some non-constant random variable in Lp for all p ∈ (1,∞) as n ↑ ∞.

Theorem 2.5. For m ≥ 2, H ∈ (m − 1,m) and T ∈ (0,∞), the m-th order fractional
Brownian motion BH.m has the following limiting behavior,

2n
2n∑
k=1

(
BH.m

(kT
2n

)
−BH.m

( (k − 1)T

2n

))2

converges to some non-constant random variable in Lp for all p ∈ (1,∞) as n ↑ ∞.

As observed in Theorem 2.4 and Theorem 2.5, the weighted quadratic variation of the
trifractional Brownian motion and the n-th order fractional Brownian motion behaves
essentially different to the Gaussian processes that Gladyshev’s theorem apply to. To
be more specific, if a Gaussian process fulfills conditions in Gladyshev [2] or Norvaiša
[10], its weighted quadratic sum (1.1) converges to some positive constant at the critical
case α = γ almost surely. However, for the trifractional Brownian motion ZH,K , its
weighted quadratic variation converges to some non-constant random variable in LP

and in probability for HK > 1/2 and does not converge in probability for HK < 1/2 at
each critical case. Furthermore, as in Theorem 2.5, the weighted sum of the n-th order
fractional Brownian motion converges to some non-constant random variable at the
critical case. These facts further refute the applicability of the existing literature [2, 10]
to the trifractional Brownian motion and the n-th order fractional Brownian motion.

As previously stated, for many self-similar Gaussian processes, their critical exponents
of weighted quadratic variation directly relate to their self-similarity indices. However,
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a counterexample to this relation is established in part (b) of Theorem 2.1, where the
critical exponent of the weighted quadratic variation does not yield the self-similarity
index of the trifractional Brownian motion. The same is true for the n-th order fractional
Brownian motion when n ≥ 3. Nevertheless, an estimator for the self-similarity index
HK of the trifractional Brownian motion ZH,K can be constructed for HK ≤ 1

2 , which is
the content of the following corollary.

Corollary 2.6. Suppose that HK ≤ 1
2 , and

` := − lim
n↑∞

log2

∑2n

k=1

(
ZH,K

(
kT
2n

)
− ZH,K

(
(k−1)T

2n

))2

2n

exists. Then ` = HK almost surely for every T > 0.

Proof. Take logarithm on both sides of equation (2.3), we have

lim
n→∞

2n
(α

2
+

log2

∑2n

k=1

(
ZH,K

(
kT
2n

)
− ZH,K

(
(k−1)T

2n

))2

2n

)
=

{
−∞ for α < 2HK,

+∞ for α > 2HK.

This directly implies the result.

3 Proofs

The proofs of the above theorems intensively rely on proper upper bounds of φ(m,n)j,k

for both processes. In the following lemma, we derive upper bounds of φ(m,n)j,k for
the trifractional Brownian motion, which are needed in the proofs of main theorems.
Moreover, it suffices to prove all convergence results in the above theorems with T = 1.
For arbitrary T > 0, these results hold due to the homogeneity of covariance functions.

Lemma 3.1. For H ∈ (0, 1) and K ∈ (0, 1), we denote

φ
(m,n)
j,k := E

[(
ZH,K

( j

2m

)
− ZH,K

(j − 1

2m

))(
ZH,K

( k
2n

)
− ZH,K

(k − 1

2n

))]
.

The following inequalities hold:

a) For 1 < j ≤ 2m and 1 < k ≤ 2n,

φ
(m,n)
j,k ≤ L12−(n+m)HK(k − 1)HK−1(j − 1)HK−1, (3.1)

where L1 = 2K(1−K)KH2 > 0.

b) For 1 < j ≤ 2m, 1 < k ≤ 2n and H ≥ 1/2,

φ
(m,n)
j,k ≤ L2(jk)2H−1 min

( (j − 1)2HK−4H

22Hn+(2HK−2H)m
,

(k − 1)2HK−4H

22Hm+(2HK−2H)n

)
, (3.2)

and for 1 < j ≤ 2m, 1 < k ≤ 2n and H < 1/2,

φ
(m,n)
j,k ≤ L2

[
(j − 1)(k − 1)

]2H−1
min

( (j − 1)2HK−4H

22Hn+(2HK−2H)m
,

(k − 1)2HK−4H

22Hm+(2HK−2H)n

)
, (3.3)

where L2 = 4K(1−K)H2 > 0.

c) For m,n ∈ N and 1 < k ≤ 2n,

φ
(m,n)
1,k ≤ L3(k − 1)2HK−1−2H2−2Hm+(2H−2HK)n, (3.4)

where L3 = 2HK(1−K) > 0.
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d) For m,n ∈ N and 1 < k ≤ 2n,

φ
(m,n)
1,k ≤ 2HK(k − 1)2HK−12−2HKn. (3.5)

Proof of Lemma 3.1. First, we prove inequality (3.1). For s, t > 0, we get

∂2CH,K
∂s∂t

(s, t) = 4K(1−K)H2(t2H + s2H)K−2(st)2H−1 ≤ 2KK(1−K)H2(st)HK−1. (3.6)

For 1 < j ≤ 2m and 1 < k ≤ 2n, applying (3.6) to the following integral representation
leads to

φ
(m,n)
j,k = CH,K

( k
2n
,
j

2m

)
+ CH,K

(k − 1

2n
,
j − 1

2m

)
− CH,K

( k
2n
,
j − 1

2m

)
− CH,K

(k − 1

2n
,
j

2m

)
=

∫ k/2n

(k−1)/2n

∫ j/2m

(j−1)/2m

∂2CH,K
∂s∂t

(s, t)dsdt ≤ 2−(m+n) sup
k−1≤2ns≤k
j−1≤2mt≤j

∂2CH,K
∂s∂t

(s, t)

≤ 2−(m+n)L1

( (j − 1)(k − 1)

2m+n

)HK−1
= L12−(m+n)HK(k − 1)HK−1(j − 1)HK−1.

The last inequality holds as HK < 1. Next, we prove (3.2) for H ≥ 1/2. As K − 2 < 0,
one has

∂2CH,K
∂s∂t

(s, t) ≤ L2 min
[
s2H(K−2), t2H(K−2)](st)2H−1.

Therefore,

φ
(m,n)
j,k ≤ L22−(m+n) sup

k−1≤2ns≤k
j−1≤2mt≤j

(
min

[
s2H(K−2), t2H(K−2)](st)2H−1)

= L22−2H(m+n) min
[(j − 1

2m

)2H(K−2)
,
(k − 1

2n

)2H(K−2)]( jk

2m+n

)2H−1
.

Rearranging this inequality gives (3.2), and the proof of (3.3) is analogous. Let us now
prove (3.4). To this end, for each fixed m ∈ N, we take g(t) := CH,K(1/2m, t). Clearly,
g is continuous over [0, 1] and differentiable over (0, 1). Furthermore, since K < 1, we
have [1 + (2−m/t)2H ]K−1 ≥ 1 + (K − 1)(2−m/t)2H . Thus,

0 < g′(t) = 2HKt2HK−1
[
1−

[
1 +

(2−m

t

)2H]K−1]
≤ L3t

2HK−1−2H2−2Hm.

By the mean value theorem, there exists τ ∈ [(k − 1)/2n, k/2n] such that

φ
(m,n)
1,k = CH,K

( 1

2m
,
k

2m

)
− CH,K

( 1

2m
,
k − 1

2m

)
= g′(τ)2−n

≤ L3(k − 1)2HK−1−2H2−2Hm+(2H−2HK)n,

where the last inequality holds as 2HK − 1− 2H < 0. This completes the proof of (3.4).
Finally, as g′(t) ≤ 2HKt2HK−1, it leads to

φ
(m,n)
1,k ≤ 2HK

(k − 1

2n

)(2HK−1)n
2−n = 2HK(k − 1)2HK−12−2HKn.

Thus, we complete the proof of (3.5).

Proof of Theorem 2.1. For n ∈ N and α ∈ R, we let

Sαn := 2αn
2n∑
k=1

(
ZH,K

( k
2n

)
− ZH,K

(k − 1

2n

))2

. (3.7)

ECP 26 (2021), paper 54.
Page 7/12

https://www.imstat.org/ecp

https://doi.org/10.1214/21-ECP422
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


A Gladyshev theorem for tri-fBm and n-fBm

As the trifractional Brownian motion is a centered Gaussian process, it then follows from
Isserlis’ theorem

E(Sαn ) = 2αn
2n∑
k=1

φ
(n)
k,k and Var(Sαn ) = 22αn+1

2n∑
j,k=1

(φ
(n)
j,k )2. (3.8)

In the sequel, we start by analyzing the limits of E(Sαn ) and Var(Sαn ) as n ↑ ∞. Subse-
quently, we discuss case by case to prove (2.3) and (2.5). Finally, we prove (2.4) and
(2.6). First, applying (3.1) gives

E(Sαn ) = 2αn
(
φ
(n)
1,1 +

2n∑
k=2

φ
(n)
k,k

)
≤ 2(α−2HK)n

(
(2− 2K) + L1

2n−1∑
k=1

k2HK−2
)
. (3.9)

Seeing that for 2HK−2 < −1, one has
∑∞
k=1 k

2HK−2 <∞. This implies that if HK < 1/2,
we have E(Sαn ) ↓ 0 for α < 2HK as n ↑ ∞. For HK > 1/2, one has

2n−1∑
k=1

k2HK−2 ≤
∫ 2n

0

t2HK−2dt = (2HK − 1)−12(2HK−1)n. (3.10)

Inequalities (3.9) and (3.10) then imply that for HK > 1/2, E(Sαn ) ↓ 0 for α < 1 as n ↑ ∞.
Last, for HK = 1/2, we have

E(Sαn ) ≤ 2(α−1)n
(

(2− 2K) + L1

2n∑
k=1

1

k

)
= 2(α−1)n

(
(2− 2K) + L1h2n

)
,

where h2n denotes the 2n-th Harmonic number, and h2n ∼ n log 2 as n ↑ ∞. Thus, we
have E(Sαn ) ↓ 0 as n ↑ ∞ for α < 1 and HK = 1/2. Next, we discuss the upper bounds

for Var(Sαn ) case by case. By the Cauchy-Schwarz inequality, one has (φ
(n)
1,k)2 ≤ φ(n)1,1φ

(n)
k,k.

Then,

Var(Sαn ) ≤ 22αn+1
( 2n∑
j,k=2

(φ
(n)
j,k )2 + 2

2n∑
k=1

(φ
(n)
1,k)2

)
≤ 22αn+1

( 2n∑
j,k=2

(φ
(n)
j,k )2 + 2

2n∑
k=1

φ
(n)
1,1φ

(n)
k,k

)
,

From (3.9), one get

22αn
2n∑
k=1

φ
(n)
1,1φ

(n)
k,k ≤ 2(2α−4HK)n(2− 2K)

(
(2− 2K) + L1

2n−1∑
k=1

k2HK−2
)

=


O(22(α−2HK)n) for HK ∈ (0, 1/2),

O(22(α−1)nn) for HK = 1/2,

O(2(2α−2HK−1)n) for HK ∈ (1/2, 1),

(3.11)

as n ↑ ∞. Moreover, following (3.1), we have

22αn
2n∑

j,k=2

(φ
(n)
j,k )2 ≤ L2

1

2n∑
j,k=1

2(2α−4HK)n(jk)4HK−2 =
(
L12(α−2HK)n

2n∑
k=1

k2HK−1
)2

=


O(22(α−2HK)n) for HK ∈ (0, 1/2),

O(22(α−1)nn2) for HK = 1/2,

O(22(α−1)n) for HK ∈ (1/2, 1),

(3.12)

as n ↑ ∞. Subsequently, the results (2.3) and (2.5) follow directly from the Borel-
Cantelli lemma. By virtue of the Borel-Cantelli lemma, the fast L2-convergence, i.e.,
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∑∞
n=0 Var(Sαn ) <∞, guarantees the almost sure convergence. For instance, inequalities

(3.9), (3.11) and (3.12) imply that E(Sαn ) ↓ 0 and
∑∞
n=0 Var(Sαn ) < ∞ for α < 2HK and

HK < 1/2. Therefore, Sαn converges to zero almost surely. The proofs for HK = 1/2 and
HK ≥ 1/2 also follow from (3.9), (3.11) and (3.12) analogously. Thus, we complete the
proof of (2.3) and (2.5).

Now, let us proceed to prove (2.4). There exists a (dependent) sequence of standard
normally distributed random variables {Yn, n ≥ 1}, such that

ZH,K

( 1

2n

)
=
√

2− 2K2−HKnYn. (3.13)

Therefore, for HK < 1
2 , α > 2HK and any given M > 0, we get

P
(
Sαn ≤M

)
≤ P

(
2αnZ2

H,K

( 1

2n

)
≤M

)
= P

(
Y 2
n ≤

2(2HK−α)nM

(2− 2K)

)
=
γ
(

1/2, 2
(2HK−α)nM
2(2−2K)

)
Γ(1/2)

,

where γ(k, x) =
∫ x
0
tk−1e−tdt is the lower incomplete gamma function. By change of

variables and Taylor expansion, we have

γ
(

1/2,
2(2HK−α)nM

2(2− 2K)

)
Γ(1/2)

=
2√
π

∫ √
2(2HK−α)nM

2(2−2K )

0

e−t
2

dt =
2√
π

√
2(2HK−α)nM

2(2− 2K)
+O(2(3HK−

3
2α)n),

as n ↑ ∞. As 2HK−α < 0, the Borel-Cantelli lemma implies that Sαn converges to infinity
almost surely. This completes the proof of (2.5).

Before proving equation (2.6), let us recall the definition of the Lei-Nualart process
XK = {XK(t), t ∈ [0,∞)}. For K ∈ (0, 1), the Lei-Nualart process is defined as

XK(t) =

∫ ∞
0

(1− e−st)s−
1+K

2 dBs, (3.14)

where {Bt, t ∈ [0,∞)} is a standard Brownian motion. Lei and Nualart [7] show that the
process XK has trajectories which are infinitely differentiable on (0,∞) and absolutely
continuous on [0,∞). As a result of the following construction in [7]

ZH,K(t) =

√
K

Γ(1−K)
XK(t2H),

the trifractional Brownian motion ZH,K(t) also admits infinitely differentiable trajectories
on (0,∞). Hence, for any n ∈ N and k ≥ 2, we have

ZH,K

( k
2n

)
= ZH,K

(k − 1

2n

)
+ Z ′H,K

(k − 1

2n

)
2−n +

1

2
Z ′′H,K

(uk,n
2n

)
2−2n,

where uk,n ∈ (k − 1, k). Hence,(
ZH,K

( k
2n

)
− ZH,K

(k − 1

2n

))2

= 2−2n
(
Z ′H,K

(k − 1

2n

))2
+O(2−3n).

As
(
Z ′H,K(t)

)2
is still continuously differentiable on (0,∞) by composition, we have for

every ω ∈ Ω and any ε > 0,

lim
n→∞

2n∑
k=b2nεc

2n
(
ZH,K

( k
2n
, ω
)
− ZH,K

(k − 1

2n
, ω
))2

= lim
n→∞

2n∑
k=b2nεc

2−n
(
Z ′H,K

(k − 1

2n
, ω
))2

+O(2−n) =

∫ 1

ε

(
Z ′H,K(t, ω)

)2
dt.
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As ZH,K(t) is non-constant almost surely,
∫ 1

ε

(
Z ′H,K(t)

)2
dt is positive almost surely. As a

result, for α > 1, we have

lim
n→∞

Sαn ≥ lim
n→∞

2(α−1)n lim
n→∞

2n∑
k=b2nεc

2n
(
ZH,K

( k
2n

)
− ZH,K

(k − 1

2n

))2

= lim
n→∞

2(α−1)n
∫ 1

ε

(
Z ′H,K(t)

)2
dt =∞, a.s.

This completes the proof of the result (2.6). Hence, we complete the proof of Theorem
2.1.

Proof of Theorem 2.2. Throughout the following proof, we adopt the notations in (2.10)
and (3.7) with the n-th order fractional Brownian motion. Applying Taylor series expan-
sion to (2.2) with z = 1/t yields

ψBH,m(t, t− 1) = (−1)mCmH

(
m−1∑
j=0

(−1)j
(

2H

j

)(
tj(t− 1)2H−j

+ (t− 1)jt2H−j − t2H − (t− 1)2H
)
− 1

)

= (−1)mCmH

(
m−1∑
j=0

(−1)j
(

2H

j

)
z−2H

(
(1− z)2H−j

+ (1− z)j − 1− (1− z)2H
)
− 1

)

= (−1)mCmH

(
m−1∑
j=0

(−1)j
(

2H

j

)
z−2H

(
j(j − 2H)z2 +O(z3)

)
− 1

)

= (−1)mCmH

(
2H(2H − 1)

m−2∑
j=0

(−1)j
(

2H − 2

j

)
t2H−2 − 1

)
+O(t2H−3)

= Cm−1H−1

(
2H − 3

m− 2

)
t2H−2 + (−1)m+1CmH +O(t2H−3).

As m ≥ 2 and H ∈ (m− 1,m), we have 2H − 2 > 0, and this gives

ψBH,m(t, t− 1) ∼ Cm−1H−1

(
2H − 3

m− 2

)
t2H−2 as t ↑ ∞.

As the m-th order fractional Brownian motion is H-self-similar, then

2n∑
k=1

φ
(n)
k.k = 2−2Hn

2n∑
k=1

ψBH,m(k − 1, k) = O(2−n) as n ↑ ∞. (3.15)

Therefore, E(Sαn ) = O(2(α−1)n) as n ↑ ∞. Now, let us recall that the Cauchy-Schwarz

inequality gives (φ
(n)
j,k )2 ≤ φ(n)j,j φ

(n)
k,k, which leads to

Var(Sαn ) = 22αn+1
2n∑

j,k=1

(φ
(n)
j,k )2 ≤ 22αn+1

(
2n∑
k=1

φ
(n)
k,k

)2

= O(22(α−1)n).

This then gives the fast L2-convergence for the case α < 1, which guarantees the almost
sure convergence. Hence, the result in (2.7) is then verified.

The proof of (2.8) follows analogously as the arguments in the proof of (2.6) in
Theorem 2.1. Following [12, Remark 2.3], BH,m is (m − 1) times differentiable. Thus,
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for m ≥ 3, the arguments in the proof Theorem 2.1 can be applied to the m-th order
fractional Brownian motion. Hence, we complete the proof of Theorem 2.2.

Proof of Theorem 2.4. First, we prove assertion a for the case 2H < 1, the proof for the
case 2H ≥ 1 is analogous. By virtue of Viitasaari [13, Theorem 2.1], it suffices to show
that the double limit

lim
n,m↑∞

22HK(n+m)
2n∑
k=1

2m∑
j=1

(φ
(m,n)
j,k )2 (3.16)

fails to exist. To this end, for n,m ∈ N, we denote am,n := 22HK(n+m)
∑2n

k=1

∑2m

j=1(φ
(m,n)
j,k )2.

Next, we show the limit limn↑∞ an,n exists and is strictly positive. By the Cauchy-Schwarz

inequality, we have (φ
(m,n)
j,k )2 ≤ φ(m)

j,j φ
(n)
k,k, then

an,m ≤ 22HK(n+m)
2n∑
k=1

2m∑
j=1

φ
(n)
k,kφ

(m)
j,j =

(
22HKn

2n∑
k=1

φ
(n)
k,k

)(
22HKm

2m∑
j=1

φ
(m)
j,j

)
.

From (3.9), if HK < 1/2, the sequence (
∑2m

j=1 φ
(m)
j,j )m∈N is uniformly bounded. Hence,

there exists M > 0, such that supm,n am,n ≤M . As the trifractional Brownian motion is
HK-self-similar, then

an,n =

2n∑
k=1

2n∑
j=1

(22HKnφ
(n)
j,k )2 =

2n∑
k=1

2n∑
j=1

E
[(
ZH,k(j)−ZH,k(j−1)

)(
ZH,k(k)−ZH,k(k−1)

)]2
.

Therefore, (an,n)n∈N forms a non-decreasing uniformly bounded sequence. Hence, the
limit limn↑∞ an,n exists and limn↑∞ an,n ≥ a0,0 = E([ZH,K(1)]2) = (2− 2K) > 0.

Now, we show that for each fixed n ∈ N, limm↑∞ am,n = limm↑∞ an,m = 0. For k ≥ 2,
inequality (3.3) yields

22HK(m+n)
2m∑
j=1

(φ
(m,n)
j,k )2 ≤ (k − 1)4HK−4H−22(4H−2HK)n2(2HK−4H)m

(
L2
2

2m∑
j=1

j4H−2 + L2
3

)
.

If H < 1/4, the sequence (j4H−2)j∈N ∈ `1, and 22HK(m+n)
∑2m

j=1(φ
(m,n)
j,k )2 converges to

zero as m ↑ ∞. If H > 1/4, one has

2(2HK−4H)m
2m∑
j=1

j4H−2 ≤ 2(2HK−4H)m

∫ 2m

0

t4H−2dt = (4H − 1)−12(2HK−1)m.

Therefore, 22HK(m+n)
∑2m

j=1(φ
(m,n)
j,k )2 = O(2(2HK−1)m) converges to zero as m ↑ ∞. Last,

if H = 1/4, then
∑2m

j=1 j
−1 = h2m ∼ m log 2, where h2m is the 2m-th Harmonic number. It

then implies that 22HK(m+n)
∑2m

j=1(φ
(m,n)
j,k )2 converges to zero. For k = 1, it follows from

(3.5) that

22HK(m+n)
2m∑
j=2

(φm,nj,1 )2 ≤ 22HK(n−m)+2H2K2
2m∑
j=2

(j − 1)4HK−2

=


O(2−2HKm) for HK < 1/4,

O(2−2HKmm) for HK = 1/4,

O(2(2HK−1)m) for HK > 1/4,

(3.17)

as m ↑ ∞. Finally, for each n ∈ N, we have

0 < 22HK(m+n)(φ
(m,n)
1,1 )2 ≤ 22HK(n−m). (3.18)
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The above inequalities in together imply that for each n ∈ N and 1 ≤ k ≤ 2n, we have

lim
m↑∞

2HK(m+n)
2m∑
j=1

(φ
(m,n)
j,k )2 = 0.

Hence, we have limm↑∞ am,n = limm↑∞ an,m = 0. However, as previously proved,
limn↑∞ an,n > 0. Therefore, the double limit (3.16) does not exists, and we then complete
the proof of assertion (a).

We now prove assertion (b). Following (3.9) and (3.10), we have

sup
n∈N

2n
2n∑
k=1

φ
(n)
k,k ≤ (2− 2K) +

L1

2HK − 1
.

Then Proposition 2.3 implies the assertion (b).

Proof of Theorem 2.5. This theorem follows as a direct corollary of Proposition 2.3 and
(3.15).
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