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Abstract

Let 1/2 ≤ β < 1, p be a generic prime number and fβ be a random multiplicative
function supported on the squarefree integers such that (fβ(p))p is an i.i.d. sequence
of random variables with distribution P(f(p) = −1) = β = 1 − P(f(p) = +1). Let
Fβ be the Dirichlet series of fβ . We prove a formula involving measure-preserving
transformations that relates the Riemann ζ function with the Dirichlet series of Fβ ,
for certain values of β, and give an application. Further, we prove that the Riemann
hypothesis is connected with the mean behavior of a certain weighted partial sum of
fβ .
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1 Introduction.

We say that f : N → C is a multiplicative function if f(nm) = f(n)f(m) for all non-
negative integers n and m with gcd(n,m) = 1, and that f has support on the squarefree
integers if for any prime p and any integer power k ≥ 2, f(pk) = 0. An important example
of such functions is the Möbius function µ, which is the multiplicative function supported
on the squarefree integers such that the value at each prime p is −1.

Many important problems in Analytic Number Theory can be rephrased in terms
of the mean behavior of the partial sums of multiplicative functions. For instance, the
Riemann hypothesis – the statement that all the non-trivial zeros of the Riemann ζ

function have real part equal to 1/2 – is equivalent to the statement that the partial sums
of the Möbius function have square root cancellation, that is,

∑
n≤x µ(n) is Oε(x1/2+ε),

for all ε > 0. In this direction, the best unconditional result up to date is of the type∑
n≤x µ(n) = O(x exp(−c(log x)3/5(log log x)1/5)), for some constant c > 0 (see Ivić [7], pp.

309-315). Any improvement of the type
∑
n≤x µ(n) = O(x1−ε) for some ε > 0 would be a

huge breakthrough in Analytic Number Theory, since it would imply that the Riemann ζ
function has no zeros with real part greater than 1− ε.

This equivalence between the Riemann hypothesis with the mean behavior of the
partial sums of the Möbius function led Wintner [12] to investigate the behavior of a
random model f for the Möbius function. This random model f is defined as follows:
f is a random multiplicative function supported on the squarefree integers such that
(f(p))p∈P (here P stands for the set of primes) is an i.i.d. sequence of random variables
whith distribution P(f(p) = −1) = P(f(p) = +1) = 1/2. It is important to observe
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that the sequence (f(n))n∈N is highly dependent; for instance, since 30 = 2 × 3 × 5,
we have that f(30) depends on the values f(2), f(3) and f(5). Wintner proved the
square root cancellation for the partial sums of f , that is,

∑
n≤x f(n) = O(x1/2+ε) for

all ε > 0, almost surely, and hence the assertion that the Riemann hypothesis is almost
always true. This upper bound has been improved several times: [2], [4], [5] and
[8]. The best upper bound up to date is due to Lau, Tenenbaum and Wu [8], which
states that

∑
n≤x f(n) = O(

√
x(log log x)2+ε) for all ε > 0, almost surely, and the best Ω

result is due to the recent result of Harper [6] which states that for any function V (x)

tending to infinity with x, there almost surely exist arbitrarily large values of x for which∣∣∣∑n≤x f(n)
∣∣∣ ≥ √x (log log x)1/4

V (x) .

Here we consider a slight different model for the Möbius function. We start with a
parameter 1/2 ≤ β ≤ 1 and consider a random multiplictive function fβ supported on the
squarefree integers and such that (fβ(p))p∈P is an i.i.d. sequence of random variables
with P(fβ(p) = −1) = β = 1 − P(fβ(p) = +1). For β = 1/2, we recover the Wintner’s
model; for β = 1, f1 = µ; for β < 1, fβ(n) is equal to µ(n) with high probability as β is
taken to be close to 1. In this paper we are interested in the following questions.
Question 1. What can be said about the partial sums

∑
n≤x fβ(n) for 1/2 < β < 1? Do

they have square root cancellation as in Wintner’s model and as we expect for the Möbius
function under the Riemann hypothesis?
Question 2. If the partial sums

∑
n≤x fβ(n) are O(x1−δ) for some δ > 0, almost surely,

then can we say something about the partial sums of the Möbius function?
Considering the first question, observe that Efβ(p) = 1 − 2β, and thus, we might

say that at primes, fβ(p) is equal to 1 − 2β on average. In the case 1/2 < β < 1 the
partial sums

∑
n≤x fβ(n) are well understood by the Selberg-Delange method, see the

book of Tenenbaum [11] chapter II.5. Indeed, in the case that 1/2 < β < 1, one can
check that the Dirichlet series of fβ, say Fβ, satisfies the required set of axioms for the
Selberg-Delange method in [11] to apply. The most difficult to check is an upper bound in
vertical strips for a random Dirichlet series with independent and mean zero summands∑∞

n=1
Xn
ns , which has been done in [1]. Thus, the following holds almost surely∑

n≤x

fβ(n) = (cfβ + o(1))
x

(log x)2β
,

as x→∞, where cfβ is a random constant which is positive almost surely. In particular,
this implies that

∑
n≤x fβ(n) is not O(x1−δ), for any δ > 0, almost surely. This answers

negatively to our question 1.
Here we provide a more probabilistic proof that we do not have square root can-

cellation for
∑
n≤x fβ(n) for certain values of β, almost surely. Further, by considering

the question 2, we show that the Riemann hypothesis is equivalent to the square root
cancellation of certain weighted partial sums of fβ .

Before we state our results, let us introduce some notation. Given a probabil-
ity space (Ω,F ,P), let ω be a generic element of Ω, and T : Ω → Ω be a measure-
preserving transformation, i.e., P(T−1(A)) = P(A), for all A ∈ F . We look at the random
multiplicative function fβ defined over the probability space (Ω,F ,P) as a function
fβ : N×Ω→ {−1, 0, 1}, that is, fβ(n) is a random variable such that fβ(n, ω) ∈ {−1, 0, 1}.
Moreover, the Dirichlet series of fβ , say Fβ(s) :=

∑∞
n=1

fβ(n)
ns , is a random analytic func-

tion over the half plane H1 := {s ∈ C : Re(s) > 1}, that is Fβ : H1 × Ω→ C is such that

Fβ(s, ω) =
∑∞
n=1

fβ(n,ω)
ns is analytic in the half plane H1, for all ω ∈ Ω.

Theorem 1.1. Let n ≥ 1 be an integer, β = 1− 1
2n+1 , and (Ω,F ,P) be a certain probability

space where it is defined fβ for all values of β ∈ [1/2, 1]. Let Fβ(s) =
∑∞
n=1

fβ(n)
ns . Then

there exists a measure-preserving transformation T : Ω → Ω such that T 2n = identity
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and such that the following formula holds for all Re(s) > 1 and all ω ∈ Ω:

1

ζ(s)2n−1
=

1

F1/2(s, ω)

2n∏
k=1

Fβ(s, T kω). (1.1)

In particular, if β = 3/4, we have

1

ζ(s)
=
F3/4(s, ω)F3/4(s, Tω)

F1/2(s, ω)
.

Corollary 1.2. For an integer n ≥ 1 and β = 1 − 1
2n+1 , we have that for any δ > 0,∑

n≤x fβ(n) is not O(x1−δ) almost surely.

The proof of corollary 1.2 utilizes the fact that the event in which
∑
n≤x fβ(n) =

O(x1−δ) is contained in the event in which the Dirichlet series Fβ(s) has analytic contin-
uation to {Re(s) > 1− δ}, from which, one can easily check that for β > 1/2, Fβ(1) = 0

almost surely. In Wintner’s proof [12] of the square root cancellation of
∑
n≤x f1/2(n),

it has been proved that F1/2(s) is almost surely a non-vanishing analytic function over
the half plane {Re(s) > 1/2}. Thus, as T preserves measure, the left side of (1.1) has a
zero of multiplicity 2n − 1 at s = 1 while the right side of the same equation has a zero of
multiplicity at least 2n at the same point, which is a contradiction, and hence the event
in which Fβ(s) has analytic continuation to {Re(s) > 1− δ} can not hold with probability
1. Moreover, by the Euler product formula for Re(s) > 1

Fβ(s) =
∏
p∈P

(
1 +

fβ(p)

ps

)
, (1.2)

we see that the event in which Fβ has analytic continuation to {Re(s) > 1− δ} is a tail
event, in the sense that it does not depend in any outcome on a finite number of the
random variables fβ(p1), ..., fβ(pr), where p1,...,pr are primes. The Kolmogorov zero-one
law states that each tail event has probability either equal to 0 or to 1. Thus, the event
in which Fβ has analytic continuation to {Re(s) > 1− δ} has probability 0, and hence the
event in which

∑
n≤x fβ(n) = O(x1−δ) also has probability 0.

Now we turn our attention to Question 2. As mentioned above, the event in which∑
n≤x fβ(n) = O(x1−δ) for some δ > 0 has probability 0. However, we can obtain an

equivalence between the Riemann hypothesis and the mean behavior of certain weighted
partial sums of fβ. Before we state our next result, let ω(n) be the number of distinct
primes that divide n.

Theorem 1.3. The Riemann hypothesis is equivalent to the following statement:∑
n≤x

(2β − 1)−ω(n)fβ(n) = O(x1/2+ε),

for all ε > 0 and x sufficiently large with respect to ε, almost surely, for each 1
2 + 1

2
√
2
<

β < 1.

Here we describe the proof of Theorem 1.3. For all Re(s) > 1, we have the following
formula:

∞∑
n=1

(2β − 1)−ω(n)fβ(n)

ns
=

1

ζ(s)
exp

∑
p∈P

(2β − 1)−1fβ(p) + 1

ps
+ Cβ(s)

 , (1.3)

where Cβ(·) is a random function that is analytic almost surely in the half plane Re(s) >
1/2 for each 1

2 + 1
2
√
2
< β < 1. If

∑
n≤x(2β−1)−ω(n)fβ(n) = O(x1/2+ε), for all ε > 0, almost
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surely, then the function on the left-hand side of (1.3) is almost surely an analytic function
in the half plane Re(s) > 1/2, and then we can conclude that 1/ζ(s) must be analytic
in the same half plane, which implies the Riemann hypothesis. Now if the Riemann
hypothesis is true, then the right-hand side of (1.3) is almost surely an analytic function
in the half plane Re(s) > 1/2, which gives that the left-hand side of (1.3) has analytic
continuation to Re(s) > 1/2, almost surely. It is noteworthy to notice that the existence
of analytic continuation does not necessarily implies the convergence of a Dirichlet

series. For instance, we have that η(s) :=
∑∞
n=1

(−1)n+1

ns has analytic continuation to
all of the complex plane and converges only in the half plane Re(s) > 0. However, in
our case, we have the extra information that under the Riemann hypothesis, for all
σ ≥ σ0 > 1/2 and all t ∈ R, 1/ζ(σ + it) = Oσ0,ε(t

ε), for all ε > 0, where the implicit
constant in Oσ0,ε depends only on σ0 and ε. Next, by Perron’s formula, we can show
that if a certain Dirichlet series has analytic continuation to a larger half plane, and in
this half plane satisfies the O(tε)-bound above, then this series converges in this larger
half plane. Thus, all we need to do is to bound the random Dirichlet series over primes

P (s) :=
∑
p∈P

(2β−1)−1fβ(p)+1
ps in vertical strips. More precisley, we need to verify a bound

roughly of the type P (σ + it) = o(log t), for each fixed σ > 1/2, almost surely. This has
been done by Carlson for Rademacher summands in [3], where he showed the almost
sure bound O(

√
log t), and then improved to O((log t)1−σ log log t) and to general random

variables satisfying some moment conditions by Sidoravicius and the author in [1].

2 Preliminaries

2.1 Notations

Here we let p denote a generic prime number and P the set of primes. We use
f(x) � g(x) and f(x) = O(g(x)) whenever there exists a constant c > 0 such that
|f(x)| ≤ c|g(x)|, for all x in a certain set X – This set X could be all the interval
[1,∞) or (a − δ, a + δ), a ∈ R, δ > 0. We say that f(x) = o(g(x)) if limx→∞

f(x)
g(x) = 0.

The notation d|n means that d divides n. Here ∗ stands for the Dirichlet convolution
(f ∗ g)(n) :=

∑
d|n f(d)g(n/d). We denote ω(n) =

∑
p|n 1, that is, the number of distinct

primes that divide n. In some contexts, the letter ω will also denote a random element of
a certain set of realizations Ω.

3 Proof of the results

3.1 Construction of the probability space

We let P be the set of primes, Ω = [0, 1]P = {ω = (ωp)p∈P : ωp ∈ [0, 1] for all p}, F the
Borel sigma algebra of Ω and P be the Lebesgue measure in F . We set fβ(p) as

fβ(p, ωp) = −1[0,β](ωp) + 1(β,1](ωp).

It follows that (fβ(p))p∈P are i.i.d. with distribution P(fβ(p) = −1) = β = 1− P(fβ(p) =

+1). Also, we say that fβ are uniformly coupled for different values of β, since fβ(p) can
be written as fβ(p) = λ(Up, β), where λ is a function λ : [0, 1]2 → R and Up is a random
variable with uniform distribution on the interval [0, 1].

3.2 Construction of the measure-preserving transformation

Now if β = 1− 1
2n+1 with n ≥ 1 an integer, we partionate the interval [1/2, 1] into 2n

subintervals Ik = (ak−1, ak] of length 1
2n+1 and with endpoints ak = 1

2 + k
2n+1 . It follows

that a0 = 1/2, a2n−1 = β and a2n = 1.
Let Tp : [0, 1] → [0, 1] be the following interval exchange transformation: for ωp ∈

[0, 1/2], Tp(ωp) = ωp; in each interval Ik as above the restriction Tp|Ik is a translation;
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Tp(I1) = I2n and for k ≥ 2, Tp(Ik) = Ik−1. It follows that the kth iterate T kp (Ik) = I2n and

T 2n

p is the identity. Also, for each prime p, Tp and its iterates preserve the Lebesgue
measure and hence, T : Ω→ Ω defined by Tω := (Tp(ωp))p∈P preserves P, and so do its
iterates.

3.3 Proof of Theorem 1.1

Proof. We let Fβ be the Dirichlet series of fβ and Ik = (ak−1, ak] be as above. Notice
that a0 = 1/2 and a2n = 1, and hence Fa0 = F1/2 and Fa2n = F1 = 1

ζ . Observe that

F1/2ζ =
Fa0
Fa2n

=
Fa0
Fa1
· Fa1
Fa2
· ... ·

Fa2n−1

Fa2n
.

Now, by the Euler product formula (1.2), we have that for all Re(s) > 1

Fak
Fak+1

(s, ω) =
∏
p∈P

1 +
fak (p,ωp)

ps

1 +
fak+1

(p,ωp)

ps

=
∏
p∈P

ps + 1Ik+1
(ωp)

ps − 1Ik+1
(ωp)

.

Thus, as all intervals Ik have same length, we see that each
Fak
Fak+1

is equal in probability

distribution to the last
Fa2n−1

Fa2n
. Moreover, if T is as above, since 1Ik(ωp) = 1I2n ◦ T kp (ωp),

we have that
Fak
Fak+1

(s, ω) =
Fa2n−1

Fa2n
(s, T k+1ω) = Fβ(s, T k+1ω)ζ(s).

Thus

F1/2(s, ω)ζ(s) = ζ(s)2
n

2n∏
k=1

Fβ(s, T kω),

which concludes the proof.

3.4 Proof of Corollary 1.2

Proof. A standard result about Dirichlet series is that the Dirichlet series of an arithmetic
function f , say F (s), is the Mellin transform of the partial sums of f . Indeed, we have
that for s in the half plane of convergence of F (s),

F (s) = s

∫ ∞
1

∑
n≤x f(n)

xs+1
dx.

Thus, we can conclude that the event in which the partial sums
∑
n≤x f(n) are O(xα)

is contained in the event in which the Dirichlet series F (s) :=
∑∞
n=1

f(n)
ns is analytic in

the half plane {Re(s) > α}. Thus, under the assumption that
∑
n≤x fβ(n) = O(x1−δ)

almost surely, we have that Fβ(s) =
∑∞
n=1

fβ(n)
ns has analytic continuation to the half

plane {Re(s) > 1 − δ} almost surely. Moreover, we can check that Fβ(1) = 0 almost
surely. Indeed, by taking the logarithm of the Euler product formula (1.2) and then using
Taylor expansion for each logarithm, we see that

Fβ(s) = exp

∑
p∈P

fβ(p)

ps
+Aβ(s)

 , (3.1)

where Aβ(s) = Oσ0
(1) for all Re(s) ≥ σ0 > 1/2. Since Efβ(p) = 1− 2β < 0 for all primes

p, we have by the Kolmogorov two series theorem that lims→1+
∑
p∈P

fβ(p)
ps = −∞ almost

surely, and hence, lims→1+ Fβ(s) = 0 almost surely.
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If T is the measure-preserving transformation as in Theorem 1.1, then the same is
almost surely true for Fβ(s, T kω). Further, in the Wintner’s proof [12] of the square
root cancellation of

∑
n≤x f1/2(n), it has been proved that F1/2(s) is almost surely a

non-vanishing analytic function over the half plane {Re(s) > 1/2}. Indeed, this can be
proved by the formula (3.1).

A well known fact is that the Riemann ζ function has a simple pole at s = 1, and
hence, 1

ζ(s) has a simple zero at the same point. Moreover, we recall that if an analytic
function G has a zero at s = s0, then there exists a non-vanishing analytic function H

at s = s0 and a non-negative integer m, called the multiplicity of the zero s0, such that
G(s) = (s− s0)mH(s). Thus the left-hand side of

1

ζ(s)2n−1
=

1

F1/2(s, ω)

2n∏
k=1

Fβ(s, T kω)

has a zero of multiplicity 2n−1 at s = 1, while the right-hand side of the same equation has
a zero of multiplicity at least 2n at the same point, almost surely, which is a contradiction.
Thus we see that the probability of the event in which Fβ(s) has analytic continuation to
Re(s) > 1− δ is strictly less than one. Now we can check by the Euler product formula
(1.2) that the event in which Fβ has analytic continuation to Re(s) > 1− δ is a tail event
for δ < 1, i.e., whether Fβ has analytic continuation to {Re(s) > 1− δ} does not depend
in any outcome of a finite number of random variables {fβ(p) : p ≤ y}. Indeed, we can
write

Fβ(s) =
∏
p≤y

(
1 +

fβ(p)

ps

)∏
p>y

(
1 +

fβ(p)

ps

)
,

and since
∏
p≤y

(
1 +

fβ(p)
ps

)
is a non-vanishing analytic function in Re(s) > 0, we ob-

tain that Fβ(s) has analytic continuation to Re(s) > 1 − δ (δ < 1) if and only if

Xy(s) :=
∏
p>y

(
1 +

fβ(p)
ps

)
has analytic continuation to the same half plane. Since

Xy(s) is independent of {fβ(p) : p ≤ y, p ∈ P} and the random variables (fβ(p))p∈P
are independent, we conclude that the event in which Fβ has analytic continuation to
{Re(s) > 1− δ} is a tail event.

Thus by the Kolmogorov zero-one law, we have that the probability that Fβ has analytic
continuation to {Re(s) > 1−δ} is zero, and hence the probability of

∑
n≤x fβ(n) = O(x1−δ)

is also zero.

3.5 Proof of Theorem 1.3

Proof. We begin by observing that the function gβ(n) := (2β − 1)−ω(n)fβ(n) is multiplica-

tive and supported on the squarefree integers. Moreover, at each prime p, gβ(p) =
fβ(p)
2β−1 ,

and hence Egβ(p) = −1. If β > 1
2 + 1

2
√
2
, we have that

Aβ(s) :=
∑
p∈P

∞∑
m=2

(−1)m+1

m

gβ(p)m

pms

converges absolutely for all Re(s) > 1/2 and hence defines a random analytic function in
this half plane. Moreover, Aβ(s) = Oσ0

(1) uniformly for all Re(s) ≥ σ0 > 1/2. Thus, by the

Euler product formula (1.2) for gβ , we have that the Dirichlet series Gβ(s) :=
∑∞
n=1

gβ(n)
ns

can be represented in the half plane Re(s) > 1 as

Gβ(s) = exp

∑
p∈P

gβ(p)

ps
+Aβ(s)

 .
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Moreover, by the same argument, there exists an analytic function B(s) with the same
properties of Aβ(s) such that

ζ(s) = exp

∑
p∈P

1

ps
+B(s)

 .

Now observe that

Hβ(s) := Gβ(s)ζ(s) = exp

∑
p∈P

gβ(p) + 1

ps
+Aβ(s) +B(s)

 .

Now, by the Kolmogorov two series theorem,
∑
p∈P

gβ(p)+1
ps converges almost surely for

all Re(s) > 1/2 and hence it defines, almost surely, a random analytic function in this half
plane. Moreover, by Theorem 3.1 of [1], for fixed 1/2 < σ ≤ 1, we have that for all large

t > 0,
∑
p∈P

gβ(p)+1
pσ+it � (log t)1−σ log log t, almost surely. Thus, for each fixed 1/2 < σ, we

have

Hβ(σ + it), 1/Hβ(σ + it)� tε,

for all ε > 0 and t sufficiently large with respect to ε, almost surely. A well known
consequence of the Riemann hypothesis, is that 1/ζ(s) has analytic continuation to
Re(s) > 1/2 and for each fixed σ > 1/2, 1/ζ(σ + it) � tε, for all ε > 0 and t sufficiently
large with respect to ε. Thus, if we assume the Riemann hypothesis, we obtain that Gβ(s)

has analytic continuation to Re(s) > 1/2 given by Gβ(s) = Hβ(s)/ζ(s) and for each fixed
σ > 1/2, Gβ(σ + it) � tε for all ε > 0 and t sufficiently large with respect to ε, almost
surely. The last bound holds, almost surely, uniformly in the half plane σ ≥ σ0 > 1/2; see
for instance [11], Chapter II.1, Theorem 1.20 and the Remark after.

Now we recall the Perron’s formula (see [9], Theorem 5.2 and Corollary 5.3): for
T > 0, ∑

n≤x

gβ(n) =

∫ 2+iT

2−iT
Gβ(s)

xs

s
ds+O

(
x1/4 +

x2

T

)
.

Let 1/2 < σ < 1 and let R be the rectangle with vertices 2− iT , 2 + iT , σ+ iT and σ− iT .
By the Cauchy integral formula, almost surely∫ 2+iT

2−iT
Gβ(s)

xs

s
ds = −

∫ σ+iT

2+iT

Gβ(s)
xs

s
ds−

∫ σ−iT

σ+iT

Gβ(s)
xs

s
ds−

∫ 2−iT

σ−iT
Gβ(s)

xs

s
ds.

Now ∫ σ+iT

2+iT

Gβ(s)
xs

s
ds� 1

T 1−ε

∫ 2

σ

xσdx� x2

T 1−ε

and similarly ∫ 2−iT

σ−iT
Gβ(s)

xs

s
ds� x2

T 1−ε .

Further ∫ σ−iT

σ+iT

Gβ(s)
xs

s
ds� T εxσ

∫ T

−T

dt

|σ + it|
� T 2εxσ.

By combining these estimates, we obtain that

∑
n≤x

gβ(n)� T 2εxσ +
x2

T 1−ε , (3.2)
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almost surely. By selecting T = x3 and ε > 0 small enough, we obtain that the right-hand
side of the above (3.2) is� xσ+6ε, if x is sufficiently large with respect to ε. By making
σ → 1/2+, we get the desired almost sure bound.

To prove the other implication, if
∑
n≤x gβ(n)� x1/2+ε for all ε > 0 and x sufficiently

large with respect to ε, almost surely, then Gβ(s) is almost surely analytic in Re(s) > 1/2

and thus Gβ(s)/Hβ(s) also is almost surely analytic in Re(s) > 1/2. Since 1/ζ(s) =

Gβ(s)/Hβ(s), we have that 1/ζ(s) has analytic continuation to Re(s) > 1/2. This last
assertion is equivalent to the Riemann hypothesis.
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