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Abstract

We study the long-time asymptotics of a network of weakly reinforced Pólya urns. In
this system, which extends the WARM introduced by R. van der Hofstad et. al. (2016)
to countable networks, the nodes fire at times given by a Poisson point process. When
a node fires, one of the incident edges is selected with a probability proportional to its
weight raised to a power α < 1, and then this weight is increased by 1.

We show that for α < 1/2 on a network of bounded degrees, every edge is reinforced
a positive proportion of time, and that the limiting proportion can be interpreted as an
equilibrium in a countable network. Moreover, in the special case of regular graphs,
this homogenization remains valid beyond the threshold α = 1/2.
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1 Introduction

Pólya’s urn process is the paradigm model for a random process incorporating
reinforcement effects. However, when thinking in the direction of applications, a single
urn often does not represent complex interactions accurately. For instance, in the field of
social sciences, the formation of friendship networks could be related to reinforcement
effects in social interactions [7]. In economy, in a network of companies competing on
a variety of products, the global reputation could influence the market shares of the
products differently [1, 2]. Finally, in the domain of neuroscience, it is plausible that
synapses that were successful in the past should be selected again in the future and
reinforced with a higher probability [5].

In the present paper, we focus on the network formation model proposed in [5] and
study its long-time behavior in the regime of weak reinforcement. In that model, starting
from a base network, nodes are picked sequentially at random. Once a node is selected,
we choose one of the incident edges with a probability proportional to its weight to some
power α > 0 and increase that weight by 1. The analysis of [5] concerns the asymptotic
proportion of times that edges are reinforced in the regime of strong reinforcement,
where α > 1. In this regime, the limiting proportion is random and coincides with some
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Weakly reinforced Pólya urns on countable networks

stable equilibrium in an associated dynamical system, which is typically concentrated on
a small subset of the edges if α is large.

In contrast, we consider the regime of weak reinforcement, where α < 1 and find that
in many settings the reinforcement proportions converge to a uniquely determined limit
equilibrium, which is supported on all edges of the base network. Figure 1 illustrates
the network at an early and at a late time point.

Figure 1: Weakly reinforced Pólya model after time 2 (left) and time 100 (right). Dashed
edges have not been reinforced until the considered time. The widths of solid edges are
proportional to time-normalized weights.

Hence, together with the analysis in [5, 6], our main result is a first step towards a
network-based analog of Rubin’s dichotomy for classical Pólya urns: while for strong
reinforcement some edges are only reinforced finitely often, in the weakly reinforced
regime all edges are reinforced a positive proportion of time. Although this description
outlines the broader picture, more research is needed to carve out the precise conditions
for this dichotomy. Indeed, [3] describes an example of a meticulously designed network
together with firing rates where even for α > 1 there is percolation of edges that are
reinforced a positive proportion of time.

Similarly to the setting of [4], one major difficulty in the analysis stems from the
choice of the base graph. In contrast to [1, 5], we do not restrict our attention to
finite base graphs, but work on a countable network with uniformly bounded degrees.
In particular, the highly developed machinery of stochastic approximation algorithms
invoked in [1, 5] is not available as the state space of the associated dynamical system
would be infinite-dimensional. In [4], the very strong reinforcement leads to an effective
decomposition of the countable network into finite islands separated by edges that
are never reinforced. This trick recovers the finite-dimensional setting. However, the
strategy cannot work in the regime of weak reinforcement, where we expect all edges to
be reinforced a positive proportion of time.

Hence, in the present paper, we follow an entirely different plan to prove our main
result. Namely, convergence of the normalized edge weights to an equilibrium for (1)
all graphs of uniformly bounded degree if α < 1/2, (2) regular graphs if α < 1/2 + ε

for some ε > 0, and (3) Z if α < 1. This plan consists of three critical steps. First,
we invoke a compactness argument to obtain an equilibrium on the entire countable
network. Second, we establish that all edges are reinforced a positive proportion of time.
This step rests on a percolation argument, where we decompose the network again into
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finite islands separated by edges that are now reinforced a positive proportion of time.
Finally, to obtain convergence to the equilibrium, we rely on a homogenizing bootstrap
argument. It formalizes the intuition that for weak reinforcement, deviations from the
equilibrium decrease over time.

The rest of the manuscript is organized as follows. Section 2 introduces the model
and states the main contribution of the paper, a homogenization result in the sub-linear
regime for three different combinations of graphs and exponents. In Section 3, we
consider graphs of bounded degree and α < 1/2. Finally, Section 4 deals with regular
graphs of degree ∆ and covers α < 1/2 + ε for ∆ > 2 and α < 1 for the graph Z.

2 Model definition and main result

Let G = (V,E) be a countable graph with uniformly bounded degrees. That is, the
vertex set V is countable and

∆ := sup
v∈V

deg(v) <∞.

If ∆ = deg(v) for every v ∈ V then the graph is regular with degree ∆, which we write
as ∆-regular.

We investigate a system of random variables

Nt := {Nt(e)}e∈E
of interacting Pólya-type urns on the edge set E at continuous time t ≥ 0 on a probability
space (Ω,P). The dynamics of Nt are a continuous-time analog of the process considered
in [5]. Loosely speaking, every vertex has a Poisson clock and whenever that clock
rings at a node v ∈ V , the dynamics choose and increment the weights on one of the
incident edges Ev = {e ∈ E : v ∈ e} by 1. The choice of the edge happens using the
power-weighted Pólya-scheme

polv,e(Nt) :=
Nt(e)

α∑
e′∈Ev Nt(e

′)α
, α ≥ 0 . (2.1)

Henceforth, we tacitly assume that α < 1. More precisely, the weights Nt(e) are
initialized at 1 and the dynamics of Nt are governed by an iid family of Poisson processes
{Pv}v∈V on [0,∞) × [0, 1] with intensity 1 counting clock-ring events at vertex v ∈ V

in a time window [0,∞) with marks in the range [0, 1]. If the process Pv contains an
atom of the form (t, u) ∈ [0,∞) × [0, 1], then increment the mass of an edge ei ∈ Ev =

{e1, . . . edeg(v)} by 1 if u ∈ Uv,ei , where {Uv,ei}i≤deg(v) is a partition of [0, 1] given by

Uv,ei =
( ∑
j≤i−1

polv,ej (Nt),
∑
j≤i

polv,ej (Nt)
]
.

For the existence of the process {Nt}t≥0 on bounded-degree graphs, see [4].
Finally, a non-negative vector µ ∈ RE+ defines an equilibrium on G if

µ(e) :=
∑
v∈e

µ(e)
α∑

e′∈Ev µ(e′)
α (2.2)

holds for all e ∈ E with µ(e) > 0. This is a straightforward extension of the notion of
finite equilibria from [5] to countable networks. Now, let

Xt :=
Nt
t

denote the time-normalized system of weights at time t > 0. We say that Xt exhibits
homogenization if the equilibrium measure µ exists, is unique and Xt → µ almost surely.
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Conjecture 2.1 (Homogenization). Let G be a countable graph with uniformly bounded
degrees. Then, Xt exhibits homogenization.

In the present work, we verify this conjecture for three combinations of G and α.

Theorem 2.2 (Homogenization). Xt exhibits homogenization in the following cases.

1. The degree of G is uniformly bounded and α < 1/2.

2. G is ∆-regular and α < 1/2 + ε for some ε > 0.

3. G = Z and α < 1.

3 Proof of Theorem 2.2 (1)

In this section, we establish part (1) of Theorem 2.2. That is, we show homogenization
for α < 1/2 and graphs of bounded degree. First, in Section 3.1, we prove existence of a
non-vanishing equilibrium. Then, in Section 3.2, we show that Xt converges to such an
equilibrium, which is in fact uniquely determined.

3.1 Existence of equilibrium

Henceforth, we call an equilibrium µ ∈ RE+ non-vanishing if µ(e) > 0 for every e ∈ E.
Before discussing existence of non-vanishing equilibria on general graphs, we present
the ∆-regular case as a particularly easy example.

Example 3.1 (∆-regular graphs). Let G be a ∆-regular graph. Then, µ ≡ 2/∆ defines a
non-vanishing equilibrium. Indeed, checking Equation (2.2) leads to∑

v∈e

µα∑
e′∈Ev µ

α
=
∑
v∈e

1∑
e′∈Ev 1

=
2

∆
= µ.

The general case of bounded-degree graphs does not admit such an easy analysis
as the equilibrium could in principle assume an infinite number of different values.
Nevertheless, we deduce existence from a compactness argument.

Proposition 3.2 (Existence of non-vanishing equilibria). Every graph with degrees uni-
formly bounded by ∆ exhibits at least one non-vanishing equilibrium µ with µ(e) ≥
2/∆1/(1−α) for all e ∈ E.

Proof. By Equation (2.2), the equilibria correspond to fixed points of the continuous
operator

T : RE+ −→ RE+

µ(·) 7−→
∑
v∈·

µ(·)α∑
e′∈Ev µ(e′)

α .

As a product of locally convex and Hausdorff spaces, RE+ is again locally convex and

Hausdorff. Now, define the closed set C = [2∆−1/(1−α), 2]
E

, which as a product of convex
and compact sets, is again convex and compact. We claim that T (C) ⊆ C. Once this
claim is established, Schauder’s fixed point theorem yields a non-vanishing equilibrium
in C.

To prove T (C) ⊆ C, note that for every µ ∈ C and e = {v1, v2} ∈ E we have

T (µ)(e) =
µ(e)α∑

e′∈Ev1
µ(e′)

α +
µ(e)α∑

e′∈Ev2
µ(e′)

α ≤ 2 ,
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and

T (µ)(e) =
∑
i≤2

µ(e)α∑
e′∈Evi

µ(e′)
α ≥

∑
i≤2

µ(e)α

2αdeg(vi)
≥ 2µ(e)α

2α∆
≥ 2

∆1/(1−α)
,

as claimed.

3.2 Proof of Theorem 2.2 (1)

The proof of part (1) of Theorem 2.2 is based on three pivotal ingredients.
First, as each edge is incident to two vertices firing at rate 1, its weight grows at rate

at most 2. In other words, for every e ∈ E, almost surely,

X+(e) := lim sup
t→∞

Xt(e) ≤ 2.

Lemma 3.3 (Rate upper bound). Let e ∈ E be arbitrary. Then, P(X+(e) ≤ 2) = 1.

Second, we derive a positive lower bound for the growth rate

X−(e) := lim inf
t→∞

Xt(e).

This task is slightly more subtle than the upper bound, since arbitrarily small rates
can occur with positive probability. To approach this challenge, we fix throughout this
section a non-vanishing equilibrium µ as in Theorem 3.2 and write

Ee := {e′ ∈ E : e′ ∩ e 6= ∅}

for the family of edges adjacent to a given edge e ∈ E. Then, an edge e ∈ E is δ-stable if

min
e′∈Ee

X−(e′)

µ(e′)
≥ δ.

Lemma 3.4 (Rate lower bound). There exists δ0 > 0 such that with probability 1, all
connected components of δ0-unstable edges are finite.

Finally, we rely on a bootstrapping procedure to push the weights iteratively closer
to 1. To that end, define

C(e) := [X−(e), X+(e)]

as the smallest interval containing the accumulation points of Xt(e).

Lemma 3.5 (Bootstrap on bounded degree graphs). Let α < 1/2 and % > 1. If e ∈ E is
such that C(e′) ⊆ [%−1µ(e′), %µ(e′)] holds for all e′ ∈ Ee, then C(e) ⊆ [%−2αµ(e), %2αµ(e)].

Before establishing Lemmas 3.3–3.5, we elucidate how they can be combined to yield
the proof of part (1) of Theorem 2.2.

Proof of Theorem 2.2(1). Let δ0 > 0 be as in Theorem 3.4. Assume without loss of
generality that δ0 ≤ ∆−1/(1−α) so that 2 ≤ µ(e)∆1/(1−α) ≤ µ(e)/δ0 for any e ∈ E where
the first inequality follows from µ(e) ≥ 2/∆1/(1−α) given by Theorem 3.2. We first claim
that X−(e) ≥ δ0µ(e) almost surely for every e ∈ E. Indeed, assume the contrary and let
S be a connected component of δ0-unstable edges. By Theorem 3.4, S is finite and we
choose e∗ ∈ S (randomly) such that % := µ(e∗)

X−(e∗) is maximal. Then, %−1 ≥ δ0 almost surely
since otherwise Theorem 3.3 and the bootstrap property of Theorem 3.5, combined with
2 ≤ µ(e)/δ0 ≤ %µ(e), would give that C(e∗) ⊆ [%−2αµ(e∗), 2], thereby contradicting that

X−(e∗)

µ(e∗)
= %−1 < %−2α.
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Hence, the infimum

%∗ := inf{% > 1: C(e) ⊆ [%−1µ(e), %µ(e)] for every e ∈ E}

is at most δ−1
0 . Now, %∗ = 1 almost surely since otherwise the bootstrap property yields

that C(e) ⊆ [%−2α
∗ µ(e), %2α

∗ µ(e)] for every e ∈ E, thereby contradicting the choice of %∗.

It remains to establish the auxiliary results. We start by proving Lemma 3.3.

Proof of Lemma 3.3. One extremal case is that each clock-ring event for Pv increments
the value for an edge e = {v, w} ∈ E. The process

Yt :=
Pv([0, t]× [0, 1]) + Pw([0, t]× [0, 1])

t

counts the normalized occurrences for this upper bound and has an expected value of

E[Yt] =
E[Pv([0, t]× [0, 1])] + E[Pw([0, t]× [0, 1])]

t
=

2t

t
= 2 .

Then, the strong law of large numbers for homogeneous Poisson point processes, gives
that almost surely limt→∞ Yt = 2. Now, Xt(e) ≤ Yt + 1

t for all t ≥ 0, implies that almost
surely, lim supt→∞Xt(e) ≤ limt→∞ Yt = 2.

Next, we verify the bootstrap property.

Proof of Lemma 3.5. Let % > 1 and e = {v1, v2} ∈ E be such that C(e′) ⊆ [%−1µ(e′), %µ(e′)]

for all e′ ∈ Ee. Moreover, for ε > 0 set %ε = (1 + ε)%. Then, there exists a random time
T < ∞ such that Xt(e

′) ∈ [%−1
ε µ(e′), %εµ(e′)] for all t ≥ T and e′ ∈ Ee. In particular, for

every i ∈ {1, 2},

polvi,e(Xt) =
Nt(e)

α∑
e′∈Evi

Nt(e′)
α ≥

(%−1
ε µ(e))

α∑
e′∈Evi

(%εµ(e′))
α = %−2α

ε

µ(e)
α∑

e′∈Evi

µ(e′)
α .

Therefore, using that µ is an equilibrium, {Nt(e)}t≥T is dominated from below by a
Poisson process with intensity

%−2α
ε

µ(e)α∑
e′∈Ev1

µ(e′)α
+ %−2α

ε

µ(e)α∑
e′∈Ev2

µ(e′)α
= %−2α

ε µ(e).

Hence, almost surely, X−(e) ≥ %−2α
ε µ(e). Similar arguments yield that X+(e) ≤ %2α

ε µ(e).

The proof of Lemma 3.4 is the most challenging part of the auxiliary results. The
main ingredient is Theorem 3.6 below. It states that X−(e) is bounded away from 0 with
a high probability, even when conditioning on Fec , where for e ∈ E we let

Fec := σ({Pv}v 6∈∪e′∈Eee′)

denote the σ-algebra generated by all Poisson processes at nodes that are at distance at
least 2 away from the edge e.

Lemma 3.6 (Compact containment of C(e)). For every ε > 0 there exists δ > 0 such that
almost surely

inf
e∈E

P(X−(e) ≥ δ | Fec) ≥ 1− ε.

In particular, P(X−(e) > 0 | Fec) = 1 for every e ∈ E.
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Hence, we conclude from dependent percolation theory in the form of [8, Theorem
0.0] that the edges violating the lower bound are restricted to finite, well-separated
islands. To make the presentation self-contained, we give an elementary direct proof.

Proof of Lemma 3.4. Let v ∈ V be arbitrary. We resort to a first-moment argument and
show that for sufficiently small δ the expected number of length-n self-avoiding paths of
δ-unstable edges tends to 0 as n→∞. Since the number of length-n self-avoiding paths
in G starting from v is at most ∆n, it suffices to show that the probability for any fixed
self-avoiding path to consist of δ-unstable edges only is of the order at most (2∆)−n.

Note that the number of edges that are at graph distance at most 3 of a given
edge is bounded above by 2∆3. Hence, any self-avoiding path of length n contains at
least n/(2∆3) edges that are of pairwise distance at least 4, so that by Lemma 3.6, the
probability that they are all δ-unstable is at most ε(δ)n/(2∆3). In particular, choosing
δ > 0 such that ε(δ)1/(2∆3) ≤ 1/(2∆) concludes the proof.

It remains to prove Lemma 3.6. To that end, we invoke a conditioning argument in
the spirit of [1, Lemma 5.2] to provide a bootstrap result propagating large edge weights
at a current time point to a considerable duration into the future. For k, ` ≥ 1 put

ak,` := ∆−
1

1−α 2k(`−1)−k
∑

2≤i≤` α
i

.

Lemma 3.7 (Bootstrapped lower bound). There exists a constant c = c(α,∆) > 0 such
that for all k large enough, all ` ≥ 1 and all e ∈ E, almost surely,

P(N2k(`+1)(e) ≤ ak,`+1 and N2k`(e) ≥ ak,` | Fec) ≤ e−c2
k`(1−α)

.

Proof. Let ε > 0 be arbitrary. Then, the Poisson concentration inequality [9, Lemma 1.2]
implies that the event

Ae := {N2k(`+1)(e′) ≤ 21+ε+k(`+1) for all e′ ∈ Ee} (3.1)

has a probability tending to 1 with an error decaying exponentially in 2k`.
Further, under the event {N2k`(e) ≥ ak,`} ∩Ae, Equation (2.1) has a lower bound for

times t ∈ T` := [2k`, 2k(`+1)] given by

polv,e(Nt) =
Nt(e)

α∑
e′∈Ev Nt(e

′)α
≥

aαk,`
aαk,` + ∆2(1+ε+k(`+1))α

.

Since ∆ak,`+1 = aαk,`2
k(`+α)(1−α), putting αε = α(1 + ε), we deduce that

polv,e(Nt) ≥
1

1 + 2αε2k(`+1)αa−1
k,`+12k(`+α)(1−α)

=
1

1 + 2αε+k(`+1−(1−α)2)a−1
k,`+1

.

Hence,

polv,e(Nt) ≥
2−αε+k((1−α)2−`−1)ak,`+1

1 + 2−kα
=: Gk,` .

In particular, for t ∈ T`, the Poisson processes Pv and Pw having points in [2k`, t] × Ue
where Ue ⊆ [0, 1] and |Ue| ≥ Gk,` implies weight increases of the edge e (by one or more)
in the time interval [2k`, t]. Therefore, using Equation (3.1), we find a constant c such
that

P (N2k(`+1)(e) ≤ ak,`+1 and N2k`(e) ≥ ak,`)
≤ P (N2k(`+1)(e)−N2k`(e) ≤ ak,`+1 and N2k`(e) ≥ ak,`)
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≤ P (Pv(T` × Ue) + Pw(T` × Ue) ≤ ak,`+1 and N2k`(e) ≥ ak,`) +O
(
e−c2

k`)
≤ P (Poi (2|T`|Gk,`) ≤ ak,`+1) +O

(
e−c2

k`)
.

Since

2|T`|Gk,` = ak,`+121−αε+k(1−α)2 1− 2−k

1 + 2−kα

there exists c̃ > 1 such that 2|T`|Gk,` > c̃ · ak,`+1 holds for all k large enough. Thus, by [9,
Lemma 1.2],

P (N2k(`+1)(e) ≤ ak,`+1 and N2k`(e) ≥ ak,`) ≤ exp ((1− c̃+ log(c̃))ak,`+1) .

Now, we conclude the proof by noting that ak,`+1 ≥ ∆−
1

1−α 2k`(1−α) and that the coefficient
of ak,`+1 is negative.

Theorem 3.7 propagates the lower bounds on the edge weights through time. As
t→∞, these lower bounds allow to exclude vanishing edge weights.

Proof of Lemma 3.6. Defining F = ∩`≥1{N2k`(e) ≥ ak,`} and δ0 = lim inf`→∞ ak,`2
−k` >

0, we note that X−(e) ≥ δ0 holds under the event F . Hence, it remains to establish a
lower bound on P(F |Fec).

Since ak,1 ≤ 1, the bound N2k(e) ≥ ak,1 holds for any k ≥ 1. Hence, if the event F
does not occur, then there exists `0 ≥ 1 such that N2k(`0+1)(e) ≤ ak,`0+1 and N2k`0 ≥ ak,`0 .
In particular, by Lemma 3.7, almost surely,

1− P(F | Fec) ≤
∑
`≥1

P(N2k(`+1)(e) ≤ ak,`+1 and N2k` ≥ ak,` | Fec) ≤
∑
`≥1

e−c2
k`(1−α)

,

which becomes smaller than ε for sufficiently large k > 0.

4 Regular graphs

Throughout this section, we assume G to be ∆-regular. The key to the proof of parts
(2) and (3) of Theorem 2.2 is the following bootstrap property.

Lemma 4.1 (Bootstrap on regular graphs). Let a < 2/∆, b > 2/∆ and e ∈ E be such that
C(e) ⊆ [a, b] holds almost surely for all e′ ∈ Ee. Furthermore, define the function

f(r, s) :=
2rα

rα + (∆− 1)sα
.

Then, C(e) ⊆ [f(a, b), f(b, a)] holds almost surely. In particular, for G = Z there exist
a′ ∈ [a, 1) and b′ ∈ (1, b] such that a′/b′ ≥ (a/b)

α and C(e) ⊆ [a′, b′] holds almost surely.

Before proving Lemma 4.1 we explain how it implies part (3) of Theorem 2.2.

Proof of part (3) of Theorem 2.2. First, X−(e) is strictly positive by Theorem 3.4 using a
similar argument to the proof of part (1) of Theorem 2.2. Hence, Theorem 4.1 gives that
X−(e) ≥ X−(e)α2−α, i.e., X−(e) ≥ 2−α/(1−α). In other words, almost surely C(e) ⊆ [a1, b1]

where a1 := 2−α/(1−α) and b1 := 2. Applying Lemma 4.1 iteratively yields sequences
{ai}i≥1 and {bi}i≥1 such that

1. {ai}i≥1 is increasing and bounded above by 1,

2. {bi}i≥1 is decreasing and bounded below by 1,

3. bi+1/ai+1 ≤ (bi/ai)
α < bi/ai, and

4. C(e) ⊆
⋂
i≥1[ai, bi] holds almost surely for all e ∈ E.
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Since the first three items imply that ai and bi converge to 1, we arrive at

P(C(e) = 1) = P(∩i≥0{C(e) ⊆ [ai, bi]}) = lim
i→∞

P(C(e) ⊆ [ai, bi]) = 1,

as asserted.

Next, we prove Lemma 4.1.

Proof of Lemma 4.1. Let

Ga,b := ∩e′∈Ee{C(e′) ⊆ [a, b]}

denote the event that C(e′) ⊆ [a, b] holds for all e′ ∈ Ee. Under this event, X{v,w}t gains
mass at a rate of at least

a′′ = f(at, bt) = f(a, b),

for t large enough. More precisely, under Ga,b one can find a sequence {εt}t≥0 with
εt ↘ 0 such that almost surely

N
{v,w}
t ≥ Pv([0, t]× Uv,t) + Pw([0, t]× Uw,t) + 1

for all t > 0 where |Uv,t| = |Uw,t| = a′′/2 − εt. Analogous arguments to the one in the
proof of Theorem 3.3 give that almost surely

lim inf
t→∞

X
{v,w}
t ≥ a′,

where a′ := a∨a′′. Similar arguments give the upper bound b′ := b∧b′′ where b′′ := f(b, a).
In the special case ∆ = 2 (i.e. G = Z) we find a′/b′ ≥ (a/b)

α as desired.

Now, let G be ∆-regular for some ∆ ≥ 2. In this case we do not have a′/b′ ≥ (a/b)
α to

prove Theorem 2.2, but we still have the sequences {ai}i≥1 and {bi}i≥1 with bi+1/ai+1 ≤
bi/ai. The idea is to show that for α sufficiently close to 1/2 the inequality is strict.

Lemma 4.2. For α = 1/2 + ε with ε small enough and 0 < a < 2/∆ < b < 2 we have
f(a, b) > a or f(b, a) < b.

Proof. Assume both statements are wrong, i.e. f(a, b) ≤ a and f(b, a) ≥ b, then this gives

ρ ≤ ρ2α
1 + ρ−α

∆−1

1 + ρα

∆−1

(4.1)

for ρ := b/a. Insert α = 1/2 + ε and take log on both sides to get

0 ≤ 2ε log ρ+ log
(

1 +
ρ−1/2−ε

∆− 1

)
− log

(
1 +

ρ1/2+ε

∆− 1

)
.

Note that equality holds for ρ = 1 so if the right-hand side is decreasing in ρ then this
contradicts the above inequality for % > 1. To that end, note that the derivative

1

ρ

(
2ε− (1/2 + ε)

( 1

1 + (∆− 1)ρ−1/2−ε +
1

1 + (∆− 1)ρ1/2+ε

))
of the right-hand side is bounded above for all ρ ≥ 1 by

1

ρ

(
2ε− (1/2 + ε)

∆

)
which is negative for ε small enough and hence we get a contradiction to Equation (4.1).
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Not improving both bounds at each application of the bootstrap property means that
the proof for a uniform lower bound on C(e) in part (1) of Theorem 2.2 does not work
since we do not immediately get a contradiction. The following Lemma helps remedy
this.

Lemma 4.3. For a < 2∆−1/(1−α) we have f(a, 2) > a.

Proof. Straightforward calculation as

f(a, 2) =
2aα

aα + (∆− 1)2α
>

2aα

2α∆
= a

21−α

a1−α∆
> a.

Proof of part (2) of Theorem 2.2. Take the ε from Theorem 4.2 and consider α = 1/2 + ε.
X−(e) is bounded above by Theorem 3.3 and strictly positive by Theorem 3.4 and
Theorem 4.3 using analogous arguments as in the proof of part (1) of this theorem. So
we find a ≤ 2/∆ and b ≥ 2/∆ such that C(e) ⊆ [a, b] for all e ∈ E. We choose a maximal
and b minimal with that property. To derive a contradiction, assume that a < b. Then, by
Theorem 4.1 and Theorem 4.2 we can tighten the bounds as

C(e) ⊆ [a ∨ f(a, b), b ∧ f(b, a)] ( [a, b] .

This contradicts the maximality/minimality of a and b, and since f(a, b) ≤ 2/∆ ≤ f(b, a)

therefore gives a = b = 2/∆.
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