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Abstract

We show that the last zero before time t of a recurrent Bessel process with drift
starting at 0 has the same distribution as the product of a right-censored exponential
random variable and an independent beta random variable. This extends a recent
result of Schulte-Geers and Stadje [19] from Brownian motion with drift to recurrent
Bessel processes with drift. We give two proofs, one of which is intuitive, direct, and
avoids heavy computations. For this we develop a novel additive decomposition for
the square of a Bessel process with drift that may be of independent interest.
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1 Introduction

Let X = (Xt : t ≥ 0) denote the coordinate process on the canonical space of
continuous functions from [0,∞) to R and let Wx denote the law under which X is
Brownian motion starting at x ∈ R. We write gt for the last zero of X before time t.
More precisely, gt = sup{s ≤ t : Xs = 0} with the usual convention of sup{∅} = −∞. The
well-known arcsine law for gt is due to Lévy [8, § 7.7] and states that

gt under W0
L
= tA 1

2
(1.1)

where we used
L
= to indicate equality in law and A 1

2
is a Beta( 1

2 ,
1
2 ) random variable with

density

P (A 1
2
∈ dx) =

1

π
√
x(1− x)

1(0,1)(x) dx .

There have been many extensions of (1.1) to processes besides 1-dimensional Brow-
nian motion and the reader is directed to Chapter 8 of [10] and Section 2.5 of [12]
as well as references therein for some examples. One such generalization that plays
an important role in this paper is due to Lamperti [6, Theorem 5.1] and identifies the
distribution of gt when the underlying Brownian motion is replaced by a recurrent Bessel
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Last zero arcsine law for Bessel processes with drift

process of dimension δ ∈ (0, 2). We use Pδx to denote the law of this Bessel processes
when it starts at x ≥ 0. Lamperti showed that

gt under Pδ0
L
= tAα (1.2)

where α = 1− δ
2 ∈ (0, 1) and Aα is a Beta(α, 1− α) random variable with density

P (Aα ∈ dx) =
xα−1(1− x)−α

Γ(α)Γ(1− α)
1(0,1)(x) dx .

Lévy’s last zero arcsine law (1.1) can be seen as a special case of (1.2) since the law of
|X| under W0 is the same as the law of X under P1

0.
Another more recent generalization that is central to our results is that of charac-

terizing the law of gt when a constant drift µ ∈ R is added to the underlying Brownian
motion. We use Wµ

x to denote the law of Brownian motion with drift µ when it starts at
x ∈ R. Using a random walk approximation argument, Schulte-Geers and Stadje [19,
Theorem 2.1] show that gt under Wµ

0 has the independent factorization

gt under Wµ
0
L
= min{t, Eµ}A 1

2
(1.3)

where Eµ is an Exp( 1
2µ

2) random variable independent of A 1
2

and with density

P (Eµ ∈ dt) =
1

2
µ2e−

1
2µ

2t1[0,∞)(t) dt .

Despite the elegant and elementary nature of (1.3), it seems to have escaped notice
until [19]; see also [4, Remark 2.1]. The present author learned of this result from a
MathOverflow answer [3] posted by the first author of [19]. Another attractive feature
of (1.3) is that it allows us to easily recover Lévy’s last zero arcsine law (1.1) since
min{t, Eµ} degenerates to t as µ → 0. Moreover, since the last exit time from 0 is
almost surely finite when µ 6= 0, we can also recover the law of g∞ in this case. Letting
t → ∞ in (1.3) shows that g∞ under Wµ

0 is distributed like EµA 1
2
. After recalling the

beta-gamma algebra [17, Chapter 0.6], it follows that g∞ under Wµ
0 is a Gamma( 1

2 ,
1
2µ

2)

random variable with density

W
µ
0 (g∞ ∈ dt) =

|µ|√
2πt

e−
1
2µ

2t1(0,∞)(t) dt .

While verifying (1.3) directly using a Girsanov measure change argument is a straight-
forward matter, tedious calculations are required as can be witnessed in Section 2 of [4]
where this is carried out in detail. Another derivation which uses a formula from Borodin
and Salminen’s handbook [2] also requires significant computations; see Section 4.2.
Indeed, in [19, Remark 2.3], the authors appeal for a “purely Brownian” explanation of
the independent factorization (1.3). This leads us to the main contributions of this paper:

1. Extending (1.3) to Bessel processes of dimension δ ∈ (0, 2) with positive drift
(in the sense of Watanabe [20]), thereby unifying the last zero arcsine laws for
Brownian motion (1.1) and recurrent Bessel processes (1.2) under the independent
factorization framework of (1.3) when drift is present.

2. Giving a “purely Bessel” explanation for the independent factorization (1.3) and
the aforementioned extension to Bessel processes with drift that is intuitive, direct,
and avoids heavy computation. For this we develop an additive decomposition for
the square of a Bessel process with drift which appears to be new and may be of
independent interest.
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Last zero arcsine law for Bessel processes with drift

The remainder of the paper is organized as follows. In Section 2 we recall the
definition of Bessel processes with drift and state our main theorems. In Section 3, we
review several relevant properties of Bessel processes and Bessel bridges and prove
some preliminary results. Finally, the main theorems are proved in Section 4.

2 Main results

2.1 Bessel processes with drift

Before stating our main results, we first recall the Bessel processes with drift intro-
duced by Watanabe [20]. These comprise a two-parameter family of diffusions on [0,∞)

that are indexed by their dimension δ > 0 and drift µ ≥ 0. Let Iν denote the modified
Bessel function of the first kind and for µ > 0, define the function hδ,µ : [0,∞)→ [1,∞)

by

hδ,µ(x) =

1 x = 0(
2
µx

) δ
2−1

Γ
(
δ
2

)
I δ

2−1
(µx) x > 0.

When µ > 0, the Bessel processes with drift are determined by the generator

Lδ,µ =
1

2

d2

dx2
+

(
δ − 1

2x
+
h′δ,µ(x)

hδ,µ(x)

)
d

dx
(2.1)

with 0 being a regular boundary with instantaneous reflection if 0 < δ < 2 or an entrance
boundary if δ ≥ 2. When µ = 0, these processes coincide with the usual Bessel processes
without drift having the same dimension. Accordingly, we use Pδ,µx to denote the law of a
Bessel process with dimension δ and drift µ that starts from x ≥ 0. By writing Pδx instead
of Pδ,0x , this notation subsumes that of the Bessel processes without drift from Section 1.
We will also work with squared Bessel processes, both with and without drift, and will
use Qδ,µx and Qδx, respectively, to denote the law of these processes. More precisely,(

Xt : t ≥ 0; Qδ,µx
) L

=
(
X2
t : t ≥ 0; Pδ,µ√

x

)
(
Xt : t ≥ 0; Qδx

) L
=
(
X2
t : t ≥ 0; Pδ√x

)
.

(2.2)

The appearance of the logarithmic derivative of hδ,µ in the first-order term of the
generator (2.1) along with the fact that Lδ,0 hδ,µ = 1

2µ
2 hδ,µ implies that a Bessel process

of dimension δ with drift µ is simply a Bessel process of the same dimension without
drift killed at rate 1

2µ
2 and then h-transformed by hδ,µ. In particular, for any fixed t ≥ 0,

this gives the absolute continuity relation

dPδ,µx
∣∣
Ft

= e−
1
2µ

2thδ,µ(Xt)

hδ,µ(x)
dPδx

∣∣
Ft

(2.3)

where we used (Ft : t ≥ 0) to denote the canonical filtration. Refer to [11, Section 4.1]
for the requisite theory on h-transforms of diffusion processes.

As remarked upon in [14], the name “Bessel process with drift” is appropriate since
for δ ∈ N, the law of X under Pδ,µ0 is the same as that of the modulus of Brownian motion
in Rδ starting at 0 with a constant drift vector of magnitude µ; see [18, Theorem 3].
Moreover, by the corollary to [20, Theorem 2.1], we have for any δ > 0 and x, µ ≥ 0

Pδ,µx

(
lim
t→∞

Xt

t
= µ

)
= 1. (2.4)

Interest in these processes is motivated in part by their being, up to a scale factor,
the only regular and conservative diffusions on [0,∞) that satisfy the time inversion
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property [20, 7]; see Section 3.1 for more on this property. Additionally, when δ = 3 they
make an appearance in Williams’ path decomposition for Brownian motion with drift
[21, 16]. When δ = 3 and µ = 1, they also coincide with the hyperbolic Bessel process of
dimension 3; see [5, 1]. We note that they are distinct from the Bessel processes with
constant “naive drift” which arise in studies of bird navigation and queueing theory; see
[22, 9] and references therein.

2.2 Main theorems

Our first result is an additive decomposition of (Xt : t ≥ 0) under Qδ,µ0 into two
independent processes that start at 0: one being a squared Bessel process of dimension
δ without drift and the other being a squared Bessel process of dimension 4 with drift µ
which waits for an independent Exp( 1

2µ
2) time before starting. Such a decomposition

was alluded to by Pitman and Yor in their Remark 5.8.iii of [15] but as far as we know, no
explicit statement has ever appeared in the literature. A random waiting time before
starting has featured in a similar additive decomposition for a squared Bessel process of
dimension 2 without drift that appears in Section 3.5.1 of [10]. We adopt Mansuy and
Yor’s notation which makes use of the positive part x+ := max{x, 0}.
Theorem 2.1. Suppose δ, µ > 0 and let Eµ be an independent Exp( 1

2µ
2) random variable.

Then we have(
Xt : t ≥ 0; Qδ,µ0

)
L
=
(
Xt +X ′(t−Eµ)+ : t ≥ 0; Qδ0(X)×Q4,µ

0 (X ′)
)

where the product law notation Qδ0(X)×Q4,µ
0 (X ′) indicates that X and X ′ are indepen-

dent with laws Qδ0 and Q4,µ
0 , respectively.

Remark 2.2. The piecewise nature of the second summand distinguishes the additivity
exhibited in Theorem 2.1 from the usual kind described in Section 3.4. A similarly exotic
form of additivity for squared Bessel processes without drift and with possibly negative
dimensions can be found in [13, Proposition 1.1].

Theorem 2.1 allows us to give a quick and intuitive proof of the independent factor-
ization of the last zero arcsine law (1.3) and its generalization to Bessel processes with
drift which we state below as Theorem 2.3.

Theorem 2.3. Let gt = sup{s ≤ t : Xs = 0} be the last zero before time t of a Bessel
process with dimension δ ∈ (0, 2) and drift µ > 0 starting at 0. Put α = 1 − δ

2 and let
Aα and Eµ be independent Beta(α, 1− α) and Exp( 1

2µ
2) random variables, respectively.

Then we have the independent factorization

gt under Pδ,µ0
L
= min{t, Eµ}Aα. (2.5)

Remark 2.4. As mentioned before in Section 2.1, |X| under Wµ
0 has the same law as X

under P1,|µ|
0 so it follows that (1.3) is a special case of Theorem 2.3.

Remark 2.5. We can recover Lamperti’s arcsine law (1.2) by letting µ → 0. Similarly,
letting t→∞ and appealing to the beta-gamma algebra shows that g∞ under Pδ,µ0 is a
Gamma(α, 12µ

2) random variable; see also [14, Section 7].

Theorem 2.3 has a dual formulation in terms of the first zero after a fixed time which
we state below as Theorem 2.6. We prove this directly and also show in Section 3.1
that either Theorem 2.3 or Theorem 2.6 can be deduced from the other using the time
inversion property.

Theorem 2.6. Let dt = inf{s ≥ t : Xs = 0} be the first zero after time t of a Bessel
process with dimension δ ∈ (0, 2) and no drift starting at x > 0. Put α = 1 − δ

2 and let
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Aα and Ex be independent Beta(α, 1− α) and Exp( 1
2x

2) random variables, respectively.
Then we have the independent factorization

dt under Pδx
L
= max

{
t,

1

Ex

}
1

Aα
.

Remark 2.7. By letting either x → 0 or t → 0, we see that dt under Pδ0 is a shifted
and scaled beta prime random variable while τ0 under Pδx is an inverse gamma random
variable.

3 Preliminary results

3.1 Time inversion property and duality

Our proofs rely on some well-known properties of Bessel processes and Bessel
bridges which we now recall, starting with the aforementioned time inversion property
[20, Theorem 2.1]. For δ > 0 and x, µ ≥ 0, this states that(

tX 1
t

: t > 0; Pδ,µx

)
L
=
(
Xt : t > 0; Pδ,xµ

)
. (3.1)

In other words, time inversion preserves dimension but swaps the drift and starting
position of Bessel processes with drift. Since Bessel processes without drift satisfy the
usual Brownian scaling property, we get from (3.1) and (2.4) that for any δ, c > 0(

cX t
c2

: t ≥ 0; Pδ,µ0

)
L
=
(
Xt : t ≥ 0; P

δ,µc
0

)
. (3.2)

The time inversion property (3.1) can also be used to establish a duality relation
between gt and dt. More precisely, for any t > 0 and x ≥ 0 with δ ∈ (0, 2) we have

dt under Pδx
L
= inf

{
s ≥ t : sX 1

s
= 0
}

under Pδ,x0

=
1

sup
{
s ≤ 1

t : Xs = 0
} under Pδ,x0

=
1

g 1
t

under Pδ,x0 . (3.3)

Using (3.3), it is easy to deduce Theorem 2.6 from Theorem 2.3 and vice versa.

3.2 Bessel bridges with δ > 0

Next we introduce the notation Pδ,Tx→y for the law of a Bessel process with dimension
δ > 0 which starts at x ≥ 0 and is conditioned to be at y ≥ 0 at time T > 0, that is, the law
of a Bessel bridge with dimension δ > 0 from x to y of length T . While the appearance of
an arrow in the notation for bridge laws should prevent mistaking the T for drift, we
also use B for the coordinate process of a bridge instead of X to further the distinction.

The following lemma is a consequence of the time inversion property (3.1) and shows
how Bessel processes with drift and Bessel bridges are related to each other through a
space-time transformation. See [14, Theorem 5.8] for a similar result.

Lemma 3.1. Suppose δ, T > 0 and µ ≥ 0. Then we have:

i.
(
Bt : 0 ≤ t < T ; Pδ,T0→µ

)
L
=
(

(T − t)X t
T (T−t)

: 0 ≤ t < T ; Pδ,µ0

)
,

ii.
(
Xt : t ≥ 0; Pδ,µ0

)
L
=

(
1 + Tt

T
B T2t

1+Tt

: t ≥ 0; Pδ,T0→µ

)
.
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Proof. Starting from the definition of Bessel bridge, we can apply time inversion and
then the Markov property to write(

Bt : 0 < t ≤ T ; Pδ,T0→µ

)
L
=
(
Xt : 0 < t ≤ T ; Pδ0

∣∣XT = µ
)

L
=
(
tX 1

t
: 0 < t ≤ T ; Pδ0

∣∣∣X 1
T

=
µ

T

)
L
=
(
tX 1

t−
1
T

: 0 < t ≤ T ; Pδµ
T

)
. (3.4)

Applying time inversion again to the right-hand side of (3.4) and then using the scaling
relation (3.2) results in(

tX 1
t−

1
T

: 0 < t < T ; Pδµ
T

)
L
=

(
T − t
T

X Tt
T−t

: 0 < t < T ; P
δ, µT
0

)
L
=
(

(T − t)X t
T (T−t)

: 0 < t < T ; Pδ,µ0

)
. (3.5)

Now part i. follows from combining (3.4) with (3.5).
Part ii. can be deduced from part i. via(

1 + Tt

T
B T2t

1+Tt

: t ≥ 0; Pδ,T0→µ

)
L
=

1 + Tt

T

(
T − T 2t

1 + Tt

)
X T2t

1+Tt

T(T− T2t
1+Tt )

: t ≥ 0; Pδ,µ0


=
(
Xt : t ≥ 0; Pδ,µ0

)
.

3.3 Bessel bridges with δ = 0

It is well known that 0 is an absorbing state for the Bessel process of dimension 0

and this will have implications for the corresponding bridges. Before defining Bessel
bridges in this case, we first recall the particularly simple distribution function of the
absorption time. More generally, we let τy = inf{t > 0 : Xt = y} denote the first hitting
time of y ∈ R by the coordinate process. Then from [17, Corollary XI.1.4] we have

P0
x(τ0 ≤ t) = e−

x2

2t , t > 0. (3.6)

From this it follows that

τ0 under P0
x
L
=

1

Ex
(3.7)

where Ex is an Exp( 1
2x

2) random variable.
Now we expound on the subtlety in the definition of Bessel bridges of dimension 0

that stems from 0 being an absorbing state for the underlying unconditioned process;
see also [15, Section 5.3]. When x > 0, the bridge law P

0,T
x→0 results from conditioning a

0-dimensional Bessel path of duration T starting at x to be absorbed before time T . Note
that this conditioned absorption time will almost surely occur strictly between 0 and T .
The bridge law P

0,T
0→x is simply the law of the time reversed bridge under P0,T

x→0, namely(
Bt : 0 ≤ t ≤ T ; P0,T

0→x

)
L
=
(
BT−t : 0 ≤ t ≤ T ; P0,T

x→0

)
.

When both x, y > 0, the bridge law P0,T
x→y is defined just as in the δ > 0 case. When

x = y = 0, the law P
0,T
0→0 is degenerate and assigns probability 1 to the constant 0 path.
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By also conditioning on the exact time of absorption, we can relate a Bessel bridge of
dimension 0 with a bridge of dimension 4. More precisely, if x > 0 and 0 < S ≤ T , then
we have (

Bt : 0 ≤ t ≤ S; P0,T
x→0

∣∣∣τ0 = S
)
L
=
(
Bt : 0 ≤ t ≤ S; P4,S

x→0

)
.

From this it follows by time reversal that(
Bt+T−S : 0 ≤ t ≤ S; P0,T

0→x

∣∣∣gT = T − S
)
L
=
(
Bt : 0 ≤ t ≤ S; P4,S

0→x

)
. (3.8)

Lemma 3.1 does not apply when δ = 0 so we need another result for this case. The
following lemma serves this purpose by using the same space-time transformation to
connect a Bessel bridge of dimension 0 with the waiting Bessel process of dimension 4

which appears in Theorem 2.1.

Lemma 3.2. For µ > 0, let Eµ be an independent Exp( 1
2µ

2) random variable. Then(
(1 + t)B t

1+t
: t ≥ 0; P0,1

0→µ

)
L
=
(
X(t−Eµ)+ : t ≥ 0; P4,µ

0

)
.

Proof. It follows from (3.8) that the bridge (Bt : 0 ≤ t ≤ 1) under P0,1
0→µ can be split into

two independent pieces by conditioning on g1. Indeed, we can sample this bridge by first
drawing g1 under P0,1

0→µ and then sampling a bridge under P4,1−g1
0→µ that is appended to a

constant 0 path of length g1. More precisely, let γ be an independent random variable
distributed like g1 under P0,1

0→µ. Then(
Bt : 0 ≤ t ≤ 1; P0,1

0→µ

)
L
=
(
B(t−γ)+ : 0 ≤ t ≤ 1; P4,1−γ

0→µ

)
.

Applying the space-time transformation to both sides of this equality in law results in(
(1 + t)B t

1+t
: t ≥ 0; P0,1

0→µ

)
L
=
(

(1 + t)B( t
1+t−γ)

+ : t ≥ 0; P4,1−γ
0→µ

)
. (3.9)

Since 0 < γ < 1 almost surely, notice that(
t

1 + t
− γ
)+

=

{
0 0 ≤ t < γ

1−γ
t

1+t − γ t ≥ γ
1−γ

=

{
0 0 ≤ t < γ

1−γ
(1−γ)(t−γ−γt)

(1−γ)(1+t) t ≥ γ
1−γ

=
(1− γ)2

(
t− γ

1−γ

)+
1 + (1− γ)

(
t− γ

1−γ

)+
and similar calculations show that

1 + t =
1 + (1− γ)

(
t− γ

1−γ

)+
1− γ

, t ≥ γ

1− γ
.

Writing f(t) for the (t − γ
1−γ )+ which appears in both of these identities, now we can

make the appropriate substitutions in the right-hand side of (3.9) and then appeal to
part ii. of Lemma 3.1 to yield(

(1 + t)B t
1+t

: t ≥ 0; P0,1
0→µ

)
L
=

((
1 + (1− γ)f(t)

1− γ

)
B (1−γ)2f(t)

1+(1−γ)f(t)
: t ≥ 0; P4,1−γ

0→µ

)
L
=

(
X(t− γ

1−γ )
+ : t ≥ 0; P4,µ

0

)
. (3.10)
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It remains to identify the distribution of the γ
1−γ appearing in (3.10). By hypothesis,

this random variable is distributed like g1
1−g1 under P0,1

0→µ and is also independent of the

Bessel process that appears in (3.10). From (3.6), it follows that g1 under P0,1
0→µ has

distribution function

P
0,1
0→µ(g1 ≤ t) = P

0,1
µ→0(1− τ0 ≤ t)

= 1− e−
µ2t

2(1−t) .

Hence

P
0,1
0→µ

(
g1

1− g1
≤ t
)

= P
0,1
0→µ

(
g1 ≤

t

1 + t

)
= 1− e− 1

2µ
2t.

From this we deduce that the γ
1−γ appearing in (3.10) is an independent Exp( 1

2µ
2)

random variable and the proof is complete.

3.4 Additivity property

Lastly, we recall the additivity property of squared Bessel processes [17, Theorem
XI.1.2]. This property states that if X and X ′ are independent squared Bessel processes
of dimensions δ, δ′ ≥ 0 starting from x, x′ ≥ 0, then their sum (Xt+X

′
t : t ≥ 0) is a squared

Bessel process of dimension δ + δ′ starting from x+ x′. A more succinct statement of the
additivity property is

Qδx ∗Qδ
′

x′ = Qδ+δ
′

x+x′ (3.11)

where we used Qδx ∗ Qδ
′

x′ to denote the law of the sum of independent processes with
laws Qδx and Qδ

′

x′ . The additivity property also applies to squared Bessel bridges and for
δ, δ′ ≥ 0 and x, x′ ≥ 0 we have the statements

Q
δ,T
x→0 ∗Q

δ′,T
x′→0 = Q

δ+δ′,T
x+x′→0

Q
δ,T
0→x ∗Q

δ′,T
0→x′ = Q

δ+δ′,T
0→x+x′ .

(3.12)

The analogous result for bridges with general starting and ending points is more compli-
cated; see [15, Theorem 5.8].

4 Proofs of the main theorems

4.1 Proof of Theorem 2.1

Proof of Theorem 2.1. We apply part ii. of Lemma 3.1, the additivity property for bridges
(3.12), then part ii. of Lemma 3.1 and Lemma 3.2 to write(

X2
t : t ≥ 0; Pδ,µ0

)
L
=
(

(1 + t)2B2
t

1+t
: t ≥ 0; Pδ,10→µ

)
L
=

((
(1 + t)B t

1+t

)2
+
(

(1 + t)B′ t
1+t

)2
: t ≥ 0; Pδ,10→0(B)× P0,1

0→µ(B′)

)
L
=
(
X2
t +X ′2

(t−Eµ)+ : t ≥ 0; Pδ0(X)× P4,µ
0 (X ′)

)
.

In light of (2.2), this proves the theorem.
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4.2 Two proofs of Theorem 2.3

Our first proof of Theorem 2.3 uses a formula found on page 27 of Borodin and
Salminen’s handbook [2] that holds for regular diffusions. More specifically, let pδ,µt (x, y)

denote the transition density with respect to the speed measure of the Bessel process with
dimension δ and drift µ and let Gδ,µλ (x, y) :=

∫∞
0
e−λtpδ,µt (x, y) dt be the corresponding

Green function. Keeping with our previous notation for the law of Bessel processes with
and without drift, we omit µ when it is equal to 0. Furthermore, let fδ,µ denote the
inverse Laplace transform of (λGδ,µλ (0, 0))−1 with respect to λ, that is, fδ,µ satisfies

L
{
fδ,µ

}
(λ) : =

∫ ∞
0

e−λsfδ,µ(s) ds

=
1

λGδ,µλ (0, 0)
, λ > 0.

It will be convenient to write this relation in terms of the inverse Laplace transform as

L−1
{

1

λGδ,µλ (0, 0)

}
(s) = fδ,µ(s), s > 0.

Now we can state the formula from the handbook [2] which asserts that

P
δ,µ
0 (gt ∈ ds) = fδ,µ(t− s) pδ,µs (0, 0) ds, 0 < s < t. (4.1)

Proof 1 of Theorem 2.3. It follows from the absolute continuity relation (2.3) that

Gδ,µλ (0, 0) = Gδλ+ 1
2µ

2(0, 0).

Hence we can use properties of the Laplace transform and its inverse to write

fδ,µ(s) = L−1
{
λ+ 1

2µ
2

λ

1(
λ+ 1

2µ
2
)
Gδ
λ+ 1

2µ
2(0, 0)

}
(s)

=

∫ s

0

L−1
{
λ+ 1

2µ
2

λ

}
(s− u) e−

1
2µ

2uL−1
{

1

λGδλ(0, 0)

}
(u) du

=

∫ s

0

(
δ0(s− u) +

1

2
µ2

)
e−

1
2µ

2ufδ(u) du

= e−
1
2µ

2sfδ(s) +

∫ s

0

1

2
µ2e−

1
2µ

2ufδ(u) du, s > 0. (4.2)

Here we used δ0(·) for the Dirac delta. Using (4.2) in (4.1) along with the absolute
continuity relation (2.3) leads to the desired density on the interval (0, t) of gt under Pδ,µ0

P
δ,µ
0 (gt ∈ ds) =

(
e−

1
2µ

2tfδ(t− s) +

∫ t−s

0

1

2
µ2e−

1
2µ

2(u+s)fδ(u) du

)
pδs(0, 0) ds . (4.3)

Next we compute the density of the right-hand side of (2.5) and show that it is equal
to (4.3). We condition on Eµ and use Lamperti’s arcsine law (1.2) and then (4.1) to write

P
(

min{t, Eµ}Aα ≤ s
)

= e−
1
2µ

2tP (tAα ≤ s) +

∫ t

0

1

2
µ2e−

1
2µ

2uP (uAα ≤ s) du

= e−
1
2µ

2tPδ0 (gt ≤ s) +

∫ t

0

1

2
µ2e−

1
2µ

2uPδ0 (gu ≤ s) du

= e−
1
2µ

2t

∫ s

0

fδ(t− w) pδw(0, 0) dw+

∫ t

0

1

2
µ2e−

1
2µ

2u

∫ s∧u

0

fδ(u− w) pδw(0, 0) dw du

= e−
1
2µ

2t

∫ s

0

fδ(t− w) pδw(0, 0) dw+

∫ s

0

∫ t

w

1

2
µ2e−

1
2µ

2ufδ(u− w) pδw(0, 0) dudw . (4.4)
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Now differentiating (4.4) with respect to s results in

d

ds
P
(

min{t, Eµ}Aα ≤ s
)

=

(
e−

1
2µ

2tfδ(t− s) +

∫ t

s

1

2
µ2e−

1
2µ

2ufδ(u− s) du

)
pδs(0, 0)

=

(
e−

1
2µ

2tfδ(t− s) +

∫ t−s

0

1

2
µ2e−

1
2µ

2(u+s)fδ(u) du

)
pδs(0, 0).

Since this agrees with (4.3), the densities are equal and the theorem is proved.

Our second proof of Theorem 2.3 is more direct and also avoids the computations
and Laplace transform machinery of the first proof. More importantly, the second proof
provides a probabilistic explanation by showing how the independent factorization is a
natural consequence of the additive decomposition from Theorem 2.1.

Proof 2 of Theorem 2.3. Since X ′ under Q4,µ
0 never returns to 0 once it starts, we can

use the additive decomposition from Theorem 2.1 to write

sup{s ≤ t : Xs = 0} under Qδ,µ0

L
= sup{s ≤ t : Xs +X ′(s−Eµ)+ = 0} under Qδ0(X)×Q4,µ

0 (X ′)

L
= sup

{
s ≤ min{t, Eµ} : Xs = 0

}
under Qδ0. (4.5)

We can use the independence of Eµ and X along with Bessel scaling to factor out the
min{t, Eµ} from inside the sup appearing in (4.5). Together with the fact that the zeros
of a process and its square are the same, this allows us to conclude that

gt under Pδ,µ0
L
= min{t, Eµ} sup{s ≤ 1 : Xs = 0} under Qδ0
L
= min{t, Eµ} g1 under Pδ0.

Now the desired result follows from Lamperti’s arcsine law (1.2).

4.3 Proof of Theorem 2.6

As mentioned in Section 3.1, Theorem 2.6 follows from a combination of Theorem 2.3
and the duality relation (3.3). Here we opt for a direct proof based on the well-known
additivity property for squared Bessel processes without drift discussed in Section 3.4.

Proof of Theorem 2.6. Since 0 is an absorbing state for X ′ under Q0
x2 , we can use the

additivity property (3.11) to write

inf{s ≥ t : Xs = 0} under Qδx2

L
= inf{s ≥ t : Xs +X ′s = 0} under Qδ0(X)×Q0

x2(X ′)

L
= inf

{
s ≥ max{t, τ ′0} : Xs = 0

}
under Qδ0(X)×Q0

x2(X ′). (4.6)

The independence of τ ′0 and X allows us to apply Bessel scaling to (4.6), thereby factoring
out the max{t, τ ′0} from inside the inf. In conjunction with (2.2) and (3.7), this implies
that

dt under Pδx
L
= max{t, τ ′0} inf{s ≥ 1 : Xs = 0} under Qδ0(X)×Q0

x2(X ′)

L
= max

{
t,

1

Ex

}
d1 under Pδ0. (4.7)

Now we can use (3.3) and (1.2) to rewrite (4.7) as

dt under Pδx
L
= max

{
t,

1

Ex

}
1

Aα

which completes the proof.

ECP 26 (2021), paper 36.
Page 10/11

https://www.imstat.org/ecp

https://doi.org/10.1214/21-ECP405
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Last zero arcsine law for Bessel processes with drift

References
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