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Abstract

Given any δ ∈ (0,∞), let (Xn)∞n=0 be the δ-once reinforced random walk on ladder
Z× {0, 1} with the following edge weight function at the (n+ 1)-th step:

wn(e) = 1 + (δ − 1) · I{N(e,n)>0} =

{
1 if N(e, n) = 0,

δ if N(e, n) > 0.

Here N(e, n) := #{i < n : XiXi+1 = e} is the number of times that edge e has
been traversed by the walk before time n. It was proved that (Xn)∞n=0 is almost
surely recurrent for δ > 1/2 (Vervoort (2002) [8] and Sellke (2006) [7]), while the a.s.
recurrence for negative reinforcement factor δ ∈ (0, 1/2] remained open. In this note,
we give an affirmative answer to this question.
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1 Introduction and main result

Let Z (resp. N) be the set of all integers (resp. natural numbers). For any n ∈ N, let
Z×{0, . . . , n} be a ladder graph with n+ 1 levels, where two vertices (x1, y1) and (x2, y2)

are adjacent if and only if |x1 − x2|+ |y1 − y2| = 1. In this note, we devote to investigate
recurrence of once negatively reinforced random walk on ladder Z× {0, 1}.

To begin, let G = (V,E) be a connected locally finite graph with vertex set V and
edge set E. When two vertices u and v are adjacent, denoted by u ∼ v, we denote by
uv the undirected edge connecting u and v, −→uv the directed edge from u to v. The edge
reinforced random walk (ERRW) on G is a stochastic process X = (Xn)∞n=0 in V with the
following transition probability:

P(Xn+1 = u|Fn) =

{
wn(uv)∑

u′∼v wn(u′v) , on {Xn = v}, u ∼ v,
0, otherwise,
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A note on once reinforced random walk on ladder Z× {0, 1}

where (Fn)n≥0 is the natural filtration generated by the history of X, i.e. Fn =

σ(X0, . . . , Xn) for any integer n ≥ 0, and wn(uv) is an Fn-measurable random weight of
edge uv at the (n+ 1)-th step.

The original model of reinforced random walk in literature was firstly introduced by
Coppersmith and Diaconis in 1987 [1]. They considered the following weight function:

wn(e) = 1 +N(e, n) · δ, (1.1)

where δ > 0 is the reinforcement factor and N(e, n) = #{i < n : XiXi+1 = e} is the
number of times that edge e has been traversed before time n.

Davis (1990) [3] introduced the δ-once reinforced random walk (ORRW), which is an
interesting variant of ERRW with weight

wn(e) = 1 + (δ − 1) · I{N(e,n)>0} =

{
1 if N(e, n) = 0,

δ if N(e, n) > 0.

It takes value δ if and only if the edge has been crossed, and 1 otherwise. We call
ORRW positively reinforced if δ > 1 and negatively reinforced if δ ∈ (0, 1). While it
seems to be a simpler model than the other ERRWs since the weight function is simple,
ORRW has less results and no general methods are developed for its study. We consider
transience/recurrence of this stochastic process. A sample realization of a random walk
is said to be transient (resp. recurrent) if every vertex is visited only finitely many times
(resp. infinitely often) (see [8, Definition 2]). ORRW is recurrent a.s. on Z1 for any δ > 0.
However, no transience/recurrence result of ORRW is currently known on Zd with d ≥ 2.
Kious and Sidoravicius (2018) [6] showed a transience/recurrence phase transition for
ORRW on Zd-like trees. To our knowledge, it is the first example of phase transition
for ORRW. Then Collevecchio, Kious and Sidoravicius (2020) [2] proved a very elegant
result: ORRW on general trees T has a transience/recurrence phase transition. The
critical point is exactly the following branching-ruin number:

brr(T ) = sup

{
λ > 0 : inf

π∈Π

∑
e∈π
|e|−λ > 0

}
,

where Π is the set of cutsets separating the root from infinity, and |e| is the distance
between e and the root. It completes the whole work for transience/recurrence of the
ORRW on trees.

When considering ORRW on Zd, Sidoravicius conjectured that it is recurrent with
d = 2 and undergoes a phase transition for any d ≥ 3. However, it is still an open problem
and there is no result on transience/recurrence for any δ > 0. Since Z2 is the asymptotic
graph of Z×{−n, . . . ,−1, 0, 1, . . . , n} as n→∞, it leads to the study of ORRW on general
ladders Z × Γ with Γ being a finite connected graph. To the best of our knowledge,
the complete depiction on transience/recurrence under this setting remains an open
problem, even for the simplest case Z× {0, 1}.

In 1994, Sellke [7] showed that the ORRW on Z × {0, 1, . . . , n} is recurrent almost
surely for any δ ∈ (1, n/(n− 1)); and in particular it is recurrent almost surely for any
δ ∈ (1,∞) when n = 1. Afterwards Vervoort (2002) [8] verified the recurrence of ORRW
for δ ∈ (n/(n+1), 1), and then claimed that there exist δ1, δ2 > 0 with δ1 < 1−1/(n+1) <

1 + 1/(n− 1) < δ2 such that the ORRW is a.s. recurrent for any δ ∈ (δ1, δ2). These results
offered partial characterizations on the phase space when reinforcement parameters are
small. Intuitively, when the reinforcement factor δ is large enough, the walk will have a
strong tendency to cross the edge traversed before. That is to say, the ORRW prefers to
stick around the origin, which naturally deduces recurrence. Kious, Schapira and Singh
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(2018) [5] proved that there exists a constant C > 0 such that for any finite connected
graph Γ, the ORRW on Z× Γ is recurrent when δ ≥ 1 + C|Γ|40.

In this note, we prove the following result which completely confirms the recurrence
on the simplest ladder Z× {0, 1}.
Theorem 1.1. Let X = (Xn)∞n=0 be an ORRW on ladder Z× {0, 1} with initial site (0, 0)

and reinforcement factor δ ∈ (0, 1). Then X is recurrent almost surely.

This note is organized as follows: In Section 2, inspired by Vervoort [8, Lemma 11],
we prove a criterion for recurrence of ORRWs on infinite connected locally finite graphs,
see Theorem 2.1. In Section 3, based on Theorem 2.1, we prove Theorem 1.1 by a
novel estimate of the ORRWs on Z× {0, 1} specified in Lemma 3.2. Section 4 is a short
conclusion.

2 Criterion for recurrence of ORRWs

We start with some further notations. For h a function defined on V , and for any
directed edge −→vu of G, define ∆h(−→vu) = h(u)−h(v). We say h : V → R is a superharmonic
(resp. harmonic) function if∑

u∼v
∆h(−→vu) ≤ 0 (resp. = 0), ∀v ∈ V.

Then for t ∈ N, define random sets Et and At (Vervoort [8, Definition 10]),

Et = {XsXs+1 : s < t} ,
At =

{−→vu : vu ∈ Et,−→vu =
−−−−−→
XsXs+1 for s = min {s′ < t : Xs′Xs′+1 = vu}

}
.

That is to say, Et is an edge set containing the edges that have been traversed up to time
t and At is an arc set obtained from Et by orienting each edge according to the direction
in which it was firstly traversed.

Theorem 2.1. Let G = (V,E) be an infinite connected locally finite graph and h : V → R

be a function satisfying that

• h is superharmonic everywhere except on a finite subset F ⊂ V ,

• h(v)→ +∞ as v goes to infinity.

Consider δ-ORRW X on G starting at a vertex v0, and denote by ηr := inf{t : h(Xt) ≥ r}
and τr′ := inf{t ≥ ηr : h(Xt) ≥ r′ or Xt ∈ F}. If for some ε > 0, any r > h(v0) and any
r0 ∈ R, there exists a r′ > r0 (i.e., there exists a sequence of real numbers r′ ↑ ∞) such
that

(δ − 1)E

 ∑
−→vu∈Aτ

r′
\Aηr

∆h(−→vu)

∣∣∣∣∣∣Fηr

 ≥ −(1− ε)r′, a.s. (2.1)

then X is recurrent almost surely.

Remark 2.2. Theorem 2.1 inherits the spirit of [8, Lemma 11]. To the best of our
knowledge, Vervoort’s proof of [8, Lemma 11] is not completely precise and not easily to
be corrected since he used the deterministic time t0. Therefore, we cannot use this result
directly and have to show Theorem 2.1 in details. In this theorem, we replace “fixed
time t0” and “

∑
−→vu∈Aτr ” in (57) of [8, Lemma 11] by stopping time ηr and

∑
−→vu∈Aτ

r′
\Aηr

respectively, and remove “−c” on the right hand side (RHS) of (57) of [8, Lemma 11].

Before proving this theorem, we show some lemmas.

ECP 26 (2021), paper 38.
Page 3/12

https://www.imstat.org/ecp

https://doi.org/10.1214/21-ECP407
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


A note on once reinforced random walk on ladder Z× {0, 1}

Lemma 2.3. For δ-ORRW X on finite connected graph G0 = (V0, E0), denote vertex
cover time by

ρV0
:= inf{t : ∀v ∈ V0, ∃s ≤ t, Xs = v}.

Then ρV0
<∞ a.s.

We omit the proof of Lemma 2.3 since it is straightforward. Inspired by [8, Lemma
6-7], we obtain the following lemma.

Lemma 2.4. Given an infinite connected locally finite graph G = (V,E). Let X be the
δ-ORRW on G starting from v0 ∈ V . For any finite connected subgraph with vertex set
F ⊂ V , the following two statements are equivalent.

(a) F is visited infinitely often by X almost surely.

(b) X is recurrent almost surely.

Proof. Since (b)=⇒(a) is straightforward, we thus concentrate on the converse direc-
tion.

Assume (a) holds. Due to F being finite, there is at least one random vertex v ∈ F
which is visited infinitely often by X almost surely. Hence, to prove (b), it suffices to
prove that

P(v is visited infinitely often and u only finitely often by X) = 0, v ∈ F, u ∈ V. (2.2)

Moreover, once showing that (2.2) holds for all u ∼ v, we may further verify the equation
through (2.2) for any v ∈ F and u ∈ V by the connectivity of G and induction on the
graph distance dG(v, u). Thus we are to concentrate on the case of adjacent vertices.

Let Akt0,t(u, v) be the event that u is not visited by X in time interval [t0, t] and that v
is visited by X for k times in [t0, t− 1]. For any visit time s ∈ [t0, t− 1] of X to v,∑

v′∼v
ws(v

′v) ≤ (#{v′ : v′ ∼ v}) · (δ ∨ 1) and ws(uv) ≥ δ ∧ 1.

Thus the probability of X not immediately traversing uv just after time s is at most 1− c,
where

c =
δ ∧ 1

(#{v′ : v′ ∼ v}) · (δ ∨ 1)
∈ (0, 1].

Therefore, by induction on k,

P
(
Akt0,t(u, v)

)
≤ (1− c)k.

If we first let t ↑ ∞ and then k ↑ ∞, we see that

P(v is visited infinitely often and u never by X after time t0) ≤ lim
k↑∞

(1− c)k = 0.

Summing over all t0 ≥ 0, we get the desired result.

Note that
N(e, n) = #{i : XiXi+1 = e, 0 ≤ i ≤ n− 1}

is the number of times that edge e has been traversed before time n and wn(e) =

1 + (δ − 1) · I{N(e,n)>0}. For any V ′ ⊂ V , define

Mt =

t−1∑
s=0


∆h

(−−−−−→
XsXs+1

)
ws(XsXs+1)

, Xs ∈ V ′,

0, otherwise.

(2.3)

We recall the following two lemmas from Vervoort [8], which are not hard to verify.
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Lemma 2.5 (Vervoort [8] Lemma 9). For any infinite connected locally finite graph
G and δ-ORRW X on G, if h : V → R is superharmonic function, then (Mt)

∞
t=0 is a

supermartingale.

Proof. If Xt ∈ V ′ then Mt+1 = Mt, otherwise

Mt ≥Mt +
1∑

u∼Xt wt(Xtu)

∑
u∼Xt

∆h(
−−→
Xtu)

= Mt +
∑
v∼Xt

wt(Xtv)∑
u∼Xt wt(Xtu)

∆h(
−−→
Xtv)

wt(Xtv)

= Mt +
∑
v∼Xt

P(Xt+1 = v|Ft)
∆h(
−−→
Xtv)

wt(Xtv)

= E(Mt+1|Ft).

Lemma 2.6 (Vervoort [8] Lemma 10). Given an infinite connected locally finite graph G
and the δ-ORRW X on G. Let Mt be given by (2.3) for some h : V → R. Then for any
t ≥ s,

δ(Mt −Ms) = h(Xt)− h(Xs) + (δ − 1)
∑

−→vu∈At\As

∆h(−→vu) (2.4)

on the event that the set V \ V ′ has not been visited in the interval [s, t).

Proof. Since V \ V ′ has not been visited at any time t′ with s ≤ t′ < t, Mt − Ms =∑t−1
t′=s

∆h(
−−−−−−→
Xt′Xt′+1)

wt′ (Xt′Xt′+1) . Note that for t′ ∈ [s, t), wt′(Xt′Xt′+1) = 1 if and only if
−−−−−−→
Xt′Xt′+1 ∈

At \ As. Moreover, for every −→vu ∈ At \ As there exists a unique t′ ∈ [s, t) such that−−−−−−→
Xt′Xt′+1 = −→vu, which establishes a map −→vu 7→ t′. In addition, it is a bijection from At \As
to {t′ ∈ [s, t) :

−−−−−−→
Xt′Xt′+1 ∈ At \As}. Hence

Mt −Ms =
∑
s ≤t′ < t,

−−−−−−−→
X
t′Xt′+1

/∈ At \ As

∆h(
−−−−−−→
Xt′Xt′+1)

δ
+

∑
s ≤t′ < t,

−−−−−−−→
X
t′Xt′+1

∈ At \ As

∆h(
−−−−−−→
Xt′Xt′+1)

=
t−1∑
t′=s

∆h(
−−−−−−→
Xt′Xt′+1)

δ
+

(
1− 1

δ

) ∑
s ≤t′ < t,

−−−−−−−→
X
t′Xt′+1

∈ At \ As

∆h(
−−−−−−→
Xt′Xt′+1)

=

t−1∑
t′=s

∆h(
−−−−−−→
Xt′Xt′+1)

δ
+

(
1− 1

δ

) ∑
−→vu∈At\As

∆h(−→vu)

=
h(Xt)− h(Xs)

δ
+

(
1− 1

δ

) ∑
−→vu∈At\As

∆h(−→vu),

which implies the result.

Proof of Theorem 2.1. By Lemma 2.4, we only need to show F is visited infinitely often
by X almost surely. To this end, it is enough to show that there is constant c > 0 such
that for all r > 0, there exists a r̂ > r with

P
(
Xτr̂ ∈ F

∣∣Fηr

)
≥ c a.s. (2.5)

In fact, choosing a sequence of rn ↑ ∞ such that P
(
Xτrn+1

∈ F
∣∣Fηrn

)
≥ c a.s. succes-

sively, we can obtain the theorem by the conditional Borel-Cantelli lemma ([4] Theorem
5.3.2) since ηrn →∞ as n→∞.
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Now, we determine c and r̂ satisfying (2.5) by (2.1). Without loss of generality,
assume h ≥ 0. Noting that G = (V,E) is locally finite and h(v) → +∞ as v goes to
infinity, by condition of Theorem 2.1, for any r > h(v0), we can find a deterministic

r′ > 2h(Xηr )
ε ∨ (r + 1) such that (2.1) holds.

Set Mt to be the supermartingale in (2.3) with V ′ := V \ F . Due to Lemma 2.3, it is
clear that ηr, τr′ <∞ almost surely. Since Aηr ⊂ {−→vu : h(v) < r} and

At \Aηr ⊂ {−→vu : v /∈ F, h(v) < r′} for any ηr ≤ t ≤ τr′ ,

Lemma 2.6 implies that Mt is bounded for any ηr ≤ t ≤ τr′ . Thus by Lemma 2.5 and
the optional stopping time theorem we know that E

(
δMτr′

∣∣Fηr

)
≤ δMηr a.s.. Again, by

Lemma 2.6, we obtain

E
(
h(Xτr′ )

∣∣Fηr

)
≤ h(Xηr ) + (δ − 1)

∑
−→vu∈Aηr

∆h(−→vu)− (δ − 1)E

 ∑
−→vu∈Aτ

r′

∆h(−→vu)

∣∣∣∣∣∣Fηr

 .

Noting that E
(
h(Xτr′ )

∣∣Fηr

)
≥
[
1− P

(
Xτr′ ∈ F

∣∣Fηr

)]
r′, thus we have

P
(
Xτr′ ∈ F

∣∣Fηr

)
≥ 1− h(Xηr )

r′
+
δ − 1

r′
E

 ∑
−→vu∈Aτ

r′
\Aηr

∆h(−→vu)

∣∣∣∣∣∣Fηr


≥ 1− ε

2
− (1− ε) =

ε

2
.

Therefore, we verify (2.5) by taking c = ε
2 and r̂ = r′ as above, and then finish the

proof.

3 Proof of Theorem 1.1

Now we apply Theorem 2.1 to prove Theorem 1.1. With each vertex v of Z× {0, 1},
we can associate it with coordinates x(v) ∈ Z, y(v) ∈ {0, 1}, in the canonical fashion. Set

h(v) = |x(v)|, F = {v : x(v) = 0}, Ca = {(a, i)(a+ 1, i) : i = 0, 1}, a ∈ Z, (3.1)

where column Ca denotes the collection of all horizontal edges connecting all vertices
in {v : x(v) = a} with those in {v : x(v) = a + 1}. One may see ∆h(−→vu) = 0 when
edge vu is not horizontal, which indicates that we only need to concentrate on edges
in column Ca. Relying on Theorem 2.1, we choose r′ large enough and separate the

left hand side (LHS) of (2.1) into three parts:
r−1∑
a=0

,
r′−1∑
a=r̃

and
r̃−1∑
a=r

, where r < r̃ < r′ and

the exact values of r̃ and r′ will be specified later. The estimates of the first two parts
are similar to those in [8]. We will use a novel technique to show the third part larger
than −(1 − ε′)r′ for some ε′ > 0 based on an observation to be detailed in Lemma 3.4,

where the estimate of E
(∑

−→vu∈Aτ
r′
\Aηr ,vu∈Ca ∆h(−→vu)

∣∣∣Fηr

)
is transferred to the estimate

of E
(∑

−→vu∈Aτ∞\Aηr ,vu∈Ca ∆h(−→vu)
∣∣∣Fηr

)
when r′ is large enough. The latter is easier to

estimate than the former through the iteration technique since the path before τ∞ has
translation invariance property (for details, see Lemma 3.2). Thus, we can determine ε′,
r̃ and r′ by the specific estimates in the lemmas below.

Note ηn = inf{t ≥ 0 : h(Xt) = n} for any n ∈ N, since h(v) = |x(v)| on Z× {0, 1}. Set
κn−1 = inf{t ≥ ηn : h(Xt) = n− 1}, n ∈ N and Ωin = {y(Xκn−1

) = i, κn−1 <∞}.

ECP 26 (2021), paper 38.
Page 6/12

https://www.imstat.org/ecp

https://doi.org/10.1214/21-ECP407
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


A note on once reinforced random walk on ladder Z× {0, 1}

Definition 3.1. Let X be an ORRW on ladder Z × {0, 1} with reinforcement factor
δ ∈ (0, 1). Then for any n, n0 ∈ Z and v0 ∈ V satisfying n > n0 ≥ 0 and h(v0) = n0, if
X0 = v0, we define

p1 = P
(

Ω
1−y(Xηn )
n

∣∣∣Fηn

)
, p0 = P

(
Ω

y(Xηn )
n

∣∣∣Fηn

)
.

(0, 0)

p1

(a)

(0, 0)

p0

(b)

Figure 1: (a) represents the trajectory of X in Ω1
1, the first step of which is from (0, 0)

to (1, 0) and is indicated by the black real arrow. The red dashed arrow stands for the
last step before the hitting time of the board {v : h(v) = 0}. (b) represents the trajectory
of X in Ω0

1, the first step of which is from (0, 0) to (1, 0) and is indicated by the black
real arrow. The black dashed arrow is the last step before the hitting time of the board
{v : h(v) = 0}.

The conditional probabilities above are well defined since the path from time ηn to
κn−1 cannot be influenced by the path before time ηn − 1. The performance of the path
from time ηn to κn−1 can be seen as an ORRW on half ladder Z+ × {0, 1} with the first
step from (0, 0) to (0, 1). What we consider, actually, is the probability the process X

going back to the board {v : h(v) = 0} from below or above. (See Fig. 1)
Specifically, with y = 0 or 1,

P
(

Ω1−y
n

∣∣Fm

)
= p1 a.s. on {y(Xm) = y, ηn = m},

P (Ωyn|Fm) = p0 a.s. on {y(Xm) = y, ηn = m}.
(3.2)

Here we propose our key lemma whose proof is based on an iterative scheme.

Lemma 3.2. Let X be an ORRW on ladder Z× {0, 1} with reinforcement factor δ ∈ (0, 1)

and p1, p0 be the probabilities given in Definition 3.1. Then

p0 − p1 <
δ

1− δ . (3.3)

Proof. Take n = 1, v0 = (0, 0) in Definition 3.1. In fact, p1 = P(Ω1
1|X1 = (1, 0)) and

p0 = P(Ω0
1|X1 = (1, 0)). Then by the total probability formula, we know that

p1 = P (X2 = (2, 0)|X1 = (1, 0))P
(

Ω1
1

∣∣X2 = (2, 0), X1 = (1, 0)
)

+

P (X2 = (1, 1)|X1 = (1, 0))P
(

Ω1
1

∣∣X2 = (1, 1), X1 = (1, 0)
)

+

P (X2 = (0, 0)|X1 = (1, 0))P
(

Ω1
1

∣∣X2 = (0, 0), X1 = (1, 0)
)

=
1

2 + δ
(Pα + Pβ),
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where Pα := P
(

Ω1
1

∣∣X2 = (2, 0), X1 = (1, 0)
)
, Pβ := P

(
Ω1

1

∣∣X2 = (1, 1), X1 = (1, 0)
)

and
P
(

Ω1
1

∣∣X2 = (0, 0), X1 = (1, 0)
)

= 0. Note that {X2 = (2, 0), X1 = (1, 0)} ⊂ {y(X2) =

0, η2 = 2}. By (3.2) we obtain

Pα ≥ P
(

Ω1
2 ∩ Ω1

1

∣∣X2 = (2, 0), X1 = (1, 0)
)

= P
(

Ω1
2

∣∣X2 = (2, 0), X1 = (1, 0)
)
P
(

Ω1
1

∣∣X2 = (2, 0), X1 = (1, 0),Ω1
2

)
= p1 · P

(
Ω1

1

∣∣X2 = (2, 0), X1 = (1, 0), Xκ1
= (1, 1)

)
≥ p1 · P (Xκ1+1 = (0, 1)|X2 = (2, 0), X1 = (1, 0), Xκ1 = (1, 1))

=
1

2 + δ
p1.

Similarly,

Pβ ≥ 1

2 + δ

[
P
(

Ω1
1

∣∣X3 = (0, 1), X2 = (1, 1), X1 = (1, 0)
)

+

P
(

Ω1
1

∣∣X3 = (2, 1), X2 = (1, 1), X1 = (1, 0)
)]

=
1

2 + δ

[
1 + P

(
Ω1

1 ∩ Ω1
2

∣∣X3 = (2, 1), X2 = (1, 1), X1 = (1, 0)
)

+

P
(

Ω1
1 ∩ Ω0

2

∣∣X3 = (2, 1), X2 = (1, 1), X1 = (1, 0)
)]

=
1

2 + δ

[
1 + p0 · P

(
Ω1

1

∣∣X3 = (2, 1), X2 = (1, 1), X1 = (1, 0),Ω1
2

)
+

p1 · P
(

Ω1
1

∣∣X3 = (2, 1), X2 = (1, 1), X1 = (1, 0),Ω0
2

)]
,

where

P
(

Ω1
1

∣∣X3 = (2, 1), X2 = (1, 1), X1 = (1, 0),Ω1
2

)
≥ P (Xκ1+1 = (0, 1)|X3 = (2, 1), X2 = (1, 1), X1 = (1, 0), Xκ1 = (1, 1))

=
1

1 + 2δ
,

P
(

Ω1
1

∣∣X3 = (2, 1), X2 = (1, 1), X1 = (1, 0),Ω0
2

)
≥ P (Xκ1+2 = (0, 1), Xκ1+1 = (1, 1)|X3 = (2, 1), X2 = (1, 1), X1 = (1, 0), Xκ1

= (1, 0))

=
1

1 + 2δ
· 1

3
,

which implies Pβ ≥ 1
2+δ

[
1 + p0 1

1+2δ + p1 1
1+2δ · 1

3

]
. Therefore,

p1 ≥ 1

(2 + δ)2

[
p1 + 1 + p0 1

1 + 2δ
+ p1 1

1 + 2δ

1

3

]
≥ 1

(2 + δ)2

[
p1 + (p0 + p1) + p0 1

1 + 2δ
+ p1 1

1 + 2δ

1

3

]
,

which implies that

p1 ≥ 2 + 2δ

(δ2 + 4δ + 3)(1 + 2δ) + 2
3

(p0 + p1).

Note that 0 < δ < 1 and

2 + 2δ

(δ2 + 4δ + 3)(1 + 2δ) + 2
3

− 1− 2δ

2(1− δ) =
4δ4 + 16δ3 + 7δ2 − 8

3δ + 1
3

[(δ2 + 4δ + 3)(1 + 2δ) + 2
3 ] · 2(1− δ) ,

where 4δ4 + 16δ3 > 0 and 7δ2− 8
3δ+ 1

3 > 0 for any δ > 0. This implies 2+2δ
(δ2+4δ+3)(1+2δ)+ 2

3

>
1−2δ

2(1−δ) as 0 < δ < 1. Thus, p1 > 1−2δ
2(1−δ) (p0 + p1), i.e. as 0 < δ < 1,

p1 > (1− 2δ)p0.
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The inequality above implies p0 − p1 < 2δp0 and (2 − 2δ)p0 < p0 + p1. Noting that

p0 + p1 ≤ 1, we obtain that p0 − p1 < 2δ p
0+p1

2−2δ ≤ δ
1−δ as 0 < δ < 1.

Recall ηn = inf{t ≥ 0 : h(Xt) = n}, and let

TM,n = inf
{
t ≥ ηn : Xt ∈ {v : h(v) = n− 1 or n+M}

}
, M ∈ N. (3.4)

Definition 3.3. Let X be an ORRW on ladder Z × {0, 1} with reinforcement factor
δ ∈ (0, 1). Then for any n, n0 ∈ Z and v0 ∈ V satisfying n > n0 ≥ 0 and h(v0) = n0, if
X0 = v0 we can define

p1
M = P

(
XTM,n = (n− 1, 1− y(Xηn)) or (1− n, 1− y(Xηn))

∣∣Fηn

)
,

p0
M = P

(
XTM,n = (n− 1, y(Xηn)) or (1− n, y(Xηn))

∣∣Fηn

)
,

where TM,n is defined in (3.4).

Note that p0
M and p1

M are independent of n. Moreover,

P
(
XTM,n = (n− 1, 1− y)

∣∣F1

)
= p1

M , a.s. on {X1 = (n, y), X0 = (n− 1, y)},
P
(
XTM,n = (n− 1, y)

∣∣F1

)
= p0

M , a.s. on {X1 = (n, y), X0 = (n− 1, y)}.
(3.5)

Now we show the asymptotic property for these probabilities. Since

p1
M = P

(
XTM,1 = (0, 1)

∣∣X1 = (1, 0), X0 = (0, 0)
)
,

p0
M = P

(
XTM,1 = (0, 0)

∣∣X1 = (1, 0), X0 = (0, 0)
)
,

noting that XTM,1(ω) = (0, 1) implies XTM+1,1
(ω) = (0, 1), we have the following lemma.

Lemma 3.4. Let X be an ORRW on ladder Z×{0, 1} with reinforcement factor δ ∈ (0, 1).
Let p1

M , p
0
M are probabilities in Definition 3.3. Then as M ↑ ∞,

p1
M ↑ p1, p0

M ↑ p0. (3.6)

For reader’s convenience, we give the following simple property of conditional
expectation.

Lemma 3.5. Set (Ω,F , P ) be a probability space equipped with a filtration (Fn)n∈N. For
any (Fn)n∈N stopping times S1, S2 and any integrable random variable f ∈ σ(∪∞n=0Fn),

E(fI{S1=S2}|FS1
) = E(fI{S1=S2}|FS2

), a.s.

At this point, we are ready to conclude the proof of our main theorem.

Proof of Theorem 1.1. h(v) = |x(v)|, v ∈ Z × {0, 1} in (3.1) is harmonic (therefore,
superharmonic) except on the finite set F = {v : h(v) = 0}. Without loss of generality, let
r be a positive integer. Note that Ca is given in (3.1), and recall the definition of τr′ in
Theorem 2.1.

Firstly, we determine ε and r′ on RHS of (2.1). Set

ε′ =
1− (1− δ)(p0 − p1 + 1)

2
,

then ε′ > 0 by Lemma 3.2. Due to Lemma 3.4, there exists an integer N > 0 satisfying
∀n ≥ N ,

(δ − 1)(p0
n − p1

n + 1) > (δ − 1)(p0 − p1 + 1)− ε′ ≥ −(1− ε′). (3.7)
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Now we choose some ε ∈ (0, ε′). Moreover, for any positive integer r, we can take an
integer r′ > N+r such that (1−ε)r′ > (1−ε′)(r′−N−r)+2(1−δ)(r+N). Set r̃ = r′−N .

Secondly, we verify that (2.1) holds almost surely on {ω : Xηr (ω) = (r, 0) or (r, 1)}. In
this situation, Xn walks on Z+ × {0, 1} during n ∈ [ηr, τr′ ]. Specifically, the horizontal
coordinate of Xn, x(Xn) = h(Xn), and belongs to [0, r′], if ηr ≤ n ≤ τr′ .

We now separate E
(∑

−→vu∈Aτ
r′
\Aηr ∆h(−→vu)

∣∣∣Fηr

)
in (2.1) into three parts according

to the subscript a of column Ca: a ∈ [0, r − 1], a ∈ [r̃, r′ − 1] and a ∈ [r, r̃ − 1] (see Fig. 2),
and estimate them respectively.

0 r r̃ := r′ −N r′
Part 1 Part 3 Part 2

Figure 2: An intuitive illustration of the three parts separated in LHS of (2.1) and the
notation of r̃.

Part 1 and Part 2: Noting that each column Ca has only two horizontal edges and for any
integer a ∈ [0, r − 1] ∪ [r̃, r′ − 1], we have

(δ − 1)E

 ∑
−→vu∈Aτ

r′
\Aηr ,vu∈Ca

∆h(−→vu)

∣∣∣∣∣∣Fηr

 ≥ 2(δ − 1). (3.8)

Part 3: For any integer a ∈ [r, r̃− 1], r−a− 1 ≥ N , thus τa+1 ≤ τr′ . Noting that h(Xt) < a

for any t ≤ ηr, we have ηa+1 = inf{t > ηr : h(Xt) = a+1}, which implies ηr < τa+1 ≤ ηa+1.

Let

Dk
a =

ω :
∑

−→vu∈Aτ
r′
\Aηr ,vu∈Ca

∆h(−→vu) = k

 , k = 0, 1, 2.

One can see that ∪2
k=0D

k
a = Ω and Di

a ∩ Dj
a = ∅ for i 6= j. ω ∈ D1

a ∪ D2
a indicates

that there is an edge in Ca traversed by Xn(ω) between stopping time ηr and τr′ , thus
D1
a ∪D2

a ⊆ {h(Xτa+1) = a+ 1} = {τa+1 = ηa+1}. Then Lemma 3.5 implies that

(δ − 1)E

 ∑
−→vu∈Aτ

r′
\Aηr ,vu∈Ca

∆h(−→vu)

∣∣∣∣∣∣Fτa+1


= (δ − 1)

[
2P
(
D2
a

∣∣Fτa+1

)
+ P

(
D1
a

∣∣Fτa+1

)
+ 0 · P

(
D0
a

∣∣Fτa+1

) ]
= (δ − 1)

[
2P
(
D2
a, τa+1 = ηa+1

∣∣Fτa+1

)
+ P

(
D1
a, τa+1 = ηa+1

∣∣Fτa+1

)]
a.s.
= (δ − 1)

[
2P
(
D2
a, τa+1 = ηa+1

∣∣Fηa+1

)
+ P

(
D1
a, τa+1 = ηa+1

∣∣Fηa+1

)]
. (3.9)

Note that the fact Tr′−a−1,a+1 = inf{t ≥ ηa+1 : h(Xt) = a or r′} implies {D2
a, τa+1 =

ηa+1} ⊂ {XTr′−a−1,a+1
= (a, y(Xηa+1)), τa+1 = ηa+1}. Thus

P
(
D2
a, τa+1 = ηa+1

∣∣Fηa+1

)
= P

(
D2
a, XTr′−a−1,a+1

= (a, y(Xηa+1)), τa+1 = ηa+1

∣∣Fηa+1

)
. (3.10)

Meanwhile, {XTr′−a−1,a+1
= (a, y(Xηa+1

)), τa+1 = ηa+1}, {h(XTr′−a−1,a+1
) = r′, τa+1 =

ηa+1} and {XTr′−a−1,a+1
= (a, 1−y(Xηa+1

)), τa+1 = ηa+1} are disjoint sets, and their union
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is {τa+1 = ηa+1, h(Xηr ) = r} ⊃ D1
a. Observing {XTr′−a−1,a+1

= (a, 1 − y(Xηa+1
)), τa+1 =

ηa+1} ⊂ D0
a and D0

a ∩D1
a = ∅, we obtain that

P
(
D1
a, τa+1 = ηa+1

∣∣Fηa+1

)
= P

(
D1
a, XTr′−a−1,a+1

= (a, y(Xηa+1
)), τa+1 = ηa+1

∣∣Fηa+1

)
+P
(
D1
a, h(XTr′−a−1,a+1

) = r′, τa+1 = ηa+1

∣∣Fηa+1

)
≤ 2P

(
D1
a, XTr′−a−1,a+1

= (a, y(Xηa+1)), τa+1 = ηa+1

∣∣Fηa+1

)
+P
(
h(XTr′−a−1,a+1

) = r′, τa+1 = ηa+1

∣∣Fηa+1

)
. (3.11)

Combining (3.10), (3.11) and P
(
D0
a, XTr′−a−1,a+1

= (a, y(Xηa+1
)), τa+1 = ηa+1

∣∣Fηa+1

)
≥

0, and noting δ − 1 < 0, we have that

(3.9) ≥ (δ − 1)

[
2

2∑
k=0

P
(
Dk
a , XTr′−a−1,a+1

= (a, y(Xηa+1
)), τa+1 = ηa+1

∣∣Fηa+1

)
+P

(
h(XTr′−a−1,a+1

) = r′, τa+1 = ηa+1

∣∣Fηa+1

)]

= (δ − 1)

[
2P
(
XTr′−a−1,a+1

= (a, y(Xηa+1)), τa+1 = ηa+1

∣∣Fηa+1

)
+P

(
h(XTr′−a−1,a+1

) = r′, τa+1 = ηa+1

∣∣Fηa+1

)]
a.s.
= (δ − 1)

[
2p0
r′−a−1 + (1− p0

r′−a−1 − p1
r′−a−1)

]
· I{τa+1=ηa+1}I{ηa+1<∞}

(by (3.7)) > −(1− ε′).

Therefore, summing up these three parts, we get that on {ω : Xηr (ω) = (r, 0) or (r, 1)},

(δ − 1)E

 ∑
−→vu∈Aτ

r′
\Aηr

∆h(−→vu)

∣∣∣∣∣∣Fηr


=

r−1∑
a=0

+

r′−1∑
a=r′−N

 (δ − 1)E

 ∑
−→vu∈Aτ

r′
\Aηr ,vu∈Ca

∆h(−→vu)

∣∣∣∣∣∣Fηr


+

r′−N−1∑
a=r

(δ − 1)E

E
 ∑
−→vu∈Aτ

r′
\Aηr ,vu∈Ca

∆h(−→vu)

∣∣∣∣∣∣Fτa+1

∣∣∣∣∣∣Fηr


a.s.
≥ [−(1− ε′)(r′ −N − r)− 2(1− δ)(r +N)]

≥ −(1− ε)r′. (3.12)

Finally, we can also verify (3.12) on {ω : Xηr (ω) = (−r, 0) or (−r, 1)} by the same
approach to work on Z− × {0, 1} and finish proving Theorem 1.1 by Theorem 2.1.

4 Conclusion

Given any n ∈ N, it is expected that δ-ORRW on ladder Z×{0, . . . , n} with n+ 1 levels
is almost surely recurrent for any δ > 0 ([7]). Theorem 1.1 together with the results in
[7] and [8] confirm this is true for n = 1.

For n ≥ 2, our method seems to have met obstacles. In this case, we can still

apply Theorem 2.1 and separate LHS of (2.1) into three parts:
r−1∑
a=0

,
r′−1∑
a=r̃

and
r̃−1∑
a=r

, where
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r < r̃ < r′. The estimation approach of the first two parts is still applicable. While for the
third part, our proposed approach is to decompose the paths into Dk

a , k = 0, 1, . . . , n+ 1

according to the numbers of the horizontal edges of column Ca traversed firstly from left
to right, and then to compute probabilities related to each Dk

a. At present, we are only
able to get the following type of weaker results: there are δ1, δ2 depending on n such
that 0 < δ1 <

n
n+1 <

n
n−1 < δ2, and δ-ORRW is a.s. recurrent for any δ ∈ (δ1, δ2). Such

a result was already claimed in [8]. Fortunately, for Z × {0, 1}, Lemma 3.2 holds and
provides some accurate estimates of probabilities related to each Dk

a for any δ ∈ (0, 1),

and thus we can prove Theorem 1.1.
To handle the case n ≥ 2, new tools need to be developed, for example, decomposing

paths more delicately in a larger column (e.g. (n+ 1)× (n+ 1) square) to get inequality
similar to Lemma 3.2.

Moreover, if we assume that ORRWs on Z×{−n, . . . ,−1, 0, 1, . . . , n} are a.s. recurrent
for any n ∈ N, an interesting problem will arise naturally: Can one deduce a.s. recurrence
for ORRWs on Z2?

There are plenty of differences between reinforced random walks and Markov Chains.
For instance, unlike Markov Chains, whether or not the transience/recurrence 0-1 law of
reinforced random walks holds is a subtle problem. In particular, although the known
results of ORRWs show the transience/recurrence 0-1 law, there seems to be lack of deep
insights on this property of general cases, and it is unknown that δ-ORRW on Zd with
d ≥ 2 satisfies the transience/recurrence 0-1 law for all δ > 0.
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