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Abstract

The celebrated Littlewood-Offord problem asks for an upper bound on the probability
that the random variable ε1v1 + · · · + εnvn lies in the Euclidean unit ball, where
ε1, . . . , εn ∈ {−1, 1} are independent Rademacher random variables and v1, . . . , vn ∈
Rd are fixed vectors of at least unit length. We extend some known results to the
case that the εi are obtained from a Markov chain, including the general bounds first
shown by Erdős in the scalar case and Kleitman in the vector case, and also under
the restriction that the vi are distinct integers due to Sárközy and Szemeredi. In all
extensions, the upper bound includes an extra factor depending on the spectral gap
and additional dependency on the dimension. We also construct a pseudorandom
generator for the Littlewood-Offord problem using similar techniques.
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1 Introduction

Let v1, . . . , vn ∈ Rd be fixed vectors of Euclidean length at least 1, and let ε1, . . . , εn
be independent Rademacher random variables, so that Pr[εi = 1] = Pr[εi = −1] = 1/2

for all i. The celebrated Littlewood-Offord problem [11] asks for an upper bound on the
probability,

Pr[ε1v1 + · · ·+ εnvn ∈ B] (1.1)

for an open Euclidean ball B with radius 1. This question was first investigated by
Littlewood and Offord for the case d = 1 and d = 2 [11]. A tight bound of

(
n
n/2

)
/2n =

Θ(1/
√
n) when n is even, with the worst case being when the vectors are equal, was

found by Erdős for the case d = 1 using a clever combinatorial argument [1]. Such
bounds can be contrasted with concentration inequalities like the Hoeffding inequality
in the scalar case and the Khintchine-Kahane inequality in the vector case, both of which
give an upper bound on the probability Pr[‖ε1v1 + · · ·+ εnvn‖ ≥ k

√
n] for positive k. In

contrast, an upper bound on Eq. (1.1) can be considered a form of anti-concentration,
that is showing that the random sum is unlikely to be in B.

In the case that the vi are d-dimensional vectors, a tight bound up to constant factors
of C/

√
n was found by Kleitman [8], and was improved by series of work [16, 17, 3, 20].
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The Littlewood-Offord problem for Markov chains

In the scalar case, under the restriction that v1, . . . , vn are distinct integers, an upper
bound of n−3/2 was found by Sárközy and Szemeredi [18].

In this work, we investigate the case in which ε1, . . . , εn are not independent, but are
obtained from a stationary reversible Markov chain {Yi}∞i=1 with state space [N ] and
transition matrix A, and functions f1, . . . , fn : [N ]→ {−1, 1}, using εi = fi(Yi).

Let µ be the stationary distribution for the Markov chain, and let Eµ be the associated
averaging operator defined by (Eµ)ij = µj , so that for v ∈ RN , Eµv = Eµ[v]1 where
1 is the vector whose entries are all 1. Like many results on Markov chains, our
generalizations will be in terms of the quantity

λ = ‖A− Eµ‖L2(µ)→L2(µ).

If the Yi are independent, that is A = Eµ, it follows that λ = 0. Often, if λ is small, the
corresponding Markov chain behaves almost as if it were independent. In particular,
there exists a Berry-Esseen theorem for Markov chains [13] and various concentration
inequalities for Markov chain [4, 10, 9]. In all of these cases, there is an extra factor in
the bounds in terms of λ which disappears if λ = 0.

We show that the Littlewood-Offord problem can also be generalized to Markov
chains with an extra dependence on λ, for all dimensions. We additionally consider the
one-dimensional case when the scalars are distinct integers. In all cases, the proof is
based off a Fourier-analytic argument due to Halász [5].

The random variables in all cases are defined in the same way, which we state below.

Setting 1.1. Let {Yi}∞i=1 be a stationary reversible Markov chain with state space
[N ], transition matrix A, stationary probability measure µ, and averaging operator
Eµ so that Y1 is distributed according to µ. Let λ = ‖A − Eµ‖L2(µ)→L2(µ), and let
f1, . . . , fn : [N ] → {−1, 1} be such that E[fi(Yi)] = 0 for every i. Then consider the
random variables f1(Y1), f2(Y2), . . . , fn(Yn).

We obtain the following theorem that upper bounds the probability that the random
sum is concentrated on any unit ball. In the case that the vi are one-dimensional, the
bound is tight up to a factor of

√
(1− λ)/(1 + λ) in λ. Note that the bound depends on

the dimension, while in the independent case, there is no dependence on the dimension.

Theorem 1.2. Assume the setting of 1.1. Let x0 ∈ Rd and R ≥ 1
C
√
d

for some universal

constant C > 0. For every set of vectors v1, . . . , vn ∈ Rd of Euclidean length at least 1,

Pr[‖f1(Y1)v1 + f2(Y2)v2 + · · ·+ fn(Yn)vn − x0‖`2 ≤ R] ≤ C ·R
√
d

(1− λ)
√
n
.

for some universal constant C.

In the one-dimensional case, we also consider the restriction that v1, . . . , vn are
distinct integers.

Theorem 1.3. Assume the setting of 1.1. Then for every set of distinct integers
v1, . . . , vn ≥ 1 and x0 ∈ Z,

Pr[f1(Y1)v1 + f2(Y2)v2 + · · ·+ fn(Yn)vn = x0] ≤ C

(1− λ)3n3/2

for some universal constant C > 0.

Finally, we consider a different setting, where rather than choosing ε1, . . . , εn inde-
pendently, we choose these uniformly at random from a subset D of {−1, 1}n that we can
construct explicitly.
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Theorem 1.4. For every n, there exists an explicit set D ⊆ {−1, 1}n of cardinality at
most 2C1

√
n for some universal constant C1 > 0 such that the following holds. For every

v1, . . . , vn ≥ 1 and x0 ∈ R and ε chosen uniformly at random from D

Pr[|ε1v1 + ε2v2 + · · ·+ εnvn − x0| ≤ 1] ≤ C√
n
.

for some universal constant C > 0 independent of n.

One interpretation of Theorem 1.4 is that one can obtain similar results as in the
Littlewood-Offord problem in one dimension using much less randomness, and in partic-
ular, using C1

√
n bits of randomness rather than n.

This setting was also considered in [7], in which the authors were able to construct
an explicit set of cardinality n2n

c

, from which a random sample satisfies

Pr[f1(Y1)v1 + f2(Y2)v2 + · · ·+ fn(Yn)vn = x0] ≤ log(n)C1/c

√
n

.

for any constant c bounded above by 1. Sampling from the set in Theorem 1.4 guarantees
a stronger bound on the probability that the sum lands in any interval, while requiring
more randomness when c < 1/2.

1.1 Future work

It would be interesting to remove the dependence on the dimension in Theorem 1.2,
which does not appear in the tightest bounds for independent random variables.

It would also be interesting to improve Theorem 1.4 by constructing explicit sets of
cardinality smaller than 2C1

√
n that achieve similar properties.

2 Preliminaries

Given vectors v, µ ∈ RN (typically µ will be a distribution over [N ]), we define the
Lp(µ)-norm by

‖v‖pLp(µ) =

N∑
i=1

|vi|pµi.

We define the inner product for two vectors u, v ∈ RN and µ ∈ RN with positive entries
to be

〈u, v〉L2(µ) =

N∑
i=1

µiuivi.

Additionally, we let the Lp(µ)→ Lq(µ)-operator norm of a matrix A ∈ RN×N be defined
as

‖A‖Lp(µ)→Lq(µ) = max
v:‖v‖Lp(µ)=1

‖Av‖Lq(µ).

Finally, we will use `p in place of Lp(µ) when µ is the vector whose entries are all 1. Note
that in this case, µ is not a distribution.

For a vector v, we let diag(v) be the diagonal matrix where diag(v)i,i = vi.
Let A be a stochastic matrix with a reversible distribution µ, that is, µiAij = µjAji.

We let (Eµ)ij = µj be the averaging operator on L∞(µ)→ L∞(µ). Note that Eµ is also
stochastic and reversible on µ.

Theorem 2.1. Let v1, . . . , vn ∈ R be non-zero, and let ε1, . . . , εn be independent random
variables uniform over the set {−1, 1}. Then for all x0 ∈ R,

Pr[|ε1v1 + · · ·+ εnvn − x0| ≤ 1] ≤ C√
n
.

for some constant C independent of n.
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3 The Littlewood-Offord problem for random variables from a
Markov chain

In this section, we consider the case that ε1, . . . , εn are obtained from a Markov chain.
The proof follows very closely the proof for independent random variables in Proposition
7.18 in [19] which itself is due to Halász [5].

We start by presenting the following concentration inequality due to Esséen [2],
which will allow us to upper-bound probabilities. This inequality is in the spirit of Fourier
inversion, but written in a way that can be more readily applied for our purposes.

Theorem 3.1 (Esséen concentration inequality). Let X ∈ Rd be a random variable taking
a finite number of values. For R, ε > 0,

sup
x0∈Rd

Pr [‖X − x0‖`2 ≤ R] = O

(
R√
d

+

√
d

ε

)d ∫
ξ∈Rd: ‖ξ‖`2≤ε

|E[exp(2πi〈ξ,X〉)]| dξ.

The following bound is implicit in the proof of Proposition 7.18 in [19] and will be
used to further bound the quantities obtained from Theorem 3.1

Claim 3.2. Let v1, . . . , vk ∈ R be such that |vj | ≥ 1 for all j. Then

∫ 1

−1

∏
j∈k

|cos(2πξvj)|

 dξ ≤ C√
|k|
,

for some constant C.

In order to handle the extra dependencies from the Markov chain, we will use the
following technical lemma, which is a straightforward adaptation of Lemma 2.3 from [15].
We include a proof in Appendix A.

Lemma 3.3. Let k ≥ 1 be an integer, u1, . . . , uk+1 ∈ CN be N -dimensional vectors
such that ‖ui‖L∞(µ) ≤ 1, Ui = diag(ui), and T1, . . . , Tk ∈ RN×N . For s ∈ {0, 1}k, let
s := (0, s, 0) ∈ {0, 1}k+2 and define t(s) ⊆ [k + 1] to be t(s) := {i : si = si+1 = 0}. Then,∣∣∣〈1, U1(T1 + (1− λ)Eµ)U2(T2 + (1− λ)Eµ)U3 · · ·Uk(Tk + (1− λ)Eµ)Uk+11〉L2(µ)

∣∣∣ ≤
∑

s∈{0,1}k

 ∏
j:sj=1

‖Tj‖L2(µ)→L2(µ)

 ∏
j:sj=0

(1− λ)

 ∏
j∈t(s)

∣∣〈uj ,1〉L2(µ)

∣∣ . (3.1)

When applying this lemma, we will choose Tj so that A = Tj + (1− λ)Eµ, and thus
the left-hand side of Eq. (3.1) is an upper bound on the expected value of a product of
random variables obtained from a Markov chain. Thus, Lemma 3.3 can be used in place
of bounds on the expected value of the product of independent random variables, which
appear in the proofs of the Littlewood-Offord problem.

Before proving Theorem 1.2, we first prove the following that will allow us to upper-
bound negative moments of binomial random variables.

Claim 3.4. Let X = B(n, p) be a binomial random variable with n trials, each with
success probability p > 0. Then for all positive integers d,

E

[
1

(X + 1)d

]
≤ dd

ndpd
.

Proof: Note that because d(i+ 1) ≥ i+ d for all non-negative i, the right-hand side is

bounded above by ddE
[

X!
(X+d)!

]
, where the term inside the expected value can be written
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as
n∑
i=0

(
n

i

)
pi(1− p)n−i i!

(i+ d)!
=

n∑
i=0

n!

(n− i)!(i+ d)!
pi(1− p)n−i

=

n∑
i=0

(
n+ d

i+ d

)
pi+d(1− p)n−i n!

(n+ d)!pd

≤ n!

(n+ d)!pd
.

The claim follows by noting that n ≤ n+ i for 1 ≤ i ≤ d. 2

We start by considering the case of 1-dimensional vectors, or scalars. We also consider
the case in which at most one-half of the vi have length less than 1. This will allow us
to generalize to higher dimensions. We note that in the case of independent random
variables the corresponding statement follows from the usual Littlewood-Offord problem,
by conditioning on the εi such that |vi| < 1, for just an increase in the constant factor in
the bound.

Lemma 3.5. Assume the setting of 1.1. Then for every v1, . . . , vn ∈ R such that |{i :

|vi| ≥ 1}| ≥ n/2 and x0 ∈ R,

Pr[|f1(Y1)v1 + f2(Y2)v2 + · · ·+ fn(Yn)vn − x0| ≤ 1] ≤ C

(1− λ)
√
n
.

for some universal constant C.

Proof: By Theorem 3.1,

Pr[|f1(Y1)v1 + · · ·+ fn(Yn)vn − x0| ≤ 1] ≤

C1

∫ 1

−1
|E[exp(2πiξ(f1(Y1)v1 + · · ·+ fn(Yn)vn))]| dξ (3.2)

for some constant C1. Note that

E[exp(2πiξ(f1(Y1)v1 + · · ·+ fn(Yn)vn))] = E

 n∏
j=1

exp(2πiξfj(Yj)vj)

 .
Let uj be the vector defined by uj(y) = exp(2πiξfj(y)vj) for y ∈ [N ], and let Uj =

diag(uj). Then,

E

 n∏
j=1

exp(2πiξfj(Yj)vj)

 =
∑

p∈[N ]n

 n∏
j=1

exp(2πiξfj(pj)vj)

Pr[Yj = pj for all j]

=
∑

p∈[N ]n

 n∏
j=1

(Uj)pj ,pj )

µp1

 n∏
j=2

Apj ,pj−1


= 〈1, U1AU2AU3 · · ·Un−1AUn1〉L2(µ)

(3.3)

Let Tj = A − (1 − λ)Eµ. For s ∈ {0, 1}n−1, let t(s) be the set of indices j such that
sj−1 = sj = 0, and also includes 1 if s1 = 0 and includes n if sn−1 = 0. Then the absolute
value of Eq. (3.3) is bounded above by∣∣∣〈1, U1(T1 + (1− λ)Eµ)U2(T2 + (1− λ)Eµ)U3 · · ·Un−1(Tn−1 + (1− λ)Eµ)Un1〉L2(µ)

∣∣∣ ≤
∑

s∈{0,1}n−1

 ∏
j:sj=1

λ

 ∏
j:sj=0

(1− λ)

 ∏
j∈t(s)

|cos(2πξvj)|

 ,
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where the inequality follows by Lemma 3.3 and evaluating |〈u,1〉L2(µ)|.
Let t′(s) be the set of indices j ∈ t(s) such that |vj | is greater than 1. When |t′(s)| = 0,

the corresponding product can be bounded above by 1. When |t′(s)| > 0, we can apply
Claim 3.2. Thus, the right-hand side of Eq. (3.2) can be bounded above by

C1

∑
s∈{0,1}n−1

 ∏
j:sj=1

λ

 ∏
j:sj=0

(1− λ)

 C2√
|t′(s)|+ 1

. (3.4)

Let r : {0, 1}n−1 → [n− 1] be defined as

r(s) = |{j : sj = sj+1 = 0 and |vj | ≥ 1}| ,

so that r(s) ≤ |t′(s)| for all s ∈ {0, 1}n−1. Let s be a random vector from {0, 1}n−1 so that
for each s ∈ {0, 1}n−1

Pr[s = s] =

 ∏
j:sj=1

λ

 ∏
j:sj=0

(1− λ)

 .

By the definition of r and s, Eq. (3.4) is bounded above by,

C1E

[
C2√
r(s) + 1

]
.

We conclude with the following argument. Let r′ = B(bn/4c − 1, (1− λ)2) + 1 where
B(n, p) denotes a binomial random variable with n trials, each with success probability p.
It follows that r′ is dominated by r(s) + 1, and thus

E

[
C√

r(s) + 1

]
≤ E

[
C√
r′

]
≤
(
E

[
C2

r′

])1/2

, (3.5)

where the second inequality follows by Jensen’s inequality. Finally, by Claim 3.4, the

right-hand side of Eq. (3.5) is bounded above by C
(

(1− λ)
√
bn/4c

)−1
as desired. 2

Before proving Theorem 1.2, we prove the following bound on random unit vectors.

Claim 3.6. Let v ∈ Rd be a random unit vector uniform over the d − 1-dimensional
sphere. Then there exists a constant C such that

Pr

[
|v(1)| ≥ 1

C
√
d

]
≥ 1

2

where v(1) denotes the first coordinate of v.

Proof: We start by noting that the probability density function of v(1) at t is proportional
to (1− t2)(d−3)/2, which is also the probability density of the beta distribution, shifted so
that the domain is [−1, 1]. The probability density function at all points is bounded above
by

1

2d−3
· Γ(d− 1)

Γ((d− 1)/2)2
≤ 1

2d−3
· C1(d− 1)d−3/2e−d+2

C2
1 ((d− 1)/2)d−2e−d+1

≤ C2

√
d− 1

for some constants C1 and C2, where the inequality follows from Stirling’s approximation
(see [6]). The claim follows by letting C = C2/4. 2

We now use Lemma 3.5 to prove Theorem 1.2 as follows.
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Proof of Theorem 1.2: Let M ∈ SO(d) be a random rotation uniform over the Haar
measure of the special orthogonal group. Then it is enough to consider the random
variable ‖Mf1(Y1)v1 + · · ·+Mfn(Yn)vn −Mx0‖`2 . Additionally, the left-hand side in the
statement of the theorem is bounded above by

Pr[|(Mf1(Y1)v1 + · · ·+Mfn(Yn)vn −Mx0)(1)| ≤ R]. (3.6)

This is because if the absolute value of the first coordinate of the random vector is
greater than R, so is the Euclidean norm.

By Claim 3.6, it holds that the expected number of i such that |(Mfi(Yi)vi)(1)| ≥
1/(C1

√
d) is at least n/2 for some constant C1. Thus, there exists some M such that

|(Mfi(Yi)vi)(1)| ≥ 1/(C1

√
d) for at least half the i. By Lemma 3.5, we have that

sup
x0∈R

Pr
[
C1

√
d |(Mf1(Y1)v1 + · · ·+Mfn(Yn)vn −Mx0)(1)| ≤ 1

]
≤ C2

(1− λ)
√
n
,

as |C1

√
d(Mfi(Yi)vi)(1)| ≥ 1 for at least half the i. Thus, Eq. (3.6) is bounded above by

C1 ·R
√
d sup
x0∈R

Pr

[
|(Mf1(Y1)v1 + · · ·+Mfn(Yn)vn −Mx0)(1)| ≤ 1

C1

√
d

]
≤ C ·R

√
d

(1− λ)
√
n

as desired. 2

Remark 3.7. In the case of one dimension, Theorem 1.2 is tight up to a factor of√
(1− λ)/(1 + λ). To see this, consider the transition matrix on two states defined by

A =

(
1−λ
2

1+λ
2

1+λ
2

1−λ
2

)
with f(1) = 1 and f(2) = −1, and stationary distribution uniform over both states. Such
a Markov chain can be interpreted as first choosing a state at random, and then at
each subsequent step choosing a new state uniformly at random with probability 1− λ,
or switching states with probability λ. We can associate with this walk a sequence of
numbers, (X1, X2, . . .) obtained as follows. Whenever a state is chosen at random, we
add a new entry in the sequence starting at 1, and increase this entry every time the
state is switched. Then conditioned on this sequence, f(Y1) + f(Y2) + · · · + f(Yn) is
distributed as ε1 + ε2 + · · ·+ εn where n is the number of entries in the sequence that
are odd and εi are independent and uniform over {−1, 1}. Thus, if n is considered as a
random variable,

Pr[f(Y1) + f(Y2) + · · ·+ f(Yn) = 0] ≤ E
[
C√
n

]
If we assume that n is large, then the probability that any given step in the walk is the
start of a entry that will eventually be of odd length is approximately 1/(1 + λ), and thus,
n is approximately distributed like B(n, (1− λ)/(1 + λ)), and thus

E

[
C√
n

]
≤ C√

(1− λ)n/(1 + λ)

4 Extension to distinct vi’s

Theorem 2.1, the bound obtained in the independent case, is tight when v1 = · · · =
vn = 1. It is reasonable to ask if one can obtain better bounds on the probability
Pr[ε1v1 + · · ·+ εnvn ∈ B] under certain restrictions of v1, . . . , vn. In particular, when the

ECP 26 (2021), paper 47.
Page 7/11

https://www.imstat.org/ecp

https://doi.org/10.1214/21-ECP410
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


The Littlewood-Offord problem for Markov chains

vi are distinct integers, Sárközy and Szemeredi [18] showed that for all x0 and for some
constant C

Pr[ε1v1 + · · ·+ εnvn = x0] ≤ C

n3/2
, (4.1)

which is a factor n smaller than Theorem 2.1.
Like Erdős’ proof of Theorem 2.1, the proof of the above by Sárközy and Szemeredi

uses a clever combinatorial argument. However, Halász’s Fourier-analytic argument
can also be used to prove the above. In particular, the techniques used in [19] for the
same problem can be applied. Here, the Fourier-analytic argument is over the group Zp
for some large enough p, rather than over the integers or over the real numbers. The
following claim is implicit in Corollary 7.16 in [19].

Claim 4.1. If v1, . . . , vn are distinct positive integers, then there exists a prime p such
that p ≥ vi for all i, and

1

p

∑
ξ∈Zp

[
n∏
i=1

| cos(2πξ · vi)|

]
≤ C

n3/2
.

Theorem 1.3, which is a Markov chain version of Eq. (4.1), then follows using a proof
similar to that of Theorem 1.2, using Fourier inversion in place of of Theorem 3.1 and
Claim 4.1 in place of Claim 3.2.

5 A pseudorandom generator for the Littlewood-Offord problem

In this section we prove Theorem 1.4. As stated in the introduction, this theorem can
be interpreted as proving the existence of a pseudorandom generator for the Littlewood-
Offord problem.

We start by describing the construction of D. Our construction will be based on
expander graphs which we define as follows. Given a d-regular graph G = (V,E), let A
be the normalized adjacency matrix of G and let J be the matrix whose entries are all
1/|V |. We say that a family of d-regular graphs G is a family of expanders if for all graphs
G in the family,

‖A− J‖L2(µ)→L2(µ) ≤ λ

for some constant λ bounded away from 1, where µ is the vector whose entries are all
1/|V |. Note that when G = (V,E) is d-regular, the stationary distribution is µ, and the
averaging operator is J . Thus, 1 − ‖A − J‖L2(µ)→L2(µ) is also the spectral gap of the
Markov chain that is a simple random walk on G. It is well known that there exist infinite
families of expander graphs of constant degree d independent of the number of vertices
(see for example, [12] and [14]).

Let G = ({−1, 1}k, E) be a d-regular graph from such a family for which ‖A −
J‖L2(µ)→L2(µ) ≤ λ for some constant λ independent of k. We let our set D be the set
of concatenations of the labels of walks of length n/k on G, and thus D has cardinality
2k+C1n/k for some constant C1 independent of n and k.

Proof of Theorem 1.4: Let µ be the uniform measure on {−1, 1}k and let D be as defined
above. Then by Theorem 3.1,

sup
x0∈R

Prε∼D[|ε1v1 + ε2v2 + · · ·+ εnvn − x0| ≤ 1] ≤ C
∫ 1

−1
|E[exp(2πiξ(ε1v1 + · · ·+ εnvn))]|dξ

(5.1)
For each j ∈ [n/k], let Tj = A− (1− λ)J and let uj ∈ R{−1,1}

k

be the vector defined by

uj(w) = exp(2πiω(w(j−1)k+1v(j−1)k+1 + · · ·+ wjkvjk))
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and let Uj = diag(uj). Then similarly as in Lemma 3.5, |E[exp(2πiξ(ε1v1 + · · ·+ εnvn))]|
is bounded above by,∣∣∣〈1, U1(T1 + (1− λ)J)U2(T2 + (1− λ)J)U3 · · ·Un/k−1(Tn/k−1 + (1− λ)J)Un/k1

〉
L2(µ)

∣∣∣ ≤
∑

s∈{0,1}k

 ∏
j:sj=1

λ

 ∏
j:sj=0

(1− λ)

 ∏
j∈t(s)

∣∣〈uj ,1〉L2(µ)

∣∣ , (5.2)

where the inequality follows by Lemma 3.3, and for each s ∈ {0, 1}n/k−1, we define t(s)
to be the set of indices j such that sj−1 = sj = 0, or sj = 0 if j = 1 or sj−1 = 0 if j = n/k.

The expression 〈uj ,1〉L2(µ) can be replaced by noting that it is the Fourier transform
at ξ of the random variable w(j−1)k+1v(j−1)k+1 + · · ·+wjkvjk where each coordinate of w
is uniformly random over the set {−1, 1}. This brings us back to the original setting of
completely independent random variables, and thus

〈uj ,1〉L2(µ) =

k∏
`=1

cos(2πv(j−1)k+`ξ).

Thus by inserting the above in Eq. (5.2) we obtain and upper-bound on the right-hand
side of Eq. (5.1) of

1

2π

∑
s∈{0,1}n/k−1

∫ 1

−1

 ∏
j:sj=1

λ

 ∏
j:sj=0

(1− λ)

 ∏
j∈t(s)

k∏
`=1

∣∣cos(2πv(j−1)k+`ξ)
∣∣ dξ ≤

1

2π

∑
s∈{0,1}n/k−1

 ∏
j:sj=1

λ

 ∏
j:sj=0

(1− λ)

 C√
k(|t(s)|+ 1)

,

where the inequality follows from Claim 3.2, We proceed by using the same argument
as in Lemma 3.5 starting from Eq. (3.4), which gives an upper bound of C/

√
k · (n/k) =

C/
√
n as desired. Finally, we obtain a construction of the desired size by letting

k =
√
n. 2

A Proof of Lemma 3.3

We prove Lemma 3.3, which as mentioned previously, is a straightforward adaptation
of Lemma 2.3 from [15]. Before getting to the proof, we first state the following two
claims.

Claim A.1. For all k ≥ 1, matrices R1, . . . , Rk ∈ RN×N , and distributions µ over [N ],

‖R1EµR2Eµ · · ·EµRk1‖L1(µ) ≤
k∏
i=1

‖Ri1‖L1(µ) .

Proof: Notice that for any vector v, Eµv = Eµ[v]1. The claim follows by noting that
Eµ[v] ≤ ‖v‖L1(µ) and by induction. 2

Claim A.2. Let u1, . . . , uk+1 ∈ CN be so that |(uj)i| ≤ 1 for all i and j, let Uj = diag(uj),
and let T1, . . . , Tk ∈ RN×N . Then,∥∥∥∥∥∥

 k∏
j=1

UjTj

Uk+11

∥∥∥∥∥∥
L1(µ)

≤
k∏
j=1

‖Tj‖L2(µ)→L2(µ) ,
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Proof: By Jensen’s inequality, the right-hand side is bounded above by∥∥∥∥∥∥
 k∏
j=1

UjTj

Uk+11

∥∥∥∥∥∥
L2(µ)

and the claim follows by the definition of operator norm and the fact that ‖Ui‖L2(µ)→L2(µ) =

‖ui‖L∞(µ). 2

Claim A.3. Let µ ∈ RN be a distribution, and let Eµ be the associated averaging operator.
Then for any u ∈ CN ,

Eµ diag(u)Eµ = 〈u,1〉L2(µ)Eµ.

Proof:
(Eµ diag(u)Eµ)i,j =

∑
k∈[N ]

(Eµ)i,kuk(Eµ)k,j = 〈u,1〉L2(µ)µj .

2

Proof of Lemma 3.3: For j = 1, . . . , k, let Tj,0 = (1 − λ)Eµ and Tj,1 = Tj . Let U ′i = Ui
if i ∈ t(s), and U ′i = I otherwise. Then using the triangle inequality, the left-hand side
of (3.1) is at most

∑
s∈{0,1}k

∣∣∣∣∣∣∣
〈
1,

 k∏
j=1

UjTj,sj

Uk+11

〉
L2(µ)

∣∣∣∣∣∣∣
=

∑
s∈{0,1}k

∣∣∣∣∣∣∣
〈
1,

 k∏
j

U ′jTj,sj

U ′k+11

〉
L2(µ)

∣∣∣∣∣∣∣
 ∏
j∈t(s)

∣∣〈u,1〉L2(µ)

∣∣
≤

∑
s∈{0,1}k

∥∥∥∥∥∥
 k∏

j

U ′jTj,sj

U ′k+11

∥∥∥∥∥∥
L1(µ)

 ∏
j∈t(s)

∣∣〈u,1〉L2(µ)

∣∣
where the equality follows from Claim A.3 and the fact that E2

µ = Eµ.
Fix an s ∈ {0, 1}n and let r1, . . . , r` ∈ t(s) be the indices for which the rith coordinate

of s is 0. Then by Claim A.1,∥∥∥∥∥∥
 k∏

j

U ′jTj,sj

U ′k+11

∥∥∥∥∥∥
L1(µ)

≤ (1− λ)‖U ′1T1 · · ·Tr1−1U ′r11‖L1(µ)

(1− λ)‖U ′r1+1Tr1+1 · · ·Tr2−1U ′r21‖L1(µ) · · · (1− λ)‖U ′r`+1Tr`+1 · · ·TkU ′k+11‖L1(µ) .

The claim now follows by applying Claim A.2. 2
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