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Abstract

We show that the local weak limit of a sequence of finite expander graphs with
uniformly bounded degree is an ergodic (or extremal) unimodular random graph.
In particular, the critical probability of percolation of the limiting random graph is
constant almost surely. As a corollary, we obtain an improvement to a theorem by
Benjamini-Nachmias-Peres (2011) in [4] on locality of percolation probability for finite
expander graphs with uniformly bounded degree where we can drop the assumption
that the limit is a single rooted graph.
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1 Introduction

Local weak convergence of a sequence of finite expander graphs has been studied
in relation to locality of critical probability of percolation in [4]. Locality of critical
probability for Bernoulli bond percolation on infinite graphs is in itself a very significant
and well studied problem, beginning with Schramm’s locality conjecture for transitive
graphs; see [8] and [6] and the recent paper [7] and the references therein for some
recent developments in this direction for infinite graphs. For finite graphs, such locality
was shown to hold when the graphs were expanders and the sequence of graphs con-
verged locally weakly to a fixed infinite rooted graph in [4]. Their argument, in turn,
was an extension of the arguments used in [2], who studied critical probability for the
emergence of a giant component (that is a connected linear sized component) in finite
expander graphs under the assumptions of regularity and high-girth. In [3] it was shown
that in any expander, every giant component of given proportion emerges in an interval
of length o(1), that is, for any c ∈ (0, 1), the property that the random subgraph of an
expander G = (V,E) after Bernoulli bond percolation contains a giant component of size
c|V |, has a sharp threshold; removing the regularity and high-girth assumptions in [2].

We first recall local weak convergence of bounded degree finite graphs. A rooted
graph is denoted as (G, o), where G is a (connected) graph and o is a vertex in G. A
rooted graph (G, o) is isomorphic to (G′, o′), written as (G, o) ∼= (G′, o′) if there is an
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isomorphism of G onto G′ which takes o to o′. Let G denote the space of isomorphism
classes of all rooted connected graphs with degrees bounded by ∆, for some fixed ∆ > 0.
For r = 1, 2, . . . and a graph G, let BG(o, r) denote the closed ball of radius r around the
vertex o in the graph G. Define the distance between two isomorphic classes of rooted
graphs (G1, o1) and (G2, o2) as D((G1, o1), (G2, o2)) = 1

1+t where t = sup{s : BG1
(o1, s) ∼=

BG2
(o2, s)}. The space (G, D) is a compact and separable metric space.

For each n ≥ 1, let Gn be a finite graph and let Un be a uniformly chosen random
vertex in Gn and (G, ρ) be an infinite random rooted graph in G, that is, (G, ρ) is a sample
from a Borel probability measure µ on G. We say that the sequence of finite graphs {Gn}
converges locally weakly to (G, ρ) (or to µ) if for every R > 0 and for every finite rooted
graph (H, ρ′),

P ((BGn(Un, R), Un) ∼= (H, ρ′))→ P ((BG(ρ,R), ρ) ∼= (H, ρ′)) as n→∞ .

This is equivalent to saying that µ is the weak limit of the laws of (Gn, Un). This is a special
case of the graph limits defined in [5]. Such measures µ satisfy a “spatial stationarity”
property called unimodularity, which roughly says that if mass is redistributed in the
graph, then the expected mass that leaves the root is equal to the expected mass the
arrives at the root, see Definition 2.1 of [1] for an exact definition.

Also, we shall denote by C((G, o), 1
1+s ) the 1

1+s neighborhood of the graph (G, o) in
the space (G, D), that is, the set of all rooted graphs whose s-balls are isomorphic to
(BG(o, s), o).

Let I denote the σ-field of events in the Borel σ-field of G that are invariant under
non-rooted isomorphisms. The class U of unimodular probability measures on G is convex.
An element of U is called extremal if it cannot be written as a convex combination of
other elements of U . It follows from Theorem 4.7 of [1] that a unimodular probability
measure µ on G is extremal if and only if I is µ-trivial, that is, I contains only sets of
µ-measure 0 or 1 (ergodicity).

For two sets of vertices A and B, we shall write E(A,B) for the set of edges with
one endpoint in A and the other in B. Recall that the Cheeger constant or the edge-
isoperimetric number h(G) of a finite graph G = (V,E) is defined by

h(G) = min
A⊆V

{
|E(A, V \A)|

|A|
: 0 < |A| ≤ |V |/2

}
.

Now, we recall Theorem 1.3 of [4] here. Let (G, ρ) be a fixed infinite bounded
degree rooted graph and pc(G) := inf{p ∈ [0, 1] : Pp(∃ an infinite open component) > 0}
where Pp denotes Bernoulli bond percolation with probability p, that is, each edge is
independently open with probability p and closed with probability 1 − p. Let Gn be a
sequence of finite graphs with a uniform Cheeger constant lower bound c > 0 and a
uniform degree bound ∆, such that Gn → (G, ρ) locally weakly. Let p ∈ [0, 1] and write
Gn(p) for the graph of open edges obtained from Gn by performing bond percolation
with parameter p. If p < pc(G), then for any constant α > 0 we have

P(Gn(p) contains a component of size at least α|Gn|)→ 0 as n→∞,

and if p > pc(G), then there exists some α = α(p) > 0 such that

P(Gn(p) contains a component of size at least α|Gn|)→ 1 as n→∞ .

In this short paper, we first show that when a sequence of finite expander graphs
converges locally weakly to a random graph G, then G is an ergodic (or extremal)
unimodular random graph. Any measurable function f : G 7→ R is called rerooting-
invariant if it is invariant under changes in the position of the root (that is, for any graph
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τ and any two vertices v, v′ ∈ τ , f((τ, v)) = f((τ, v′)); we sometimes suppress the root in
the notation and simply denote it as f(τ)). We have the following theorem.

Theorem 1.1. Let Gn be a sequence of finite graphs with a uniform Cheeger constant
lower bound c > 0 and a uniform degree bound ∆ > 0, such that Gn → (G, ρ) locally
weakly, where (G, ρ) is a random infinite rooted graph. Then G is an ergodic (or extremal)
unimodular random graph. That is, if f is any rerooting-invariant function, then f(G) is
constant almost surely. In particular, pc(G) is constant almost surely.

As a corollary to the above theorem, we get the following improvement to Theorem
1.3 of [4].

Corollary 1.2. Let Gn be a sequence of finite expander graphs with uniformly bounded
degree as above, such that Gn converges locally weakly to an infinite random rooted
graph (G, ρ). If p < pc(G) (this is well defined as pc(G) is constant by Theorem 1.1), then
for any constant α > 0 we have

P(Gn(p) contains a component of size at least α|Gn|)→ 0 as n→∞,

and if p > pc(G), then there exists some α = α(p) > 0 such that

P(Gn(p) contains a component of size at least α|Gn|)→ 1 as n→∞ .

2 Proofs

We first prove Theorem 1.1.

Proof of Theorem 1.1. Without loss of generality, we assume that |Gn| = n. Let the law of
the limiting random rooted graph (G, ρ) be denoted by µ and f be any rerooting-invariant
function. We show that for any two rational numbers a, b such that 0 ≤ a < b ≤ 1, if

Γ1 = {(τ, r) ∈ G : f(τ) ≤ a}, Γ2 = {(τ, r) ∈ G : f(τ) ≥ b} ,

then µ(Γ1) and µ(Γ2) cannot be both positive. Clearly, this is enough to prove the
theorem. We prove this by contradiction. Let a, b be rational numbers, p0 > 0 be some
real number and Γi’s be defined as above, such that µ(Γi) ≥ p0 for i = 1, 2. Now, as
(G,D) is a compact metric space, and µ is a probability measure, hence µ is regular (see,
for example, [9] Chapter II, Theorem 1.2). Hence there exist compact sets Hi ⊆ Γi such
that µ(Hi) ≥ p0/2. Fix

K =
4∆

cp0
.

For any graph (τ, r) ∈ G, let [τ ] = {(τ, r′) : r′ ∈ τ} denote the unrooted version of (τ, r).
Now, for any fixed (τi, ri) ∈ Hi, since f((τ1, r1)) 6= f((τ2, r2)), hence [τ1] 6= [τ2]. Define

R(τ1,r1),(τ2,r2) := max
ui∈Bτi (ri,K)

{Ru1,u2
: Ru1,u2

is the smallest s ∈ {1, 2, . . .} for which

Bτ1(u1, s) 6∼= Bτ2(u2, s)}.

Since [τ1] 6= [τ2], Ru1,u2 <∞. As (τi, ri) have uniformly bounded degree, the maximum is
taken over a finite set, so that R(τ1,r1),(τ2,r2) <∞.

Consider the neighborhood C((τ2, r2), 1
1+R(τ1,r1),(τ2,r2)+K

), that is, the set of all rooted

graphs whose (R(τ1,r1),(τ2,r2) +K)-balls are isomorphic to (Bτ2(r2, R(τ1,r1),(τ2,r2) +K), r2).
Further, consider

C :=
⋃

(τ2,r2)∈H2

C

(
(τ2, r2),

1

1 +R(τ1,r1),(τ2,r2) +K

)
.
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Since C is an open cover of H2 and H2 is compact, it has a finite subcover, that is, for
some M > 0,

H2 ⊆
M⋃
i=1

C

(
(τ2,i, r2,i),

1

1 +R(τ1,r1),(τ2,i,r2,i) +K

)
.

Let
R(τ1,r1) = max

{
R(τ1,r1),(τ2,i,r2,i) +K : i ∈ {1, 2, . . . ,M}

}
over this finite subcover.

Moreover, as ⋃
(τ1,r1)∈H1

C

(
(τ1, r1),

1

1 +R(τ1,r1)

)
is an open cover of H1 and H1 is compact, it has a finite subcover, and let R =

maxiR(τ1,i,r1,i) be the maximum as {(τ1,i, r1,i)} range over this finite subcover. Then
for all (τi, ri) ∈ Hi,

Bτ1(u1, R) 6= Bτ2(u2, R) ∀ui ∈ Bτi(ri,K) for i = 1, 2.

Define for i = 1, 2 and Gn = (Vn, En),

Ai,n = {v ∈ Vn : BGn(v,R+K) ∼= Bτi(vi, R+K) for some (τi, vi) ∈ Hi}.

Choose and fix n large enough such that |Ai,n| ≥ np0

4 and let Ai = Ai,n.
Now, recall the following theorem due to Menger (1927). Let G = (V,E) be a graph

and A,B ⊆ V . Then the maximum number of edge disjoint A− to−B paths equals the
minimum size of an A− to−B separating edge cut.

Let L denote the maximum number of edge disjoint paths between A1 and A2, and
E(S, Sc) denote the number of edges between S and Sc. Applying Menger’s theorem
with the sets A1, A2, and using |Ai| ≥ np0/4, and the fact that the Cheeger constant is
bounded below by c > 0 from the assumption of our theorem, we get

L

np0/4
= min
S⊆V,A1⊆S,A2⊆Sc

E(S, Sc)

np0/4
≥ min
S⊆V,A1⊆S,A2⊆Sc

E(S, Sc)

min(|S|, |Sc|)

≥ min
S⊆V

E(S, Sc)

min(|S|, |Sc|)
≥ c.

Hence, there are at least cnp0/4 edge-disjoint paths from A1 to A2. Since there are
at most ∆n/2 edges in G, at least half of these paths, i.e., at least cnp0/8 edge-disjoint
paths between A1 and A2 have length at most K each. Take two vertices vi ∈ Ai that are
incident on such a path of length at most K. Since

B(v2, R) ⊆ B(v1, R+K) ∼= Bτ1(r1, R+K)

for some (τ1, r1) ∈ H1, and
B(v2, R) ∼= Bτ2(r2, R)

for some (τ2, r2) ∈ H2; hence Bτ1(u1, R) ∼= Bτ2(r2, R) for some u1 such that d(r1, u1) ≤ K.
This contradicts the choice of R. This completes the proof.

Finally we end this section by proving Corollary 1.2.

Proof of Corollary 1.2. We first prove the case when p < pc(G). Fix any ε > 0. Let H ⊆ G
be the set of all rooted graphs with percolation critical probability equal to pc(G). For
every (τ, v) ∈ H, as p < pc(τ), there exists R(τ,v) = R(τ,v)(ε) large enough, such that,

Pp(v ↔ ∂Bτ (v,R(τ,v))) < ε. (2.1)
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Consider the neighborhood C((τ, v), 1
1+R(τ,v)

). Then for all graphs in this neighborhood,

their R(τ,v) balls around the root are isomorphic to Bτ (v,R(τ,v)), and hence the equation
(2.1) holds for all such graphs. Consider ∪(τ,v)∈HC((τ, v), 1

1+R(τ,v)
), an open cover of H.

Also H is second countable (since G is). Hence H admits a countable subcover, say
C1, C2, . . ., where Ci = C((τi, vi),

1
1+R(τi,vi)

) for some (τi, vi) ∈ H. Let H ′ = ∪Mi=1Ci for

some large integer M be such that µ(H ′) ≥ 1 − ε, where µ is the law of the limiting
random rooted graph. Let R = maxi=1,2,...,M R(τi,vi). Then for all (τ, v) ∈ H ′,

Pp(v ↔ ∂Bτ (v,R)) < ε.

Now, as Gn converges locally weakly to G, choose n large enough such that, if F
denotes the finite set of all rooted graphs of radius R and degree bounded by ∆, then,∑

(τ,v)∈F

|L(BGn(Un, R) = (τ, v))− P(BG(ρ,R) = (τ, v))| ≤ ε , (2.2)

where L is the law of Un. Hence,

L × Pp(Un ↔ ∂BGn(Un, R)) (2.3)

=
∑

(τ,v)∈F

L × Pp
(
Un ↔ ∂BGn(Un, R)

∣∣BGn(Un, R) = (τ, v)
)
L(BGn(Un, R) = (τ, v))

=
∑

(τ,v)∈F

Pp(v ↔ ∂Bτ (v,R))L(BGn(Un, R) = (τ, v))

≤
∑

(τ,v)∈F

Pp(v ↔ ∂Bτ (v,R))P(BG(ρ,R) = (τ, v)) + ε

≤
∑

Bτ (v,R):(τ,v)∈H′

Pp(v ↔ ∂Bτ (v,R))P(BG(ρ,R) = Bτ (v,R)) + 2ε

≤ εµ(H ′) + 2ε ≤ 3ε ,

where the inequality in the fourth line follows from (2.2). Next, following the arguments
in the proof of Theorem 1.3 in [4] verbatim, it follows that

Pp(|C1(n)| ≥ αn) ≤ 3εα−1,

where C1(n) is the largest component of Gn(p), which proves the first assertion of the
corollary.

Now, we prove the case when p > pc(G). As in the proof of Theorem 1.3 of [4] for this
case, fix some ε > 0, let p1 > pc such that 1 − p = (1 − p1)(1 − ε), and consider Gn(p1).
As p1 > pc(G), for all (τ, v) ∈ H, the set of all rooted graphs with percolation probability
equal to pc(G), we have,

f((τ, v)) := Pp1
(v ↔∞) := inf

R
Pp1

(v ↔ ∂Bτ (v,R)) > 0.

As µ{∪∞m=1{(τ, v) ∈ H : f((τ, v)) > 1
m}} = µ{(τ, v) ∈ H : f((τ, v)) > 0} = 1, hence there

exists some δ > 0 and 0 < η ≤ 1 such that

µ{(τ, v) ∈ H : f((τ, v)) > δ} ≥ η > 0.

Let H ′′ ⊆ H be the set of all rooted graphs (τ, v) such that f((τ, v)) > δ. Then µ(H ′′) ≥
η > 0.

ECP 26 (2021), paper 32.
Page 5/6

https://www.imstat.org/ecp

https://doi.org/10.1214/21-ECP402
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Local weak limit of a sequence of expander graphs

Fix R > (ε
12∆
cηδ cηδ/24)−1 as in the proof of Theorem 1.3 of [4]. Then for this R, there

exists n0, such that for n ≥ n0, we have in Gn, (using (2.2) and setting ε = δη/2)

L × Pp1
(Un ↔ ∂BGn(Un, R))

≥
∑

Bτ (v,R):(τ,v)∈H

Pp1(v ↔ ∂Bτ (v,R))P(BG(ρ,R) = Bτ (v,R))− δη/2

≥
∑

Bτ (v,R):(τ,v)∈H′′

Pp1(v ↔ ∂Bτ (v,R))P(BG(ρ,R) = Bτ (v,R))− δη/2

≥ δµ(H ′′)− δη/2 ≥ δη − δη/2 = δη/2.

For v ∈ Gn, let B′p1
(v,R) denote the set of vertices in Gn(p1) which are connected to v in

a p1-open path of length at most R. Thus for all n ≥ n0,

L × P(|B′p1
(Un, R)| ≥ R) ≥ L× Pp1(Un ↔ ∂BGn(Un, R)) ≥ δη/2.

Next, following the arguments in the proof of Theorem 1.3 of [4] verbatim, the lemma
follows.
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