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Abstract

We study a stochastic version of the classical Becker-Döring model, a well-known ki-
netic model for cluster formation that predicts the existence of a long-lived metastable
state before a thermodynamically unfavorable nucleation occurs, leading to a phase
transition phenomena. This continuous-time Markov chain model has received lit-
tle attention, compared to its deterministic differential equations counterpart. We
show that the stochastic formulation leads to a precise and quantitative description
of stochastic nucleation events thanks to an exponentially ergodic quasi-stationary
distribution for the process conditionally on nucleation has not yet occurred.
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1 Introduction

The Becker-Döring model is a kinetic model for phase transition phenomenon repre-
sented schematically by the reaction network

∅ a1z
2

−−−⇀↽−−−
b2

C2 , and Ci
aiz−−−⇀↽−−−
bi+1

Ci+1 , i = 2, 3, . . . (1.1)

We assume an infinite reservoir of monomers, clusters of size 1, represented in (1.1) by
∅. The parameter z represents the fixed concentration of monomers and will play a key
role in the sequel. A cluster of size i ≥ 2, whose population number is represented in
(1.1) by Ci, may lengthen to give rise to a cluster of size i+ 1 at rate aiz, and a cluster
of size i ≥ 3 may shorten to give rise to a cluster of size i − 1 at rate bi. The rate of
apparition of a new cluster of size 2 is a1z

2 (without loss of generality) and a cluster of
size 2 may disappear at rate b2. All parameters are positives.
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QSD and metastability for the Becker-Döring model

The Becker-Döring (BD) model goes back to the seminal work “Kinetic treatment of
nucleation in supersaturated vapors” in [1]. Since then, the model met very different
applications ranging from physics to biology. From the mathematical point of view, this
model received much more attention in the deterministic literature than the probabilistic
one. We refer to our review [4] for historical comments and detailed literature review
on theoretical results from the deterministic side. See also [5, 10] for recent results on
functional law of large number and central limit theorem.

The model was initially designed to explain critical phase condensation phenomena
where macroscopic droplets self-assemble and segregate from an initially supersaturated
homogeneous mixture of particles, at a rate that is exponentially small in the excess of
particles. This led to important applications in kinetic nucleation theory [9, 5]. Mathe-
matical studies in the 90’s showed that (in the deterministic context), departing from
certain initial conditions, the size distribution of clusters reaches quickly a metastable
configuration composed of “small” clusters, and remains arbitrary close to that state
for a very large time, before it converges to the true stationary solution that leads to
“infinitely large” clusters (interpreted as droplets) [8, 9].

Our objective in this note is to re-visit the metastability theory in Becker-Döring
model in terms of quasi-stationary distribution (QSD) for the associated continuous-time
Markov chain. We prove exponential convergence towards a QSD for the BD model
conditioned on the event that large clusters have not yet appeared. We prove furthermore
that the convergence rate towards the QSD can be faster than the rate of apparition of
(sufficiently) large clusters. Quantitative results are obtained thanks to a surprisingly
simple analytical formula for the QSD, that provides also an exact rate of apparition of
stable large clusters, consistently with the original heuristic development of Becker and
Döring.

Outline: Sec. 2: Construction of the BD model. Sec. 3: Collection of few (known)
results. Sec. 4: Exponential decay in total variation towards the stationary measure. Sec.
5: Similar result conditionally on no clusters larger than n are formed (QSD). Sec. 6:
Estimate on the time for the first cluster larger than n to appear. Sec. 7: Interpretation
of the QSD as a long-lived metastable state when n is the critical nucleus size.

Notation: We denote by Ni the set of non-negatives integers greater or equal to i,
[[ ]] for integers interval. For a set A, #A its cardinality, 1A the indicator function on it. 1
and 0 the constant functions equal to 1 and 0. For two numbers a, b, their minimum is
a ∧ b. For probability measures µ and ν on a countable state space S, the total variation
distance is

‖µ− ν‖ =
1

2

∑
x∈S
|µ(x)− ν(x)| = inf

γ∈Γ

∫
S×S

1x 6=y γ(dx, dy) ,

where Γ is the set of probability measures on S × S with marginals µ and ν. E (resp. Eµ)
denotes the expectation with respect to the usual probability measure P (resp. µ). We
set E = `1(N2,N0) the space of summable N0-valued sequences indexed by N2.

2 The model

The stochastic Becker-Döring (BD) process is a continuous-time Markov chain
{C(t), t ≥ 0} on the countable state space E with infinitesimal generator A, given
for all ψ with finite support on E and C ∈ E , by

Aψ(C) =

+∞∑
i=1

(
aizCi[ψ(C + ∆i)− ψ(C)] + bi+1Ci+1[ψ(C −∆i)− ψ(C)]

)
with the convention C1 = z, ∆1 = e2 and ∆i = ei+1−ei, for each i ≥ 2, where {e2, e3, . . .}
denotes the canonical basis of E namely, ei,k = 1 if k = i and 0 otherwise. In this view, the
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QSD and metastability for the Becker-Döring model

BD process is an infinite vector C(t) = (C2(t), C3(t), . . .) that keeps track of the number
of clusters Ci(t) of any size i ≥ 2 at any time t ≥ 0.

We shall however use a different approach, modeling explicitly the size of each
individual cluster, as a Birth-Death process on N1 with a birth rate aiz and a death rate
bi, for i ≥ 2. Although in the original BD process a cluster can only have a size i ≥ 2, we
augment the size state space with i = 1 as an absorbing state of the Birth-Death process,
in order to keep track of each cluster of size 2 going back to the infinite reservoir ∅. Such
approach will be called thereafter the particle description of the BD process.

We first explain how we can give an equivalent description of the number of clusters
of each size in terms of this particle description by explicitly labeling each of them.
Given C = (C2, C3, . . .) an E -valued random variable, we denote by N =

∑∞
i=2 Ci the total

number of clusters. By construction N <∞ almost surely (a.s.). Then, we define {Xk} a
denumerable collection of random variables on N2 such that, a.s. for each i ≥ 2,

Ci = # {k ∈ [[1, N ]] | Xk = i} . (2.1)

Note this construction may be achieved by a bijective labeling function1. The collection
X1, . . . , XN stands for the size of the N individual clusters describing C. For technical
purpose, explained below, we let Xk = 2 for k > N .

We now go through the pathwise construction of the particle description. To that,
we consider a sufficiently large probability space (Ω,F ,P). For C(0) = (C2(0), C3(0), . . .)

an E-valued random variable distributed according to an initial probability distribution
Πin, we denote N in =

∑∞
i=2 Ci(0) and X1(0), X2(0), . . . the particle description defined

through (2.1). Then, we introduce:
• N1, N2, . . . a denumerable family of independent Poisson point measures with intensity
the Lebesgue measure dsdu on R2

+.
• S1, S2, . . . a collection of random times such that the Sk − Sk−1 are independent
exponential random variables of parameter a1z

2, independent from the above Poisson
point measures as well, with S0 = 0.
Finally, we consider the denumerable collection of stochastic processes X1, X2, . . . (de-
noted by {Xk} hereafter), on N1 solution of the stochastic differential equations, for all
t ≥ 0 and k ≥ 1,

Xk(t) = Xk(0)+

∞∑
i=2

∫ t

0

∫
R+

1s>Sk−Nin1Xk(s−)=i

(
1u≤aiz−1aiz<u≤aiz+bi

)
Nk(ds, du) , (2.2)

where by convention Sk = 0 if k ≤ 0. We finally define the counting process

N(t) = N in +
∑
k≥1

1t≥Sk , (2.3)

which gives the total number of clusters at time t, that either were already present
initially or that arose at random times Sk from ∅ trough the reaction in (1.1) of rate
a1z

2. Note that for any t > 0 and each k ≤ N(t), we have t > Sk−N in . For such clusters
labelled by k ≤ N(t), we see from the propensity in (2.2) that Xk(t) ∈ N1 evolves through
a Birth-Death process with birth rate aiz and death rate bi, for i ≥ 2, and i = 1 is an
absorbing state. The clusters labelled with k > N(t) are waiting the random arrival
times Sk−N in as an entry from the ∅. They are fixed to size 2 because they will start at
such size. This procedure allows us to deal with a fix collection of clusters, while the BD
process has a variable number of clusters.

1A function (that exists) which associates, to each C ∈ E such that N =
∑∞

i=2 Ci < ∞, a unique sequence
(X1, . . . , XN ) in N2 satisfying Ci = # {k ∈ [[1, N ]] | Xk = i}.
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QSD and metastability for the Becker-Döring model

The pathwise construction (2.2-2.3) is the particle description of the BD process. The
number of clusters of size i ≥ 2 is recovered through

Ci(t) = # {k ∈ [[1, N(t)]] | Xk(t) = i} .

We now justify the well-posedness of this construction. First, we ensured Xk(0) <∞
a.s. because the Ci(0)’s are integer-valued random variables and belong to E , the
sequence C(0) is a.s. equally 0 from a certain range. Thus, local existence of càdlàg
processes t 7→ Xk(t) on N1 solution to (2.2) can classically be obtained inductively. It is
clear from (2.2) that each Xk evolves like a Birth-Death process for t > Sk−N in (that will
be detailed in the next Sec. 3) and are mutually independent conditionally to their initial
value. The Reuter’s criterion gives a well-known necessary and sufficient condition so
that each process Xk is non-explosive, namely

∞∑
n=2

Qnz
n

( ∞∑
k=n

1

akQkzk+1

)
=∞ , with Q1 = 1 , Qi =

a1a2 · · · ai−1

b2 · · · bi
, i ≥ 2 . (H0)

Now, noticing that Ci(t) =
∑N(t)
k=1 1i(Xk(t)), we can prove from standard stochastic

calculus that the process C given by C(t) = (C2(t), C3(t), . . .) for all t ≥ 0 has infinitesimal
generator A, and being non-explosive under condition (H0), it is the unique regular jump
homogeneous Markov chain on E with infinitesimal generator A and initial distribution
Πin, say the BD process. The proof is left to the reader and follows from classical
theory. In the sequel, C always denote a BD process, and PΠin {C ∈ ·} its (unique)
finite dimensional probability distribution given that C(0) is distributed according to
Πin. We also set by convention PC = PδC for a deterministic C ∈ E and we recover
PΠin {·} =

∑
C∈E PC {·} Πin(C).

We end this section with a small list of important algebraic quantities that will be
used repeatedly in the sequel, and are classical in the BD model. All of them depend on
z and may be infinite according to its value. We let

J :=

( ∞∑
k=1

1

akQkzk+1

)−1

(2.4)

fi := JQiz
i
∞∑
k=i

1

akQkzk+1
(i≥1) (2.5)

K :=

( ∞∑
k=2

Qiz
i

) 1
2

(2.6)

Jn :=

(
n∑
k=1

1

akQkzk+1

)−1

(n≥2) (2.7)

fni := JnQiz
i
n∑
k=i

1

akQkzk+1
(n≥2 , 1≤i≤n) (2.8)

Kn :=

(
n∑
k=2

Qiz
i

) 1
2

(n≥2) (2.9)

3 Behaviour of one cluster

LetX be the continuous-time Markov chain onN1 with transition rate matrix (qi,j)i,j≥1

whose nonzero entries are

qi,i+1 = aiz , qi,i−1 = bi , qi,i = −(aiz + bi) , i ≥ 2 . (3.1)

Remark that i = 1 is absorbing in agreement with (1.1): when a cluster size reaches 1, it
“leaves the system”. We shall assume standard hypotheses in the BD model [8, 9]:

lim
i→∞

bi/ai = zs > 0 , and lim
i→∞

bi+1/bi = 1 . (H1)
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QSD and metastability for the Becker-Döring model

Hypothesis (H1) then guarantee (H0) for z 6= zs for the following reason. The conver-
gence of both series

∞∑
k=2

Qkz
k and

∞∑
k=2

1

akQkzk+1
,

depends on the value of z. Indeed, zs is the radius of convergence of the first series while
the second series converges for z > zs and diverges for z < zs. We have a dichotomy in
the long time behavior of X related to this value. The case z < zs is called the sub-critical
case, for which absorption at state 1 is certain and the expected time of absorption is
finite (also called ergodic absorption). The case z > zs is called the super-critical case
and absorption at 1 is not certain (also called transient absorption), and the probability
to be absorbed at 1 is, according to [6],

lim
t→∞

pi1(t) = J

∞∑
k=i

1

akQkzk+1
=

fi
Qizi

where pij(t) = P {X(t) = j | X(0) = i} is the probability transition function of X and fi
is defined in (2.5). The limit case z = zs is somewhat technical and depends more deeply
on the shape of the coefficients. It is not considered in this note.

Following [8], a precise long time estimate on transient states can be obtained, under
the hypothesis (H1) and

bi+1

bi
− 1 = O(i−1) ,

ai+1

ai
− 1 = O(i−1) , ai = O(i) and lim

i→+∞
ai = +∞ . (H2)

In such a case, the infinite matrix (qi,j)i,j≥2 in (3.1) is self-adjoint on the Hilbert space H
consisting of the real sequences x = (x2, x3, . . .) whose norm is ‖x‖2H =

∑∞
i=2

x2
i

Qizi
. We

denote by 〈·, ·〉H the associated scalar product. It turns that (qi,j)i,j≥2 has a negative
maximum eigenvalue −λ, and the following estimate holds for any i ≥ 2,

‖(pij(t))j≥2‖H ≤ e−λt‖(pij(0))j≥2‖H =
e−λt√
Qizi

. (3.2)

We will also consider the chain X conditioned to remain below a given state n+ 1 ≥ 2.
We define the exit time

Tn = inf (t ≥ 0 | X(t) /∈ [[1, n]]) = inf (t ≥ 0 | X(t) ≥ n+ 1) . (3.3)

Let Y be the birth-death process defined by Y (t) = X(t ∧ Tn). Hence, Y is absorbed
either in 1 or n+ 1, and the probability to be absorbed at 1 (without visiting state n+ 1)
is, according to [6, p.387],

lim
t→+∞

pni1(t) = Jn

n∑
k=i

1

akQkzk+1
=

fni
Qizi

(3.4)

where pnij(t) = P (Y (t) = j | Y (0) = i) is the probability transition function of Y and fni is
defined in (2.8). Clearly

P {Tn > t | X(0) = i} ≥ lim
t→+∞

P {Tn > t | X(0) = i} =
fni
Qizi

. (3.5)

Again, in [8], the author shows that the truncated matrix (qi,j)i,j=2,...,n is similar to a
symmetric one and then there exists γn > 0 such that for each i = 2, . . . , n,√√√√ n∑

j=2

pnij(t)
2

Qjzj
≤ e−γnt√

Qizi
. (3.6)
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QSD and metastability for the Becker-Döring model

Note that the probability to be absorbed in 1 before time t, pni1(t), is monotonously
increasing and limt→+∞ pni1(t) = 1− limt→+∞ pni(n+1)(t), thus we deduce that

n∑
j=2

P {Y (t) = j | Y (0) = i , Tn > t} =

∑n
j=2 p

n
ij(t)

1− pni(n+1)(t)

≤ e−γnt√
Qizi

 n∑
j=2

Qjz
j


1
2
Qiz

i

fni
= Kn

√
Qizi

fni
e−γnt

where the inequality is obtained thanks to Cauchy-Schwarz inequality and (3.4), and Kn

is defined in (2.9). We end this section, noticing that X(t) = Y (t) on {Tn > t}, with

P {X(t) = 1 | X(0) = i , Tn > t} ≥ 1−

(
Kn

√
Qizi

fni
e−γnt

)
∧ 1 . (3.7)

4 Phase transition in long-time behaviour

In this section we are concerned with the long-time behaviour of the BD process.
Formally the measure Πeq, given by

Πeq(C) =

∞∏
i=2

e−Qiz
i (Qiz

i)Ci

Ci!
,

for all C ∈ E , satisfies EΠeq [Aψ(C)] = 0 for any function ψ on E with finite support2.
Actually, Πeq satisfies the detailed balance condition aizCiΠeq(C) = bi+1(Ci+1 +1)Πeq(C+

∆i), for all i ≥ 1 and all C ∈ E (with the convention that C1 = z), as a consequence of
the relation aiQi = bi+1Qi+1. In the sub-critical case, Πeq is a probability measure on
E (indeed Πeq(NN2

0 ) = 1 with support in E because of EΠeq [
∑∞
i=2 Ci] =

∑∞
i=2Qiz

i < ∞)
and we prove exponential ergodicity towards Πeq. In the super-critical case, Πeq is not a
limiting distribution (and

∑∞
i=2Qiz

i =∞) but the measure defined by

Πstat(C) =

∞∏
i=2

e−fi
(fi)

Ci

Ci!
,

for all C ∈ E , where fi is given in (2.5), characterizes the long-time behaviour of any
finite-dimensional distributions. Note that

∑∞
i=2 fi =∞ for z > zs which suggests that

the limiting size distribution has a fat-tail (infinite mean number of clusters above any
size), interpreted as a phase-transition, see [5] on a related model. From now on, we
note f = (fi)i≥2, Q = (Qiz

i)i≥2 and
√
Q = (

√
Qizi)i≥2.

Theorem 4.1. Under hypotheses (H1) and (H2). Let Πin be a probability distribution
on E such that

EΠin

[
〈C,
√
Q〉H

]
<∞ . (4.1)

With λ > 0 introduced in Sec. 3, see (3.2), we have:

• In the sub-critical case (z < zs), for all t ≥ 0,

‖PΠin {C(t) ∈ ·} −Πeq‖ ≤ Rine−λt ,

with Rin = K(EΠin

[
〈C,
√
Q〉H

]
+ EΠeq

[〈
C,
√
Q
〉
H

]
) and K is defined in (2.6);

2In the sequel C in expectation formula always refers to the free variable of integration.
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QSD and metastability for the Becker-Döring model

• In the super-critical case (z > zs), for all t ≥ 0, and for all n ≥ 2,

‖PΠin {(C2(t), . . . , Cn(t)) ∈ ·} −Πstat(· ×
∞∏

k=n+1

N0)‖ ≤ Rin
n e
−λt ,

with Rin
n = KnEΠin

[
〈C,
√
Q〉H

]
+ ‖f‖H and Kn is defined in (2.9).

Not least, remark that EΠeq

[〈
C,
√
Q
〉
H

]
=
∑∞
i=2

√
Qizi <∞ for z < zs and that f ∈ H

for z > zs (see [8]). The proof of Theorem 4.1 is based on a coupling argument between
two particle descriptions with respective initial distribution C(0) and 0. Thus, controlling
the behavior of the initial clusters present in C(0) is a key point, which is provided in
the next Lemma.

Lemma 4.2. Under the hypothesis of Theorem 4.1. Let the collection of processes {Xk}
be the particle description of the BD process C. We have, for each n ≥ 2,

PΠin

{
∀k ∈ [[1, N in]] , Xk(t) /∈ [[2, n]]

}
≥ 1−KnEΠin

[
〈C,
√
Q〉H

]
e−λt .

In particular, for the sub-critical case,

PΠin

{
∀k ∈ [[1, N in]] , Xk(t) = 1

}
≥ 1−KEΠin

[
〈C,
√
Q〉H

]
e−λt .

Proof. Fix n ≥ 2. Let C ∈ E be deterministic, define N =
∑∞
i=2 Ci and (i1, . . . , iN ) ∈ NN2

given by the labeling function, e.g. C(0) = C and X1(0) = i1, . . . , XN (0) = iN satisfy
relation (2.1). Since the processes X1, . . . , XN are independent copies of the chain X

given in Sec. 3, conditionally on their initial condition, we have

PC {∀k ∈ [[1, N ]] , Xk(t) /∈ [[2, n]]} =

N∏
k=1

P {X(t) /∈ [[2, n]] | X(0) = ik} , (4.2)

for all t ≥ 0. Thanks to Cauchy–Schwarz inequality and (3.2),

P {X(t) ∈ [[2, n]] | X(0) = i} =

n∑
j=2

pij(t) ≤

(
1√
Qizi

)
Kne

−λt ∧ 1 .

Hence, with (4.2), we have

PC {∀k ∈ [[1, N ]] , Xk(t) /∈ [[2, n]]} ≥ 1−Kne
−λt

N∑
k=1

1√
Qikz

ik
,

remarking that
∏N
i=1(1− xi ∧ 1) ≥ 1−

∑N
i=1 xi for any non-negatives x1, . . . , xN . Finally,

we conclude that

PΠin

{
∀k ∈ [[1, N in]] , Xk(t) /∈ [[2, n]]

}
≥ 1−Kne

−λt
∑
C∈E

N∑
k=1

1√
Qikz

ik
Πin(C)

= 1−Kne
−λtEΠin

[ ∞∑
i=2

#
{
k ∈ [[1, N in]]

∣∣ Xk(0) = i
}√

Qizi

]
,

and the proof ends.

We now compare in total variation distance, by a coupling argument, both processes
starting from 0 and Πin. In the next Lemma we show that they are exponentially close in
large time.
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QSD and metastability for the Becker-Döring model

Lemma 4.3. Under the hypothesis of Theorem 4.1. For all t ≥ 0, we have

• In the subcritical case (z < zs),

‖PΠin {C(t) ∈ ·} −P0 {C(t) ∈ ·} ‖ ≤ KEΠin

[
〈C,
√
Q〉H

]
e−λt ;

• In the super-critical case (z > zs), for all n ≥ 2,

‖PΠin {(C2(t), . . . , Cn(t)) ∈ ·} −P0 {(C2(t), . . . , Cn(t)) ∈ ·} ‖ ≤ KnEΠin

[
〈C,
√

Q〉H
]
e−λt .

Proof. Let the collection of processes {Xk} (resp. {Yk}) be the particle description of
the BD process that starts from the initial distribution Πin (resp. from δ0). We couple the
processes {Xk} to the processes {Yk} such that all new clusters arise in the system from ∅
simultaneously and subsequently evolve with the same jumps. Namely, Yk(t) = Xk+N in(t)

for all k ≥ 1 and all t ≥ 0, where N in is distributed according to Πin.

In the sub-critical case the proof readily follows from Lemma 4.2 and the definition
of total variation distance. Indeed

‖PΠin {C(t) ∈ ·} −P0 {C(t) ∈ ·} ‖ ≤ 1−PΠin

{
∀k ∈ [[1, N in]], Xk(t) = 1

}
,

because both processes are equal whenever all initial clusters from Πin have reached
the absorbing state i = 1. A very similar argument holds in the super-critical case.

Proof of Theorem 4.1. We consider first the sub-critical case. As said, condition (4.1) is
satisfied for Πeq since EΠeq

[
〈C,
√
Q〉H

]
< ∞, thus Lemma 4.3 applies for Πeq as initial

distribution. Because the constructed BD process is regular and Πeq is a stationary
distribution (i.e. PΠeq {C(t) ∈ ·} = Πeq), we deduce

‖P0 {C(t) ∈ ·} −Πeq‖ ≤ KEΠeq

[
〈C,
√
Q〉H

]
e−λt .

Going back to any Πin satisfying condition (4.1), applying Lemma 4.3 again and the
triangular inequality yield the desired result.

Consider now the super-critical case. Πstat is a product of Poisson distribution P(fi)

on N0 with mean fi. According to a classical result on Markov population processes, see
e.g. [7, Sec. 4], the law P0 {C(t) ∈ ·} is also a product of Poisson distribution P(ci(t)) on
N0 with mean ci(t). The vector c(t) = (c2(t), c3(t), . . .) solves the deterministic (linear)
Becker-Döring equations. Namely, ċ(t) = Ac(t) + a1z

2e2 where A = (qj,i)i,j≥2 the matrix
with entries in (3.1), and initial condition c(0) = 0. Thanks to [8, Theorem III], we have

‖c(t)− f‖H ≤ ‖f‖He−λt , (4.3)

and we easily obtain that ‖P(ci(t))−P(fi)‖ ≤ |ci(t)−fi|. The latter, with independence of
the marginals of Πstat and of P0 {C(t) ∈ ·}, estimate (4.3) and Cauchy-Schwarz inequality,
entail

‖P0 {(C2(t), . . . , Cn(t)) ∈ ·} −Πstat(· ×
∞∏

k=n+1

N0)‖ ≤
n∑
i=2

|ci(t)− fi| ≤ Kn‖f‖He−λt .

We conclude again by Lemma 4.3 and the triangular inequality.
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5 A quasi-stationary distribution for cluster smaller than n

Let En = {C ∈ E | Ci = 0 , i ≥ n+ 1}. We define the first exit time from En,

τn = inf {t ≥ 0 | C(t) /∈ En} , (5.1)

corresponding to the first occurrence of a cluster of size greater than n. In this section,
we prove a QSD on En is a quasi-limiting distribution for the BD process conditioned
to τn > t, with exponential convergence for a wide range of initial distributions. It is
remarkable that we have at hand an explicit QSD, given, for all C ∈ En, by

Πqsd
n (C) =

n∏
i=2

(fni )Ci

Ci!
e−f

n
i , (5.2)

where fni is defined in (2.8), for i = 2, . . . , n. Remark that PΠin {τn > t} > 0 for all times
t > 0 and for any Πin supported on En.

Proposition 5.1. Under assumption (H0). The distribution Πqsd
n is a quasi-stationary

distribution for the BD process conditioned to stay on En namely,

PΠqsd
n
{C(t) ∈ · | τn > t} = Πqsd

n and PΠqsd
n
{τn > t} = exp (−Jnt) .

Proof. Recall assumption (H0) ensures the BD process is regular. Fix n ≥ 2. Let the
semi-group Pnt ψ(C) = EC [ψ(C(t))1t<τn ] for t ≥ 0 (i.e. C(0) is distributed according to
δC), whose generator is

Anψ(C) =

n−1∑
i=1

(
aizCi[ψ(C + ∆i)− ψ(c)] + bi+1Ci+1[ψ(C −∆i)− ψ(C)]

)
− anzCnψ(C) ,

for all C ∈ En (recall C1 = z) and bounded function ψ on En. Denote by A∗n the dual
operator for the generator An. Some calculations show that the distribution (5.2)
satisfies, for any C ∈ En,

A∗nΠqsd
n (C) = Πqsd

n (C)

{
b2f

n
2 − a1z

2 +

n∑
i=2

Ci
fni

(
ai−1zf

n
i−1 − (aiz + bi)f

n
i + 1i<nbi+1f

n
i+1

)}
,

with the convention fn1 = z. Since the fni given by (2.8) verifies aizfni −1i<nbi+1f
n
i+1 = Jn

for all i ∈ [[1, n]], all terms but the first cancel in the above expression, so that we obtain
A∗nΠqsd

n = −JnΠqsd
n . The latter ensures, with the fact that Jn ≤ a1z

2, that Πqsd
n is a QSD

thanks to the classical spectral criteria [2, Thm 4.4].

The next theorem shows the QSD is a quasi-limiting distribution for a wide range of
initial distributions supported on En, with an exponential rate of convergence and an
explicit (non-uniform) pre-factor.

Theorem 5.2. Under assumption (H0). Let Πin be a probability distribution on En such
that EΠin [

∑∞
i=2 Ci] <∞. We have for all t ≥ 0,

‖PΠin {C(t) ∈ · | τn > t} −Πqsd
n ‖ ≤ Kn

(
H in
n

PΠin {τn > t}
+ eJntHqsd

n

)
e−γnt ,

where τn is defined in (5.1), Jn in (2.7), Kn in (2.9), γn in (3.6),

H in
n =

n∑
i=2

√
Qizi

EΠin [Ci]

fni
and Hqsd

n =

n∑
i=2

√
Qizi .
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It is clear that H in
n is finite because EΠin [

∑∞
i=2 Ci] is. The proof of Theorem 5.2 is

similar to the proof of Theorem 4.1 and consists in a coupling argument together with
a control of the initial clusters in Πin. We start by the latter, which is the analogous of
Lemma 4.2.

Lemma 5.3. Under the hypothesis of Theorem 5.2. Let the collection of processes {Xk}
be the particle description of the BD process C. We have

PΠin

{
∀k ∈ [[1, N in]] , Xk(t) = 1

∣∣ τn > t
}
≥ 1− e−γnt KnH

in
n

PΠin {t < τn}
.

Proof. We start by observing that the following relation holds true,

τn = min(τ0
n, T

1
n , . . . , T

N in

n ) , (5.3)

where T kn = inf {t > 0 | Xk(t) ≥ n+ 1} for k = 1, . . . , N in and

τ0
n = inf

{
t ≥ 0

∣∣ ∃k > N in , Xk(t) ≥ n+ 1
}
. (5.4)

Let C(0) = C ∈ En be deterministic, define N =
∑∞
i=2 Ci and (i1, . . . , iN ) ∈ [[2, n]]N given

by the labeling function such that Ci = # {k ∈ [[1, N ]] | ik = i}. Conditionally on their
initial condition, all clusters Xk(t) (starting at ik) are independent from each other, thus
the event

At = {∀k ∈ [[1, N ]] , Xk(t) = 1} (5.5)

is independent of (Xk)k>N and thus independent of τ0
n. Then,

PC {At | τn > t} = PC
{
At
∣∣ min(T 1

n , . . . , T
N
n ) > t

}
.

Still by independence of the clusters from each other, we claim that

PC
{
At
∣∣ min(T 1

n , . . . , T
N
n ) > t

}
=

N∏
k=1

P {X(t) = 1 | X(0) = ik , Tn > t} , (5.6)

where X is defined in Sec. 3 and Tn in (3.3). This equation is clear for N = 1, and is
easily proved by induction. We do it only for N = 2, for the sake of simplicity. Let i1,
i2 ∈ [[2, n]]. By definition of At, independence of the X1 and X2 conditionally on their
initial condition, and since they are copy of X in Sec. 3,

PC
{
At
∣∣ min(T 1

n , T
2
n) > t

}
=

2∏
k=1

P
{
Xk(t) = 1 , T kn > t , Xk(0) = ik

}
P {T kn > t , Xk(0) = ik}

=

2∏
k=1

P {X(t) = 1 | X(0) = ik , Tn > t} .

This proves the desired result. Thus, going back to (5.6) and thanks to (3.7) we have

PC {At | τn > t} ≥
N∏
k=1

(
1−

(
Kn

√
Qikz

ik

fnik
e−γnt

)
∧ 1

)
≥ 1−Kne

−γnt
N∑
k=1

√
Qikz

ik

fnik
.

Finally, we obtain

PΠin {At | τn > t} =
∑
C∈En

PC {At | τn > t} PC {τn > t}
PΠin {τn > t}

Πin(C)

≥ 1−Kne
−γnt

∑
C∈En

N∑
k=1

√
Qikz

ik

fnik

PC {τn > t}
PΠin {τn > t}

Πin(C) ,
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where N and (ik)k=1..N are given by the labeling function for each C ∈ En. Now using
that PC {τn > t} ≤ 1, we have,

PΠin {At | τn > t} ≥ 1− e−γnt Kn

PΠin {τn > t}
∑
C∈En

N∑
k=1

√
Qikz

ik

fik
Πin(C)

= 1− e−γnt Kn

PΠin {τn > t}

n∑
i=2

√
Qizi

fi

∑
C∈En

CiΠ
in(C) = 1− e−γnt KnH

in
n

PΠin {τn > t}
.

Proof of the Theorem 5.2. Let the collection of processes {Xk} (resp. {Yk}) be the
particle description of the BD process that starts from the initial distribution Πin (resp.
from δ0). We couple the processes {Xk} to the processes {Yk} as in the proof of Theorem
4.3, namely, Yk(t) = Xk+N in(t) for all k ≥ 1 and all t ≥ 0, where N in is distributed
according to Πin.

To avoid confusion, we write τXn and τYn for the first exit time from En of the collection
of processes {Xk} and {Yk}, respectively. We define τ0,X

n and τ0,Y
n , respectively to the

processes {Xk} and {Yk} likewise τ0
n in (5.4). Due to the coupling between the {Xk} and

{Yk}, we have

τ0,Y
n = τYn = inf {t ≥ 0 | ∃k > 0 , Yk(t) ≥ n+ 1}

= inf
{
t ≥ 0

∣∣ ∃k > N in , Xk(t) ≥ n+ 1
}

= τ0,X
n . (5.7)

Remark that each Yk, for k ≥ 1, is independent of Xi for i ≤ N in, thus independent of
T 1
n , . . . , T

N in

n the exit times arising in (5.3). Hence, by (5.3) and (5.7), the laws of the
collection of processes {Yk} conditioned to τYn > t equal to the laws of the collection of
processes {Yk} conditioned to τXn > t. For any t > 0, if the event At (given in (5.5)) has
occurred, we have, for any i ≥ 2, # {k | Xk(t) = i} = # {k | Yk(t) = i}, since all initial
particles in {Xk} have reached the absorbing state. Finally, we deduce that

‖PΠin {C(t) ∈ · | τn > t} −P0 {C(t) ∈ · | τn > t} ‖
≤ P

{
∃i ≥ 2, # {k | Xk(t) = i} 6= # {k | Yk(t) = i}

∣∣ τXn > t
}
≤ PΠin

{
Act
∣∣ t < τXn

}
.

The latter, with Lemma 5.3, entails

‖PΠin {C(t) ∈ · | τn > t} −P0 {C(t) ∈ · | τn > t} ‖ ≤ e−γnt KnH
in
n

PΠin {t < τn}
. (5.8)

Then, using the last inequality (5.8) with initial distribution the QSD, Πqsd
n , together with

Proposition 5.1, we deduce (recall that EΠqsd
n

[Ci] = fni )

‖Πqsd
n −P0 {C(t) ∈ · | t < τn} ‖ ≤ e−γntKne

JntHqsd
n .

We end the proof by triangular inequality.

6 Estimates on the time τn a cluster larger than n appears

We give in this section a tight lower bound on PΠin {τn > t} in the super-critical case
z > zs. The analysis of the τn in (5.1) leads off the simple observation

τn > t⇔ ∀s ≤ t, max
1≤k≤N(s)

Xk(s) ≤ n ,

where {Xk} is the particle description of the BD process. We prove
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Theorem 6.1. Under assumption (H0). Let z > zs and Πin be a probability distribution
on En such that EΠin [

∑∞
i=2 Ci] <∞. We have

PΠin {τn > t} ≥ Gin
n e
−Jnt ,

where

Gin
n = EΠin

[
n∏
i=1

(
fni
Qizi

)Ci]
.

In fact, as in the coupling strategy, (5.3) provides a useful understanding of the
statistics of τn by decomposing between the initial clusters from the ones that will
appear at later times. We start with the statistics of the latter, namely of τ0

n.

Lemma 6.2. Under assumption (H0) and z > zs. For any probability distribution Πin on
En such that for all i ∈ [[2, n]] and k ∈ N,

PΠin

 ∑
i≤j≤n

Cj ≥ k

 ≤ PΠqsd

 ∑
i≤j≤n

Cj ≥ k

 , (6.1)

we have

PΠin {τn > t} ≥ e−Jnt .

Proof of Lemma 6.2. It is classical that condition (6.1) ensures there exists randoms Cin

and Cqsd distributed according to Πin and Πqsd, respectively, such that for each i ∈ [[2, n]],∑
i≤j≤n

C in
j ≤

∑
i≤j≤n

Cqsd
j , a.s.

see e.g. [3, Sec. 4.12]. Then, we may construct the collection of processes {Xk} (resp.
{Yk}) as the particle description of the BD process associated to Cin (resp. to Cqsd) such
that, a.s., for all i ≥ 1, Xi(0) ≤ Yi(0). A standard coupling between two copies of the
chain X from Sec. 3 consists in having the same jumps in the two copies as soon as they
are equal. Such coupling applied to each couple (Xi, Yi) then ensures that, for all i ≥ 1

and t ≥ 0, we have Xi(t) ≤ Yi(t) a.s. In particular,

inf{t > 0 | max
k

Xk(t) > n} ≥ inf{t > 0 | max
k

Yk(t) > n} a.s.

thus, with Proposition 5.1,

PΠin {τn > t} ≥ PΠqsd {τn > t} = e−Jnt .

Proof of Theorem 6.1. Let n ≥ 2 and i ∈ [[2, n]]. Define gn,i(t) = P {Tn > t | X(0) = i}
where Tn and X are given in Sec. 3. Thanks to (3.5), we have

gn,i(t) ≥ lim
t→+∞

gn,i(t) =
fni
Qizi

. (6.2)

Let ψn(t, x) = 1 if max0≤s≤t x(s) ≤ n and 0 otherwise. We have

PΠin {τn > t} =
∑
C∈En

PC


N(t)∏
i=1

ψn(t,Xi) = 1

Πin(C) ,
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where {Xk} is the particle description of the BD process C (starting at δC). By indepen-
dence of the particles conditionally to their initial condition,

PC


N(t)∏
i=1

ψn(t,Xi) = 1

 = PC


N(t)∏

i=N in+1

ψn(t,Xi) = 1

PC


N in∏
i=1

ψn(t,Xi) = 1


= P0 {τn > t}

N∏
k=1

gn,ik(t) , (6.3)

where again, N and (ik)k=1..N are given by the labeling function associated to C ∈ En.
Combining relations (6.2) and (6.3) with Lemma 6.2 (with the choice Πin = δ0) and
summing over all initial conditions ends the proof.

7 Metastability for z close to zs

In this section we interpret the metastability with the results obtained on the QSD.
For that purpose, we assume additionally to (H1) and (H2), to fit with [8, 9], that

A′ < ai < Aiα ,
bi+1

ai+1
+
κ

iν
≤ bi
ai

and zse
Gi−γ ≤ bi

ai
≤ zseG

′i−γ
′

, (H3)

for all i ≥ 2, where α, γ ∈ (0, 1), γ′, ν > 0, κ, A′, A, G and G′ positives. We also use the
terminology of [9] namely a quantity q(z) of z is: exponentially small if q(z)/(z − zs)m is
bounded for all m > 0 as z%zs (z converges to zs and z > zs); and at most algebraically
large if (z − zs)m0q(z) is bounded for some m0 > 0 as z%zs.

It is worth mentioning that assumption (H3) ensures the existence of a unique n∗

(depending on z > zs) such that bn∗+1/an∗+1 < z < bn∗/an∗ , which turns to be the
minimizer of {aiQizi}. The size n∗ is interpreted as the nucleus size: for a cluster
X(t) ≤ n∗, X(t) tends to shorten, while for X(t) > n∗, it tends to grow. Moreover, with
assumption (H3), further algebraic considerations in [8, 9] allow to obtain quantitative
estimates of the key quantities that show up in Theorem 5.2 and Theorem 6.1:

• n∗ →∞ as z % zs and n∗ is at most algebraically large.
• the time scale that quantifies the convergence towards the QSD, 1/γn∗ , is at most
algebraically large.
• The rate of formation of cluster of size larger that n∗ (nucleation rate), Jn∗ , is expo-
nentially small.

We gather those estimates with Theorem 5.2 and Theorem 6.1 to quantify the nucleation
rate and the convergence towards the QSD, for a wide range of initial distributions, in
the next proposition.

Proposition 7.1. Under hypotheses (H1), (H2) and (H3). Let j ∈ N1 and Πin an initial
distribution with support in Ej . For all ε ∈ (0, 1

2 ), there exists z0 > zs such that

PΠin {τn∗ > t} ≥ (1− ε)e−Jn∗ t (7.1)

for any z ∈ (zs, z0), and

‖PΠin {C(t) ∈ · | τn∗ > t} −Πqsd
n ‖

≤
{

2
1−εEΠin

[
〈C,
√

Q〉H
]

+ n∗
√

a1z
A′

}√
a1z
A′ n

∗eJn∗ t−γn∗ t . (7.2)
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Proof. First, by Theorem 6.1 and the definition of Gin
n , it readily follows that

PΠin {τn∗ > t} ≥

(
1−

j∑
i=2

EΠin [Ci] (1− fn
∗

i

Qizi
)

)
e−Jn∗ t .

We conclude to (7.1) observing that limz%zs f
n∗

i /(Qiz
i) = 1 and fn

∗

i ≤ Qiz
i for all i ≥ 2,

because Jn∗ → 0 thanks to [9]. Then, by Theorem 5.2, and inequality (7.1),

‖PΠin {C(t) ∈ · | τn∗ > t} −Πqsd
n ‖ ≤ Kn(

Hin
n∗

1−ε +Hqsd
n∗ )eJn∗ t−γn∗ t .

By definition of H in
n∗ , we obtain H in

n∗ ≤ 2EΠin

[
〈C,
√
Q〉H

]
when j ≤ n∗ since fn

∗

i goes to
Qiz

i. Moreover, since aiQizi is decreasing (in i) up to n∗, we have Kn∗ ≤
√

a1z
A′ n

∗ and

Hqsd
n∗ ≤

√
a1z
A′ n

∗ which yields to (7.2).

The interpretation is the following: In the limit z % zs, by (7.1), the occurrence of
a first nucleus has probability arbitrarily close to 0 to appear in the range of times
t � 1/Jn∗ , that is exponentially large. Before nucleation, for times in the range of
1/γn∗ � t� 1/Jn∗ , that are at least algebraically large and up to an exponentially large
time, the system is “trapped” in the QSD state, since the right-hand side of (7.2) can be
made arbitrarily close to 0 for such times. These two considerations fulfills standard
notion of metastability [9].
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