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Abstract

We propose a new numerical method for one dimensional stochastic differential
equations (SDEs). The main idea of this method is based on a representation of a
weak solution of an SDE using a time-changed Brownian motion, which dates back to
Doeblin (1940). In cases where the diffusion coefficient is bounded and is β-Hölder
continuous with 0 < β ≤ 1, we provide the rate of strong convergence. An advantage
of our approach is that we approximate the weak solution, which enables us to treat
SDEs with no strong solution. Our scheme is the first to achieve strong convergence
for the case of 0 < β < 1/2.
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1 Introduction

In this article, we provide a numerical method for approximating a weak solution of a
one dimensional stochastic differential equation. There are many studies on numerical
approximation of SDEs which converge strongly to the solution. There are a variety of
applications, including path-dependent option pricing in financial engineering. In this
work, we focus on the following one-dimensional SDE:

dXt =σ(t,Xt)dWt. (1.1)

This kind of SDE model is called a local volatility model and is popular in financial
practice. Although (1.1) does not include a drift term, we note that under appropriate
conditions, a general one-dimensional SDE with drift can be reduced to (1.1). Time
homogeneous one-dimensional SDEs can be transformed to not have a drift term by
using a scale function in the pathwise sense, and time inhomogeneous SDEs can also be
transformed to (1.1) by using the Girsanov–Maruyama transformation in the sense of
law.

In order to study numerical schemes of the SDE (1.1), we need to discuss the
conditions under which the existence and uniqueness of the solution hold in various
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different senses: strong uniqueness, pathwise uniqueness, and uniqueness in the sense
of probability law. Many researchers have studied the unique existence of the solution
to SDEs for a long time. The most famous condition for strong unique existence of a
solution is the Lipschitz continuity of the drift and diffusion coefficients (see [11]).

According to Bru and Yor [3], W. Doeblin wrote a paper about this issue before
many facts about the structure of martingale were found. He showed that a diffusion
process can be represented by some stochastic process driven by a time-changed
Brownian motion. Although this work of Doeblin from 1940 was only made public in
2000, the idea was rediscovered and extended in stochastic calculus, and was already in
a textbook [10] by Ikeda and Watanabe in 1984, where it was shown that a certain class
of one-dimensional SDE of the form (1.1) has a unique solution represented by a time
changed Brownian motion, where the time change is given as the solution of a random
ordinary differential equation, as we discuss in the next section in more detail. We use
this representation to construct a new approximation scheme for one-dimensional SDEs.
For the time homogeneous case, namley, σ(t, x) = σ(x) in (1.1), Engelbert and Schmidt
[4] gave an an equivalent condition for weak existence and uniqueness in the sense
of probability law, under which the weak solution is represented by a time-changed
Brownian motion. For time-homogeneous SDEs, an excellent survey [14] about the
existence and uniqueness of SDEs is available.

The most famous numerical scheme for SDEs is the Euler–Maruyama scheme. This
method approximates a solution of an SDE in a very similar way to the Euler scheme
for ordinary differential equations. We define the Euler–Maruyama approximations of
Xt, t ∈ [0, T ) as the solutions of

dX
(n)
t = σ(t,X

(n)
bntc
n

)dWt, (1.2)

whereX0 is a given initial value. It is well known that the Euler–Maruyama approximation
converges to the strong solution of a corresponding SDE uniformly in the sense of Lp

with convergence rate n−1/2 when the diffusion coefficient is Lipschitz continuous [12].
Under β-Hölder continuity of the diffusion coefficient σ(t, x), where 1/2 ≤ β ≤ 1, Gyöngy
and Rásonyi [7] showed that for any T > 0 there exists a constant C > 0 such that

{
E

[
sup

0≤t≤T
|Xt −X(n)

t |p
]}1/p

≤


(
C
lnn

)1/2p
if β = 1/2

Cn−(β−1/2)/p if β ∈ (1/2, 1)

Cn−(β/2−1/4) if β = 1

(1.3)

for any n ≥ 2 and p ≥ 2, where Xt is the strong solution of the SDE (1.1) and X(n)
t is the

corresponding Euler–Maruyama approximation for step size 1/n.
When β < 1/2, a strong solution does not exist in general [1] and no numerical

schemes have been proposed. Note that this kind of rough diffusion coefficient ap-
pears when we deal with random medium. For example, Brox considered in [2] a
one-dimensional diffusion process in which the drift coefficient is an independent white
noise. As discussed in [2] and [9], we can remove the distributional drift coefficient by
scale transformation and obtain an SDE of the form (1.1) with σ(t, x) = eB(s−1(x)), where
B is an independent two-sided Brownian motion and s is the scale function.

In Section 2, we propose a new method of approximating the SDE (1.1). In Section 3,
we provide the convergence rates of our method under the β-Hölder condition with
0 < β ≤ 1 or under a certain smoothness condition. One advantage of our approach
is that we approximate the weak solution, which enables us to treat an SDE that does
not have a strong solution. Our scheme is the first to achieve strong convergence for
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0 < β < 1/2, and provides a better convergence rate than in [7] for 1/2 ≤ β < 2/3. In
Section 4, we provide some numerical experiments on one-dimensional SDEs with a
Hölder continuous diffusion coefficient.

2 Discretization with time change

Let (Ω,F ,P, {Ft}t≥0) be a filtered probability space. We consider a new discretization
scheme for the one-dimensional SDE (1.1) on this space. Our method is based on the
following theorem from [10].

Theorem 2.1 (Preliminary theorem). Let {bt} be a one-dimensional {Ft}-Brownian mo-
tion with b0 = 0 on (Ω,F ,P, {Ft}t≥0) and let X0 be an F0-measurable random variable.
Define a continuous process {ξt} by ξt = X0 + bt. Let {ϕ(t)} be a.s. a solution of the ODE

ϕ(t) =

∫ t

0

ds

σ2(ϕ(s), ξs)
(2.1)

If we then define Xt = ξϕ−1(t) = X0 + bϕ−1(t) and F̃t = Fϕ−1(t), there exists an {F̃t}-
Brownian motion {Wt} such that ({Xt}, {Wt}) is a weak solution of (1.1) on the proba-
bility space (Ω,F ,P) with filtration {F̃t}. Moreover, if the solution of the ODE (2.1) is
unique a.s., then the solution of (1.1) is unique in law.

Remark 2.2. A sufficient condition for the ODE (2.1) to be well-posed for a fixed ω ∈ Ω,
is that σ(y, ξt(ω)) is locally Lipschitz continuous in y and satisfies the inequality

|σ−2(y, ξt(ω))| ≤ a(t)|y|+ b(t) (2.2)

for all t ∈ [0,∞) and y ∈ R, where a(t) and b(t) are some continuous non-negative
(and possibly random) functions of t (refer to [6]). In the next section, we will show
the convergence rate of our method, where we assume boundedness of the diffusion
coefficient (see Condition 3.1). Then, it is easy to verify that the local Lipschitz continuity
of σ(y, ξt(ω)) in y is sufficient because the condition (2.2) follows from the boundedness
of σ−2(y, ξt(ω)).

The main goal of this paper is to build a numerical approximation of a solution {Xt}
of the SDE (1.1) using Theorem 2.1. In order to approximate this time-changed Brownian
motion, we first make an approximation of Brownian motion {ξt} by {ξ(n)t } that is a linear
interpolation of a random walk generated by normal distributed random variables, that
is,

ξ
(n)
t := ξbntc/n + (t− bntc

n
)(ξ(bntc+1)/n − ξbntc/n) (2.3)

where (ξ(bntc+1)/n − ξbntc/n) ∼ N (0, 1/n). Second, we approximate {ϕ(t)} by {ϕn(t)}, the
Euler method for ordinary differential equation, namely,

ϕn(0) = ϕ(0) = 0, (2.4)

ϕn(t) = ϕn(
k

n
) + (t− k

n
)

1

σ2
(
ϕn(k/n), ξk/n

) , t ∈ (
k

n
,
k + 1

n
] (2.5)

Third, we make the inverse function τn(t) of t 7−→ ϕn(t) by

τn(t) =
k

n
+

t− ϕn( kn )

ϕn(k+1
n )− ϕn( kn )

1

n
(2.6)

where t ∈
[
ϕn( kn ), ϕn(k+1

n )
)
. We can easily check that τn(t) is the inverse function of

ϕn(t) by its definition.
Let tj , j = 0, 1, 2, · · · be defined by tj = j/n. The full algorithm for this method is as

follows.
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STEP1 Construct ξtj , j = 0, 1, 2, · · · using a normal distributed random sequence {ξk −
ξk−1}k=1,··· ,j with ξ0 = X0 and compute the ϕn(tj) for each j. As we prove later,
under Condition 3.1, ϕn(t) is strictly increasing and ϕ(tj) goes to infinity as
j →∞. This makes the next step valid.

STEP2 The first time ϕn(tj) crosses t (i.e., at the first step j such that ϕn(tj) > t),
calculate τn(t) using the formula (2.6) where we select k in (2.6) to be k = j − 1.

STEP3 Using τn(t) and (2.3), calculate ξ(n)τn(t)
i.e.,

ξ
(n)
τn(t)

= ξtj−1
+ (τn(t)− tj−1)(ξtj − ξtj−1

).

We thus obtain a path of ξ(n)τn(t)
using [STEP1]–[STEP3]. The main result of this paper

is the discretization error of {ξ(n)τn(t)
} in the sense of Lp under the Hölder condition of

σ(t, x), which is given in the next section.

3 Rate of convergence

In this section, we show the convergence rates of our approximation scheme. In the
rest of this paper, we assume the following condition.

Condition 3.1. There are positive constants C1, C2 such that C1 ≤ σ(t, x) ≤ C2 for all
(t, x) ∈ [0,∞)×R.

Theorem 3.2 states that under the β-Hölder continuity of σ(t, x) with β ∈ (0, 1] our
numerical approximation converges to the exact solution in the sense of Lp uniformly,
and the convergence rate is n−α

2β, where α is an arbitrary value smaller than 1/2.
Theorem 3.8 provides a more precise convergence rate n−α when σ is sufficiently
smooth.

Theorem 3.2. Let T > 0. Suppose that σ(t, x) satisfies Condition 3.1 and that there
exist constants β ∈ (0, 1], Cβ > 0, and LT > 0 such that for s, t ≤ T ,

|σ(s, x)− σ(t, y)| ≤ LT |s− t|+ Cβ |x− y|β . (3.1)

Let ξt, ξ
(n)
t , τ(t), τn(t) be defined as in the previous section. Then, for any p ≥ 1 and

α ∈ [0, 1/2), there exists a positive constant K̃T such that{
E

[
sup
t≤T

∣∣∣ξ(n)τn(t)
− ξτ(t)

∣∣∣p]}1/p

≤ K̃T n
−α2β . (3.2)

Remark 3.3. The conditions in the theorem above are sufficient to guarantee (2.2),
which means that a solution to the differential equation (2.1) uniquely exists.

We use the following lemma that is an immediate consequence of Theorem (2.1) in
[13].

Lemma 3.4. Let {ξt} be Brownian motion and denote

Hα,T := sup
s6=t
s,t≤T

|ξt − ξs|
|t− s|α

. (3.3)

Then the function T 7→ Hα,T is increasing and

E[(Hα,T )γ ] <∞

for any α ∈ [0, 1/2) and γ > 0.
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Lemma 3.5. Suppose that σ(t, x) satisfies Condition 3.1 and that ϕ(t) satisfies (2.1).
Let ϕn(t) be defined as (2.5). Then ϕ,ϕn, τ, τn is continuous and strictly increasing.
Furthermore, for each γ > 0 and T > 0 the following holds

sup
t≤T
|τn(t)− τ(t)| ≤ C2

2 sup
t≤C2

2T

|ϕn(t)− ϕ(t)|

Proof. It follows from Condition 3.1 and equation (2.1) that ϕ and ϕn are continuous and
strictly increasing. Furthermore, it follows that

ϕ(t) ≥
∫ t

0

ds

C2
2

= C−22 t, (3.4)

ϕn(t) ≥
k−1∑
j=0

1

C2
2

1

n
+ C−22 (t− k

n
) = C−22 t (3.5)

for t ∈ [ kn ,
k+1
n ). Therefore ϕ(t), ϕn(t) → ∞ as t → ∞, which implies the existence,

continuity, and strictly increasing property of τ and τn. It also follows that τ(t), τn(t)→∞
as t→∞. Because of these properties, ϕn(t) is a bijection. Then by (3.5), for any t ≤ T ,
there exists t′ ≤ C2

2T such that t = ϕn(t), and therefore

sup
t≤T

∣∣ϕ−1n (t)− ϕ−1(t)
∣∣ ≤ sup

t≤C2
2T

∣∣(ϕ−1n (ϕn(t))− ϕ−1(ϕn(t))
∣∣ = sup

t≤C2
2T

∣∣t− ϕ−1(ϕn(t))
∣∣ .
(3.6)

Because of Condition 3.1 and (2.1), we obtain

|ϕ(s̃)− ϕ(t̃)| ≥ C−22 |s̃− t̃|,

for every s̃, t̃. By taking s̃ = ϕ−1(s), t̃ = ϕ−1(t), we get C−22 -Lipschitz continuity of ϕ−1.
Therefore, (3.6) with the Lipschitz continuity of ϕ−1 implies

sup
t≤C2

2T

∣∣t− ϕ−1(ϕn(t))
∣∣ = sup

t≤C2
2T

∣∣ϕ−1(ϕ(t))− ϕ−1(ϕn(t))
∣∣ ≤ C2

2 sup
t≤C2

2T

|ϕ(t)− ϕn(t)| .

Thus we obtain the assertion of the lemma using the last inequality and (3.6).

Proof of Theorem 3.2. First, from Minkowski’s inequality, we have

{
E

[
sup
t≤T

∣∣∣ξ(n)τn(t)
− ξτ(t)

∣∣∣p]}1/p

≤
{
E

[
sup
t≤T

∣∣∣ξ(n)τn(t)
− ξ bnτn(t)c

n

∣∣∣p]}1/p

+

{
E

[
sup
t≤T

∣∣∣ξ bnτn(t)c
n
− ξτ(t)

∣∣∣p]}1/p

,

where btc is the largest integer less than t. Since ξ(n)t is the interpolation of the sequence
{ξj/n}j=0,1,2,···, it follows that

∣∣∣ξ(n)t − ξ bntc
n

∣∣∣ ≤ ∣∣∣∣ξ(n)bntc+1
n

− ξ bntc
n

∣∣∣∣ =
∣∣∣ξ bntc+1

n
− ξ bntc

n

∣∣∣
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Therefore, using Minkowski’s inequality again, we obtain{
E

[
sup
t≤T

∣∣∣ξ(n)τn(t)
− ξτ(t)

∣∣∣p]}1/p

≤
{
E

[
sup
t≤T

∣∣∣ξ bnτn(t)c+1
n

− ξ bnτn(t)c
n

∣∣∣p]}1/p

(3.7)

+

{
E

[
sup
t≤T

∣∣∣ξ bnτn(t)c
n
− ξτn(t)

∣∣∣p]}1/p

(3.8)

+

{
E

[
sup
t≤T

∣∣ξτn(t) − ξτ(t)∣∣p]}1/p

. (3.9)

Let us provide the desired conclusion by estimating the convergence rate of (3.7)–(3.9)
as n→∞. Define Hα,T as (3.3) for (α, T ) ∈ (0, 1/2)× [0,∞) and set T ′ := max{T,C2

2T +

1/n}, H̃ := Hα,T ′ (≥ Hα,T ). Because Ht is monotonically increasing with respect to t,
Lemma 3.4 implies{

E

[
sup
t≤T

∣∣ξ(bnτn(t)c+1)n−1 − ξbnτn(t)cn−1

∣∣p]}1/p

≤
{
E
[
H̃p
]}1/p

n−α (3.10){
E

[
sup
t≤T

∣∣ξbnτn(t)cn−1 − ξτn(t)
∣∣p]}1/p

≤
{
E
[
H̃p
]}1/p

n−α (3.11)

This gives us the rate of convergence of the terms (3.7) and (3.8). It remains to prove
that the convergence rate of the term (3.9) is n−α

2β. From Lemma 3.4, Lemma 3.5 and
Hölder’s inequality, we have

{
E

[
sup
t≤T

∣∣∣ξϕ−1
n (t) − ξϕ−1(t)

∣∣∣p]}1/p

≤

{
E

[
H̃pC2pα

2 sup
t≤C2

2T

|ϕ(t)− ϕn(t)|pα
]}1/p

≤
{
E
[
H̃2p

]}1/2p

C2α
2

{
E

[
sup
t≤T ′
|ϕ(t)− ϕn(t)|2p

]}1/2p

.

(3.12)

We obtain the convergence rate of (3.12) by estimating the error function en(t) :=

ϕn(t)− ϕ(t). For a positive number h, define a function ψh : [0,∞)→ R as

ψh(t) :=
1

h

∫ t+h

t

(
σ−2(ϕ(s), ξs)− σ−2(ϕ(t), ξt)

)
ds.

From Lemma 3.4, condition (3.1) and the fact that |a−2− b−2| = |a−1 + b−1||a−1b−1||a− b|
for t ≤ T ′ − h, we obtain

|ψh(t)| ≤ 1

h

∣∣∣∣∣
∫ t+h

t

{
σ−2(ϕ(s), ξs)− σ−2(ϕ(t), ξt)

}
ds

∣∣∣∣∣
≤ 1

h

∫ t+h

t

2C−31 LT ′ |ϕ(s)− ϕ(t)|+ Cβ |ξt − ξs|βds

≤ 1

h

∫ t+h

t

2C−31 (LT ′ + Cβ)

∣∣∣∣∫ s

t

|C−21 |du+ |ξt − ξs|β
∣∣∣∣ ds

≤ 1

h

∫ t+h

t

2C−31 (LT ′ + Cβ)

∣∣∣∣∫ s

t

|C−21 |du+ H̃|t− s|αβ
∣∣∣∣ ds.
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From Lemma 3.4, there is a random variable R depending on T ′ that has moments of all
orders and satisfies the following

|ψh(t)| ≤ 1

h

∫ t+h

t

Rhαβds = Rhαβ .

However, from the definition of ϕ(t),

ϕ(t) = ϕ(s) + hσ−2(ϕ(s), ξs) + hψh(s) for t > s,

where h = t− s. Then for t ∈ (ti, ti+1],

en(t) =en(ti) + (t− ti){σ−2(ϕ(n)(ti), ξti)− σ−2(ϕ(ti), ξti)}+ (t− ti)ψt−ti(ti),

and by the Lipschitz continuity of σ(t, x) with respect to t,

|en(t)| ≤|en(ti)|+ (t− ti)LT ′ |en(ti)|+ (t− ti)|ψt−ti(ti)|
≤(1 + hLT ′)|en(ti)|+Rhαβ+1.

We repeat this calculation for i and then by using the standard result for a geometric
series and the fact that 1 + LT ′h < eLT ′h, we have

sup
s≤t
|en(s)|

≤|en(ti+1)| ≤
i∑

j=0

(1 + hLt′)
jRhαβ+1 =

Rhαβ

LT ′
{(1 + hLT ′)

i+1 − 1} ≤ Rhαβ

LT ′
{eLT ′ (T

′+1) − 1}.

(3.13)

Because of the fact that the inequality (3.13) holds for t ≤ T ′, the integrable property of
the random variable R, and the Cauchy–Schwartz’s inequality, there exists a positive
number K depending on T ′ such that{

E

[
sup
t≤T ′
|ϕ(t)− ϕn(t)|2pα

]}1/2p

≤K
(

1

n

)α2β

.

This completes the proof.

Remark 3.6. We have already seen that our approximation converges to the solution
of (1.1) and the rate of convergence is n−α

2β. Let us compare our result with (1.3) by
Gyöngy and Rásonyi [7] which provide the rate of strong convergence of the Euler–
Maruyama scheme under similar conditions to ours. When p ≥ 2 and 1/2 < β ≤ 1, it is
easy to see that

−1

4
β < −(β − 1

2
)
1

2
≤ −(β − 1

2
)
1

p
.

For a given β, we can then take α ∈ (0, 1/2) sufficiently close to 1/2 such that

−1

4
β < −α2β < −(β − 1

2
)
1

p
.

Therefore, our method gives a better estimate of the convergence rate than the Euler–
Maruyama scheme for β ∈ [1/2, 1). For β ∈ (0, 1/2), the convergence of the Euler–
Maruyama approximation is not known. Furthermore, as we prove later, Theorem 3.8
below implies that the estimated rate in Theorem 3.2 is not sharp when σ is smooth.
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Remark 3.7. Giles [5] introduced the Multi-level Monte Carlo method for reducing the
computational complexity to achieve a given mean-square-error tolerance level:

E

[(
Ŷ − E[f(XT )]

)2]
< ε,

where Ŷ is the estimator of E[f(XT )] by combination of the Euler–Maruyama method
and the Multi-level Monte Carlo method. It is proven in [5] that a better strong rate
of convergence can reduce the computational complexity. We therefore expect our
discretization scheme to be more effective than the Euler–Maruyama method for the
multilevel Monte Carlo method when the diffusion coefficient is irregular. We leave this
as work for the future.

We now provide a better estimate of the convergence rate of our scheme when σ is
smooth. Denote by Lq the class of stochastic processes {Xt} and q ∈ N such that

E[

∫ t

0

|Xs|qds] <∞, 0 ≤ t <∞,

and by σt, σx, σx,x the partial derivatives of σ:

σt(t, x) :=
∂σ

∂t
(t, x), σx(t, x) :=

∂σ

∂x
(t, x), σxx(t, x) :=

∂2σ

∂x2
(t, x). (3.14)

Theorem 3.8. Suppose that σ : [0,∞)×R 7→ R belongs to C2,2 and satisfies the following
conditions in addition to Condition 3.1:

(i) For any T > 0, there exists a constant LT > 0 such that

|σ(s, x)− σ(t, x)| ≤ LT |s− t|, ∀x ∈ R, ∀s, t ∈ [0, T ]. (3.15)

(ii) There exists some positive constants C3, C4 such that

|σxx(t, x)|+ |σt(t, x)| ≤ C3 exp{C4(t+ |x|)}, ∀x ∈ R, ∀t ∈ [0, T ]. (3.16)

Then for all T > 0, α ∈ (0, 1/2) and p ≥ 1, there exists some constant KT > 0 such that{
E

[
sup
t≤T

∣∣∣ξ(n)τn(t)
− ξτ(t)

∣∣∣p]}1/p

≤ KTn
−α

Remark 3.9. Since ϕ(t) satisfies (2.1), by Condition 3.1, ϕ(t) is bounded by C−21 t. Then,
under the condition (ii) of Theorem 3.8, σt(ϕ(t), ξt), σx(ϕ(t), ξt) and σx,x(ϕ(t), ξt) belong
to Lq for any q ∈ N.

Proof of Theorem 3.8. Under the assumptions of this theorem, (3.7)–(3.12) continue
to hold. Therefore, it remains only to estimate the convergence rate of (3.12). More
precisely, it remains to prove that for α ∈ (0, 1/2) and T > 0 there exists a constant
KT > 0 such that {

E

[
sup
t≤T ′
|ϕ(t)− ϕn(t)|2pα

]}1/2p

≤ KTn
−α.

We denote by C a generic constant which depends on p, α, and T , and may change
line by line. Note that ξt = ξ0 + bt, where bt is a standard Brownian motion, and let us
write Xt := σ−2(ϕ(t), ξt). Since σ(t, x) belongs to C2,2, Xt is a semimartingale and can
be written as

Xt = X0 +Mt +Bt,
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where

X0 := σ−2(0, ξ0), Mt :=

∫ t

0

γsdbs, Bt :=

∫ t

0

δsds, (3.17)

and {γt} and {δt} are in Lq for any q ∈ N.
Note that

ϕn(t)− ϕ(t) (3.18)

=

∫ t

0

σ−2(ϕn(
bnsc
n

), ξ bnsc
n

)ds−
∫ t

0

Xsds (3.19)

=

∫ t

0

{
X bnsc

n
−Xs

}
ds+

∫ t

0

{
σ−2(ϕn(

bnsc
n

), ξ bnsc
n

)− σ−2(ϕ(
bnsc
n

), ξ bnsc
n

)

}
ds (3.20)

Since σ−2(t, x) is locally Lipschitz continuous in t uniformly w.r.t. x, for t ≤ T ′ we have

E

[
sup
s≤t
|ϕn(s)− ϕ(s)|2pα

]
≤ CE

[
sup
s≤t

∣∣∣∣∫ s

0

X bnuc
n
−Xudu

∣∣∣∣2pα
]

(3.21)

+ C

∫ t

0

E

[
sup
u≤s
|ϕn(u)− ϕ(u)|2pα

]
ds (3.22)

Here we use the fact that there is a positive constant C depending on 2pα such that
|x+ y|2pα ≤ C{|x|2pα + |y|2pα}. In fact, when 2pα ≥ 1 it is clear from the convex property
of | · |2pα, and C = 1 when 0 < 2pα < 1 by a simple discussion of the derivative of | · |2pα.
Since we can regard the two expectations in the left- and right-hand side of (3.21) as
functions of t, by Gronwall’s lemma, we get

E

[
sup
s≤t
|ϕn(s)− ϕ(s)|2pα

]
≤ CE

[
sup
t≤T ′

∣∣∣∣∫ t

0

X bnsc
n
−Xsds

∣∣∣∣2pα
]
. (3.23)

Using by parts formula for tXt and sXs (s < t),∫ t

s

(Xu −Xs) du =

∫ t

s

(t− u) dXu, a.s.

and letting ti = i/n, i = 0, 1, · · · , we obtain

E

[
sup
t≤T ′

∣∣∣∣∫ t

0

X bnsc
n
−Xsds

∣∣∣∣2pα
]

= E

 sup
t≤T ′

∣∣∣∣∣∣
bntc∑
i=1

∫ ti

ti−1

Xs−Xti−1
ds+

∫ t

bntc
n

Xs−X bntc
n
ds

∣∣∣∣∣∣
2pα


= E

 sup
t≤T ′

∣∣∣∣∣∣
bntc∑
i=1

∫ ti

ti−1

(ti − s)dXs +

∫ t

bntc
n

(t− s)dXs

∣∣∣∣∣∣
2pα


= E

 sup
t≤T ′

∣∣∣∣∣
∫ bntc

n

0

(
bnsc+ 1

n
− s)dXs+

∫ t

bntc
n

(t− s)dXs

∣∣∣∣∣
2pα
.

This implies that

E

[
sup
t≤T ′

∣∣∣∣∫ t

0

X bnsc
n
−Xsds

∣∣∣∣2pα
]
≤CE

[
sup
t≤T ′

∣∣∣∣∫ t

0

(
bnsc+ 1

n
− s
)
dXs

∣∣∣∣2pα
]

(3.24)

+ CE

[
sup
t≤T ′

∣∣∣∣∫ t

0

(
bnsc+ 1

n
∧ t− bnsc+ 1

n

)
dXs

∣∣∣∣2pα
]
.

(3.25)
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Because of the fact that bnsc+1
n ∧ t − bnsc+1

n = 0 for s < bntc
n , the definition Xs =

σ−2(ϕ(s), ξs) and Condition 3.1, we can estimate the second term in (3.25) as follows.

E

[
sup
t≤T

∣∣∣∣∫ t

0

(
bnsc+ 1

n
∧ t− bnsc+ 1

n

)
dXs

∣∣∣∣2pα
]

=E

sup
t≤T

∣∣∣∣∣
∫ t

bntc
n

(
t− bntc+ 1

n

)
dXs

∣∣∣∣∣
2pα


=E

[
sup
t≤T

∣∣∣∣(t− bntc+ 1

n
)(X bntc

n
−Xt)

∣∣∣∣2pα
]

≤E
[

1

n2pα
sup
t≤T

∣∣∣X bntc
n
−Xt

∣∣∣2pα] ≤ C

n2pα
(3.26)

To estimate the first term, we recall the notation (3.17) and obtain

E

[
sup
t≤T

∣∣∣∣∫ t

0

(
bnsc+ 1

n
− s
)
dXs

∣∣∣∣2pα
]

≤C

{
E

[
sup
t≤T

∣∣∣∣∫ t

0

(
bnsc+ 1

n
− s
)
δsds

∣∣∣∣2pα
]

+ E

[
sup
t≤T

∣∣∣∣∫ t

0

(
bnsc+ 1

n
− s
)
γsdbs

∣∣∣∣2pα
]}

(3.27)

Recalling Remark 3.9, the L2pα∨1 property of δt implies that

E

[
sup
t≤T

∣∣∣∣∫ t

0

(
bnsc+ 1

n
− s
)
δsds

∣∣∣∣2pα
]
≤ 1

n2pα
E

∣∣∣∣∣
∫ T

0

|δs|ds

∣∣∣∣∣
2pα
 ≤ C

n2pα
. (3.28)

Here we have used the fact that

E

∣∣∣∣∣
∫ T

0

|δs|ds

∣∣∣∣∣
2pα
 ≤ T 2pα−1E

[∫ T

0

|δs|2pαds

]
<∞

if 2pα ≥ 1 and

E

∣∣∣∣∣
∫ T

0

|δs|ds

∣∣∣∣∣
2pα
 ≤ E [∫ T

0

|δs|ds

]2pα
<∞

if 2pα < 1.
By using the Burkholder–Davis–Gundy inequality and the L2pα property of γt, we

obtain the following for the second term of (3.27):

E

[
sup
t≤T

∣∣∣∣∫ t

0

(
bnsc+ 1

n
− s
)
γsdbs

∣∣∣∣2pα
]
≤ CE

[∣∣∣∣∣
∫ T

0

∣∣∣∣bnsc+ 1

n
− s
∣∣∣∣2 γ2sds

∣∣∣∣∣
pα]
≤ C

n2pα
.

(3.29)

From (3.25) and (3.26)–(3.29), it follows that

E

[
sup
t≤T ′

∣∣∣∣∫ t

0

X bnsc
n
−Xsds

∣∣∣∣2pα
]
≤ C

n2pα
,

which concludes the proof.
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4 Numerical example

In this section, we provide some numerical examples for the cases where the diffusion
coefficients of (1.1) are 1/3, 1/2 and 3/4-Hölder continuous. As a specific example of this
kind of coefficient, we choose the Weierstrass function

∞∑
n=0

an cos(bnπx), (4.1)

where 0 < a < 1, b > 1 and ab > 1. According to [8], this function is (− log a/ log b)-Hölder
continuous. Therefore, by choosing parameters b = 3 and a = 3−1/3, 3−1/2, 3−3/4, we
can construct 1/3, 1/2, 3/4-Hölder continuous functions respectively. For the diffusion
coefficient to satisfy Condition 3.1, we set

σ(t, x) = σ(x) = ε+
a

1− a
+

∞∑
n=0

an cos(bnπx), (4.2)

with some positive constant ε > 0. Let us consider the SDE (1.1) with diffusion coefficient
σ as (4.2). Since the infinite sum (4.1) is not implementable, we approximate it by the
sum of the first 1000 terms. We now compare the numerical simulation by root square
approximation error

{E[|XT − Y (n)
T |2]}1/2. (4.3)

where Y (n)
T is discretization of solution to the SDE (1.1) by the Euler–Maruyama method

or our method. The integer n ∈ N is regarded as the same variable as n in (2.3) when
we consider the rate of convergence for the new method. When we consider the rate for
the Euler–Maruyama approximation, n is the same variable as n in (1.2). We let T = 1,
X0 = 0, and n ∈ {23, 24, · · · , 29}. Taking {Y (10)

t }t≤T as the exact solution of the SDE (1.1),
we consider the strong approximation error (4.3). Figure 1 shows the error convergence
of both methods.

Figure 1: Root mean square approximation error of the Euler–Maruyama method and
our new discretization method when n ∈ {23, 24, · · · , 29}, with sample size 105. The above
figures illustrate, from left to right, the cases of 1/3, 1/2, 3/4–Hölder continuous diffusion
coefficient. The broken line in the figure on the left is Cn−1/12, where C is a positive
constant such that C(23)−1/12 equals the error of our discretization method with n = 23.
By this line, we attempt to visualize the theoretical decay in the results of Theorem 3.2
when the Hölder index β is 1/3. The same applies to the remaining figures.

In all cases, the proposed method appears to achieve a faster rate of convergence
than guaranteed by Theorem 3.2. When the Hölder exponent is 1/3, the numerical
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approximation error of our method appears to decay linearly in log–log graph, while
the error of the Euler–Maruyama method appears to decay logarithmically. Here we
remark the fact that the convergence of Euler–Maruyama method is not guaranteed
when the Hölder index is less than 1/2. When the Hölder exponent is 1/2, we note that
the numerical result of the Euler–Maruyama method suggests a faster rate than the
estimate (1.3) of logarithmic convergence. Nevertheless, we observe that the speed of
convergence for the new method is faster than the Euler–Maruyama method. When the
Hölder index is 3/4, there is no apparent difference in the speed of convergence, but the
numerical approximation error of both methods seem to decay linearly in log-log graph,
as the theoretical results suggest.
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