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Abstract

We give the first properties of independent Bernoulli percolation, for oriented graphs
on the set of vertices Zd that are translation-invariant and may contain loops. We
exhibit some examples showing that the critical probability for the existence of an
infinite cluster may be direction-dependent. Then, we prove that the phase transition
in a given direction is sharp, and study the links between percolation and first-passage
percolation on these oriented graphs.
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1 The framework and one example

We deal here with an oriented graph whose vertices are the elements of Zd, and
whose edges are the couples (x, y) such that y − x belongs to a given finite set denoted
by Dir. Hence, if E denotes the set of edges, one has

E = {(x, y) ∈ Zd ×Zd : y − x ∈ Dir}.

For a given parameter p ∈ (0, 1), we endow the set Ω = {0, 1}E with the Bernoulli
product Pp = Ber(p)⊗E: under this probability measure, the edges are independently
open (state 1) with probability p or closed (state 0) with probability 1 − p, and we are
interested in the connectivity properties of the random graph G(ω) whose edges are the
ones that are open in ω.

For x ∈ Zd, we denote by C+(x) the set of points that can be reached from x by a path
in the random graph G, i.e. the points y such that there exists a sequence (x0, . . . , xn)

with x0 = x, xn = y and (xi, xi+1) ∈ E for each i ∈ {0, . . . , n− 1}.
For u ∈ Rd\{0}, we define

Du(x) = sup
y∈C+(x)

〈y − x, u〉.
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Percolation on oriented graphs

The field (Du(x))x∈Zd is stationary and ergodic. We set

θu(p) = Pp(Du(0) = +∞) and pc(u) = inf{p > 0 : θu(p) > 0}.

The quantity Du(x) measures the extension of the oriented open cluster issued from x

in direction u and pc(u) is the critical parameter for the existence of an oriented open
cluster that is unbounded in direction u. Note however that Du(x) = +∞ does not imply
the existence of infinitely many points of C+(x) close to the half-line R+u.

An example

We take here d = 2, we fix some positive integer M and we choose

Dir = {(0,−1); (−M, 1), (−M + 1, 1), . . . , (−1, 1), (0, 1), (1, 1), . . . , (M, 1)}.

In other words, the only allowed communications are the following: for all x, x′, y ∈ Z,

• (x, y)→ (x′, y + 1) if |x− x′| ≤M
• (x, y)→ (x, y − 1)

Let us denote by (e1, e2) the canonical basis for R2: with this set of edges, we give an
advantage to direction e2 when compared to direction −e2.

We first observe that forM large enough, there exist values for the opening parameter
p such that there is percolation in direction e2 but not in direction −e2:

Theorem 1.1. Denote by −→pc(2) the critical value for classical oriented percolation on Z2
+.

• For M ≥ 1, inf
u∈Rd\{0}

pc(u) ≥ 1

2M + 2
and sup

u∈Rd\{0}
pc(u) ≤ −→pc(2).

• For M ≥ 2, pc(−e2) ≥ 1

2
√

2M + 1
.

• For M ≥ 5, pc(e2) ≤ 1− (1−−→pc(2))2/M <
−2 log(1−−→pc(2))

M
≤ 2 log 3

M
.

Particularly, for M ≥ 37, pc(e2) < pc(−e2).

Proof. • The mean number of self-avoiding open paths starting from (0, 0) with length
n is at most ((2M + 2)p)n. Thus if p < 1

2M+2 , the number of self-avoiding open paths is
integrable and thus almost surely finite, and there is no percolation at all. When p > −→pc(2),
restricting Dir to {(0,−1), (1, 1)}, then to {(0,−1), (−1, 1)}, then to {(1, 1), (−1, 1)}, we
obtain three copies of the standard oriented percolation in Z2

+, and thus three percolation
cones: it is then easy to see that for any u ∈ Rd\{0}, P(Du(0) = +∞) > 0.
• For a fixed integer `, the graph (Z2, E) contains exactly

(
2`+n
`

)
(2M + 1)` paths from

(0, 0) to Z× {−n} that contains ` steps upwards and `+ n steps downwards. Then, the
mean number of open self-avoiding paths from (0, 0) to the line y = −n is no more that

+∞∑
`=0

(
2`+ n

`

)
(2M + 1)`p2`+n ≤

+∞∑
`=0

(2M + 1)`(2p)2`+n =
(2p)n

1− 4p2(2M + 1)
,

as soon as 4p2(2M + 1) < 1. It follows that for p < 1
2
√

2M+1
, the number of self-avoiding

paths from (0, 0) to {(x, y) ∈ Z2; y ≤ 0} is integrable, therefore it is almost surely finite.
This gives the first inequality.
• For the last inequality, we build a dynamic independent directed percolation from

bloc events with length M/2 that partition the horizontal lines. Remember that M ≥ 5.
The probability that a given point (x, y) in the segment (M2 x+ [−M/4,M/4))×{y} can be
linked to some point in (M2 (x+1)+[−M/4,M/4))×y+1} is larger than 1− (1−p)M/2. So
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Percolation on oriented graphs

Figure 1: Oriented percolation with M = 1, p = 0.51 on the left and p = 0.55 on the
right. The pictures are centered at the origin. The points are colored accordingly to
their distance to the origin. The coloring is performed by the Dijkstra algorithm until
one hits the border.

is the probability that one can link this point to some point in (M2 (x−1)+[−M/4,M/4))×
{y + 1}. Hence, we built a dynamic percolation of blocks in the spirit of Grimmett and
Marstrand [6] (see also Grimmett [7]), that stochastically dominates an independent
directed bond percolation on Z2, with parameter 1 − (1 − p)M/2. Then, percolation in
direction e2 is possible as soon as 1− (1− p)M/2 > −→pc(2), whence

pc(e2) ≤ 1− exp

(
2

M
log(1−−→pc(2))

)
< − 2

M
log(1−−→pc(2)) ≤ 2 log 3

M
,

where the last inequality comes from Liggett’s bound [10]: −→pc(2) ≤ 2/3. The desired
result follows.

2 A sharp percolation transition

We now come back to our general framework. Let Ψ : Zd → R be a subadditive
function, i.e. such that for any x, y ∈ Zd, Ψ(x+ y) ≤ Ψ(x) + Ψ(y). We define

∀x ∈ Zd rΨ(x) = sup
y∈C+(x)

Ψ(y − x).

The graph (Zd, E) being translation-invariant, the distribution of rΨ(x) does not depend
on x.

If A, B and S are subsets of Zd, the event A
S→ B means that there exists a path

(x0, . . . , xn) with x0 ∈ A, xn ∈ B, xi ∈ S for i ∈ {1, . . . , n− 1} and the bonds (xi, xi+1) are
all open.

For p ∈ [0, 1] and 0 ∈ S ⊂ Zd, we define

φp(S) := p
∑

(x,y)∈∂+S

Pp(0
S→ x),where ∂+S = E ∩ (S × (Zd\S)) (2.1)

p̃c(Ψ) := sup

{
p ∈ [0, 1] : there exists a set S s.t. 0 ∈ S ⊂ Zd

with φp(S) < 1 and supS Ψ < +∞

}
, (2.2)

pc(Ψ) := sup{p ∈ [0, 1] : Pp(rΨ(0) =∞) = 0}.
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Percolation on oriented graphs

Note that in the above definition, the set S may be infinite. Then, we have the following
result:

Theorem 2.1. Fix d ≥ 2. Let Ψ : Zd → R be a subadditive function.

1. For p < p̃c(Ψ), there exists c = c(Ψ, p) > 0 such that for each n ≥ 1,

Pp(rΨ(0) ≥ n) ≤ e−cn.

2. For p > p̃c(Ψ), Pp(rΨ(0) = +∞) ≥ p− p̃c(Ψ)

p(1− p̃c(Ψ))
.

In particular, (1) and (2) imply that p̃c(Ψ) = pc(Ψ).

Note that Ψu(x) = 〈u, x〉 is linear and thus subadditive, and, for this map, pc(Ψu) =

pc(u).

Proof. • At first, let us prove that (1) and (2) imply p̃c(Ψ) = pc(Ψ). If p < p̃c(Ψ), then for
each n ≥ 1, we have Pp(rΨ(0) = +∞) ≤ Pp(rΨ(0) ≥ n) ≤ e−cn; letting n go to infinity, we
get P(rΨ(0) = +∞) = 0. So p̃c(Ψ) ≤ pc(Ψ). But (2) implies that Pp(rΨ(0) = +∞) > 0 for
p > p̃c(Ψ), thus p̃c(Ψ) ≥ pc(Ψ).

• Proof of (1): it is very similar to Duminil-Copin–Tassion [3, 4, 5]. Since it is short,
we give it to stay self-contained.

Let p < p̃c(Ψ). By the very definition of p̃c(Ψ), we can find S ⊂ Zd that contains the
origin and such that φp(S) < 1 and supS Ψ < +∞. Fix a positive integer L ≥ supS∪Dir Ψ.
We set

Λn = {x ∈ Zd : Ψ(x) ≤ n}.

Thus, {rΨ(0) > n} = {0 → Λcn}. For k ≥ 1, an open path starting from 0 and escaping
from ΛkL eventually leaves S. Then,

{0→ Λc2kL} = ∪
(x,y)∈∂+S

{0 S→ x, ω(x,y) = 1, y
Sc

→ Λc2kL}

By independence, we get

Pp(rΨ(0) > 2kL) ≤
∑

(x,y)∈∂+S
Pp(0

S→ x) pPp(y
Sc

→ Λc2kL).

Note that

• If (x, y) ∈ ∂+S, then Ψ(y) ≤ Ψ(x) + maxDir Ψ ≤ 2L;

• {y Sc

→ Λc2kL} ⊂ {∃z ∈ C+(y) : Ψ(z) > 2kL};
• thus if (x, y) ∈ ∂+S and z ∈ C+(y) is such that Ψ(z) > 2kL, then

Ψ(z − y) ≥ Ψ(z)−Ψ(y) > 2kL− 2L = 2(k − 1)L.

We thus obtain

Pp(rΨ(0) > 2kL) ≤
∑

(x,y)∈∂+S
Pp(0

S→ x) pPp(rΨ(y) > 2(k − 1)L)

≤ φp(S)Pp(rΨ(0) > 2(k − 1)L)

It follows that Pp(rΨ(0) > 2kL) ≤ φp(S)k, which gives the desired result.
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Percolation on oriented graphs

• Proof of (2). In Duminil-Copin–Tassion, the idea is to use the Russo inequality. It is
a bit more tricky here, because the events {0↔ ∂Λn}, which correspond to the exit of
finite boxes in Duminil-Copin–Tassion, now depend on infinitely many bonds. The proof
is cut into three lemmas.

We begin with a lemma on a general graph.

Lemma 2.2. Let G = (V,E) be an oriented graph with V finite or denumerable. Let
P denote a Bernoulli product on {0, 1}E . Let X and Y be disjoint subsets of V , with
P(X → Y ) > 0. For each S ⊂ V , and each (x, y) ∈ E, we set

r
(x,y)
X (S) = 1X⊂S1(x,y)∈∂+SP(X

S→ x).

We denote by TY the σ-field generated by the events {x→ Y }, for x ∈ V . We denote by
BY the random subset of V composed by the points that are not linked to Y .

Remember that e ∈ E is said to be pivotal for an event A ∈ B({0, 1}E) in the
configuration ω ∈ {0, 1}E if 1A(0eωE\{e}) 6= 1A(1eωE\{e}).

Then, for any e ∈ E,

P(e pivotal for X → Y,X 6→ Y | TY ) = reX(BY ).

Proof of Lemma 2.2. Let us denote by Γ the set of oriented paths in Y c from a point in
Y c to a point in Y . Then the subsets ∩γ∈A ∩e∈γ {ωe = 1}, for A ⊂ Γ, form a π-system that
generates TY , so it is enough to prove that for each A ⊂ Γ, one has

P

(
e pivotal for X → Y,X 6→ Y,

∀γ ∈ A, ∀f ∈ γ, ωf = 1

)
= E

reX(BY )
∏
γ∈A

∏
f∈γ

ωf

 . (2.3)

The quantities that appear on each side of (2.3) are the limit of analogous quantities for
a sequence of finite subgraphs of G. So, by dominated convergence, it is sufficient to
prove (2.3) for a finite graph. From now on, we assume that G is finite.

Decomposing on the (finite number of) possible values of BY , we thus only have to
prove that for any subset S of vertices such that X ⊂ S ⊂ Y c,

P

(
e pivotal for X → Y, BY = S

∀γ ∈ A, ∀f ∈ γ, ωf = 1

)
= E

reX(S)1{BY =S}
∏
γ∈A

∏
f∈γ

ωf

 .

Fix a set S such that X ⊂ S ⊂ Y c. Let us denote by

E1 = {(x, y) ∈ E : x, y ∈ S},
E2 = ∂+S = {(x, y) ∈ E : x ∈ S, y ∈ Sc},

E3 = {(x, y) ∈ E\(E1 ∪ E2) : ∃(u, v) ∈ ∂+S, P1(v
Sc

→ x, y
Sc

→ Y ) = 1}.

Note that on the event BY = S, as X ⊂ S, pivotal edges for X → Y are necessarily in
E2 and that when e /∈ E2, both members vanish. The event BY = S is measurable with
respect to the states of the edges in E2 ∪E3, and implies that all edges in E2 are closed.
Thus both members vanish if A 6⊂ E3. Denote by A3 the set of possible configurations of
edges in E3 that correspond to BY = S. Finally, we thus have to prove that for any S
such that X ⊂ S ⊂ Y c, for any e = (x, y) ∈ E2, for any ξ ∈ A3,

P

(
e pivotal for X → Y,

∀f ∈ E3, ωf = ξf , BY = S

)
= E

reX(S)1{BY =S}
∏
f∈E3

1{ωf=ξf}

 .
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Percolation on oriented graphs

But now, by independence,

P

(
e pivotal for X → Y,

∀f ∈ E3, ωf = ξf , BY = S

)
= P

(
X

S→ x, ∀f ∈ E2, ωf = 0

∀f ∈ E3, ωf = ξf

)
=P(X

S→ x)P(∀f ∈ E2, ωf = 0, ∀f ∈ E3, ωf = ξf )

=P(X
S→ x)P(BY = S, ∀f ∈ E3, ωf = ξf ),

which is indeed the mean value of reX(S)1{BY =S}
∏
f∈E3

1{ωf=ξf}.

We come back to the case of a graph on Zd.

Lemma 2.3. Let p ∈ [0, 1]. For every natural number n, we set fn(p) = Pp(0→ Λcn) and
cn = infS⊂Λn,0∈S φp(S). Then, for each p ∈ [0, 1[.

lim inf
h→0+

fn(p+ h)− fn(p)

h
≥ 1

p(1− p)
cn(1− fn(p)).

Proof of Lemma 2.3. The event {0→ Λcn} depends on infinitely many bonds, so one can
not directly apply the Russo formula. However, since {0→ Λcn} is an increasing event,
the following inequality is preserved (see for example Grimmett [7], page 43):

lim inf
h→0+

fn(p+ h)− fn(p)

h
≥
∑
e∈E

P(e is pivotal for 0→ Λcn)

=
∑
e∈E

1

1− p
P(e is pivotal for 0→ Λcn, 0 6→ Λcn)

Now consider the random set Sn of points from which Λcn can not be reached. Note that
{0 6→ Λcn} = {0 ∈ Sn}. For each S ⊂ Zd and (x, y) ∈ E, we define the random variable

r(x,y)
p (S) = 1(x,y)∈∂+SPp(0

S→ x).

Integrating the result of Lemma 2.2, we have for each e ∈ E:

P(e is pivotal for 0→ Λcn, 0 6→ Λcn) = Ep
(
10∈Sn

rep(Sn)
)
.

Then, we get

∑
e∈E

Ep
(
10∈Snr

e
p(Sn)

)
= Ep

(
1{0 6→Λc

n}
∑
e∈E

rep(Sn)

)
= Ep

(
1{06→Λc

n}
φp(Sn)

p

)
≥ Ep

(
1{06→Λc

n}
cn
p

)
= cn

1− fn(p)

p
,

which gives the desired inequality.

Lemma 2.4. Let I ⊂ R be an open interval of R and let f and h be real valued functions
defined on I and such that

• f is left upper semi-continuous on I from the left: ∀x ∈ I, f(x) ≥ lim inft→x− f(t);

• h is continuous on I

• For each x ∈ I
lim inf
t→0+

f(x+ t)− f(x)

t
≥ h(x).

Then, for any a and b in I with a ≤ b, we have f(b)− f(a) ≥
∫ b

a

h(x) dx.
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Percolation on oriented graphs

Proof of Lemma 2.4. Let a, b ∈ I with a < b. We fix ε > 0 and define on [a, b]: Fε(x) =

f(x)−
∫ x
a
h(t) dt+ εx. It is sufficient to prove that Fε is non-decreasing for each ε > 0.

Indeed, it will imply that

f(b)−
∫ b

a

h(t) dt+ εb = Fε(b) ≥ Fε(a) = f(a) + εa,

which gives the lemma when ε tends to 0.
Let x ∈ [a, b]. By definition of Fε,

lim inf
t→0+

Fε(x+ t)− Fε(x)

t
= lim inf

t→0+

f(x+ t)− f(x)

t
− h(x) + ε ≥ ε.

So there exists ηx > 0 such that for any t ∈ (0, ηx), Fε(x+t)−Fε(x)
t ≥ ε/2 ≥ 0.

Let B = {x ∈ [a, b] : Fε(x) < Fε(a)}. Assume by contradiction that B 6= ∅ and define
c = inf B. Let (xn) be a sequence in B that tends to c. By the previous observation, the
inequality Fε(xn) ≥ Fε(c) holds for n large enough. Since xn ∈ B, by definition of B,
Fε(a) > Fε(xn). Thus Fε(a) > Fε(c).

As Fε is the sum of a function which is upper semi-continuous from the left and of a
continuous function, it is still upper semi-continuous from the left. So

Fε(c) ≥ lim inf
t→c−

Fε(t),

and by definition of c, Fε(t) ≥ F (a) for each t ∈]a, c[, so Fε(c) ≥ Fε(a). This brings a
contradiction.

End of the proof of Theorem 2.1: proof of (2). Fix p′ ∈]p̃c(Ψ), 1[ and define on [0, 1) the
function g(x) = − log(1− x): it is non-decreasing and convex.

Let p ∈ [p′, 1) and h ∈ (0, 1− p):

g(fn(p+ h))− g(fn(p))

fn(p+ h)− fn(p)

fn(p+ h)− fn(p)

h
≥ g′(fn(p))

fn(p+ h)− fn(p)

h
.

With Lemma 2.3 (note that as p > p̃c(Ψ), cn ≥ 1), we obtain that

lim inf
h→0+

g(fn(p+ h))− g(fn(p))

h
≥ cn
p(1− p)

≥ 1

p(1− p)
.

We can now apply Lemma 2.4 on [p′, 1[: as fn is non-increasing, g ◦ fn is non-decreasing,
so it is clearly upper semi-continuous from the left: for any p > p′

g(fn(p)) ≥ g(fn(p))− g(fn(p′)) ≥
∫ p

p′

dx

x(1− x)
= log

p(1− p′)
p′(1− p)

= g

(
p− p′

p(1− p′)

)
.

It follows that fn(p) ≥ p−p′
p(1−p′) , then, letting p′ tend to p̃c(Ψ), we get

fn(p) ≥ p− p̃c(Ψ)

p(1− p̃c(Ψ))
.

Finally, we obtain (2) by letting n go to infinity.

3 Links with first-passage percolation

3.1 Percolation and first-passage percolation on the (unoriented) edges of Zd

Consider first Zd endowed with the set Ed of edges between nearest neighbors. In
the first-passage percolation model, iid non negative and integrable random variables
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(te)e∈Ed
are associated to edges. Let us denote by ν their common law. We refer the

reader to the recent review paper on first passage percolation by Damron et al [1]. For
each path γ in the graph (Zd, Ed), we define

t(γ) =
∑
e∈γ

te, and ∀x, y ∈ Zd, t(x, y) = inf
γ:x→y

t(γ), (3.1)

that can been seen as a random pseudo-distance on Zd. Using Kingman’s subadditive
ergodic theorem allows to define

∀x ∈ Zd µν(x) = lim
n→+∞

t(0, nx)

n
, (3.2)

where the limits hold almost surely and in L1. The functional µν is homogeneous and
subadditive, and can be extended to a symmetric semi-norm on Rd. With some extra
integrability assumption, we obtain the analytic form of the asymptotic shape theorem:

lim
‖x‖→+∞

t(0, x)− µν(x)

‖x‖
= 0 P a.s. (3.3)

The subadditivity and the symmetries of the lattice imply quite simply that µν is a
norm if and only if it µν((1, 0, . . . , 0)) > 0 is strictly positive. Moreover, it has long been
known (see for example Cox–Durrett [2] or Kesten [9]) that µν is a norm if and only
ν({0}) < pc(Z

d), where pc(Z
d) is the critical percolation parameter for independent

percolation on the edges of Zd.
Our idea here is to find, in oriented percolation on (Zd, E), an analogous characteri-

zation of directions of percolation in terms of the semi-norm for an associated oriented
first-passage percolation on (Zd, E). Things are necessarily more intricate, since we saw
that for oriented percolation the critical probability may depend on the direction.

3.2 Oriented percolation and first-passage percolation on (Zd, E)

We suppose that to each oriented bond e ∈ E is associated a random variable te,
the (te)’s being i.i.d. integrable non-negative random variables, with ν as common
distribution; we denote by p the probability p = P(te = 0) = ν({0}).

In this section, we assume that the semi-group of Zd generated by Dir is the whole
set Zd. Then, the graph (Zd, E) is transitive.

As in the classical setting, we can define the passage time of an oriented path as
in (3.1), use Kingman’s subadditive ergodic theorem to define the associated functional
µν as in (3.2), which is now positively homogeneous and subadditive but not necessarily
symmetric. By sudadditivity,

∀x, y ∈ Zd |µν(x+ y)− µν(x)| ≤ ‖y‖1 max{µ(εei) : 1 ≤ i ≤ d, ε ∈ {0, 1}}.

Thus µν can be extended in the usual way to a non-symmetric semi-norm on Rd. Finally,
we get, under some extra integrability assumption, the analytic form of the asymptotic
shape theorem as in (3.3).

Our hope is to characterize the directions of percolations in (Zd, E) when edges are
open with probability p, i.e. the u ∈ Rd such that

Du(0) = sup
y∈C+(0)

〈y, u〉 = +∞

with the help of the semi-norm µν for some law ν for the passage times of the edges.
Since the only relevant parameter here is ν({0}) = p, we take from now on

νp = pδ0 + (1− p)δ1;
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we denote by µp the associated semi-norm on Rd and we set

Ap = {x ∈ Rd : µp(x) ≤ 1},

which is a closed and convex set, but not necessarily bounded. We thus need some basics
in the theory of convex sets.

3.3 Convex sets

As Ap is closed and convex, we can associate to Ap two non-empty closed convex
cones:
• The recession cone1 of Ap is

0+(Ap) = {u ∈ Rd : Ap +R+u ⊂ Ap} = {x ∈ Rd : µp(x) = 0}.

• The barrier cone of Ap is

Bar(Ap) = {u ∈ Rd : sup
x∈Ap

〈x, u〉 < +∞} = {x ∈ Rd : bp(x) > 0},

where bp(u) = inf{µp(x) : x ∈ Rd such that 〈u, x〉 = 1}.
The polar cone of a closed non-empty convex cone C is defined by

C◦ = {u ∈ Rd : ∀x ∈ C 〈x, u〉 ≤ 0}.

The map C 7→ C◦ is an involutive map in the set of closed non-empty convex cones.
Note also that C ∩ C◦ = {0}. Here, 0+(Ap) is the polar cone associated to Bar(Ap) (see
Rockafellar [12] Corollary 14.2.1 p 123). In other words, characterizing the directions
x ∈ Rd such that µp(x) = 0 is equivalent to characterizing the directions y ∈ Rd such
that bp(y) > 0.

3.4 Results

Let us define, for p ∈ [0, 1],

BG(p) =

{
u ∈ Rd : Pp

(
sup

y∈C+(0)

〈y, u〉 = +∞

)
= 0

}
.

Note that BG(p) is non-increasing in p. The set BG(p) collects the directions in which the
growth of the cluster issued from 0 is bounded. It is thus natural to make the following
conjecture:

Conjecture 3.1. ∀p ∈ [0, 1] Bar(Ap) = BG(p).

For the moment, we only manage to prove the following result:

Theorem 3.2. For every p ∈ [0, 1],

int(Bar(Ap)) ⊂ BG(p) and ∪q>p int(BG(q)) ⊂ Bar(Ap).

This result will be a direct consequence of Corollaries 3.4 and 3.7.
As in the classical setting, we can describe the asymptotic behavior of the point-to-

hyperplane passage times with µp. For u ∈ Rd\{0} and n ≥ 0, set

Hn(u) = {x ∈ Rd : 〈x, u〉 ≥ n} and t(0, Hn(u)) = inf
x∈Hn(u)

t(0, x).

1Sometimes called characteristic cone or asymptotic cone.
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Theorem 3.3. For each u ∈ Rd which is not at the boundary of Ap, we have the almost
sure convergence:

lim
n→+∞

t(0, Hn(u))

n
= bp(u).

Proof. As in the unoriented case, it will follow from the analytic form of the shape
theorem. However, the existence of directions for which µp vanishes requires some
attention.
• Let L > bp(u). There exists x ∈ Rd with 〈u, x〉 = 1 and µp(x) ≤ L.
For n ≥ 1, denote by xn one vertex in Hn(u) which is the closest to nx.
Then µp(xn) ≤ nµp(x) +O(1).

Since t(0, Hn(u)) ≤ t(0, xn), we have lim sup
t(0, Hn(u))

n
≤ lim sup

µp(xn)

n
≤ µp(x) ≤ L.

Letting L go to bp(u), we obtain that lim sup
t(0, Hn(u))

n
≤ bp(u).

• If u 6∈ Bar(Ap), then bp(u) = 0 and the desired convergence is clear.
• If u ∈ int(Bar(Ap)), there exists ε > 0 such that the open ball centered in u with

radius ε is included in Bar(Ap); moreover, bp(u) > 0. By contradiction, assume that there
exists ` ∈ (0, bp(u)) such that

lim inf
n→+∞

t(0, Hn(u))

n
≤ ` < bp(u).

Then, one can build an infinite increasing sequence integers (nk) and sites (xk) such
that t(0, xk) ≤ `nk and 〈u, xk〉 = nk +O(1). By a compactness argument, we can assume
that xk

‖xk‖ → x. Then, nk

‖xk‖ = 〈 xk

‖xk‖ , u〉 + O(1/‖xk‖) → 〈x, u〉. By the asymptotic shape

theorem, t(0,xk)
‖xk‖ tends to µp(x), and we get the inequality

µp(x) ≤ `〈u, x〉.

Assume that 〈u, x〉 = 0, then µp(x) = 0, so x ∈ 0+(Ap). But Bar(Ap) is the polar cone
of 0+(Ap): by definition of ε, u + εx/2 ∈ Bar(Ap), so 0 ≥ 〈u + εx/2, x〉 = ε/2, which is a
contradiction.

So assume that 〈u, x〉 6= 0: we can define x̃ = x
〈u,x〉 and then 〈u, x̃〉 = 1 and µp(x̃) ≤ `,

which contradicts the definition of bp(u).

Corollary 3.4. int(Bar(Ap)) ⊂ BG(p).

Proof. Assume that u 6∈ BG(p). Then, θu(p) > 0. On the event

sup
x∈C+(0)

〈x, u〉 = +∞,

for each n ≥ 1, one can find xn ∈ C+(0), with 〈xn, u〉 ≥ n. Then, xn ∈ Hn(u) and
t(0, Hn(u)) = 0. We then apply Theorem 3.3.

Theorem 3.5. Fix u ∈ Rd\{0} such that lim inf
x→u

pc(x) > 0 and fix p such that 0 < p <

lim inf
x→u

pc(x). There exist constants A,B, κ > 0 such that

∀n ≥ 0 P(t(0, Hn(u)) ≤ κn) ≤ Ae−Bn.

Proof. The idea is close to the one used by Grimmett and Kesten [8] to obtain large
deviations inequalities for first-passage percolation: along an optimal path from 0 to
Hn(u), we expect to find a number proportional to n/N of disjoint streches whose
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increase in the u-direction is at least N . However, as p < pc(u), the first point of
Theorem 2.1 ensures that

Pp

(
sup

y∈C+(0)

〈y, u〉 ≥ N

)
decreases exponentially fast with N , so with high probability, streches whose increase in
the u-direction is at least N have to use edges with passage time 1, and should globally
contribute to an amount of time κn for some small κ > 0. A renormalisation argument
allows to make all this accurate.

However, we did not manage to implement the renormalisation argument under the
assumption p < pc(u), and we rather work under the stronger assumption

p < lim inf
x→u

pc(x).

1. We can assume without loss that ‖u‖1 < 1. Then, we can find δ ∈ R2\{0} with
〈u, δ〉 = 0 such that v = u + δ and w = u − δ satisfy p < min(pc(v), pc(w)), ‖v‖1 < 1 and
‖w‖1 < 1. By construction, u = v+w

2 . We define the following set

T =
{
x ∈ R2 : 〈x, v〉 ≤ 1, 〈x,w〉 ≤ 1, 〈x, u〉 ≥ −10

}
.

We can easily check that T is bounded and thus is a triangle: for any x ∈ T ,

− 10 ≤ 〈x, u〉 ≤ 1, −11 ≤ 〈x, δ〉 ≤ 11, and ‖x‖2 ≤ C =

√
100

‖u‖22
+

121

‖δ‖22
. (3.4)

As sup{〈x, v〉 : x ∈ [−1, 1]2} = ‖v‖1, we also check that [−1, 1]2 ⊂ T , and we set

θ = max(‖v‖1, ‖w‖1) < 1.

2. For an integer N ≥ 4, we partition Z2 into boxes (BN (k))k∈Z2 = (2Nk + {−N, . . . ,
N − 1}2)k∈Z2 . We set BN = BN (0), and TN is the image of T by the dilatation with
ratio N . Note that BN is included inside TN . We then define naturally the translated
triangles TN (k) = 2Nk + TN .

Consider now a path γ from 0 to Hn(u). As in Grimmett-Kesten [8], we now asso-
ciate to this path a squeleton Γ = (i0, i1, . . . , i`) of distinct N -boxes and a sequence
(b0, b1, . . . , b`) of sites such that, except for the last point, bk ∈ BN (ik) ⊂ TN (ik), in the
following manner. Set i0 = 0 and b0 = 0. Suppose i0, . . . , in, b0, . . . , bn have been defined.

• If the last point γlast of γ belongs to TN (in), then we end the process and set ` = n.
• Otherwise, let bn+1 be the first point of the path that is outside TN (in) and define
in+1 as the only index such that bn+1 ∈ BN (in+1). We also a crossing type for bn+1:

– if 〈bn+1 − 2Nin, v〉 > N or 〈bn+1 − 2Nin, w〉 > N , we say that the crossing type
of in is up;

– otherwise 〈bn+1 − 2Nin, u〉 < −10N and we say that the crossing type of in is
down.

We then remove the loops from this sequence, and we obtain, by relabeling the coor-
dinates of the remaining N -boxes if necessary, the squeleton Γ = (ik)0≤l≤` of the path
γ, see Grimmett-Kesten [8] for details. We denote by Iup(γ) and Idown(γ) the number
of crossings of the squeleton that are of the respective types up and down. Note that
Iup + Idown(γ) = `. Let us now establish rough bounds for Iup and Idown by using the
following decomposition

γlast = (γlast − b`) +

`−1∑
k=0

(bk+1 − 2Nik) +

`−1∑
k=0

(2Nik − bk).

We have the following estimates:

ECP 26 (2021), paper 50.
Page 11/14

https://www.imstat.org/ecp

https://doi.org/10.1214/21-ECP419
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Percolation on oriented graphs

• γlast and b` are both in TN (i`), so with (3.4), 〈γlast − b`, u〉 ≤ 11N .

• For any k ∈ {1, . . . , `}, let ak be the last point of the path γ before bk to be in
TN (ik−1). As ak ∈ TN (ik−1), with (3.4) we have 〈ak − 2Nik−1, u〉 ≤ N . As (ak, bk) is
an edge, 〈bk − 2Nik−1, u〉 ≤ N +K, where

K = max
e∈Dir
〈e, u〉 > 0.

• If ik is of type down, 〈bk − 2Nik−1, u〉 ≤ −10N .

• For any k ∈ {0, . . . , `− 1}, bk ∈ BN (ik), thus 〈2Nik − bk, u〉 ≤ N‖u‖1 ≤ N .

As γ is a path from 0 to Hn(u), this leads, for any fixed N ≥ K, to

n ≤ 〈γlast, u〉
≤ 11N + (N +K)Iup(γ)− 10NIdown(γ) +N(Iup(γ) + Idown(γ))

≤ 11N + 3N(Iup(γ)− 3Idown(γ)).

From this, we first deduce that for every n large enough,

` ≥ Iup(γ) ≥ n

3N
− 11

3
≥ n

4N
. (3.5)

And we also see that 3N(Iup(γ)− 3Idown(γ)) ≥ n− 11N ≥ 0 for every n large enough, so
3Idown(γ) ≤ Iup(γ) and

Iup(γ) ≥ 3

4
(Iup(γ) + Idown(γ)) =

3

4
`. (3.6)

3. For k ∈ Z2, we say that the box BN (k) is good if for each x ∈ BN (k),

max

(
sup

y∈C+(x)

〈y, v〉, sup
y∈C+(x)

〈y, w〉

)
< N(1− θ)

and that BN (k) is bad otherwise. As p < min(pc(v), pc(w)), by the first point of Theo-
rem 2.1, there exists α > 0 such that for every n ≥ 1,

Pp

(
sup

y∈C+(0)

〈y, v〉 ≥ n

)
≤ e−αn and Pp

(
sup

y∈C+(0)

〈y, w〉 ≥ n

)
≤ e−αn.

Thus, for every N ≥ 1, Pp (BN is bad) ≤ 2(2N + 1)2e−α(1−θ)N and

lim
N→+∞

Pp (BN is good) = 1.

Let us also denote by IGup(γ) the number of boxes that belong to the squeleton, whose
associated crossing is of type up, and that are also good. Assume that ik is the index of
a crossing of type up, and for instance that 〈bk+1 − 2Nik, v〉 > N . Then, as bk ∈ BN (ik),
with (3.4),

〈bk+1 − bk, v〉 = 〈bk+1 − 2Nik, v〉 − 〈bk − 2Nik, v〉 ≥ N(1− θ).

If moreover the box BN (ik) is good, then supy∈C+(bk)〈y, v〉 < N(1− θ), and this implies
that the portion of the path γ between bk and bk+1 uses at least one edge with passage
time 1; and the same is true if the crossing is up because 〈bk+1 − 2Nik, w〉 > N . So

t(γ) ≥ IGup(γ). (3.7)

From now on, we will denote it as IGup(Γ, ε) the number of good boxes associated to the
couple formed by a squeleton and a sequence of up/down status for its crossings.
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4. Remember that C is defined in (3.4). We now fix the last parameters: choose α > 0

and ρ ∈ (0, 1) such that

β = 8(C + 1)2(ρe−α + (1− ρ))3/4 < 1.

As the states of the boxes are identically distributed and only locally dependant and
limN→+∞Pp (BN is good) = 1, we can use the Liggett-Schonnmann-Stacey coupling
result [11]: there exists N large enough such that the field of the states of the boxes
(BN (k))k∈Z2 stochastically dominates a product of Bernoulli laws with parameter ρ. We
then fix κ > 0 small enough to have

eακβ
1

4N < 1.

Thanks to (3.5), (3.6) and (3.7), we have

Pp (t(0, Hn(u)) ≤ κn)

≤ Pp
(
∃` ≥ n

4 , ∃Γ = (Γk)0≤k≤` squeleton, ∃(εk)0≤k<` ∈ {up,down}` :

Iup(Γ, ε) ≥ 3
4`, I

G
up(Γ, ε) ≤ κn

)
Because of (3.4), for a fixed ` ≥ n/4, there are at most (8(C + 1)2)` couples (Γ, ε) with
length `. If such a couple satisfies Iup(Γ, ε) ≥ 3

4`, then IGup(Γ, ε) stochastically dominates
a variable S with binomial law with parameters (d 3

4`e, ρ), so

Pp(I
G
up(Γ, ε) ≤ κn) ≤ P(S ≤ κn) = P(e−αS ≥ e−ακn)

≤ eακnE(e−αS) ≤ eακn(ρe−α + 1− ρ)
3
4 `.

So we obtain:

Pp (t(0, Hn(u)) ≤ κn) ≤
∑
`≥ n

4N

(8(C + 1)2)`eακn(ρe−α + 1− ρ)
3
4 `

≤ eακn
∑
`≥ n

4N

β` =
1

1− β
(eακβ

1
4N )n,

which ends the proof.

Corollary 3.6. For each u ∈ Rd\{0}, p < lim infx→u pc(x) =⇒ bp(u) > 0.

Proof. Suppose p < lim infx→u pc(x). By Theorem 3.5, there exist c, α > 0 such that
for each n ≥ 1, Pp(t(0, Hn(u)) ≤ cn) ≤ e−αn. Then, with the Borel–Cantelli lemma and
Theorem 3.3, we get bp(u) ≥ c.

Corollary 3.7. ∪q>pint(BG(q)) ⊂ Bar(Ap).

Proof. Consider u ∈ ∪q>pint(BG(q)): there exists q > p such that u ∈ int(BG(q)), which
means that there exists δ > 0, with B(u, δ) ⊂ BG(q). For each x ∈ B(u, δ), we have
θx(q) = 0 and pc(x) ≥ q. This implies that lim infx→u pc(x) ≥ q > p. We conclude with
Corollary 3.6.
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