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1 Introduction

Let X be a random vector in Rd and IX be its rate function, given by

IX(v) := sup
u∈Rd

(
u · v − logEeu·X

)
, v ∈ Rd,

where ‘·’ stands for the scalar product in Rd. This function is the convex conjugate of
the logarithmic Laplace transform of X, defined by KX(u) := logEeu·X for every u ∈ Rd.

The function KX takes values in (−∞,+∞], satisfies K(0) = 0, and is convex by
Hölder’s inequality. Then IX is also convex and finite at least at one point ([8, Theo-
rem 12.2]), and it takes values in [0,+∞]. The effective domain D(IX) of IX , defined by

D(IX) := {v ∈ Rd : IX(v) < +∞},

is convex and non-empty, and so is the effective domain D(KX) of KX .
It is easy to show that KX is differentiable at every point of intD(KX) ([2, Corol-

lary 7.1]). When the set intD(KX) is non-empty, we say that KX is steep (at the
boundary of its effective domain) if limn→∞ |∇KX(un)| =∞ for every sequence u1, u2, . . .
in intD(KX) converging to a point in ∂D(KX). Note that KX is steep when it is finite at
every point.

The property of steepness appears in a number of general convex-analytic results
concerning the so-called essentially smooth convex functions on Rd ([8, Section 26]).
In the context of large deviations probabilities this property features in the important
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Gärtner–Ellis theorem ([4, Section 2.3]). The assumption 0 ∈ intD(KX), which is of
course stronger than intD(KX) 6= ∅, is crucial for classical Cramér’s theorem ([7,
Section 2.4]), where the rate function IX plays the key role.

Let us recall a few more definitions. For any A ⊂ Rd, denote by convA (resp. aff A)
the convex hull (resp. affine hull) of A, i.e. the minimal convex (resp. affine) subset of
Rd containing A; denote by rintA is the relative interior of A, i.e. the interior of A in
the relative topology of aff A; and let ∂relA := clA \ rintA be the relative boundary of A.
Note that rintA = A if A consists of a single point.

The topological support of a random vector X in Rd, denoted by suppX, is the
minimal by inclusion closed set S ⊂ Rd such that P(X ∈ S) = 1. The convex support
of X is

CX := conv(suppX).

A hyperplane L ⊂ Rd supports a convex set C ⊂ Rd if L intersects C and C is
contained in either of the two half-spaces of Rd that have L as their boundary (C ⊂ L is
possible).

We say that IX is strictly convex on a set A ⊂ D(IX) if IX is affine on no line segment
contained in A, and IX is strictly convex if it is strictly convex on D(IX).

Our starting point is the following assertion.

Proposition 1.1. Let X be a random vector in Rd, d ≥ 1.

a) We have

rintCX ⊂ D(IX) ⊂ clCX , (1.1)

hence rintD(IX) = rintCX . Moreover, IX = +∞ on every hyperplane L in Rd

supporting clCX and such that P(X ∈ L) = 0.

b) IX is strictly convex on rintD(IX) if and only if intD(KX) 6= ∅ and KX is steep.

We will prove this result in full for completeness of exposition. The inclusions in (1.1)
are not new but we do not have exact references. They are stated in [2, Theorem 9.1],
which however concerns only a specific type of distributions. They follow from [3,
Theorems 2.1, 2.3, 3.2] but do not appear in [3] explicitly. The last claim of Part a) is in
[2, Theorem 9.5]. Part b) states a particular case of a general convex-analytic result [8,
Theorem 26.3], with the novelty that we strengthened the direct implication.

The main result of this note is a necessary and sufficient condition (see Theorem 2.11)
for strict convexity of IX on its whole effective domain D(IX). This condition is always
satisfied when the Laplace transform of X is finite in the whole of Rd, and thus IX is
strictly convex for such X.

In view of Proposition 1.1, we only need to characterize strict convexity of the rate
function on the relative boundary of D(IX). Our approach is based on the following
result.

Theorem 1.2. Let X be a random vector in Rd, d ≥ 1, and L be a hyperplane in Rd

supporting CX and such that 0 < P(X ∈ L) < 1. Then

IX(v) = IX|L(v)− logP(X ∈ L), v ∈ L, (1.2)

if and only if

PrL(rintD(KX)) = PrL(rintD(KX|L)), (1.3)

where X|L is a random vector distributed as X conditioned to be in L and PrL denotes
the orthogonal projection from Rd onto L.
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Assume that condition (1.3) is satisfied for every hyperplane L as above. Then we
can apply Proposition 1.1 to each of the IX|L’s. By (1.2), this ensures that rintD(CX|L) ⊂
D(IX), and IX is strictly convex on every set rintD(CX|L) if and only if the KX|L’s are
steep. The main idea is to apply this argument to the X|L’s and further on recursively,
using that the sets rintD(IX|L) are disjoint with rintD(IX) by dimCX|L < dimCX . Under
appropriate conditions, which ensure that (1.3) is satisfied at every step of the recursion,
this lets us fully describe D(IX) (see Corollary 2.13) and characterize strict convexity of
IX (see Theorem 2.11). We give the details in the next section, where we also comment
on condition (1.3) (see Remark 2.6).

The property of strict convexity can be useful when proving uniqueness of solutions
to minimization problems involving IX . Such problems arise from large deviations
principles, most naturally in Cramér’s theorem (see [7, Section 2.4]) on random walks in
Rd. There are functional versions of this result, which describe scaled trajectories of
random walks and continuous time analogues for Lévy processes (see [4, Section 5.1
and 5.2] and [6]). In both cases, if the increments have finite Laplace transform, then the
large deviations are described by the rate function I of the form I(f) =

∫ 1

0
IX(f ′(t))dt

for f in AC0, the space of coordinate-wise absolutely continuous Rd-valued functions on
[0, 1] such that f(0) = 0.

For concrete examples, let (Sn)n∈N be a random walk with i.i.d. increments dis-
tributed as X. When IX is strictly convex, its unique minimizer b over a convex Borel
set B ⊂ Rd that meets D(IX) can be interpreted as the limit constant in the law of large
numbers for the averages Sn/n conditioned to be in B. Under this conditioning, a typical
trajectory (Sk/n)1≤k≤n of the random walk with D(KX) = Rd is asymptotically linear
with slope b because the function f0(t) = bt is the unique minimizer of I over the set
{f ∈ AC0 : f(1) ∈ B}. This follows from Jensen’s inequality using that IX is strictly
convex (by Corollary 2.12). When 0 ∈ intD(KX) but D(KX) 6= Rd, the rate function I

has a more complicated form, and without strict convexity of IX the argument above
becomes less simple (see [5, pp. 16-17]). More elaborate examples arise, e.g. in the
study [1] of large deviations of the perimeter and the area of convex hulls of planar
random walks, where strict convexity of IX simplified considerations.

Finally, we note that relating the conditional limit laws to the minimizers of the
rate function, as above, corresponds to the fundamental Gibbs conditioning principle of
statistical mechanics (see [4], including Sections 3.3 and 7.3).

2 Main result

We first recall some facts on the structure of convex sets.

A face of a non-empty convex set C ⊂ Rd is a convex subset C ′ of C such that every
closed line segment in C with a relative interior point in C ′ has both endpoints in C ′.
Note that C itself is a face; the zero-dimensional faces are called the extreme points of
C. If L ⊂ Rd is a hyperplane supporting C, then C ∩ L is face of C. Every face of such
form is called exposed.

Denote by F(C) the set of non-empty faces of C and by F∗(C) its subset of maximal
proper faces, defined by

F∗(C) :=
{
C ′ ∈ F(C) \ {C} : C ′ 6⊂ C ′′ for every C ′′ ∈ F(C) \ {C,C ′}

}
.

We will use extensively that every face in F∗(C) is exposed (this follows from [8, The-
orem 11.6 and Corollary 18.1.3]). Our need in the set F∗(C) is due to the following
result.
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Lemma 2.1. Let C ⊂ Rn be a non-empty convex set. Then

C \ rintC =
⋃

C′∈F∗(C)

C ′. (2.1)

Proof. In fact, the set C \ rintC contains every proper face of C by [8, Corollary 18.1.3].
On the other hand, by [8, Theorem 11.6], for every point in C\rintC there is a hyperplane
L containing this point and supporting C but not containing C. Then C ∩ L is a proper
face of C. To finish the proof it remains to argue that for any proper face C ′ of C is
contained in a maximal proper face of C.

Let us use induction in dimC ′. In the base case dimC ′ = dimC − 1, we always have
C ′ ∈ F∗(C). Indeed, if this were not true, there would be a proper face C ′′ of C other
than C ′ that strictly contains C ′. Then C ′ would be a face of C ′′ (by definition of a face),
hence dimC ′ < dimC ′′ by [8, Corollary 18.1.3]. This is a contradiction because there
are no faces of C other than itself of dimension dimC.

Let us prove the inductive step. If C ′ is maximal, we are done. Otherwise, choose C ′′

as above. By the assumption of induction, there is a C ′′′ ∈ F∗(C) containing C ′′. This is
a face required.

We now consider faces of the convex support CX of a random vector X in Rd. First
note that CX is not necessarily closed; it can be even open.

Example 2.2. Let X be a random vector in R2 such that suppX = {(x, y) ∈ R2 : y ≥
1

1+x2 }. Then CX is the open upper half-plane.

However, we have the following measurability result.

Lemma 2.3. Let X be a random vector in Rd, d ≥ 1. Then CX is a Borel subset of Rd,
and so is every C ∈ F∗(CX).

Proof. By Carathéodory’s theorem ([8, Theorem 17.1]), every point in CX is a convex
combination of d+1 points in suppX. Then CX = ∪∞n=1 conv

(
suppX∩{u ∈ Rd : ‖u‖ ≤ n}

)
.

By [8, Theorem 17.2], each set under the union is closed, and hence CX is Borel.
Every C ∈ F∗(CX) is an exposed face of CX , therefore C = CX ∩ L for some affine

hyperplane L supporting CX . Hence C also is a Borel set.

The lemma ensures that the following set is well-defined:

F∗+(CX) := {C ∈ F∗(CX) : P(X ∈ C) > 0}.

In the results below it is useful to know when this set is empty. We give the following cri-
terion.

Lemma 2.4. Let X be a random vector in Rd, d ≥ 1. Then F∗+(CX) is empty if and only
if there is no hyperplane L in Rd supporting CX and such that 0 < P(X ∈ L) < 1.

Proof. If L is a hyperplane supporting CX , then either CX ⊂ L, in which case P(X ∈
L) = 1, or CX ∩ L ∈ F∗(CX), hence from F∗+(CX) = ∅ we get P(X ∈ CX ∩ L) = 0 and
thus P(X ∈ L) = 0. This proves the direct implication.

To prove the reverse implication, assume that there is a C ∈ F∗+(CX). This is an
exposed face of CX , therefore C = CX ∩ L for some affine hyperplane L supporting CX .
Then P(X ∈ L) = P(X ∈ C) > 0, hence by the assumption, it must be P(X ∈ L) = 1.
Hence suppX ⊂ L (because L is a closed set) and therefore CX ⊂ L. Thus, C is not a
proper face of CX , which is a contradiction.

For every random vector X in Rd and C ∈ F∗+(CX), let X|C be a random vector
distributed as X conditioned on X ∈ C.

We now give two key definitions, both having recursive structure.
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Definition 2.5. We say that KX has the projection property1 if

a) for every hyperplane L in Rd supporting CX and such that 0 < P(X ∈ L) < 1, we
have

PrL(rintD(KX)) = PrL(rintD(KX|L));

b) KX|C has the projection property for every C ∈ F∗+(CX).

The projection property is well-defined since the definition allows us to identify, using
recursion in dimCX , whether each particular KX has this property nor not. This is
true because 1) dimCX|C ≤ dimC < dimCX for every C ∈ F∗+(CX); 2) the recursion
terminates (confirming that KX has the property) if Conditions a) and b) hold vacuously,
namely when F∗+(CX) = ∅ (by Lemma 2.4); and 3) the recursion always terminates since
F∗+(CX) = ∅ when dimCX = 0, i.e. X is constant a.s.

Remark 2.6. Let us comment on Condition a).

a) Each set D(KX|L) is a right cylinder. So is its relative interior, which satisfies

PrL(rintD(KX|L)) = rint(PrLD(KX|L)) = rint(L ∩ D(KX|L)) = L ∩ rintD(KX|L),

where the first and the last equalities follow from [8, Theorem 6.6 and Corollary 6.5.1].

b) We always have D(KX) ⊂ D(KX|L). This follows from

KX(u) ≥ logE
(
eu·X1{X∈L}

)
= KX|L(u) + logP(X ∈ L), u ∈ Rd. (2.2)

Assume additionally that D(KX) is not entirely contained in the relative boundary of
D(KX|L); this holds, e.g. when intD(KX) 6= ∅ or 0 ∈ rintD(KX|L). Then

PrL(rintD(KX)) ⊂ PrL(rintD(KX|L)) (2.3)

because rintD(KX) ⊂ rintD(KX|L) by [8, Corollary 6.5.2]. Thus, (1.3) means that
the projection of rintD(KX) on L does not increase if X is replaced by X|L.

c) Every supporting hyperplane L to CX is of the form L = {v ∈ Rd : ` · v = hCX
(`)},

where ` ∈ Sd−1 is a unit vector orthogonal to L and hCX
is the support function of

CX defined by hCX
(u) := supv∈CX

u · v, u ∈ Rd. Since ` ∈ D(hCX
) if and only if CX is

bounded in direction ` (equivalently, suppX is bounded in direction `), this implies
that {a` : a ≥ 0} ⊂ D(KX). It is therefore easy to see that PrL(rintD(KX)) = L

when ` ∈ intD(hCX
). Hence for such ` equality (1.3) always holds true by D(KX) ⊂

D(KX|L).

Thus, it suffices to check the assumption of Condition a) only for hyperplanes support-
ing CX that are orthogonal to directions in the set ∂D(hCX

) ∩ Sd−1. For d = 2 this set
contains at most two directions because D(hCX

) is a convex cone.

We now give a few examples.

Example 2.7. KX has the projection property in the following cases:

a) F∗+(CX) is empty. In particular, this holds true when P(X ∈ ∂relCX) = 0; see (2.1).

b) D(KX) = Rd or, equivalently, Eeu·X <∞ for every u ∈ Rd; cf. (2.2).

c) d = 1.

1Strictly speaking, this is a property of the distribution of X rather than of KX . However, the distributions
that satisfy intD(KX) 6= ∅ are determined by their Laplace transform (this reduces to d = 1, where Theo-
rem 6a in Chapter VI of [9] applies). Note that our main result, Theorem 2.11.b, assumes intD(KX) 6= ∅.
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d) d = 2 and equality (1.3) holds true for every line L of the form L = aff C, where
C ∈ F∗+(CX) is unbounded (there are at most two such faces).

Indeed, such lines are orthogonal to the directions in ∂D(hCX
) ∩ S1 and then Re-

mark 2.6.c applies. Clearly, Condition a) in Definition 2.5 is satisfied by Example 2.7.c
since dimCX|C ≤ 1 for every C ∈ F∗+(CX).

Our second key definition is as follows.

Definition 2.8. If D(KX) has non-empty interior, we say that KX is totally steep if KX

is steep and KX|C is totally steep for every C ∈ F∗+(CX).

Again, this property is well-defined by recursion in dimCX because 1) dimCX|C <

dimCX for every C ∈ F∗+(CX); 2) intD(KX|C) 6= ∅ for C ∈ F∗+(CX) byD(KX) ⊂ D(KX|C)

(cf. (2.2)); 3) KX is totally steep when it is steep and F∗+(CX) = ∅; and 4) KX is totally
steep when dimCX = 0.

Example 2.9. KX is totally steep if D(KX) = Rd.

Example 2.10. Let us construct KX which neither has the projection property nor is
totally steep. Put X := (αX1, αX2 + (1 − α)X3), where X1, X2, X3, α are independent
non-negative random variables such that X1 and X2 have the standard exponential
distribution with density e−x for x > 0, X3 has the absolutely continuous distribution
with density proportional to e−2x/(1 + x3) for x > 0, and P(α = 0) = P(α = 1) = 1/2.

We have D(KX3
) = (−∞, 2] and it is easy to check that K ′X3

(2−) < +∞, hence KX3
is

not steep; andKX1
is steep. Furthermore, KX(u1, u2) = 1

2KX1
(u1)+ 1

2KX2
(u2)+ 1

2KX3
(u2)

for u1, u2 ∈ R; the set CX is the closed positive quadrant in the plane; and F∗+(CX) = {C}
with C := {0} × [0,∞). We can see that KX is steep but not totally steep because
D(KX) = (−∞, 1) × (−∞, 1) but for the ordinate line L = aff C supporting CX , the
random vector X|L is distributed as (0, X3) and thus KX|L is not steep. This also shows
that Condition a) in Definition 2.5 is violated because PrL(rintD(KX|L)) = {0} × (−∞, 2)

but PrL(rintD(KX)) = {0} × (−∞, 1), and thus K does not have the projection property.

We are now ready to state the main result of the paper.

Theorem 2.11. Let X be a random vector in Rd, d ≥ 1.

a) If KX satisfies Condition a) in Definition 2.5 of the projection property, then

F∗(D(IX)) ⊂ {D(IX|C) : C ∈ F∗+(CX)} ⊂ F(D(IX)) \ {D(IX)}. (2.4)

b) IX is strictly convex if and only if intD(KX) 6= ∅, KX has the projection property,
and KX is totally steep.

Let us present a few corollaries.

Corollary 2.12. If Eeu·X <∞ for every u ∈ Rd, then IX is strictly convex.

Proof. This follows directly from Part b) using Examples 2.7.b and 2.9.

Corollary 2.13. If KX has the projection property, then D(IX) ⊂ CX and

D(IX)

= rintCX∪
⋃

C1∈F∗+(CX)

rintCX|C1
∪

⋃
C2∈F∗+(CX|C1

)

rintCX|C2
∪. . .∪

⋃
Cd∈F∗+(CX|Cd−1

)

rintCX|Cd
.

Proof. We have

D(IX) = rintD(IX) ∪
⋃

C∈F∗(D(IX))

C = rintCX ∪
⋃

C1∈F∗+(CX)

D(IX|C1
),
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where the first equality follows from (2.1) and the second one follows from (2.4) and
the fact that rintD(IX) = rintCX (see Proposition 1.1.a). Then we establish the equality
claimed by simple induction in dimCX using that each random vector (X|C1)|C2 has
the same distribution as X|C2. In the base case dimCX = 0 the claim holds by D(IX) =

CX = rintCX and F∗+(CX) = ∅. The same inductive argument establishes the inclusion
D(IX) ⊂ CX .

Corollary 2.14. Assume that KX has the projection property. Then v is an extreme
point of D(IX) if and only if v is an extreme point of CX and P(X = v) > 0. For such v,
we have IX(v) = − logP(X = v).

Proof. Assume that v is an extreme point of CX and P(X = v) > 0. We use induction
in dimCX . In the base case dimCX = 0, we simply have IX(v) = 0 = − log(X = v). To
prove the induction step for dimCX ≥ 1, use that by (2.1) there is a face C ∈ F∗+(CX) that
contains v. Then v is an extreme point of CX|C because v ∈ CX|C by P((X|C) = v) > 0

and v is an extreme point of the convex set CX which contains CX|C .

Since C an exposed face of CX , there is a hyperplane L supporting CX such that
C = CX ∩ L. Then X|C and X|L have the same distribution since P(X ∈ L \C) = 0, and
by (1.2) and the assumption of induction we get

IX(v) = IX|C(v)− logP(X ∈ C) = − logP((X|C) = v)− logP(X ∈ C) = − logP(X = v).

Then IX(v) <∞, and thus v ∈ D(IX). Hence v is an extreme point of D(IX) because v is
an extreme point of the convex set CX which contains D(IX) by Corollary 2.13.

Proving the reverse implication is similar. For the induction step, for dimD(IX) ≥ 1,
use that by (2.1) there is a face F ∈ F∗(D(IX)) that contains v. Then v is an extreme
point of F . By (2.4), F = D(IX|C) for some face C ∈ F∗+(CX), and we can apply the
assumption of induction as above.

3 Proofs

Proof of Proposition 1.1. a) Recall that CX = conv(suppX). Fix a v 6∈ clCX . By [8,
Corollary 11.5.1], there exists a non-zero u0 ∈ Rd such that u0 · x < u0 · v for any
x ∈ suppX. In other words, u0 ·X < u0 · v a.s. By the monotone convergence theorem,
we get

I(v) = sup
u∈Rd

(u · v −KX(u)) ≥ sup
a>0

(au0 · v −KX(au0)) = − inf
a>0

(logEea(u0·X−u0·v)) = +∞.

(3.1)
Thus, D(IX) ⊂ clCX .

Furthermore, if L a hyperplane supporting clCX , take any non-zero u0 ∈ Rd orthog-
onal to L and directed such that u0 · x ≤ u0 · v for any x ∈ suppX and v ∈ L, that is
u0 · X ≤ u0 · v a.s. This inequality is strict if P(X ∈ L) = 0, in which case I(v) = +∞
holds true by (3.1), as required.

We now show that rintCX ⊂ D(IX). Assume that this does not hold. Then, since
D(IX) ⊂ clCX and the sets CX and D(IX) are convex, we have clD(IX) 6= clCX by [8,
Corollary 6.3.1]. Therefore, there exists an open ball B ⊂ Rd such that clD(IX)∩clB = ∅
and clCX ∩B 6= ∅.

For any n ∈ N, let Sn be the sum of n independent identically distributed copies of X.
Then for any u ∈ D(KX), we have

P(Sn/n ∈ B) = E[1(Sn/n ∈ B)] ≤ E
[
1
(
u · Sn ≥ n inf

v∈clB
u · v

)]
≤ e−n infv∈clB u·v Eeu·Sn ,
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where the last equality follows from Markov’s inequality. Then

n−1 logP(Sn/n ∈ B) ≤ inf
u∈D(KX)

(
− inf
v∈clB

(u ·v−KX(u))
)

= − sup
u∈D(KX)

inf
v∈clB

(u ·v−KX(u)).

Finally, let us interchange the supremum and the infimum using a minimax result [8,
Corollary 37.3.2] on concave-convex functions. This gives

n−1 logP(Sn/n ∈ B) ≤ − inf
v∈clB

IX(v). (3.2)

This inequality appears, e.g., in [7, Eq. (2.16)].
On the other hand, since clCX ∩B 6= ∅, B is open, and CX is convex, it follows from

[8, Corollary 6.3.2] that rintCX intersects with B. Hence, by Carathéodory’s theorem
([8, Theorem 17.1]), there is a convex combination

∑m
i=1 αixi ∈ B, where m is a positive

integer, xi ∈ suppX and αi > 0 for every 1 ≤ i ≤ m, and
∑m
i=1 αi = 1. By finding

a rational approximation to all but one of the αi’s, we get 1
n

∑m
i=1 nixi ∈ B for some

positive integer ni and n =
∑m
i=1 ni. Furthermore, there exist open balls Bi ⊂ Rd such

that xi ∈ Bi for every 1 ≤ i ≤ m and 1
n

∑m
i=1 niBi ⊂ B. Since each open ball Bi intersects

with suppX, we have P(X ∈ Bi) > 0. Therefore,

P(Sn/n ∈ B) ≥ Πm
i=1P(X ∈ Bi)ni > 0. (3.3)

Inequalities (3.2) and (3.3) imply that clB ∩ D(IX) 6= ∅, which is contradiction.
Thus, we proved that rintCX ⊂ D(IX) ⊂ clCX , establishing (1.1). Finally, by [8, Corol-
lary 6.3.1] this gives rintCX = rintD(IX), as required.

b) Put d′ := dimCX . We assume that d′ ≥ 1, otherwise the claim is trivial.
Recall that IX is subdifferentiable at a point v0 ∈ Rd if there is a u ∈ Rd such that

the inequality IX(v) ≥ IX(v0) + u · (v − v0) holds for every v ∈ Rd. We claim that IX
is subdifferentiable at no point outside of rintD(IX). Combined with the fact that KX

is differentiable at every point of intD(KX) ([2, Corollary 7.1]), this implies that the
asserted necessary and sufficient condition for strict convexity of IX is a particular case
of [8, Theorem 26.3].

Assume first that d′ = d. In this case KX is strictly convex by [2, Theorem 7.1];
this actually follows immediately from the criterion for equality in Hölder’s inequality.
Therefore, KX is essentially strictly convex, i.e. KX is strictly convex on every interval
contained in the set of points where KX is subdifferentiable. Hence IX is essentially
smooth by [8, Theorem 26.3], that is IX is differentiable on the set intD(IX), which is
required to be non-empty, and IX is steep. By [8, Theorem 26.1], this implies that IX is
not subdifferentiable outside of rintD(IX), as required.

In the remaining case 1 ≤ d′ ≤ d − 1, put L := aff(suppX). We can assume w.l.o.g.
that 0 ∈ L, otherwise pick any µ ∈ L and use the simple fact that IX(v) = IX−µ(v − µ)

for v ∈ Rd, which easily implies that our claim holds true for IX if and only if it holds for
IX−µ.

Since L is a linear subspace of Rd of dimension d′, there exists an orthogonal mapping
U : L→ Rd

′
. Then by X ∈ L a.s., for any v ∈ L we have

IX(v) = sup
u∈Rd

(
u · v − logEeu·X

)
= sup
u∈L

(
u · v − logEeu·X

)
= IU(X)(U(v)), (3.4)

where in the last equality we used the change of variables u 7→ U(u). Therefore, since
the mapping U is linear and invertible, IX is subdifferentiable at a v ∈ L if and only
if IU(X) is subdifferentiable at U(v) by [8, Theorem 23.9] (applied with f = IU(X) and
A = U−1). On the other hand, v ∈ rintD(IX) if and only if U(v) ∈ rintDU(X), since
U(rintD(IX)) = rintU(D(IX)) = rintD(IU(X)) by [8, Theorem 6.6]. Thus, by equality
(3.4), the case d′ < d reduces to the case d′ = d because the support of the random
vector U(X) in Rd

′
has full dimension. This finishes the proof of the claim.
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Our proofs of Theorems 1.2 and 2.11 rely on the following technical result, where ∗

stands for convex conjugation (the Legendre–Fenchel transform) of functions on Rd.

Lemma 3.1. LetX be a random vector inRd, d ≥ 1, and L be a hyperplane inRd support-
ing CX and such that P(X ∈ L) > 0. Put K̃X|L(u) := KX|L(u) if u ∈ Pr−1L (PrLD(KX)),

otherwise K̃X|L(u) := +∞ for u ∈ Rd. Then

IX(v) = (K̃X|L)∗(v)− logP(X ∈ L), v ∈ L, (3.5)

and (K̃X|L)∗(v) = +∞ for v 6∈ L. Moreover, we have

PrL(rintD(K̃X|L)) = PrL(rintD(KX)). (3.6)

Proof. Denote by L0 the hyperplane passing through 0 that is parallel to L, and let ` ∈ Rd
be the unit vector orthogonal to L0 such that ` ·u ≤ ` ·v for any u ∈ CX and v ∈ L. Denote
by (v1, v2) the coordinates of v ∈ L in L0 ⊕ L⊥, where L⊥ := R`.

For any u1 ∈ L0 such that Ee(u1+u2`)·X <∞ for some real u2 = u′2, we have

sup
u2∈R

(
u2v2 − logEe(u1+u2`)·X

)
= − log

(
inf
u2∈R

Eeu1·X+u2(`·X−v2)
)

= − logE[eu1·X1{X∈L}], (3.7)

where the last equality follows from the dominated convergence theorem applied as
u2 → +∞ using that eu1·X+u′2(`·X−v2) is an integrable majorant, which is true because
the function u2 7→ eu1·X+u2(`·X−v2) is non-increasing a.s. by ` ·X ≤ v2 a.s. On the other
hand, if u1 ∈ L0 is such that Ee(u1+u2`)·X =∞ for every real u2, then the l.h.s. of the first
equality in (3.7) is −∞. Therefore,

IX(v) = sup
u1∈L0

sup
u2∈R

(
u1 · v1 + u2v2 − logEe(u1+u2`)·X

)
= sup

u1∈L0:
(u1+R`)∩D(KX)6=∅

(
u1 · v1 − logE[eu1·X1{X∈L}]

)
= sup
u1∈PrL0

(D(KX))

sup
u2∈R

(
u1 · v1 + u2v2 − logE

[
e(u1+u2`)·(X|L)

])
− logP(X ∈ L)

= sup
u∈Pr−1

L (PrLD(KX))

(
u · v − logEeu·(X|L)

)
− logP(X ∈ L),

where in the last equality we used that L0 and L are parallel. This proves (3.5).
The claim (K̃X|L)∗(v) = +∞ for v 6∈ L follows exactly as in (3.1) using that K̃X|L(u0) =

KX|L(u0) < +∞ for any u0 ∈ L⊥ by 0 ∈ D(KX).
Lastly, it follows from (2.2) that KX|L(u) < +∞ when u ∈ Pr−1L (PrLD(KX)). There-

fore, by the definition of K̃X|L, we have D(K̃X|L) = Pr−1L (PrLD(KX)), and we obtain
(3.6) interchanging PrL and rint by [8, Theorem 6.6] as follows:

PrL(rintD(K̃X|L)) = rint(PrLD(K̃X|L)) = rint(PrLD(KX)) = PrL(rintD(KX)).

Proof of Theorem 1.2. Let L be a hyperplane supporting CX and such that P(X ∈ L) > 0.
By Lemma 3.1 and Proposition 1.1.a applied to X|L, we have IX|L(v) = (KX|L)∗(v) = +∞
and (K̃X|L)∗(v) = +∞ for v 6∈ L. Therefore, the functions (K̃X|L)∗ and (KX|L)∗ coincide
if they are equal on L. Thus, (3.5) implies that

IX(v) = IX|L(v)− logP(X ∈ L), v ∈ L,

if and only if (K̃X|L)∗ = (KX|L)∗. This is in turn equivalent to (K̃X|L)∗∗ = KX|L (by [8,

Theorem 12.2]) because K̃X|L is a convex function (this follows from the definition of

K̃X|L) and KX|L is a lower semi-continuous convex function (by [2, Theorem 7.1]), both
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finite at least at one point. The last equality holds true if and only if K̃X|L equals KX|L

except possibly at some relative boundary points of D(K̃X|L) (by [8, Theorem 7.4]). Thus,

equalities (1.2) and rintD(K̃X|L) = rintD(KX|L) are equivalent.

The latter one is equivalent to PrL(rintD(K̃X|L)) = PrL(rintD(KX|L)) because the

sets rintD(K̃X|L) and rintD(KX|L) are right cylinders by [8, Corollary 6.6.2]. Hence,
by (3.6), equalities (1.2) and (1.3) are equivalent, as claimed.

Proof of Theorem 2.11. a) Let us prove the first inclusion in (2.4). Let F ∈ F∗(D(IX))

be a maximal proper face of D(IX). Then there is a hyperplane L supporting the convex
set D(IX) such that F = D(IX) ∩ L. The hyperplane L also supports clCX by the second
inclusion in (1.1). Moreover, we have P(X ∈ L) > 0 since otherwise D(IX) ∩ L = ∅
by Proposition 1.1.a, which is a contradiction. Therefore, L ∩ CX 6= ∅, and thus L
supports CX . Hence C := CX ∩ L is a face of CX . We also have F = D(IX|C) by (1.2)
and the fact that X|C has the same distribution as X|L (as P(X ∈ L \ C) = 0). Hence
F = D(IX) ∩ clCX|C by (1.1).

Clearly, C is a proper face of CX (i.e. C 6= CX) since otherwise F cannot be a proper
face of D(IX). However, C is not necessarily a maximal proper face. Let C ′ ∈ F∗(CX)

be such that C ⊂ C ′. Since this is an exposed face of CX , there is a hyperplane L′

supporting CX and satisfying C ′ = CX ∩ L′. We have

P(X ∈ L′) = P(X ∈ C ′) ≥ P(X ∈ C) > 0.

Since L′ supports CX , equality (1.2) is valid with L = L′ and it implies that the set
F ′ := D(IX) ∩ L′ satisfies F ′ = D(IX|C′) and therefore is non-empty; moreover, we have
F ′ = D(IX) ∩ clCX|C′ by (1.1). This shows that F ′ is a proper face of D(IX) since L′

supports D(IX) by (1.1).
Finally, by C ⊂ C ′, we have CX|C ⊂ CX|C′ , and thus

F = D(IX) ∩ clCX|C ⊂ D(IX) ∩ clCX|C′ = F ′.

Therefore, F = F ′ since F is a maximal proper face by the assumption. Thus, we have
F = D(IX|C′), which proves the first inclusion in (2.4).

To prove the remaining inclusion in (2.4), pick a C ′ ∈ F∗+(CX). Then C ′ = CX ∩L′ for
some hyperplane L′ supporting CX and satisfying P(X ∈ L′) > 0. As we have shown just
above, F ′ := D(IX) ∩ L′ is a non-empty proper face of D(IX) (but it is not necessarily a
maximal one anymore) and F ′ = D(IX|C′). This finishes the proof of Part a).

b) Direct implication. Assume that IX is strictly convex. Let us use induction in
dimCX to prove that intD(KX) 6= ∅, KX has the projection property, and KX is totally
steep.

This claim holds trivially in the base case dimCX = 0, where X is constant a.s.
To prove the induction step, consider any hyperplane L supporting CX such that

0 < P(X ∈ L) < 1. By Lemma 3.1, the effective domain of the function (K̃X|L)∗

is contained in L. Therefore, this function is strictly convex by (3.5) because IX is
strictly convex by the assumption. Then intD((K̃X|L)∗∗) 6= ∅ and (K̃X|L)∗∗ is steep
by [8, Theorem 26.3] (because strict convexity implies essential strict convexity). Hence
intD(K̃X|L) 6= ∅ and K̃X|L is also steep because it equals (K̃X|L)∗∗ except possibly at

some relative boundary points of D(K̃X|L) ([8, Theorems 7.4 and 12.2]).

Let us show that intD(K̃X|L) = intD(KX|L). Otherwise, by D(K̃X|L) ⊂ D(KX|L) and

convexity of D(KX|L), there is a point u ∈ ∂D(K̃X|L) ∩ intD(KX|L). Pick a sequence

u1, u2, . . . in intD(K̃X|L) converging to u. Then limn→∞ |∇K̃X|L(un)| =∞ by steepness of

K̃X|L. Thus, limn→∞ |∇KX|L(un)| =∞ because K̃X|L equals KX|L whenever K̃X|L <∞,

and hence K̃X|L = KX|L on intD(K̃X|L). However, it must be limn→∞ |∇KX|L(un)| =
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|∇KX|L(u)| because KX|L is continuously differentiable on intD(KX|L) since so is the
Laplace transform of any random variable ([2, Corollary 7.1]). This is a contradiction.

We now have PrL(intD(K̃X|L)) = PrL(intD(KX|L)), which implies equality (1.3)
by (3.6). Thus, KX satisfies Condition a) in Definition 2.5 of the projection property
because L was chosen arbitrarily. Equality (1.3) in turn implies (1.2) by Theorem 1.2,
hence IX|L is strictly convex because so is IX and D(IX|L) ⊂ L by Proposition 1.1.a.

For any maximal proper face C ∈ F∗+(CX), pick a hyperplane L supporting CX such
that C = CX ∩ L. Since 0 < P(X ∈ L) < 1 and dim(supp(X|L)) < dim(suppX), we can
apply the assumption of induction to the random vector X|L, which is distributed as X|C
and has strictly convex rate function IX|L by the above. Therefore, intD(KX|C) 6= ∅,
KX|C has the projection property, and KX|C is totally steep. Thus, since C was chosen
arbitrarily, KX has the projection property, as required. Finally, KX is totally steep, as
required, since intD(KX) 6= ∅ and KX is steep by Proposition 1.1.b.

Reverse implication. Assume that ∅ 6= intD(KX), KX has the projection property,
and KX is totally steep. We again use induction in dimCX to show that IX is strictly
convex.

In the base case dimCX = 0, the set D(IX) consists of a single point, and the claim
holds vacuously.

To prove the induction step, pick a closed line segment J ⊂ D(IX). From (2.1) and
the definition of a face, either rint J ⊂ rintD(IX) or J is contained in some maximal
proper face of D(IX). In the former case, IX is not affine on J by Proposition 1.1.b.
In the latter case, by the first inclusion in (2.4), we have J ⊂ D(IX|C) ⊂ C for some
face C ∈ F∗+(CX). Note that ∅ 6= intD(KX) ⊂ intD(KX|C) (cf. (2.2)), KX|C is totally
steep since so is KX , and KX|C has the projection property since KX has this property.
Therefore, IX|C is strictly convex by dim(supp(X|C)) < dim(suppX) and the assumption
of induction. Hence IX is not affine on J because for some hyperplane L supporting
CX and such that C = CX ∩ L, we have IX = IX|L = IX|C by (1.2), which holds true by
Theorem 1.2 because KX has the projection property. Therefore, IX is not affine on J in
either case and thus IX is strictly convex.
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