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Abstract

To model the destruction of a resilient network, Cai, Holmgren, Devroye and Skerman
introduced the k-cut model on a random tree, as an extension to the classic problem
of cutting down random trees. Berzunza, Cai and Holmgren later proved that the
total number of cuts in the k-cut model to isolate the root of a Galton–Watson tree
with a finite-variance offspring law and conditioned to have n nodes, when divided by
n1−1/2k, converges in distribution to some random variable defined on the Brownian
CRT. We provide here a direct construction of the limit random variable, relying upon
the Aldous–Pitman fragmentation process and a deterministic time change.
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1 Introduction

Let k ∈ N and let T be a rooted tree. The following procedure is considered by Cai,
Holmgren, Devroye and Skerman [9]. To each vertex v of T , we associate an independent
Poisson process Nv = (Nv(t))t≥0 of rate 1. Imagine that each time Nv increases, the
vertex v is “cut” once; after it receives k “cuts”, it is removed along with all the adjacent
edges. The procedure ends when the root is removed. We are interested in the total
number of “cuts” falling on the subtree containing the root, denoted as Xk(T ). Let us
observe that for k = 1, the above procedure reduces to the classic problem of cutting
down random trees introduced by Meir and Moon [14]; see in particular [12, 2, 5, 1, 7, 10]
for some recent progress on the classical version. The current extension, on the other
hand, can be seen as a simple model for attacks on computer networks with resilience
([9]).

Let ξ = (ξ(p))p≥0 be a probability measure on the set of non negative integers which
satisfies ∑

p≥1

p ξ(p) = 1, and 0 < σ :=
(∑
p≥2

p(p− 1)ξ(p)
)1/2

<∞.

For n ≥ 1, let Tn be a Galton–Watson tree with offspring distribution ξ conditioned on
having n vertices. Berzunza, Cai and Holmgren show in [6] that( σ√

n
Tn,

Xk(Tn)

σ
1
kn1− 1

2k

)
d−−−−→

n→∞
(T , Zk), (1.1)
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k-cut model

where T is the so-called Brownian Continuum Random Tree, and Zk is a non degenerate
random variable whose distribution is characterised via its moments. Note that the
convergence of σ√

n
Tn to T , due to Aldous [3], is well known and takes place in the weak

topology of the Gromov–Hausdorff space. We defer the formal definitions of these objects
till a later point. Let us also point out that the joint convergence in (1.1) generalises an
earlier result for k = 1 by Janson [12].

In the case k = 1, it is also known that Z1 can be explicitly written as a functional
of the so-called Aldous–Pitman fragmentation process, thanks to the works of Addario-
Berry, Broutin & Holmgren [2], Bertoin & Miermont [5], Abraham & Delmas [1]. In this
work, we extend this construction of Z1 to the general setting of k ≥ 1, thus answering a
question in [6] on the construction of Zk. To that end, let us start with a brief introduction
to the Aldous–Pitman fragmentation process.

The Aldous–Pitman fragmentation process can be viewed as the analogue of the
1-cut model for the Brownian continuum random tree (CRT). First, we need to construct
this CRT. Let us take e = (es)0≤s≤1, where 1

2e is distributed as the standard normalised
Brownian excursion of duration 1. For s, t ∈ [0, 1], define

d(s, t) = es + et − 2b(s, t), where b(s, t) = min
s∧t≤u≤s∨t

eu.

It turns out the function d is non-negative, symmetric and satisfies the triangle inequality.
To turn it into a metric, let s ∼ t if and only if d(s, t) = 0. Then d defines a metric on
the quotient space T := [0, 1]/∼, which we still denote as d. In the sequel, we will refer
to the (random) metric space (T , d) as the Brownian CRT. Note that it has “tree-like”
features: each pair of points in T , say x and y, is joined by a unique path, denoted
as Jx, yK, which turns out to be a geodesic. Metric spaces with such properties are
called R-trees. Interested readers are referred to Evans [11] and Le Gall [13] for more
background on R-trees and CRT.

Let us also introduce the following notation on (T , d) which will be useful later. We
denote by p : [0, 1] → T the canonical projection which sends every t ∈ [0, 1] to its
equivalence class with respect to ∼. The root of (T , d) is then the point ρ = p(0) = p(1).
In addition, the map p also induces a probability measure on T : the mass measure,
denoted as µ, is the push-forward of the uniform measure on [0, 1] by p. On the other
hand, the length measure ` is a σ-finite measure on T , characterised by the relation
`(Jx, yK) = d(x, y), for all x, y ∈ T .

We introduce a Poisson point measure P(dt, dx) =
∑
i≥1 δ(ti,xi)(dt, dx) on R+ × T of

intensity dt `(dx). One can imagine the (ti, xi)’s as cuts on T : at time ti, the point xi is
removed from T , which disconnects the tree. As time moves on, more cuts arrive and T
fragments into finer and finer connected components. The Aldous–Pitman fragmentation
consists in describing the time evolution of the collection of µ-masses of these connected
components. It is also known that in the case of k = 1, the size of the subtree of Tn
containing the root, when suitably rescaled, converges to the µ-mass of the connected
component of the CRT containing the root ([4]). Thus, the cutting down of T , which
involves removing xi at time ti, can be seen as the scaling limit of the k-cut model on
Tn for k = 1. On the other hand, the key element in our construction is the following
time-changed version of P: for k ∈ [1,∞), define

P̃ =
∑
i≥1

δ(si, xi), where si =
(
Γ(k + 1)ti

) 1
k , i ≥ 1. (1.2)

Here, Γ(·) is the Gamma function. Let us denote by Tt = {x ∈ T : P([0, t]×Jρ, xK) = 0}, the
subtree connected to the root at time t. Similarly, denote T̃t = {x ∈ T : P̃([0, t]× Jρ, xK) =
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0} the remaining subtree in the time-changed cutting process. We define

Xk(T ) =

∫ ∞
0

µ(T̃t)dt =

∫ ∞
0

µ
(
Ttk/Γ(k+1)

)
dt =

(Γ(k + 1))
1
k

k

∫ ∞
0

µ(Ts) s
1
k−1ds. (1.3)

For k = 1, X1(T ) appears in [5, 1, 2] as the scaling limit of X1(Tn). Let us also recall that
Aldous and Pitman [4] have shown that the process (µ(Tt))t≥0 has the same distribution
as ((1 + Lt)

−1)t≥0 with (Lt)t≥0 being a 1
2 -stable subordinator. Combined with a Lamperti

time-change, this then implies X1(T ) has the Rayleigh distribution ([5]). Note that we
also have the following bound from (1.3):

k (Γ(k + 1))−
1
kXk(T ) ≤

∫ 1

0

s
1
k−1ds+

∫ ∞
1

µ(Ts)ds ≤ k +X1(T ). (1.4)

So in particular, Xk(T ) < ∞, a.s. Let us also point out that even though the discrete
model is only defined for k ∈ N, the above definition of Xk(T ) makes sense for all
k ∈ [1,∞). Here is our main result.

Theorem 1.1. For all k ∈ N, conditional on (T , d), Xk(T ) has the same distribution as
Zk.

We’ll give two proofs of the theorem. In Section 2, we give a first proof by identifying
the conditional moments of Xk(T ) given T with those of Zk, which were computed in
[6]. In Section 3, we give a second proof via weak convergence arguments. Even though
it takes a bit more space, the second proof is perhaps more helpful in explaining the
motivation for the definition (1.3), as well as in providing an alternative proof of the
convergence in (1.1).

2 Conditional expectation of Xk(T ) given T
We will need the following notation. For q ∈ N and s = (s1, s2, . . . , sq) ∈ [0, 1]q, we set

∆e
1(s) = es1 , and more generally for 2 ≤ r ≤ q,

∆e
r(s) = esr −max

i<r
b(si, sr), where b(s, t) = min

s∧t≤u≤s∨t
eu.

Note that ∆e
1(s) + · · ·+ ∆e

r(s) is the total length (i.e. `-mass) of the reduced subtree of T
spanned by p(s1), . . . , p(sr), for all r ≤ q. Our goal is to prove the following formulas for
the moments of Xk(T ).

Proposition 2.1. For all k ≥ 1 and q ∈ N, we have

E[Xk(T )q | e ] = q!

∫
[0,1]q

ds1 · · · dsq
∫ ∞

0

∫ x1

0

· · ·
∫ xq−1

0

exp

(
− 1

k!

(
∆e

1(s)xk1 + ∆e
2(s)xk2 + · · ·+ ∆e

q(s)x
k
q

))
dxq · · · dx1. (2.1)

Proof. For v ∈ T , we define Ev = inf{t > 0 : P̃([0, t]× Jρ, vK) = 1}, the moment that v is
separated from the root. Then v ∈ T̃t if and only if Ev > t. Therefore, we can re-write
Xk(T )q as follows.(

Xk(T )
)q

=

∫
R

q
+

µ(T̃t1)µ(T̃t2) · · ·µ(T̃tq )dt1dt2 · · · dtq

=

∫
R

q
+

∫
T q

1{Ev1>t1, ..., Evq>tq}µ(dv1) · · ·µ(dvq)dt1 · · · dtq

=

∫
R

q
+

∫
[0,1]q

1{Ep(s1)>t1, ..., Ep(sq)>tq}ds1 · · · dsq dt1 · · · dtq,
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Figure 1: An illustration of Rq with q = 2. Here, Rq has the shape of a binary tree with
2 leaves, one branch point and three edges (depicted by the line segments in bold). The
edge lengths correspond to the lengths of these line segments.

where we have used in the last line the definition that µ is the push-forward of the
Lebesgue measure on [0, 1]. Write Ee as a shorthand for E[· | e ]. The above yields that

Ee[Xk(T )q] =

∫
[0,1]q

∫
R

q
+

Pe(Ep(s1) > t1, . . . , Ep(sq) > tq)dt1 · · · dtq ds1 · · · dsq.

We then split Rq+ into q! subdomains according to the q! possible rankings of (ti)1≤i≤q.
However, (si)1≤i≤q is sampled in an i.i.d fashion and is therefore exchangeable, so that
integration from each subdomain will contribute equally. Hence,

Ee[Xk(T )q]

= q!

∫
[0,1]q

∫ ∞
0

∫ t1

0

· · ·
∫ tq−1

0

Pe(Ep(s1) > t1, . . . , Ep(sq) > tq)dtq · · · dt1 ds1 · · · dsq.

Let Rq be the reduced subtree of T spanned by v1 = p(s1), . . . , vq = p(sq), i.e. the
smallest connected subspace of T containing these q points and the root ρ. Note that Rq
is a “finite” tree in the sense that it only has a finite number of branch points and leaves.
Here, it will be convenient to think of it as a (graph) tree (Vq,Eq), where the vertex set
Vq consists of the root, the leaves and the branch points of Rq and each edge e ∈ Eq
is equipped with an edge length l(e) ∈ (0,∞). These edge lengths are consistent with
the distance d in the following way: for each v ∈ Vq, d(ρ, v) =

∑
e∈L(v) l(e), where L(v)

stands for the set of edges on the path from the root ρ to v. See also Fig. 1 for an example
of Rq. Now to each edge e in this tree, we associate an independent exponential variable
Ee of mean 1/l(e). It follows from the definition (1.2) of P̃ that (Evr )k/k! is distributed as
an exponential random variable of mean 1/d(ρ, vr) = 1/esr . It is then straightforward to
check that (

Evr ; 1 ≤ r ≤ q
) (d)

=
(

min
e∈L(vr)

(k!Ee)
1/k ; 1 ≤ r ≤ q

)
.

Bearing in mind that t1 > t2 > · · · > tq, we then find that

Pe(Ev1 > t1, . . . , Evq > tq)

= Pe

(
(k!Ee)

1
k > tr,∀ e ∈ L(vr), 1 ≤ r ≤ q

)
= Pe

(
(k!Ee)

1
k > t1,∀ e ∈ L(v1)

)
Pe

(
(k!Ee)

1
k > t2,∀ e ∈ L(v2)\L(v1)

)
· · ·Pe

(
(k!Ee)

1
k > tq,∀ e ∈ L(vq) \ ∪r<qL(vr)

)
= exp

(
− 1

k!

(
∆e

1(s)tk1 + ∆e
2(s)tk2 + · · ·∆e

q(s)t
k
q

))
.
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By the previous arguments, this completes the proof.

Proof 1 of Theorem 1.1. Comparing (2.1) with equations (8) and (9) in [6], we see
that E[Xk(T )q|e] = E[Zqk |e] for all q ∈ N. Applying Theorem 2 and Lemma 8 there, we
conclude that conditional on e, Xk(T ) has the same distribution as Zk.

3 Scaling limit of Xk(Tn)

Here, we give a second proof of the theorem by showing Xk(T ) is the scaling limit of
Xk(Tn). Throughout this section, we assume k ∈ {2, 3, . . . }.

3.1 Convergence of random trees

We briefly recall Aldous’ Theorem on the convergence of the conditioned Galton–
Watson tree Tn, as well as provide some necessary background on the Gromov–Hausdorff
topology. Further details on these topics can be found in [13, 11, 8, 15, 3].

The Gromov–Hausdorff distance between two compact metric spaces (X, dX) and
(Y, dY ) is the following quantity:

dGH(X,Y ) = inf
φ,ϕ,Z

dZ,Haus(φ(X), ϕ(Y )),

where the infimum is over all the isometric embeddings φ : X → Z and ϕ : Y → Z into a
common metric space (Z, dZ), and dZ,Haus stands for the usual Hausdorff distance for the
compact sets of Z. In our application, we often need to keep track of specified points in
the initial spaces. To that end, let x = (x1, . . . , xp) and y = (y1, . . . , yp) be p ∈ N points of
X and Y respectively. Then the marked Gromov–Hausdorff distance between (X, dX ,x)

and (Y, dY ,y) is defined as

dp,GH(X,Y ) = inf
φ,ϕ,Z

(
dZ,Haus(φ(X), ϕ(Y )) ∨ max

1≤i≤p
dZ
(
φ(xi), ϕ(yi)

))
,

where the infimum is again over all the isometric embeddings of X and Y into a common
metric space. For each p ≥ 1, it turns out that the space of metric spaces with p

marked points is a Polish space with respect to dp,GH ([15]). Now the convergence of Tn
mentioned earlier can be given a precise meaning. Let us recall that the Brownian CRT
(T , d) is a metric space by definition. Recall also ρ ∈ T stands for its root. Equipping its
vertex set with the graph distance, we can also view the tree Tn as a metric space. Let
us denote by σ√

n
Tn the rescaled metric space where the graph distance is multiplied by

a factor σ√
n

. Denote also by ρn its root. We have( σ√
n
Tn, ρn

)
(d)−−−−→
n→∞

(
T , ρ), (3.1)

in the weak topology of the marked Gromov–Hausdorff distance.
We note that T is further equipped with a probability measure µ. Let us define its

discrete counterpart: for n ≥ 1, let µn be the uniform probability measure on the vertex
set of Tn. In fact, Aldous’s Theorem in [3] also implies the following convergence of
reduced trees. Given T , let (Vi)i≥1 be an i.i.d. sequence of points in T sampled with
µ. For p ∈ N, denote by Rp the reduced tree of T spanned by V1, . . . , Vp. Similarly, we
sample an i.i.d. sequence (V ni )i≥1 from Tn with law µn. Let Rnp be the reduced subtree of
Tn spanned by V n1 , . . . , V

n
p , namely, the smallest subgraph of Tn (an edge of the subgraph

is also an edge of Tn) containing V n1 , . . . , V
n
p and the root ρn. As above, we denote by

σ√
n
Rnp the metric space obtained from Rnp by equipping its vertex set with σ√

n
times the

graph distance. Then we have

∀ p ∈ N,
( σ√

n
Rnp , V n1 , . . . , V np

)
(d)−−−−→
n→∞

(Rp, V1, . . . , Vp), (3.2)
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with respect to the marked Gromov–Hausdorff topology. We have seen that Rp can be
viewed as a (graph) tree with edge lengths. But so is σ√

n
Rnp , where the edge length is

simply σ√
n

. Note that the convergence in (3.2) implies the “shape” of Rnp coincides with
that of Rp for large n and

σ√
n

#Rnp
(d)−−−−→
n→∞

`(Rp), p = 1, 2, . . . . (3.3)

where # stands for the counting measure on the vertex set of Rnp and ` is the length
measure of T .

Let us recall the Poisson point measure P has an intensity dt `(dx). Since `(Rp) <∞,
there is a finite number of cuts (ti, xi) from P which fall on Rp before time t. So a
convenient approach to studying the cutting of T is first look at those cuts which fall on
Rp, p ≥ 1. We’ll also see the convergences in (3.2) and (3.3) will be our starting point for
proving the convergence of Xk(Tn).

3.2 Convergence of the cutting process

For each vertex v of Tn, let us denote ηv = inf{t : Nv(t) = k}, the time when v is
removed from Tn. We show here that the point measure Pn :=

∑
v∈Tn

δ(ηv,v) converges

in an appropriate sense to P̃. Let us start with the following observation.

Lemma 3.1. For each m ∈ N, suppose am ∈ (0,∞) and let (Gm,i)1≤i≤m be indepen-
dent Gamma(k, 1

am
) random variables whose probability density function is given by

1
(k−1)!a

k
mx

k−1e−amx, x > 0. Let

Nm(t) =
∑

1≤i≤m

1{Gm,i≤t}, t ≥ 0.

If makm → a ∈ (0,∞) as m→∞, then we have

(
Nm(t)

)
t≥0

(d)−−−−→
m→∞

(
N (tk/k!)

)
t≥0

in D(R+,R),

where (N (t))t≥0 is a Poisson process on R+ of rate a and D(R+,R) is the space of càdlàg
functions endowed with the Skorokhod topology.

Proof. Let G denote a Gamma(k, 1) random variable and let X be a Poisson random
variable of mean t. We note that

P(G ≤ t) = P(X ≥ k) =

∞∑
j=k

e−t
tj

j!
=
tk

k!
+ tk+1R(t), (3.4)

where R(·) is bounded on any finite interval. Let T > 0. For all t ≤ T and p ≥ 0, noting
P(Gm,1 ≤ t) = P(G ≤ amt), we deduce that

P(Nm(t) = p)

=

(
m

p

)(
P(Gm,1 ≤ t)

)p(
P(Gm,1 > t)

)m−p
=

(
m
p

)
mp

(
m(amt)

k

k!
+m(amt)

k+1R(amt)

)p(
1− (amt)

k

k!
+ (amt)

k+1R(amt)

)m−p
→ 1

p!

(a tk
k!

)p
exp(−a tk/k!) = P(N (tk/k!) = p).
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We now extend this to multidimensional marginals. Let l ≥ 2, 0 ≤ t1 ≤ t2 ≤ · · · ≤ tl and a
sequence of non negative integers p1 ≤ p2 ≤ · · · ≤ pl. Then for m ≥ pl, we apply (3.4)
again to find that

P(Nm(tl) = pl | Nm(ti) = pi, 1 ≤ i ≤ l − 1)

=

(
m− pl−1

pl − pl−1

)(
P(Gm,1 ≤ tl |Gm,1 > tl−1)

)pl−pl−1
(
P(Gm,1 > tl |Gm,1 > tl−1)

)m−pl
→ 1

(pl − pl−1)!

(a tkl
k!
−
a tkl−1

k!

)pl−pl−1

exp
(
−
a(tkl − tkl−1)

k!

)
,

which is precisely P(N (tkl /k!) = pl | N (tki /k!) = pi, 1 ≤ i ≤ l − 1). Combined with an
induction argument, this readily yields the distributional convergence of (Nm(ti), 1 ≤
i ≤ l) to (Nm(ti), 1 ≤ i ≤ l) for all (ti)1≤i≤l, l ≥ 1. Since t 7→ Nm(t) is non-decreasing, we
may conclude that the convergence holds in D(R+,R).

Recall the reduced trees Rnp and Rp. Let us take the vertices v ∈ Rnp and rank them in
the increasing order of the ηv’s. We write the ranked sequence as (vn,pi )1≤i≤#Rn

p
so that

ηvn,p
1

< ηvn,p
2

< · · · < ηvn,p
#Rn

p

. Similarly, since P̃([0, t]×Rp) = #{(si, xi) : xi ∈ Rp, si ≤ t} <
∞ for each t > 0, we can rank the elements of {(si, xi) : xi ∈ Rp} in the increasing order
of their first coordinates and write the ranked (infinite) sequence as (τp1 , χ

p
1), (τp2 , χ

p
2), . . . .

Let us also denote
δn = σ

1
kn−

1
2k , n ≥ 1.

Proposition 3.2. For each p ≥ 1, as n→∞, we have for all j ≥ 1,((
σ√
n
Rnp , v

n,p
1 , . . . , vn,pj

)
, δ−1
n ηvn,p

1
, . . . , δ−1

n ηvn,p
j

)
(d)−−−−→
n→∞

((
Rp, χp1, . . . , χ

p
j

)
, τp1 , . . . , τ

p
j

)
,

where the convergence of the first coordinates is with respect to the marked Gromov–
Hausdorff topology.

Proof. Since the ηv’s are i.i.d, the law of (vn,p1 , . . . , vn,pj ) is that of a uniform sample with-
out replacement of size j from Rp, and is further independent of (ηvn,p

i
)1≤i≤j . Combined

with the convergence in (3.2), this implies that (vn,p1 , . . . , vn,pj ) converges in distribution
to j independent uniform points in Rp, which is precisely the distribution of χp1, . . . , χ

p
j .

So it remains to check the convergence of ηvn,p
i

. Let us define

Nn,p(t) =
∑
v∈Rn

p

1{ηv≤δnt} = max{i : ηvn,p
i
≤ δnt}, t ≥ 0.

Since each δ−1
n ηv is distributed as an independent Gamma(k, 1

δn
), applying Lemma

3.1 with m = #Rnp and am = δn, we obtain from (3.3) that (Nn,p(t))t≥0 converges in
distribution to N (tk/k!)t≥0, a Poisson process of rate `(Rp). By (1.2), the latter has the
same law as (P̃([0, t]×Rp))t≥0. Since the law of (ηn

vn,p
i

)1≤i≤j is determined by (Nn,p(t))t≥0

in the same way that of (τpi )1≤i≤j is by (N (tk/k!))t≥0, this completes the proof.

Let Tn(t) be the subtree of Tn formed by the vertices connected to the root at time
t. Note that a vertex v ∈ Tn(t) if and only if none of its ancestors nor v itself has been
removed by time t. Let us denote µn(t) = µn(Tn(t)). Recall that T̃t is the subtree of T
connected to the root at time t from the cutting process P̃. Proposition 3.2 implies the
following

Lemma 3.3. As n→∞, jointly with the convergence in (3.2), we have that (µn(δnt))t≥0

converges to (µ(T̃t))t≥0 in distribution with respect to the Skorokhod topology on
D(R+,R).
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k-cut model

Proof. The arguments are similar to the ones in Section 2.3, [4], so we’ll only sketch the
proof. Recall that (V ni )i≥1 (resp. (Vi)i≥1) is a sequence of i.i.d. uniform vertices of Tn
(resp. i.i.d. points of T with law µ). By the Strong Law of Large Numbers, we have for
each t > 0,

1

j

j∑
i=1

1{V n
i ∈Tn(t)}

a.s.−−−→
j→∞

µn(t) and
1

j

j∑
i=1

1{Vi∈T̃t}
a.s.−−−→
j→∞

µ(T̃t).

On the other hand, V ni ∈ Tn(t) if and only if the first ηv for those v in the path from the
root to V nj arrives after t. Therefore, according to Proposition 3.2, for each j ≥ 1,(

1{V n
i ∈Tn(δnt)}, 1 ≤ i ≤ j

)
(d)−−−−→
n→∞

(
1{Vi∈T (t)}, 1 ≤ i ≤ j

)
It follows that we can find a sequence kn →∞ slowly enough such that

1

kn

kn∑
i=1

1{V n
i ∈Tn(δnt)}

(d)−−−−→
n→∞

µ(T̃t),

jointly with (3.2). Invoking the Strong Law of Large Numbers again, we deduce that
µn(δnt)→ µ(T̃t) in distribution, jointly with (3.2). These arguments can also be adapted
to prove the convergence of the multidimentional marginals. The functional convergence
then follows thanks to monotonicity.

By Skorokhod’s representation theorem, we can assume from now on that jointly
with (3.2), we have (

µn(δnt)
)
t≥0

n→∞−−−−→
(
µ(T̃t)

)
t≥0

a.s. in D(R+,R). (3.5)

3.3 Records and numbers of “cuts”

Recall the Poisson process Nv associated to each vertex v ∈ Tn. Let us write
ηv,r = inf{t : Nv(t) = r} for the r-th jump of Nv; in particular, ηv,k = ηv. For r = 1, · · · , k,
we say v is a r-record if v is still connected to the root at time ηv,r. Denote by Xk,r(Tn)

the total number of r-records in Tn. Clearly, Xk(Tn) =
∑

1≤r≤kXk,r(Tn).
To find the scaling limiting of Xk,r(Tn), let us introduce an,r(t) = #{v ∈ Tn(t) :

Nv(t) = r − 1}, r = 1, 2, . . . , k. Standard tools from stochastic analysis yield the following

Lemma 3.4. For all n ≥ 1 and r ∈ {1, 2, . . . , k}, we have

E
[
Xk,r(Tn)

]
= E

[ ∫ ∞
0

an,r(t)dt
]

and

E
[(
Xk,r(Tn)−

∫ ∞
0

an,r(t)dt
)2]

= E
[ ∫ ∞

0

an,r(t)dt
]
.

Proof. For t > 0, let us denote

Xn,r(t) =
∑
v∈Tn

1{ηv,r≤t}1{v is an r-record},

the number of r-records which have occurred by time t. Clearly, Xn,r(∞) = Xk,r(Tn).
Note that given ηv,r−1 < t < ηv,r, ηv,r − t is distributed as an exponential variable with
mean 1, with the convention that ηv,0 = 0. It is then classical that

Mr(t) = Xn,r(t)−
∫ t

0

an,r(s)ds, t ≥ 0,

ECP 26 (2021), paper 46.
Page 8/11

https://www.imstat.org/ecp

https://doi.org/10.1214/21-ECP417
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


k-cut model

is a martingale which further satisfies that E[Mr(t)
2] = E[

∫ t
0
an,r(s)ds]. In the termi-

nology of point processes, this is saying that (
∫ t

0
an,r(s)ds)t≥0 is the compensator of

(Xn,r(t))t≥0. On the other hand, for each fixed n, one can easily convince oneself that
E[
∫∞

0
an,r(s)ds] <∞. Therefore, (Mr(t))t≥0 is also bounded in L2. Taking t→∞ yields

the desired result.

Lemma 3.5. For each t > 0, we have 1
nan,1(δnt)− µn(δnt)→ 0 in L1 and E[an,r(δnt)] ≤

n(δnt)
r−1, for r ∈ {2, 3, . . . , k}.

Proof. Conditional on µn(t), an,r(t) is distributed as Binomial(nµn(t), e−ttr−1/(r − 1)!).
Hence,

E
[∣∣∣ 1
n
an,1(δnt)− µn(δnt)

∣∣∣] = E[µn(δnt)](1− e−δnt) ≤ δnt→ 0, as n→∞.

Similarly, we have E[an,r(δnt)] ≤ E[nµn(δnt)](δnt)
r−1 ≤ n(δnt)

r−1.

Lemma 3.6. We have

lim
t→∞

lim sup
n→∞

E
[ ∫ ∞

t

µn(δns)ds
]

= 0.

Proof. The first part of the proof is identical to that of Lemma 3 in [5]. We include it
here for the sake of completeness. Let p(t) = P(ηv > t) be the probability that v is not
removed at time t. We note that v ∈ Tn(t) if and only if ηw > t, for every vertex w in the
path from the root to v. Letting ht(v) be the number of vertices in that path, we can
write

E[nµn(t)] = E

[ ∑
v∈Tn

P(v ∈ Tn(t) |Tn)

]
= E

[ ∑
v∈Tn

p(t)ht(v)

]
=
∑
m≥1

p(t)mE[Qm(Tn)], (3.6)

where Qm(Tn) = #{v ∈ Tn : ht(v) = m}. Now according to Theorem 1.13 in [12], there
exists some constant C ∈ (0,∞) which only depends on the offspring distribution ξ such
that E[Qm(Tn)] ≤ Cm for all n and m. It follows that

nE[µn(t)] ≤ C
∑
m≥1

mp(t)m =
Cp(t)

(1− p(t))2
.

On the other hand, since ηv has the same distribution as the sum of k independent
exponential variables of mean 1, we deduce the bound p(t) ≤ k exp(−t/k). For small
values of t, we will use instead:

1− p(t) = P(ηv ≤ t) =

∫ t

0

sk−1

(k − 1)!
e−sds ≥ e−t

∫ t

0

sk−1

(k − 1)!
ds =

tk

k!
e−t, t ≥ 0.

Let t0 be such that k exp(−t0/k) < 1. Applying the previous bounds, we find that for n
large enough,

E
[ ∫ ∞

t

µn(δns)ds
]
≤ C

n

∫ ∞
t

p(δns)

(1− p(δns))2

≤ C

n

∫ t0/δn

t

ds

e−2δns(δns)2k/(k!)2
+
C

n

∫ ∞
t0/δn

ke−δns/k

(1− ke−δns/k)2
ds

≤ C(k!)2e2t0

n δ2k
n

t−2k+1 +
Ck2

n δn

e−t0/k

1− ke−t0/k
,

where we have used a change of variable u = ke−δnt/k to compute the integral over
[t0/δn,∞). Since n δ2k

n = σ2 and nδn →∞, the conclusion follows.
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Proposition 3.7. As n→∞, we have the joint convergence( σ√
n
Tn,

1

nδn
Xk(Tn)

)
(d)−−→

(
T , Xk(T )

)
, (3.7)

where the convergence of the first coordinate is in the Gromov–Hausdorff sense.

Proof. We first note that E[Xk(T )] < ∞ as a consequence of (1.4) and the fact that a
Rayleigh distribution has finite mean. Together with Lemma 3.6, this implies that for
ε > 0, we can find t0 = t0(ε) ∈ (0,∞) such that

E
[ ∫ ∞

t0

µ(T̃t)dt
]
< ε and E

[ ∫ ∞
t0

1

n
an(δnt)dt

]
≤ E

[ ∫ ∞
t0

µn(δnt)dt
]
< ε, for all n ≥ 1.

(3.8)
Let m ∈ N and take M ∈ N large enough such that M2−m ≥ t0. Since t 7→ an(t) is non
increasing, we have

2−m
M∑
j=1

an

(j δn
2m

)
≤
∫ M/2m

0

an(δnt)dt =

M∑
j=1

∫ j/2m

(j−1)/2m

an(δnt)dt ≤ 2−m
M∑
j=1

an

( (j − 1)δn
2m

)
.

Replacing an(δnt) with µ(T̃t) yields a similar bound for
∫M/2m

0
µ(T̃t)dt. Then,∣∣∣ ∫ M/2m

0

1

n
an(δnt)dt−

∫ M/2m

0

µ(T̃t)dt
∣∣∣ ≤ 2−m+1 + 2−m+1

M∑
j=1

∣∣∣ 1
n
an

(j δn
2m

)
− µ

(
T̃ j

2m

)∣∣∣
≤ 2−m+1 + 2−m+1

M∑
j=1

{∣∣∣ 1
n
an

(j δn
2m

)
− µn

(j δn
2m

)∣∣∣+
∣∣∣µn(j δn

2m

)
− µ

(
T̃ j

2m

)∣∣∣}.
As a consequence of Lemma 3.5 and (3.5), we obtain

P
(

lim sup
n→∞

∣∣∣ ∫ M/2m

0

1

n
an(δnt)dt−

∫ M/2m

0

µ(T̃t)dt
∣∣∣ > 2−m+1

)
→ 0, as n→∞, (3.9)

jointly with the convergences in (3.2). On the other hand, Lemma 3.4 and a change of
variable yield

E
[(Xk,1(Tn)

nδn
−
∫ ∞

0

1

n
an(δnt)dt

)2]
=

1

nδn
E
[ ∫ ∞

0

an(t)dt
]
→ 0,

as n→∞. Combining this with (3.9) and (3.8), we obtain

1

nδn
Xk,1(Tn)

n→∞−−−−→ Xk(T ) in probability, (3.10)

jointly with the convergences in (3.2). On the other hand, for r = 2, 3, . . . , k, appealing to
Lemma 3.4 and Lemma 3.5, we find that

E[Xk,r(Tn)]

nδn
=

1

n
E
[ ∫ ∞

0

an,r(δnt)dt
]
≤ t0(δnt0)r−1 + E

[ ∫ ∞
t0

1

n
an(δnt)dt

]
.

It follows that 1
nδn

Xk,r(Tn) → 0 in probability by (3.8) and Markov’s inequality. Since
Xk(Tn) =

∑
1≤r≤kXk,r(Tn), we deduce from (3.10) that

1

nδn
Xk(Tn)

n→∞−−−−→ Xk(T ) in probability, (3.11)

jointly with the convergences in (3.2). Combined with (3.1), this shows the convergence
of both marginals in (3.7). To get to the joint convergence, it suffices to note that the law
of (T , Xk(T )) is the unique limit point of those on the left-hand side, which follows from
the joint convergence in (3.11) and the fact that the family (Rp)p≥1 uniquely determines
the law of (T , d, µ).
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Proof 2 of Theorem 1.1. This follows by comparing the convergence in Proposition
3.7 with (1.1).
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