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Abstract

We consider the symmetric exclusion process on the d-dimensional lattice with initial
data invariant with respect to space shifts and ergodic. It is then known that as t

diverges the distribution of the process at time t converges to a Bernoulli product
measure. Assuming a summable decay of correlations of the initial data, we prove a
quantitative version of this convergence by obtaining an explicit bound on the Ornstein
d̄-distance. The proof is based on the analysis of a two species exclusion process with
annihilation.
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1 Introduction

The analysis of the speed of the convergence to equilibrium for Markov processes
is a major topic in probability theory. Referring to [15] for a general overview, we
focus the discussion to the case of reversible stochastic lattice gases, i.e. conservative
interacting particles systems satisfying the detailed balance condition with respect to
a Gibbs measure. If these processes are considered on a bounded subset Λ of the
d-dimensional lattice they are ergodic when restricted to the configurations with fixed
number of particles and the corresponding reversible measure is the finite volume
canonical Gibbs measure. In the high temperature regime, in [7, 8, 9, 10, 19] it has been
shown that both the inverse of the spectral gap and the logarithmic Sobolev constant
grow as the square of the diameter of Λ. On the infinite lattice, stochastic lattice gases
are reversible with respect to the (infinite volume) canonical Gibbs measures, see [11,
Thm. 2.14]. In the high temperature regime, by [11, Thm. 5.14], the extremal elements
of the set of the canonical Gibbs measures consist in the one parameter family {πρ}
where πρ is the grand-canonical Gibbs measure with density, i.e. expected number of
particles per site, given by ρ. Moreover, as follows from [11, Thm. 1.72], the semigroup
Pt, t ≥ 0 associated to a reversible stochastic lattice gases is ergodic in L2(πρ) namely,
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Quantitative ergodicity for the symmetric exclusion process

‖Ptf − πρ(f)‖L2(πρ) → 0 for each f ∈ L2(πρ). A quantitative version of this statement can
be obtained when the function f is local, i.e. it depends on the particles configuration
only through its value on finitely many sites. For this class of functions it has been
shown, for the exclusion and the zero range processes, that ‖Ptf−πρ(f)‖2L2(πρ) ≤ C t

−d/2

for some constant C = C(f) [3, 12]. The case in which the reversible probability is a
grand-canonical Gibbs measure in the high temperature regime is discussed in [4, 6, 14]
where a slightly worse bound is proven.

We here consider the simple symmetric exclusion process. It corresponds to the infi-
nite temperature case and the probability measure πρ is the product Bernoulli measure
with parameter ρ ∈ [0, 1]. If the probability µ is a suitable local perturbation of πρ it
has been proven in [3] that Ent

(
µPt

∣∣πρ) ≤ Ct−d/2 for some constant C = C(µ), here Ent

denotes the relative entropy. See also [16] for further details on this issue. In general, it
appears to be quite difficult to characterize the probabilities µ on the configuration space
such that µPt converges to πρ as t → ∞. However, as proven in [18, Thm. VIII.1.47],
such convergence holds when µ is stationary, i.e. invariant with respect to space shifts,
and ergodic with density ρ. Our purpose is to provide a quantitative version of this
statement. More precisely, denoting by d̄ the Ornstein distance on the set of stationary
probabilities [22, § I.9.b], we prove here that if µ is stationary, ergodic with density ρ,
and has absolutely summable correlations, then d̄(µPt, πρ) ≤ Ct−γ(d) for some constant
C = C(µ) and γ(d) = d/4 for d < 4 and γ(d) = 1 for d ≥ 4; see Theorem 2.1 below. The
proof is achieved by combining a simple coupling argument with the analysis on the
decay of the density for the two-species symmetric exclusion process with annihilation
[1, 2], that relies on an analogous result for the two-species independent random walks
[5].

Referring to [5] for more details, we next explain heuristically the power law decay
of the Ornstein d̄ distance. By [22, Thm. I.9.7] the d̄ distance between µPt and πρ can
be bounded using a coupling between µPt and πρ invariant with respect to space shifts:
d̄(µPt, πρ) ≤ P

(
η0(t) 6= ζ0(t)

)
. Here (η0(t), ζ0(t)) are the occupation numbers at the

origin at time t ≥ 0 of a two-species annihilating exclusion process with equal density.
Namely, two species of particles that evolve on Zd according to exclusion processes
and annihilating when they meet. Let ρ(t) = P

(
η0(t) 6= ζ0(t)

)
be the probability that

the origin is occupied by either species of particles. In the mean field approximation,
ρ(t) decays to zero according to ρ̇(t) = −ρ(t)2 which would imply d̄(µPt, πρ) ≈ t−1. This
approximation yields the correct behavior when d ≥ 4 while for d ≤ 3 the Gaussian
fluctuations of the initial data become relevant and, due to the underlying particle’s
diffusion, the decay becomes d̄(µPt, πρ) ≈ t−d/4.

To our knowledge, the present analysis of the symmetric exclusion process is the first
example in which the quantitative ergodicity for a stochastic lattice gas with stationary
initial data has been achieved. The arguments here developed cover directly the case
of independent random walks. We conclude by discussing possible extensions to other
models. As mentioned before, the crucial ingredient in the proof is the quantitative
decay of the density for the two-species exclusion process with annihilation. This decay
might be proven for other attractive stochastic lattice gases such as the zero range
process with increasing rates, see e.g. [13, Thm. 2.5.2], or the special class of reversible
stochastic lattice gases in [17, § 4.1]. Another simple model for which the quantitative
ergodicity could be investigated is the inclusion process (SIP), indeed this model is
self-dual and a coupling with independent random walks has been constructed in [21].
For the generic case of reversible stochastic lattice gases where the invariant measure
is not a product measure, it seems however difficult that coupling arguments suffice
to establish the quantitative ergodicity, cfr. the corresponding problem of the decay to
equilibrium for local functions in [4, 6, 12, 14]. We remark that another possible setting
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Quantitative ergodicity for the symmetric exclusion process

to discuss the quantitative ergodicity for stochastic lattice gases with stationary initial
data µ is the decay rate of the relative entropy per site of µPt with respect to πρ. In view
of [20], such decay would imply a quantitative decay on the d̄ distance between µPt and
πρ.

2 Notation and results

Let Zd be the d-dimensional lattice. We write Λ ⊂⊂ Zd when Λ is a finite subset of
Zd. Set Ω := {0, 1}Zd that it is considered endowed with the product topology and the
corresponding Borel σ–algebra. Elements of Zd will be called sites while elements of
Ω configurations. For η ∈ Ω the value of the configuration η at the site x, denoted by
ηx ∈ {0, 1}, is interpreted as the absence/presence of a particle at x and called occupation
number. In particular, η0 is the occupation number at the origin of Zd.

The simple symmetric exclusion process (SEP) is the Markov process on the state
space Ω whose generator acts on local functions f : Ω→ R, i.e. functions depending on η
only through the values {ηx} for finitely many sites x, as

Lf(η) =
∑
〈x,y〉

[
f
(
ηx,y

)
− f(η)

]
. (2.1)

The sum is carried out over the unordered edges of Zd and ηx,y is the configuration
obtained from η by exchanging the occupation numbers at x and y,

ηx,yz :=


ηy if z = x,

ηx if z = y,

ηz otherwise.

(2.2)

We denote by Pt, t ≥ 0, the semigroup generated by L that acts on the Banach space
C(Ω), the family of continuous function on Ω endowed with the uniform norm. We refer
to [18, Ch. VIII] for the construction of this process and its properties. In Theorem 1.44
there, it is proven in particular that a probability µ on Ω is invariant for SEP if and only if
µ is exchangeable, equivalently µ is a mixture, i.e. a possibly infinite convex combination,
of i.i.d. Bernoulli measures.

Let Pτ (Ω) be the set of stationary probabilities on Ω, i.e. the probabilities on Ω

invariant with respect to the space shifts on Ω. Observe that Pτ (Ω) is a convex set and
the set of its extremal points, denoted by Pτ,e(Ω), consists of the ergodic probabilities.
For ρ ∈ [0, 1] let πρ ∈ Pτ (Ω) the Bernoulli product probability with parameter ρ. In [18,
Thm. VIII.1.47 ] it is proven that if µ ∈ Pτ,e(Ω) and µ(η0) = ρ then µPt weakly converges
to πρ as t → +∞. The purpose of the present analysis is to provide a quantitative
version of this statement with an explicit control on the rate of convergence. This will be
achieved when the probability µ has absolutely summable correlations.

To formulate the quantitative ergodicity we need a distance on Pτ (Ω). We shall use
the so-called Ornstein d̄ distance. Given Λ ⊂⊂ Zd let dΛ be the distance on ΩΛ := {0, 1}Λ
defined by

dΛ(η, ζ) :=
∑
x∈Λ

|ηx − ζx|.

Denoting by P(ΩΛ) the set of probabilities on ΩΛ, let WΛ be the 1-Wasserstein distance
on P(ΩΛ) associated to dΛ, i.e.

WΛ(µ, ν) := inf
Q

∫
Q(dη, dζ) dΛ(η, ζ),
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Quantitative ergodicity for the symmetric exclusion process

where the infimum is carried out over all the couplings Q of µ and ν, i.e. the set of
probabilities on Ω× Ω with marginals µ and ν. For µ ∈ Pτ (Ω) and Λ ⊂ Zd let µΛ be the
marginal of µ on ΩΛ. By a standard super-additive argument, if µ, ν ∈ Pτ (Ω) then

lim
Λ↑Zd

1

|Λ|
WΛ(µΛ, νΛ) = sup

Λ⊂⊂Zd

1

|Λ|
WΛ(µΛ, νΛ) =: d̄(µ, ν). (2.3)

Moreover, see e.g. [22, Thm. I.9.7], d̄ defines a distance on Pτ (Ω) that can be represented
as

d̄(µ, ν) = inf
Q

∫
Q(dη, dζ) |η0 − ζ0| (2.4)

where we recall that η0, ζ0 are the occupation numbers at the origin and the infimum is
carried out over all the stationary couplings Q of µ and ν, i.e. the set of couplings of µ and
ν that are invariant with respect to space shifts on Ω× Ω. By (2.3), the topology induced
by d̄ on Pτ (Ω) is finer than the topology induced by the weak convergence. Denoting by
ent(µ|ν) the relative entropy per unit of volume of µ with respect to ν, we finally mention
two remarkable properties of the Ornstein d̄ distance, see e.g. [22, Thm. I.9.15 and I.9.16]:
(i) Pτ,e(Ω) is d̄ closed, (ii) for each ρ ∈ [0, 1] the map Pτ,e(Ω) 3 µ 7→ ent(µ|πρ) is d̄

continuous.
Given two functions f, g and a probability µ we let µ(f ; g) := µ(fg)− µ(f)µ(g) be the

µ-covariance of f and g. For µ ∈ Pτ,e(Ω) we set

A(µ) :=
∑
x∈Zd

∣∣µ(η0; ηx)
∣∣. (2.5)

The quantitative ergodicity for SEP with stationary initial data is then stated as follows.

Theorem 2.1. For each d there exists a constant C such that for any t > 0, ρ ∈ [0, 1],
and µ ∈ Pτ,e(Ω) satisfying µ(η0) = ρ,

d̄
(
µPt, πρ

)
≤ C

√
A(µ)

tγ(d)
(2.6)

where γ(d) = d/4 if d ≤ 4 and γ(d) = 1 for d > 4.

The above results implies that if µ ∈ Pτ,e(Ω), µ(η0) = ρ, and A(µ) < +∞ then µPt
converges to πρ in the topology induced by the d̄ distance. In particular, by remark (ii)
above, ent(µPt|πρ) → 0. It is unclear to us whether this statement holds without the
condition A(µ) < +∞.

As we next argue, there exist probabilities µ ∈ Pτ,e(Ω) such that d̄
(
µPt, πρ

)
decays

to zero arbitrarily slow as t→ +∞. Fix two sites x 6= y. By (2.3) it is enough to exhibit
µ ∈ Pτ,e(Ω) with µ(η0) = ρ such that

(
µPt

) (
ηx = 1, ηy = 1

)
converges to ρ2 arbitrarily

slow. By the so-called self-duality of SEP, see [18, Cor. VIII.1.3],(
µPt

)(
ηx = 1 , ηy = 1

)
= E(x,y)µ

(
ηX(t) = 1 , ηY (t) = 1

)
,

where
(
X(t), Y (t)

)
, t ≥ 0, are two particles in exclusion starting from (x, y). Since

correlations of µ can decay arbitrarily slow, we deduce that as t → +∞
(
µPt

) (
ηx =

1, ηy = 1
)

converges to ρ2 arbitrarily slow.

3 Reduction to the two species SEP with annihilation

In view of (2.4), an upper bound for d̄(µPt, πρ) can be obtained by exhibiting a
stationary coupling between µPt and πρ. Starting a time t = 0 by a stationary coupling of
µ and πρ and coupling the corresponding two SEP we obtain, at time t > 0, a stationary
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Quantitative ergodicity for the symmetric exclusion process

coupling between µPt and πρ good enough to produce the bound (2.6). In words, the
coupling between the two SEP can be described as follows. Particles of the two processes
that are at the same site jump together while particles alone jump independently. In
formulae, we consider the Markov process whose generator is the closure of the operator
L̃ that acts on local functions F : Ω× Ω→ R as

L̃F (η, ζ) =
∑
〈x,y〉

{(
1− 1ηx 6=ζx,ηy 6=ζy

)[
F (ηx,y, ζx,y)− F (η, ζ)

]
+ 1ηx 6=ζx,ηy 6=ζy

[
F (ηx,y, ζ) + F (η, ζx,y)− 2F (η, ζ)

]}
.

(3.1)

The corresponding semigroup is denoted by P̃t, t ≥ 0. Note that, even if not apparent
from the notation, L̃ is the operator used in [18, § VIII.2] to prove the attractiveness of
the exclusion process. The next statement can be checked by a direct computation that
is omitted.

Lemma 3.1. Let (η(t), ζ(t)), t ≥ 0 be the Markov process generated by L̃. Then ξ(t) :={
ηx(t)− ζx(t), x ∈ Zd

}
, t ≥ 0 is a Markov process with state space S = {−1, 0, 1}Zd and

generator L that acts on the local functions f : S→ R as

Lf(ξ) =
∑
〈x,y〉

{
1ξxξy 6=−1

[
f(ξx,y)− f(ξ)

]
+ 21ξxξy=−1

[
f(ξx,y;†)− f(ξ)

]}
(3.2)

where ξx,y has been defined in (2.2) and

ξx,y;†
z :=

{
0 if z ∈ {x, y},
ξz otherwise.

The process generated by (3.2), that will be referred to as the two species SEP with
annihilation, can be described by visualizing the sites x where ξx = −1 as occupied
by anti-particles and the sites x where ξx = 1 occupied by particles. Particles and
anti-particles evolve following two independent SEP and when a particle jumps over a
anti-particle, or conversely a anti-particle jumps over a particle, the two particles are
annihilated. It can be therefore seen as kinetic model corresponding to the reaction
anti-particle + particle 7→ ∅. As we show in the next section, an analysis of this dynamics
yields an upper bound for the Ornstein distance between two SEP with different initial
data.

4 Long time behavior of the two species SEP with annihilation

In this section we consider the two species SEP with annihilation obtaining – for
suitable stationary initial data – an upper bound for the probability that at time t > 0

the origin is occupied by either types of particles. Given a probability ℘ on S the law of
the two species SEP with annihilation, i.e. the process generated by (3.2), and initial
datum ℘ is denoted by P℘, the corresponding expectation by E℘. For ℘ ∈ Pτ,e(S), the set
of stationary and ergodic probabilities on S, we set

B(℘) :=
∑
x∈Zd

∑
α,β∈{−1,1}

∣∣℘(ξ0 = α ; ξx = β
)∣∣ (4.1)

where ℘
(
ξ0 = α ; ξx = β

)
:= ℘

(
ξ0 = α , ξx = β

)
− ℘

(
ξ0 = α)℘

(
ξx = β

)
.

Theorem 4.1. For each d there exists a constant C such that for any t > 0 and any
℘ ∈ Pτ,e(S) satisfying ℘(ξ0 = −1) = ℘(ξ0 = 1)

E℘|ξ0(t)| ≤ C
√
B(℘)

tγ(d)
, (4.2)

where γ(d) = d/4 if d ≤ 4 and γ(d) = 1 for d > 4.
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The analogous statement for two species annihilating independent random walks and
stationary product initial condition has been proven in [5]. Relying on the arguments
there, the bound (4.2) is proven in [1, 2] when the initial datum ℘ is a product measure.
This assumption on the initial datum is used only in [1, Lemma 2.1]; however, as we
show in Lemma 4.2 below, it can be relaxed to the condition B(℘) < +∞. The rest of the
arguments in [1, 2] carries out unchanged to the present setting and yields the statement
in Theorem 4.1. Assuming it, we first conclude the proof of the quantitative ergodicity
for the SEP with stationary initial data.

Proof of Theorem 2.1. Given µ ∈ Pτ,e(Ω) with µ(η0) = ρ, let ℘ ∈ Pτ (S) be the law of η− ζ
where η and ζ are independently sampled from µ and πρ. By (2.5) and (4.1), a direct
computation yields

B(℘) ≤
∑

α∈{−1,1}

[1− ρ(1− ρ)]
∣∣µ(η0 = 1+α

2 ; η0 = 1+α
2

)∣∣
+

∑
α6=β∈{−1,1}

ρ(1− ρ)
∣∣µ(η0 = 1+α

2 ; η0 = 1+β
2

)∣∣
+
∑
x 6=0

∑
α,β∈{−1,1}

πρ
(
ζ0 = 1−α

2 , ζx = 1−β
2

) ∣∣µ(η0 = 1+α
2 ; ηx = 1+β

2

)∣∣
≤ A(µ).

Since the process
(
η(t), ζ(t)

)
, t ≥ 0 couples two SEP, the probability (µ ⊗ πρ)P̃t is a

coupling of µPt and πρPt = πρ. Here Pt and P̃t, t ≥ 0, are the semigroups associated to
SEP and (3.1), respectively. Moreover, as the probability µ ⊗ πρ on Ω × Ω is invariant

with respect to space shifts, (µ⊗ πρ)P̃t is a stationary coupling of µPt and πρ. According
to Lemma 3.1, ξ(t) = η(t)− ζ(t) is distributed as the two-species SEP with annihilation,
i.e. the process generated by (3.2), whose law is denoted by E℘. Hence, by (2.4) and
Theorem 4.1,

d̄
(
µPt, πρ) ≤ E℘|ξ0(t)| ≤ C

√
A(µ)

tγ(d)

for some constant C depending only on d.

In order to extend the result in [1, 2] to non-product initial data, we need to realize
the two species SEP with annihilation on the probability space associated to the so-called
stirring process. This construction is achieved in two steps: from two independent
stirring processes we first obtain the two species SEP without annihilation then, by a
thinning procedure, we construct the the two species SEP with annihilation.

We start by recalling the graphical construction of the stirring process. To each
site x ∈ Zd attach a copy of the positive half-axis R+. For each edge 〈x, y〉 draw a
set of double-arrows sampled according to independent Poisson point processes with
intensity one. The stirring process W = {Wx(t), x ∈ Zd, t ∈ R+} is defined as follows:
the value Wx(t) ∈ Zd is obtained by placing a marker at time t = 0 at the point x and

letting it evolve following the path dictated by the arrows. Given ζ ∈ {0, 1}Zd the SEP
with initial datum ζ can be realized as ηx(t) =

∑
y∈Zd ζy1{x}(Wy(t)), x ∈ Zd. Let finally

W =
(
W−,W+

)
be two independent copies of the stirring process.

The two species SEP without annihilation can be described as follows. Each site can
be: empty, occupied by a particle, occupied by a anti-particle, or occupied by both a
particle and an anti-particle. The anti-particles evolve according to the stirring process
W− while particles according to W+. Setting S̃ := {0,−1,+1,±}Zd , the two species SEP
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without annihilation is thus the process on the state space S̃ defined by

ξ̃x(t) =



−1 if ∃y ∈ Zd : ζ̃y ∈ {−1,±} and W−y (t) = x,

@z ∈ Zd : ζ̃z ∈ {1,±} and W+
z (t) = x,

+1 if @y ∈ Zd : ζ̃y ∈ {−1,±} and W−y (t) = x,

∃z ∈ Zd : ζ̃z ∈ {1,±} and W+
z (t) = x,

± if ∃y ∈ Zd : ζ̃y ∈ {−1,±} and W−y (t) = x,

∃z ∈ Zd : ζ̃z ∈ {1,±} and W+
z (t) = x,

0 otherwise.

(4.3)

Then ξ̃(t), t ≥ 0, is the Markov process whose generator L̃ acts on local functions
f : S̃→ R as

L̃f(ξ̃) =
∑
(x,y)

{ ∑
α∈{−1,+1}

∑
β∈{0,±}

1{α}(ξ̃x)1{β}(ξ̃y)
[
f(ξ̃x,y)− f(ξ̃)

]
+ 1{−1}(ξ̃x)1{+1}(ξ̃y)

[
f(ξ̃x,y;±,0) + f(ξ̃x,y;0,±)− 2f(ξ̃)

]
+ 1{0}(ξ̃x)1{±}(ξ̃y)

[
f(ξ̃x,y;+1,−1) + f(ξ̃x,y;−1,+1)− 2f(ξ̃)

]}
,

(4.4)

where the leftmost sum is carried out over the set of oriented edges of Zd, ξ̃x,y has been
defined in (2.2) and, given α, β ∈ {0,−1,+1,±},

(ξ̃x,y;α,β)z :=


α if z = x,

β if z = y,

ξ̃z otherwise.

Given a probability ℘̃ on S̃ we denote by P̃℘̃ the law of this process with initial condition

℘̃ and by Ẽ℘̃ the corresponding expectation.
The two species SEP with annihilation ξ(t), t ≥ 0, can be finally realized by a thinning

of two species SEP without annihilation by recursively removing pairs of particles
of different species that occupy the same site. This thinning procedure provides a
coupling of the processes ξ(t) and ξ̃(t) such that for any t ≥ 0 and α ∈ {−1, 1} we have
{x ∈ Zd : ξt(x) = α} ⊂ {x ∈ Zd : ξ̃t(x) = α} with probability one.

Given Λ ⊂⊂ Zd and α ∈ {−1, 1} we set NΛ,α(ξ) :=
∑
x∈Λ 1{α}(ξx). Namely, NΛ,−1

and NΛ,1 are respectively the number of anti-particles and the number particles in Λ.

The same notation is used for ξ̃ ∈ S̃. In the next statement we regard ℘ ∈ Pτ (S) as a
stationary probability on S̃.

Lemma 4.2. Let B as defined in (4.1). Then for each Λ ⊂⊂ Zd, t ≥ 0, and ℘ ∈ Pτ (S)

such that ℘(ξ0 = −1) = ℘(ξ0 = 1),

Ẽ℘

(
NΛ,1(ξ̃(t))−NΛ,−1(ξ̃(t))

)2

≤ 2 |Λ|B(℘).

Proof. We write NΛ,1(ξ̃(t)) − NΛ,−1(ξ̃(t)) =
∑
x∈Λ

[
1{+1,±}

(
ξ̃x(t)

)
− 1{−1,±}

(
ξ̃x(t)

)]
and

observe that its expectation with respect to P̃℘ vanishes. Thus

Ẽ℘

(
NΛ,1(ξ̃(t))−NΛ,−1(ξ̃(t))

)2

=
∑
x∈Λ

∑
α∈{−1,1}

P̃℘
(
ξ̃x(t) ∈ {α,±}

)
+
∑
x,y∈Λ
x 6=y

∑
α,β∈{−1,1}

(−1)
α+β

2 +1 P̃℘
(
ξ̃x(t) ∈ {α,±} ; ξ̃y(t) ∈ {β,±}

)
.

(4.5)
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Let pt(x, y) := P
(
Wα
x (t) = y

)
, i.e. the transition probability of the standard continuous

time simple symmetric random walk on Zd. By (4.3), the diagonal term in (4.5) is given
by ∑

x∈Λ

∑
α∈{−1,1}

∑
y∈Zd

℘(ξy = α)pt(x, y) = 2σ |Λ|

where σ := ℘(ξ0 = −1) = ℘(ξ0 = 1).
By (4.3), for x 6= y and α, β ∈ {−1,+1}

P̃℘
(
ξ̃x(t) ∈ {α,±} ; ξ̃y(t) ∈ {β,±}

)
=
∑
x′,y′

pα,βt (x′, y′, x, y)℘(ξ̃x′ = α , ξ̃y′ = β
)

−
∑
x′

pt(x
′, x)℘(ξ̃x′ = α)

∑
y′

pt(y
′, y)℘(ξ̃y′ = β)

where pα,βt (x′, y′, x, y) := P
(
Wα
x′(t) = x , W β

y′(t) = y
)
. Observe that if α 6= β then

pα,βt (x′, y′, x, y) = pt(x
′, x)pt(y

′, y) while, by the Liggett’s inequality [18, Prop. VIII.1.7],
for α = β we have pα,βt (x′, y′, x, y) ≤ pt(x′, x)pt(y

′, y). By the invariance of ℘ with respect
to space shifts we deduce that the off diagonal term in (4.5) can be bounded by∑

x,y∈Λ
x 6=y

∑
x′,y′

∑
α,β∈{−1,1}

pt(x
′, x)pt(y

′, y)
∣∣℘(ξ̃0 = α; ξ̃y′−x′ = β

)∣∣
≤
∑
x∈Λ

∑
z

∑
x′,y′

pt(x
′, x)pt(y

′, x+ z)
∣∣℘(ξ̃0 = α; ξ̃y′−x′ = β

)∣∣
≤ |Λ|

∑
z

∑
z′

qt(z
′, z)

∣∣℘(ξ̃0 = α; ξ̃z′ = β
)∣∣ ≤ |Λ|B(℘)

where qt(z
′, z) is the transition probability for a rate two symmetric random walk on

Zd, i.e. the difference of two i.i.d. rate one symmetric random walks on Zd. Since
2σ =

∑
α,β∈{−1,1}

∣∣℘(ξ0 = α ; ξ0 = β
)∣∣ the statement follows.
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